一元一次方程单元检测题(正确的)房友营

合集下载

人教版七年级数学上册《第三章 一元一次方程》单元测试卷-含参考答案

人教版七年级数学上册《第三章 一元一次方程》单元测试卷-含参考答案

人教版七年级数学上册《第三章一元一次方程》单元测试卷-含参考答案一、选择题1.下列方程中是一元一次方程的是()A.x3−3=4+x4B.2x+3x−1C.x2−3x+3=0D.x+2y=32.若x=2是关于x的方程2x+a−4=0的解,则a的值为()A.−8B.0C.2D.8 3.下列说法正确的是()A.如果ac=bc,那么a=b B.如果a=b,那么a+1=b−1 C.如果a=b,那么ac=bc D.如果a2=b2,那么a=b 4.方程2y+1=5的解是()A.y=2B.y=12C.y=1D.y=525.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣46.将方程2x−12−x+13=1去分母后,得到3(2x-1)- 2x+1=6的结果错在()A.最简公分母找错B.去分母时漏乘3项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同7.某车间有25名工人,每人每天可生产100个螺钉或150个螺母,若1个螺钉需要配两个螺母,现安排名工人生产螺钉,则下列方程正确的是()A.B.C.D.8.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是()A.160元B.180元C.200元D.220元二、填空题9.若(a−1)x2+ax+1=0是关于x的一元一次方程,则a=.10.已知两个方程3(x+2)=5x和4x−3(a−x)=6x−7(a−x)有相同的解,那么a的值是 .11.若关于x的方程x−4−ax6=x+46−1的解是正整数,则符合条件的所有整数a的和是。

12.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.13.为迎接初一新生,47中清华分校对校园重新美化装修.现计划对教室墙体重新粉刷一遍(所有教室面积相同).现有甲,乙两个装修队承担此项工作.已知甲队3天粉刷5个教室,结果其中有30平方米墙面未来得及粉刷;乙队5天粉刷7个教室外还多粉刷20平方米.已知甲队比乙队每天多粉刷10平方米,则每间教室的面积为平方米.三、解答题14.解方程:(1)(2)15.小马虎在解关于x的方程x−13=x+2m2−1去分母时,方程右边的“−1”没有乘以6,最后他求得方程的解为3.(1)求m的值;(2)求该方程正确的解.16.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?17.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?18.某校七年级3位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。

一元一次方程单元测试题

一元一次方程单元测试题

一元一次方程单元测试题题目1:解一元一次方程1. 求解方程:2x + 3 = 7解答过程:首先将方程化简为:2x = 7 - 3然后进行计算:2x = 4最后得出解:x = 2题目2:解二元一次方程2. 求解方程组:{3x + 2y = 10; 4x - y = 8}解答过程:将第二个方程中的 y 提取出来,得到:y = 4x - 8将此式子代入第一个方程,得到:3x + 2(4x - 8) = 10化简并计算得:11x = 26然后解得:x = 26/11 ≈ 2.36将 x 值代入第二个方程,得到:4(2.36) - y = 8计算后解得:y ≈ -1.45题目3:求解含有分数的一元一次方程3. 求解方程:2x + 1/2 = 3/4解答过程:首先化简方程,得到:2x + 1/2 = 3/4将分数转化为通分形式,并得出:2x + 2/4 = 3/4继续化简并计算:2x + 1/4 = 0最后解得:x = -1/8题目4:解含有括号的一元一次方程4. 求解方程:2(x + 3) = 20解答过程:首先去括号并化简方程:2x + 6 = 20然后计算并解得:x = 7题目5:解有小数解的一元一次方程5. 求解方程:0.5x - 3 = 5.5解答过程:先将方程进行化简:0.5x = 5.5 + 3继续计算:0.5x = 8.5最后解得:x = 17总结:通过学习并解答上述一元一次方程的测试题,我们可以总结出以下要点:1. 解一元一次方程时,应根据题目要求去选择合适的方法:可使用逆运算法、消元法等。

2. 在计算过程中,注意合理化简并化为最简形式,避免计算错误。

3. 对于含有分数或括号的方程,需要采用相应的化简方法,如通分化简和去括号法。

4. 准确理解解的含义,以及如何进行解的验证。

人教版七年级数学一元一次方程单元测试题

人教版七年级数学一元一次方程单元测试题

《一元一次方程》单元测试卷1. 已知下列方程:①22x x-=; ②0.31x =; ③512x x =+; ④ 243x x -=;⑤6x =;⑥20x y +=.其中一元一次方程的个数是 ( ).A .2B .3C .4D .5 2.已知关于x 的方程5(21)a x a x +=-+的解是1x =-,则a 的值是 ( ).A .-5B .-6C .-7D .83.方程3521x x +=-移项后,正确的是 ( ).A .3251x x +=-B . 3215x x -=-+C .3215x x -=-D . 3215x x -=-- 4.方程2412332x x -+-=-,去分母得 ( ). A .22(24)33(1)x x --=-+ B . 123(24)183(1)x x --=-+C .12(24)18(1)x x --=-+D . 62(24)9(1)x x --=-+5.甲、乙两人骑自行车同时从相距65 km 的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5 km ,则乙的时速是 ( ).A .12.5 kmB .15 kmC .17.5 kmD .20 km6.某商店卖出两赚15元二.填空题(4′×8 ═ 32′)件衣服,每件60元,其中一件赚25%,另一件赔25%,那么这两件衣服售出后商店是 ( ).A .不赚不赔B . 赚8元C .亏8元D .7.使(1)60a x --=为关于x 的一元一次方程的a =______(写出一个你喜欢的数即可).8.当m =______ 时,式子273m -的值是-3. 9.若3122m x y -与224n x y 在某运算中可以合并,则_____m =,_____n =.10.设某数为x,根据下列条件列出方程:(1)某数的23比它的相反数大5.______________________________;(2)某数的13与12的差刚好等于这个数的2倍.________________________.11.某次数学竞赛共出了15道选择题,选对一题得4分,选错一题扣2分.若某同学得36分,他选对了________道题(不选算错).12.某商场对某种商品作调价,按原价8折出售,此时商品的利润率为10%,此商品的进价是1000元,则商品的原价是________.13.某人将1000元存入银行,定期两年,若年利率为2.27%,则两年后利息为________元,若扣除20%的利息税,则实际得到的利息为________元,银行应付给该储户本息共____________元.14.根据你们班男、女生人数编一道应用题:_________________________________________________________________ _______________________________________.假设适当的未知数,列出方程_______________________________________.三.解答题(8′×5 + 10′═ 50′)15.解下列方程:(2)(1)2(1)13x x x+--=-(3)3211 23x x-+-=16.小明解方程112(1)3()123x x x---=-的步骤如下:(1)去括号,得2311x x x---=-;(2)移项,得213x x-+=+;(3)合并同类项,得4x-=;(4)最后得4x=-.但是经过检验知道,4x=-不是原方程的根.请你检查一下,上述解题过程哪里错了?并予以改正.。

人教版2024年七年级上册第5章《一元一次方程》单元测试 含答案

人教版2024年七年级上册第5章《一元一次方程》单元测试  含答案

人教版2024年七年级上册第5章《一元一次方程》单元测试满分100分时间90分钟一、选择题(共30分)1.下列各式中,属于方程的是()A .4(1)3+-=B .23x +C .210x -<D .215x -=2.下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个3.下列四个方程中,解是1x =的是()A .213x -=B .13x +=C .11x -=D .12x +=4.下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c=D .如果22a bc c=,则a b =5.将方程4387x x +=+移项后,正确的是()A .4873x x -=+B .4837x x -=-C .8437x x -=-D .8473x x -=-6.解方程2(21)x x -+=,以下去括号正确的是()A .41x x +=-B .42x x-+=-C .41x x--=D .42x x--=7.把方程0.10.20.710.30.4x x ---=的分母化为整数的方程是()A .0.10.20.734x x --=B .127101034x x---=C .127134x x ---=D .12710134x x---=8.把一些图书分给某班学生,如果每人分3本,则余20本;如果每人分4本,则缺25本.设有x 名学生,则可列方程为()A .320425x x +=-B .320425x x +=+C .202534x x +-=D .202534x x -+=9.对于非零的两个有理数a ,b ,规定1a b b a⊗=-,若()1211x ⊗+=,则x 的值为()A .32B .13C .12D .12-10.如图,表中给出的是某月的月历,任意选取“凹”型框中的5个数(如阴影部分所示).请你运用所学的数学知识来研究,这5个数的和不可能是()A .36B .51C .78D .126二、填空题(共24分)11.已知关于x 的方程2240m x m -+-=是一元一次方程,则m 的值为.12.若3240x y --=,则用含x 的代数式表示y 为.13.如果256x +=,那么26x =,其依据是.14.若代数式35m -与32m -的值互为相反数,则m 的值是.15.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x 套,列方程式是.16.如图,已知A ,B 两点在数轴上,点A 表示的数为10-,点B 表示的数为30,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动,其中点M 、点N 同时出发,经过秒,点M 、点N 分别到原点O 的距离相等.三、解答题(共46分)17.(8分)解方程:(1)35(14)x x =--;(2)231132x x -+=-.18.(6分)已知:关于x 的方程111236x -=与()31x m m +=-有相同的解,求以y 为未知数的方程3332my m y--=的解.19.(6分)张阿姨到商场以940元购买了一件羽绒服和一条裙子.已知羽绒服打八折,裙子打六折,结果比按标价购买时共节省了360元,求张阿姨购买的羽绒服及裙子的标价.20.(8分)甲、乙两人共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元.(1)在规定时间内,甲、乙两人能否完成这项工程?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人.调走谁更合适?21.(8分)某服装批发商促销一种裤子和T恤,在促销活动期间,裤子每件定价100元,T恤每件定价50元,并向客户提供两种优惠方案:方案一:买一件裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.x>):现某客户要购买裤子30件,T恤x件(30(1)按方案一,购买裤子和T恤共需付款______(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?x=时,你能给出一种更为省钱的购买方案吗?(3)若两种优惠方案可同时使用,当4022.(10分)如图在数轴上点A表示数a,点B表示数b,AB表示点A与点B之间的距离,且a,b满足:()2-++=.2460a b(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且3=,求点C表示的数;AC BC(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向右运动;同时另一小球乙从点B处以2个单位/秒的速度也向右运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为t(秒),求甲、乙两小球到原点的距离相等时经历的时间?参考答案一、选择题题号12345678910答案DAD DCDDACC二、填空题11.312.342x y -=13.5-;等式的基本性质114.215.()3010256x x +=+16.2或10三、解答题17.(1)解:()3514x x =--去括号得:3514x x =-+,移项得:3451x x -=-,合并同类项得:4x -=,系数化为1得:4x =-.(2)231132x x -+=-去分母得:()()223316x x -=+-,去括号得:46336x x -=+-,移项得:63364x x --=--,合并同类项得:97x -=-,系数化为1得:79x =.18.解:111236x -=,移项合并得:1122x =,解得:1x =,关于x 的方程111236x -=与()31x m m +=-有相同的解,∴将1x =代入方程()31x m m +=-,可得()311m m +=-,解得:2m =-,将2m =-代入3332my m y--=,可得322332y y +--=,去分母得:()()232323y y +=--,去括号得:6469y y +=--,移项合并得:1312y =-,系数化1得:1213y =-19.解:按标价购买羽绒服及裙子总价为9403601300+=(元)设张阿姨购买的羽绒服的标价为x 元/件,则裙子的标价为(1300)x -元/条.由题意,得()0.80.61300940x x +-=,解得800x =.当800x =时,1300500x -=.答:张阿姨购买的羽绒服的标价为800元/件,裙子的标价为500元/条.20.(1)解:设甲、乙两人合作完成此项工程需x 天.则13020x x +=,解得12x =.因为1215<,所以在规定时间内,甲、乙两人能完成这项工程;(2)解:设两人合作a 天完成工程的75%.则330204a a +=解得9a =.若调走甲,则乙还需115420÷=(天);若调走乙,侧甲还需117.5430÷=(天).因为9514+=(天)15<天,97.516.5+=(天)15>天,所以调走甲更合适.21.(1)解:根据题意得()100305030501500x x ⨯+-=+,故按方案一,购买裤子和T 恤共需付款()501500x +;(2)按方案一,购买裤子和T 恤共需付款()100305080%402400x x ⨯+⨯=+,根据题意得,501500402400x x +=+,解得90x =,答:购买90件T 恤时,两种优惠方案付款一样;(3)能,用方案一购买裤子30件,送T 恤30件,再用方案二购买10件T 恤,共需付款()3010050403080%3400⨯+⨯-⨯=(元),∴共需付款3400元.22.(1)解:∵()22460a b -++=,∴240a -=,60b +=,∴2a =,6b =-,∴A 、B 两点之间的距离628=--=;(2)设数轴上点C 表示的数为c ∴2AC c =-,6BC c =--∵3AC BC =,∴236c c -=--,解得4c =-或10c =-,即数轴上点C 表示的数为4-或10-,(3)乙球到挡板的时间623t =÷=秒,当03t ≤≤时,乙球没有到挡板,此时甲球到原点的距离为2t +,乙球到原点的距离为62t -,由甲、乙两小球到原点的距离相等可得622t t -=+,解得43t =;当3t >时,乙球到挡板并返回,此时甲球到原点的距离为2t +,乙球到原点的距离为26t -,由甲、乙两小球到原点的距离相等可得262t t -=+,解得8t =,符合题意;综上所述,当43t =或8秒时,甲、乙两小球到原点的距离相等.。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案一、选择题1. 解一元一次方程 \( ax + b = 0 \)(\( a \neq 0 \))时,应将\( x \) 的系数化为1,即解得 \( x = \) 。

A. \( -\frac{b}{a} \)B. \( \frac{b}{a} \)C. \( \frac{a}{b} \)D. \( -\frac{a}{b} \)2. 方程 \( 3x - 5 = 14 \) 的解是:A. \( x = 3 \)B. \( x = 4 \)C. \( x = 5 \)D. \( x = 6 \)3. 如果 \( x \) 满足方程 \( 2x + 4 = 10 \),那么 \( x \) 的值是:A. \( 1 \)B. \( 2 \)C. \( 3 \)D. \( 4 \)二、填空题4. 解方程 \( 5x - 7 = 18 \) 时,首先需要将方程两边同时加上______,然后将两边同时除以______。

5. 方程 \( 3x + 2 = 7x - 1 \) 移项后,合并同类项得到 \( 4x = ______ \)。

三、解答题6. 解方程 \( \frac{2}{3}x - 1 = \frac{1}{2}x + 2 \)。

7. 解方程 \( 2(x - 3) = 3(4x + 1) - 5x \)。

四、应用题8. 某工厂生产一批零件,如果每天生产50个,需要20天完成。

如果每天生产60个,需要多少天完成?答案:1. A2. C3. B4. 7, 55. 36. 解:\( \frac{2}{3}x - \frac{1}{2}x = 2 + 1 \),得\( \frac{1}{6}x = 3 \),\( x = 18 \)。

7. 解:\( 2x - 6 = 12x + 3 - 5x \),得 \( -8x = 9 \),\( x =-\frac{9}{8} \)。

8. 解:设需要 \( x \) 天完成。

一元一次方程单元测试题

一元一次方程单元测试题

一元一次方程单元测试题(含答案)(总19页)-本页仅作为预览文档封面,使用时请删除本页-一元一次方程单元测试题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列是一元一次方程的是()A.x2﹣2x﹣3=0 B.x+1=0 C.x2+1x=1 D.2x+y=52.(3分)已知方程(a﹣2)x|a|﹣1+7=0是关于x的一元一次方程,则a的值为()A.2 B.﹣2 C.±2 D.无法确定3.(3分)下列变形正确的是()A.由ac=bc,得a=b B.由x5=x5−1,得a=b﹣1C.由2a﹣3=a,得a=3 D.由2a﹣1=3a+1,得a=2 4.(3分)若关于x的一元一次方程ax+3x=2的解是x=1,则a的值为()A.1 B.﹣1 C.5 D.﹣55.(3分)若x3+1与2x−73互为相反数,则m的值为()A.34B.43C.−34D.−436.(3分)下列各题中不正确的是()A.由5x=3x+1移项得5x﹣3x=1B.由2(x+1)=x+7去括号、移项、合并同类项得x=5C.由2x−13=1+x−32去分母得2(2x﹣1)=6+3(x﹣3)D.由2(2x﹣1)﹣3(x﹣3)=1去括号得 4x﹣2﹣3x﹣9=17.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣28.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x天,则下列方程正确的是()A .x +312+x 8=1 B .x 12+x +38=1 C .x −312+x 8=1 D .x 12+x −38=1 9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120 B .720+120=6(x +32x ) C .6x +6×32x +120=720D .6(x +32x )+120=72010.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x ﹣1与x +2的值相等,则x = . 12.(3分)若2a 3x +1与−15x 2x +4的和是单项式,则x 的值为 . 13.(3分)若P =2y ﹣2,Q =2y +3,2P ﹣Q =3,则y 的值等于 . 14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 .三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x ); (2)x −13=2x −32+117.(8分)已知方程2﹣3(x+1)=0的解与关于x的方程x+x2−3k=1﹣2x的解互为倒数,求(5k+12)3的值.18.(8分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么?(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人?21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱?(2)当标价总额是多少时?甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?一元一次方程单元测试题(含答案)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列是一元一次方程的是()A.x2﹣2x﹣3=0 B.x+1=0 C.x2+1x=1 D.2x+y=5【分析】利用一元一次方程的定义判断即可.【解答】解:x+1=0是一元一次方程,故选:B.【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.(3分)已知方程(a﹣2)x|a|﹣1+7=0是关于x的一元一次方程,则a的值为()A.2 B.﹣2 C.±2 D.无法确定【分析】根据一元一次方程的定义,得出|a|﹣1=1,注意a﹣2≠0,进而得出答案.【解答】解:由题意得:|a|﹣1=1,a﹣2≠0,解得:a=﹣2.故选:B.【点评】此题主要考查了一元一次方程的定义,正确把握定义得出是解题关键.3.(3分)下列变形正确的是()A.由ac=bc,得a=b B.由x5=x5−1,得a=b﹣1C.由2a﹣3=a,得a=3 D.由2a﹣1=3a+1,得a=2【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A、由ac=bc,当c=0时,a不一定等于b,错误;B、由x5=x5−1,得a=b﹣5,错误;C、由2a﹣3=a,得a=3,正确;D、由2a﹣1=3a+1,得a=﹣2,错误;故选:C.【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.4.(3分)若关于x的一元一次方程ax+3x=2的解是x=1,则a的值为()A.1 B.﹣1 C.5 D.﹣5【分析】把x=1代入方程ax+3x=2得出a+3=2,求出方程的解即可.【解答】解:把x=1代入方程ax+3x=2得:a+3=2,解得:a=﹣1,故选:B.【点评】本题考查了一元一次方程的解和解一元一次方程的应用,解此题的关键是得出关于a的一元一次方程,难度适中.5.(3分)若x3+1与2x−73互为相反数,则m的值为()A.34B.43C.−3D.−4【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到m 的值.【解答】解:根据题意得:x3+1+2x−73=0,去分母得:m+3+2m﹣7=0,解得:m=43,故选:B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)下列各题中不正确的是()A.由5x=3x+1移项得5x﹣3x=1B.由2(x+1)=x+7去括号、移项、合并同类项得x=5C.由2x−13=1+x−32去分母得2(2x﹣1)=6+3(x﹣3)D.由2(2x﹣1)﹣3(x﹣3)=1去括号得 4x﹣2﹣3x﹣9=1【分析】根据解一元一次方程的步骤依次计算可得.【解答】解:A.由5x=3x+1移项得5x﹣3x=1,此选项正确;B.由2(x+1)=x+7去括号、移项、合并同类项得x=5,此选项正确;C.由2x−13=1+x−3去分母得2(2x﹣1)=6+3(x﹣3),此选项正确;D.由2(2x﹣1)﹣3(x﹣3=1)去括号得 4x﹣2﹣3x+9=1,此选项错误;故选:D.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.7.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x天,则下列方程正确的是()A.x+312+x8=1B.x12+x+38=1C.x−312+x8=1 D.x12+x−38=1【分析】设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天,根据甲完成的部分+乙完成的部分=整个工作量(单位1),即可得出关于x 的一元一次方程,此题得解.【解答】解:设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天, 根据题意得:x 12+x −38=1. 故选:D .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120 B .720+120=6(x +32x ) C .6x +6×3x +120=720D .6(x +3x )+120=720【分析】设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,根据相遇问题的数量关系建立方程求出其解即可.【解答】解:设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,由题意,得:120+6(x +32x )=720, 故列方程错误的是B . 故选:B .【点评】本题考查了由实际问题抽象一元一次方程的知识,解答本题的关键是仔细审题,根据等量关系建立方程.10.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A.DA边上B.AB边上C.BC边上D.CD边上【分析】要想知道乙追到甲时在哪一边上,则必须知道它们追上时所行的路程,那么只要求出追到时的时间,就可求出路程.根据路程计算沿正方形所走的圈数,就可知道在哪一边上.【解答】解:设乙第一次追上甲时,所用的时间为x,依题意得:100x=60x+3×80解得:x=6∴乙第一次追上甲时所行走的路程为:6×100=600m∵正方形边长为80m,周长为320m,∴当乙第一次追上甲时,将在正方形AB边上.故选:B.【点评】解决此题的关键是要求出它们相遇时的路程,然后根据路程求沿正方形所行的圈数,即可知道在哪一边上.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x﹣1与x+2的值相等,则x= 3 .【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x﹣1=x+2,移项合并得:x=3,故答案为:3【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.x2x+4的和是单项式,则x的值为 3 .12.(3分)若2a3x+1与−15【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求解.【解答】解:根据题意得:3x+1=2x+4,解得:x=3.故答案是:3.【点评】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.(3分)若P=2y﹣2,Q=2y+3,2P﹣Q=3,则y的值等于 5 .【分析】把P、Q的值代入2P﹣Q=3,得关于y的一次方程,求解方程即可.【解答】解:把P=2y﹣2,Q=2y+3,代入2P﹣Q=3,得2(2y﹣2)﹣(2y+3)=3整理,得2y=10,所以y=5.故答案为:5【点评】本题考查了一元一次方程的解法.把P、Q的值代入得关于y的方程是解决本题的关键.14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为x−1413=x+2614【分析】设春游的总人数是x人,根据大巴的载客量做为等量关系列方程求解.【解答】解:设春游的总人数是x人.根据题意所列方程为x−1413=x+2614,故答案为:x−1413=x+2614.【点评】本题考查理解题意的能力,因为同样的大巴,所以以大巴的载客量做为等量关系列方程求解.15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是1710元.【分析】设该照相机的原售价是x元,从而得出售价为,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:=1200×(1+14%),解得:x=1710.答:该照相机的原售价是1710元.故答案为:1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解三.解答题(共8小题,满分75分)16.(8分)(1)5+3x=2(5﹣x);(2)x−13=2x−32+1【分析】(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)去括号得,5+3x=10﹣2x,移项得,3x+2x=10﹣5,合并同类项得,5x=5,系数化为1得,x=1;(2)去分母得,2(x﹣1)=3(2x﹣3)+6,去括号得,2x﹣2=6x﹣9+6,移项得,2x﹣6x=﹣9+6+2,合并同类项得,﹣4x=﹣1,系数化为1得,x=1;【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.17.(8分)已知方程2﹣3(x+1)=0的解与关于x的方程x+x2−3k=1﹣2x的解互为倒数,求(5k+12)3的值.【分析】先求出第一个方程的解得x=−13,再根据倒数的定义把x=﹣3代入第二个方程,求出5k=﹣17,然后代入(5k+12)3,计算即可.【解答】解:解方程2﹣3(x+1)=0得:x=−13,−13的倒数为﹣3,把x=﹣3代入方程x+x2−3k=1﹣2x得:x−32−3k=1+6,解得:5k=﹣17,则(5k+12)3=(﹣17+12)3=﹣125.【点评】本题考查了倒数、解一元一次方程、代数式求值,能得出关于k的方程是解此题的关键.18.(8分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】将x=﹣2代入原方程,即可得出关于k的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,∴|k﹣1|=2,∴k﹣1=2或k﹣1=﹣2,解得:k=3或k=﹣1.答:k的值是3或﹣1.【点评】本题考查了一元一次方程的解,将x=﹣2代入原方程,找出关于k 的含绝对值符号的一元一次方程是解题的关键.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.【分析】(1)根据新定义运算法则解答;(2)根据“兄弟方程”的定义和已知条件得到:n﹣(﹣n)=8或﹣n﹣n=8,解方程即可;(3)求得方程2x+3m﹣2=0和3x﹣5m+4=0解,然后由“兄弟方程”的定义解答.【解答】解:(1)方程2x﹣4=x+1的解为x=5,将x=﹣5代入方程5x+m=0得m=25;(2)另一解为﹣n.则n﹣(﹣n)=8或﹣n﹣n=8,∴n=4或n=﹣4;(3)方程2x+3m﹣2=0的解为x=−3x+2,方程3x﹣5m+4=0的解为x=5x−4,则−3x+22+5x−43=0,解得m=2.所以,两解分别为﹣2和2.【点评】考查了一元一次方程的解的定义,解题的关键是掌握“兄弟方程”的定义.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么?(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人?【分析】(1)根据旅行社收费标准,分别求出两家旅行社所需的费用,再比较即可;(2)设带领的小孩有x人,根据这两家旅行社的总费用一样列出方程,求解即可.【解答】解:(1)由题意可得,甲旅行社所需费用为:3×200+×200×2=880(元),乙旅行社所需费用为:×(3+2)×200=800(元),故选择乙旅行社更优惠;(2)设带领的小孩有x人,根据题意得3×200+×200x=×(3+x)×200,解得x=6.答:如果这两家旅行社的总费用一样,那么带领的小孩有6人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?【分析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)根据题意可以列出相应的一元一次方程,从而可以解答本题;(3)根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:(1)设经过x小时两人相遇,15x+20x=70,解得,x=2,答:经过2小时两人相遇;(2)设经过a小时,乙超过甲10千米,20a=15a+70+10,解得,a=16,答:经过16小时,乙超过甲10千米;(3)设b小时后两人相距10千米,|15b+20b﹣70|=10,解得,b1=167,b2=127,答:127小时或167小时后两人相距10千米.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.【分析】(1)设用x块金属原料加工螺栓,则用(20﹣x)块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求解即可;(2)设用y块金属原料加工螺栓,则用(26﹣y)块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求出的方程的解如果是正整数,那么加工的螺栓和螺帽恰好配套;否则不能配套;(3)设用a块金属原料加工螺栓,则用(n﹣a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.根据2×螺栓的个数=螺帽的个数列出方程,得出n与a的关系,进而求解即可.【解答】解:(1)设用x块金属原料加工螺栓,则用(20﹣x)块金属原料加工螺帽.由题意,可得2×3x=4(20﹣x),解得x=8,则3×8=24.答:最多能加工24个这样的零件;(2)若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y块金属原料加工螺栓,则用(26﹣y)块金属原料加工螺帽.由题意,可得2×3y=4(26﹣y),解得y=.由于不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3)设用a块金属原料加工螺栓,则用(n﹣a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n﹣a),解得a=2n,n,则n﹣a=35即n所满足的条件是:n是5的正整数倍的数.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系:2×螺栓的个数=螺帽的个数是解题的关键.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱?(2)当标价总额是多少时?甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?【分析】(1)根据两家超市的优惠方案,可知当一次性购物标价总额是300元时,甲超市实付款=购物标价×,乙超市实付款=300×,分别计算即可;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据甲超市实付款=乙超市实付款列出方程,求解即可;(3)首先计算出两次购物标价,然后根据优惠方案即可求解.【解答】解:(1)当一次性购物标价总额是300元时,甲超市实付款=300×=264(元),乙超市实付款=300×=270(元);(2)设当标价总额是x元时,甲、乙超市实付款一样.当一次性购物标价总额是500元时,甲超市实付款=500×=440(元),乙超市实付款=500×=450(元),∵440<450,∴x>500.根据题意得=500×+(x﹣500),解得x=625.答:当标价总额是625元时,甲、乙超市实付款一样;(3)小明两次到乙超市分别购物付款198元和466元,第一次购物付款198元,购物标价可能是198元,也可能是198÷=220元,第二次购物付款466元,购物标价是(466﹣450)÷+500=520元,两次购物标价之后是198+520=718元,或220+520=740元.若他只去一次该超市购买同样多的商品,实付款500×+(718﹣500)=元,或500×+(740﹣500)=642元,可以节省198+466﹣=元,或198+466﹣642=22元.答:若他只去一次该超市购买同样多的商品,可以节省或22元.【点评】本题考查了一元一次方程的应用,理解两家超市的优惠方案,进行分类讨论是解题的关键.。

第四章《一元一次方程》单元测试卷及答案

第四章《一元一次方程》单元测试卷及答案

第四章《一元一次方程》单元测试卷一、选择题(共10小题,每小题3分,满分30分)1、下列各式是一元一次方程的是()A、3x﹣1﹣(4x+1)B、C、x+1=3D、x﹣y=02、下列方程中,是一元一次方程的是()A、x2+x﹣3=x(x+2)B、x+(4﹣x)=0C、x+y=1D、3、如果代数式5x﹣7与4x+9的值互为相反数,则x的值等于()A、B、C、D、4、将一元一次方程去分母,下列正确的是()A、1﹣(x﹣3)=1B、3﹣2(x﹣3)=6C、2﹣3(x﹣3)=6D、3﹣2(x﹣3)=15、已知等式3a=2b+5,则下列等式中不一定成立的是()A、3a﹣5=2bB、3a+1=2b+6C、3ac=2bc+5D、a=6、某月日历上竖列相邻的三个数,它们的和是39,则该列的第一个数是()A、6B、12C、13D、147、一轮船往返与A、B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是()A、18千米/时B、15千米/时C、12千米/时D、20千米/时8、小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A、1B、2C、3D、49、方程2x+a﹣4=0的解是x=﹣2,则a等于()A、﹣8B、0C、2D、810、滨海商厦将商品A按标价9折出售,仍获利10%,若商品A标价33元,则进价为()A、27元B、29.7元C、30.2元D、31元二、填空题(共10小题,每小题3分,满分30分)11、写出满足下列条件的一个一元一次方程:①未知数的系数是;②方程的解是3,这样的方程可以是:x﹣=0.12、y=1是方程2﹣3(m﹣y)=2y的解,则m=113、若|a﹣1|+(b+2)2=0,则b a=﹣2.14、若是2ab2c3x﹣1与﹣5ab2c6x+3是同类项,则x=.15、小明买2副羽毛球拍,付出50元,找回1.2元,则每副球拍的单价为24.4元.16、方程,则x=﹣3或9.17、小麦磨成面粉,重量要减轻16%,如果要得到336千克面粉,需要400千克的小麦.18、x=是方程|k|(x+2)=3x的解,那么k=±.19、某单位今年为灾区捐款25000元,比去年的2倍多1000元,去年该单位为灾区捐款12000元.20、某品牌的电视机降价10%后每台售价为2430元,则这种彩电的原价为每台2700元.三、解答题(共8小题,满分90分)21、解下列方程(1)7﹣2x=3﹣4x;(2)4(1﹣x)=x﹣1;(3);(4).22、某区中学生足球联赛共赛8轮(即每队均需赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,小平安队踢平的场数是所负场数的2倍,共得17分,试问该队胜了几场?23、解方程:(1)|4x﹣1|=7;(2)2|x﹣3|+5=13.24、用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m3,第一架工作16小时,第二架工作24小时,共掘土8640 m3,问每架掘土机每小时可以掘土多少m3?25、某商店以90元的相同价格卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%,问商店卖出的这2件衬衫盈利了,还是亏损了?26、我市某学校计划向西部山区的学生捐赠3500册图书,实际共捐了4125册.其中,初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%,问初中学生和高中学生比原计划多捐了多少册?27、汽车从甲地到乙地用去油箱中汽油的,由乙地到丙地用去剩下汽油的,油箱中还剩下6升,求油箱中原有汽油多少升?28、一条山路,从山下到山顶,走了1小时还差1km,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km.29、一商店将每台彩电先按进价提高40%标出售价,然后在广告中宣传将以八折的优惠价出售,结果每台赚了300元,那么每台彩电的进价是多少元?每台彩电的进价是2500元.30、小明的爸爸向银行贷了一笔款,商定两年归还,贷款年利率为6%,他用这笔款购进一批货物,以高于买入价的37%出售,经过两年的时间售完,用所得收入还清贷款本利,还剩4万元,问两年前小明的爸爸贷款的金额是多少?两年前小名的爸爸贷款的金额是160000元答案及分析:一、选择题(共10小题,每小题3分,满分30分)1、下列各式是一元一次方程的是(c)A、3x﹣1﹣(4x+1)B、C、x+1=3D、x﹣y=0分析:根据一元一次方程的定义,找到只含有1个未知数,并且未知数的最高次数是1的整式方程即可.解答:解:A、不是方程,不符合题意;B、分母中含有未知数,不是整式方程,不符合题意;C、是只含有1个未知数,并且未知数的最高次数是1的整式方程,符合题意;D、含有2个未知数,不符合题意;故选C.2、下列方程中,是一元一次方程的是(A)A、x2+x﹣3=x(x+2)B、x+(4﹣x)=0C、x+y=1D、分析:根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0),进行选择.解答:解:A、x2+x﹣3=x(x+2),是一元一次方程,正确;B、x+(4﹣x)=0,不是一元一次方程,故本选项错误;C、x+y=1,不是一元一次方程,故本选项错误;D、+x,不是一元一次方程,故本选项错误.故选A.3、如果代数式5x﹣7与4x+9的值互为相反数,则x的值等于(D)A、B、C、D、分析:互为相反数的含义是两个代数式的和为0.由已知,“代数式5x﹣7与4x+9的值互为相反数”,可以得到(5x﹣7)+(4x+9)=0,从而解得x的值.解答:解:根据题意得:(5x﹣7)+(4x+9)=0,去括号得:5x﹣7+4x+9=0,移项得:5x+4x=﹣9+7,合并同类项得:9x=﹣2,系数化为1得:x=.故选D.4、将一元一次方程去分母,下列正确的是(B)A、1﹣(x﹣3)=1B、3﹣2(x﹣3)=6C、2﹣3(x﹣3)=6D、3﹣2(x﹣3)=1分析:一元一次方程方程两端同乘各分母的最小公倍数6,就可以去分母.解答:解:去分母得:3﹣2(x﹣3)=6.故选B.5、已知等式3a=2b+5,则下列等式中不一定成立的是(C)A、3a﹣5=2bB、3a+1=2b+6C、3ac=2bc+5D、a=分析:利用等式的性质:①等式的两边同时加上或减去同一个数或同一个整式,所得的结果仍是等式;②:等式的两边同时乘以或除以同一个数(除数不为0),所得的结果仍是等式,对每个式子进行变形即可找出答案.解答:解:A、根据等式的性质1可知:等式的两边同时减去5,得3a﹣5=2b;B、根据等式性质1,等式的两边同时加上1,得3a+1=2b+6;D、根据等式的性质2:等式的两边同时除以3,得a=;C、当c=0时,3ac=2bc+5不成立,故C错.故选C.6、某月日历上竖列相邻的三个数,它们的和是39,则该列的第一个数是()A、6B、12C、13D、14分析:日历上竖列相邻的三个数一定相隔7,那么等量关系是:第一个数+第二个数+第三个数=39.根据等量关系,列方程并求解即可.解答:解:设该列的第一个数是x,根据题意得x+(x+7)+(x+2×7)=39解得,x=6则该列的第一个数是6.故选A.7、一轮船往返与A、B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是(B)A、18千米/时B、15千米/时C、12千米/时D、20千米/时分析:本题求的是速度,时间比较明确,那么一定是根据路程来列等量关系.本题的等量关系为;逆水速度×逆水时间=顺水速度×顺水时间解答:解:设轮船在静水中的速度是千米/时,则3(x﹣3)=2(x+3)解得:x=15,故选B8、小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A、1B、2C、3D、4分析:设所缺的部分为x,2y+y﹣x,把y=﹣代入,即可求得x的值.解答:解:设所缺的部分为x,则2y+y﹣x,把y=﹣代入,求得x=2.故选B.9、方程2x+a﹣4=0的解是x=﹣2,则a等于()A、﹣8B、0C、2D、8分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.10、滨海商厦将商品A按标价9折出售,仍获利10%,若商品A标价33元,则进价为()A、27元B、29.7元C、30.2元D、31元分析:利用售价﹣进价=利润,列出方程进行求解.解答:解:设进价为x元则:33×0.9﹣x=0.1x解得:x=27.故选A.二、填空题(共10小题,每小题3分,满分30分)11、写出满足下列条件的一个一元一次方程:①未知数的系数是;②方程的解是3,这样的方程可以是:x﹣=0.12、y=1是方程2﹣3(m﹣y)=2y的解,则m=113、若|a﹣1|+(b+2)2=0,则b a=﹣2.14、若是2ab2c3x﹣1与﹣5ab2c6x+3是同类项,则x=.15、小明买2副羽毛球拍,付出50元,找回1.2元,则每副球拍的单价为24.4元.16、方程,则x=﹣3或9.17、小麦磨成面粉,重量要减轻16%,如果要得到336千克面粉,需要400千克的小麦.18、解:根据题意得:|k|(+2)=3×解得:|k|=,故填:±.19、某单位今年为灾区捐款25000元,比去年的2倍多1000元,去年该单位为灾区捐款12000元.20、某品牌的电视机降价10%后每台售价为2430元,则这种彩电的原价为每台2700元.三、解答题(共8小题,满分90分)21、解答:解:(1)7﹣2x=3﹣4x﹣2x+4x=3﹣72x=﹣4x=﹣2;(2)4﹣4x=x﹣1﹣5x=﹣5x=1;(3)3(x+1)﹣6=2(2﹣3x)3x+3﹣6=4﹣6x9x=7x=;(4)0.6x﹣(0.5x﹣1)=0.60.6x﹣0.5x+1=0.60.1x=﹣0.4x=﹣4.22、某区中学生足球联赛共赛8轮(即每队均需赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,小平安队踢平的场数是所负场数的2倍,共得17分,试问该队胜了几场?解答:解:设负的场数为x,则平的场数为2x,那么胜的场数为(8﹣x﹣2x),3×(8﹣x﹣2x)+2x=17,解得x=1,∴8﹣x﹣2x=5.答:胜了5场.23、解方程:(1)|4x﹣1|=7;(2)2|x﹣3|+5=13.解答:解:(1)原方程可化为:4x﹣1=7 ①,4x﹣1=﹣7 ②解①得,x=2,解②得,x=﹣1.5;故方程的解为x=2或x=﹣1.5.(2)原方程可化为:x﹣3=4 ①,x﹣3=﹣4 ②解①得,x=7,解②得,x=﹣1.故方程的解为x=7或x=﹣1.24、用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m3,第一架工作16小时,第二架工作24小时,共掘土8640 m3,问每架掘土机每小时可以掘土多少m3?分析:在工程问题中,注意公式:工作总量=工作效率×工作时间.若设第一架掘土机每小时掘土xm3,那么,第二架掘土机每小时掘土(x﹣40)m3.第一架掘土机16小时掘土16xm3,第二架掘土机24小时掘土24(x﹣40)m3.解答:解:设第一架掘土机每小时掘土xm3,那么第二架掘土机每小时掘土(x﹣40)m3,依题意得:16x+24(x﹣40)=8640,解得:x=240,∴(x﹣40)=200m3.答:第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200m3.25、解答:解:设盈利的衬衫的成本价为x元.由题意得:x×(1+25%)=90,解得:x=72;亏损的衬衫的成本价为y元.由题意得:y×(1﹣25%)=90,解得:y=120,总成本价为72+120=192,∴90×2﹣192=﹣12(元)答:亏损了12元.26、设初中生计划捐x本书,则高中生计划捐(3500-X)本书方程(1+20%)X+(3500-X)115%=4125解得X=2000初中生计划捐2000本,高中生计划捐1500本初中生实际捐2400本,高中生实际捐1725本初中生多捐了400本,高中生多捐了225本.27、解:设油箱中原有汽油x升,则有,解得:x=10.答:油箱中原有汽油10升.28、解:设上山速度为每小时xkm,那么下山速度为每小时1.5xkm,依题意有:x+1=×1.5x,解得:x=4答:上山速度为每小时4km,下山速度为每小时6km,单程山路为5km.29.解:设每台彩电的进价为x元,则标价为0.8x(1+40%)- x=300元0.8x×(1+40%)- x=300x=2500答:每台彩电的进价为2500元30. 解:设两年前小明的爸爸贷款的金额是x万元则由题意可知x(1+37%)-x(1+2*6%)=41.37x-1.12x=40.25x=4x=16万元。

《一元一次方程》单元测试卷(附答案)

《一元一次方程》单元测试卷(附答案)

(利率不变),到期的得本息和1320元,问张叔叔当初购买这种债券花了多少
元?
25.一队学生去校外郊游,他们以每小时5千米的速度行进,经过一段时间后,
学校要将一紧急的通知传给队长。

通讯员骑自行车从学校出发,以每小时14千
米的速度按原路追上去,用去10分钟追上学生队伍,求通讯员出发前,学生队
伍走了多长的时间?
26.下图的数阵由77个偶数排成。

(1)图中平行四边形框内的四个数有什么关系?
(2)在数阵中任意作一类似(1)中的平行四边形框,设其中左上角的一个数是,那么其
x
他三个数怎样表示?
(3)如果四个数的和是326,你能求出这四个数吗?
27. 小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,
这七天的日期数之和为84,你知道我是几号出去的吗?”小王说:“我假期到舅舅
家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的
吗?”试列出方程,解答小赵与小王的问题。

28. 2001年亚洲铁人三项赛在徐州市风光秀丽的云龙湖畔举行,比赛程序是:运动员先同时下水游泳15 km到第一换项点,在第一换项点整理服装后,接着骑自行车40 km到第二换项点,再跑步10 km到终点.下表是2001年亚洲铁人三项赛女子组(19岁以下)三名运动员在比赛中的成绩(游泳成绩即游泳所用时间,其他类推,表内时间单位为s)。

(完整)七年级数学上册《一元一次方程单元测试卷》及答案

(完整)七年级数学上册《一元一次方程单元测试卷》及答案

(完整)七年级数学上册《一元一次方程单元测试卷》及答案七年级数学上册《一元一次方程单元测试卷》一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=52.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7D.x=﹣33.(3分)若关于x的一元一次方程A.B.1C.的解是x=﹣1,则k的值是()D.4.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣XXX5.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2C.x+1=(26﹣x)﹣2B.x﹣1=(13﹣x)+2D.x+1=(13﹣x)﹣26.(3分)某市肆有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在此次生意中,这家市肆()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程精确的是()A.x•30%×80%=312C.312×30%×80%=xB.x•30%=312×80%D.x(1+30%)×80%=3128.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同砚做完全部25题得70分,那么它做对题数为()A.17B.18C.19D.20 9.(3分)若2x+1=4,则4x+1等于()第1页(共17页)A.6B.7C.8D.910.(3分)甲比乙大15岁,5年前甲的年岁是乙的年岁的2倍,乙目前年岁是()A.30岁二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是.12.(3分)如果关x的方程值是.13.(3分)轮船沿江从A港顺流行驶到B港,比从B 港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距km.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=.15.(3分)关于x的方程=4的解是x=4,则a=.与的解相同,那么m的B.20岁C.15岁D.10岁16.(3分)当x=时,3x+4与4x+6的值相等.17.(3分)如果单项式3a4x+1b2与应分别为.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x=.20.(3分)三个连续奇数的和是75,这三个数分别是.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.可以合并为一项,那么x与y的值22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用几何张制瓶身,几何张制瓶底,第2页(共17页)可以恰好制成成套的饮料瓶?23.(10分)收拾整顿一批图书,如果由一个人零丁做要用30h,现先放置一局部人用1h收拾整顿,随后又增长6人和他们一起又做了2h,恰好完成收拾整顿事情.假定每一个人的事情效率相同,那么先放置收拾整顿的职员有几何?24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.26.(10分)初一学生XXX同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=.(2)若该用户九月份的均匀电费为0.36元,则九月份共用电千瓦时,应交电费是元.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,该厂家出产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.第3页(共17页)(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的计划中,为使销售利润最多,你选择哪一种进货计划?第4页(共17页)七年级数学上册《一元一次方程》单元测试卷参考答案与试题剖析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只要一项为哪一项吻合问题要求的,将此选项的字母填在答题卡上)1.(3分)以下方程中,是一元一次方程的是()A.x2﹣4x=3B.C.x+2y=1D.xy﹣3=5【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项精确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;应选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是.2.(3分)以下方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0C.4x﹣7=5x+7D.x=﹣3【分析】方程的解的定义,就是可以使方程摆布两边相等的未知数的值.以是把x=﹣1分别代入四个选项举行检验便可.【解答】解:A、把x=﹣1代入方程的左侧=右边=﹣2,是方程的解;B、把x=﹣1代入方程的左侧=﹣14≠右边,以是不是方程的解;C、把x=﹣1代入方程的左边=﹣11≠右边,不是方程的解;D、把x=﹣1代入方程的左边=﹣≠右边,不是方程的解;故选:A.【点评】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.第5页(共17页)3.(3分)若关于x的一元一次方程A.B.1C.的解是x=﹣1,则k的值是()D.【分析】方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.已知x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.【解答】解:把x=﹣1代入方程得:解得:k=1故选:B.【点评】本题主要考查了方程解的定义,是一个基础的题目,注意细心运算即可.4.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣XXX﹣=1,【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=﹣2代入方程得:﹣4+a ﹣4=0,解得:a=8.故选:D.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.5.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2C.x+1=(26﹣x)﹣2B.x﹣1=(13﹣x)+2D.x+1=(13﹣x)﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量第6页(共17页)关系比较隐藏,要注意仔细审题,耐心寻找.6.(3分)已知某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏【分析】设盈利60%的进价为x元,亏损20%的进价为y元,根据销售问题的数目关系树立方程求出其解便可.【解答】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1﹣20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160﹣150=10元故选:C.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时由销售问题的数量关系建立方程是关键.7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312C.312×30%×80%=xB.x•30%=312×80%D.x(1+30%)×80%=312【分析】先算出标价,再算售价,列出方程即可.【解答】解:由题意得:x(1+30%)×80%=312,故选:D.【点评】此题考察了由实际问题抽象出一元一次方程,把握找出等量关系是解题的枢纽.8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17B.18C.19第7页(共17页)D.20【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】解:设该同砚做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.应选:C.【点评】本题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(3分)若2x+1=4,则4x+1等于()A.6B.7C.8D.9【分析】由已知等式变形求出2x的值,代入原式计算即可得到结果.【解答】解:由2x+1=4,得到2x=3,则原式=6+1=7.故选:B.【点评】此题考察了代数式求值,利用了团体代入的思想,熟练把握运算法例是解此题的枢纽.10.(3分)甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()A.30岁B.20岁C.15岁D.10岁【分析】本题等量关系为:5年前甲的年龄=2×5年前乙的年龄.可设乙现在的年龄为x岁,则甲为(x+15)岁,根据等量关系列方程求解.【解答】解:设乙现在x岁,则5年前甲为(x+15﹣5)岁,乙为(x﹣5)岁,由题意得:x+15﹣5=2(x﹣5)解得x=20应选:B.【点评】解题关键是读懂题意,找到合适的等量关系,列出方程.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是x=9.第8页(共17页)【分析】方程去分母,移项合并,把x系数化为1,便可求出解.【解答】解:去分母得:2x﹣6=12,移项合并得:2x=18,解得:x=9,故答案为:x=9【点评】此题考察了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.(3分)如果关x的方程值是±2.【分析】此题中有两个方程,且是同解方程,普通思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程收拾整顿得:15x﹣3=42,解得:x=3,把x=3代入得=x+4+2|m|=与的解相同,那么m的=3++2|m|解得:|m|=2,则m=±2.故答案为±2.【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.13.(3分)轮船沿江从A港顺风行驶到B港,比从B 港返回A港罕用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距504km.【分析】根据逆流速率=静水速率﹣水流速率,逆流速率=静水速率+水流速率,表示出逆流速率与逆流速率,根据题意列出方程,求出方程的解便可获得成效.【解答】解:设A港与B港相距xkm,第9页(共17页)根据题意得:解得:x=504,+3=,则A港与B港相距504km.故答案为:504.【点评】此题考察了一元二次方程的应用,找出题中的等量关系是解此题的枢纽.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy=1.【分析】根据的绝对值为,得3y﹣2=0,解方程得x,y 的值,再求积即可.【解答】解:解方程2x﹣3=0,得x=.由|3y﹣2|=0,得3y﹣2=0,解得y=.∴xy==1.【点评】本题的关键是正确解一元一次方程以及绝对值的定义.15.(3分)已知关于x的方程【分析】把x=4代入方程【解答】解:把x=4代入方程XXX:a=0.故填.【点评】本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(3分)当x=﹣2时,3x+4与4x+6的值相等.【分析】根据题意,可列关于x的方程3x+4=4x+6,再解方程,即可得x的值.【解答】解:根据题意得:3x+4=4x+6,XXX:x=﹣2.故填﹣2.【点评】办理此类问题的枢纽是列方程并求解,属于基础题.17.(3分)如果单项式3a4x+1b2与应分别为1和2.【分析】两个式子可以合并,即两个式子是同类项,依据同类项的概念,相同字第10页(共17页)=4的解是x=4,则a=.=4得关于a的方程,再求解即得a的值.=4,得:=4,可以合并为一项,那么x与y的值母的指数相同,即可求得x,y的值.【解答】解:根据题意得:4x+1=5且2=3y﹣4解得:x=1,y=2.【点评】本题主要考查了同类项的定义,同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.18.(3分)关于x的两个方程5x﹣3=4x与ax﹣12=0的解相同,则a=4.【分析】先求方程5x﹣3=4x的解,再代入ax﹣12=0,求得a的值.【解答】解:解方程5x﹣3=4x,得x=3,把x=3代入ax﹣12=0,得3a﹣12=0,解得a=4.故填:4.【点评】此题首要考察了一元一次方程解的定义.解答此题的枢纽是熟知方程组有公共解的含义,考察了学生对题意的了解能力.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x=.【分析】由相反数得出a+b=0,由倒数得出cd=1,由绝对值得出p=±2,然后将其代入关于x的方程(a+b)x2+3cd•x ﹣p2=0中,从而得出x的值.【解答】解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,∴a+b=0,cd=1,p=±2,将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,可得:3x﹣4=0,解得:x=.【点评】主要考查了相反数,倒数,绝对值的概念及其意义,并利用这些概念得到的数量关系代入含有字母系数的方程中,利用一元一次方程求出未知数的值.20.(3分)三个连续奇数的和是75,这三个数分别是23,25,27.【分析】利用“三个连续奇数的和是75”作为等量关系列方程求解.就要先设出一第11页(共17页)个未知数,然后根据题中的等量关系列方程求解.【解答】解:设最小的奇数为x,则其他的为x+2,x+4∴x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.【点评】解题枢纽是要读懂问题标意思,根据问题给出的前提,找出合适的数目关系,列出方程,再求解.此题中要熟悉连续奇数的表示办法.相邻的两个连续奇数相差2.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,便可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,便可求出解.【解答】解:(1)去括号得:2x+5=3x﹣3,解得:x=8;(2)去分母得:15x﹣3=18x+6﹣8+4x,移项合并得:7x=﹣1,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?【分析】设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,通过理解题意可知本题的等量关系,即做瓶底所用的铝片=制瓶身所用的铝片的两倍.根据这个等量关系,可列出方程,再求解.第12页(共17页)【解答】解:设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则用150﹣86=64张铝片做瓶底.答:用86张铝片做瓶身,则用64张铝片做瓶底.【点评】解题关键是要读懂题目的意思,正确理解:一个瓶身配两个瓶底是解题的关键.23.(10分)收拾整顿一批图书,如果由一个人零丁做要用30h,现先放置一局部人用1h收拾整顿,随后又增长6人和他们一起又做了2h,恰好完成收拾整顿事情.假定每一个人的事情效率相同,那么先放置收拾整顿的职员有几何?【分析】安排整理的人员有x人,则随后又(x+6)人,根据题意可得等量关系:开始x人1小时的工作量+后来(x+6)人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设第一放置收拾整顿的职员有x人,由题意得:x+(x+6)×2=1,解得:x=6.答:先安排整理的人员有6人.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题用到的公式是:工作效率×工作时间=工作量.24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?【分析】设该照相机的原售价是x元,从而得出售价为0.8x,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:0.8x=1200×(1+14%),解得:x=1710.答:该照相机的原售价是1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,第13页(共17页)首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】把x=﹣2代入方程,推出|k﹣1|=2,得到方程k ﹣1=2,k﹣1=﹣2,求出方程的解即可.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,∴|k﹣1|=2,∴k﹣1=2,k﹣1=﹣2,解得:k=3,k=﹣1,答:k的值是3或﹣1.【点评】本题主要考查对绝对值,含绝对值的一元一次方程,解一元一次方程等知识点的理解和掌握,能得到方程k﹣1=2和k﹣1=﹣2是解此题的关键.26.(10分)初一学生XXX同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【分析】本题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.【点评】本题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.27.(10分)某地区居民生活用电根本代价为每千瓦时0.40元,若每月用电量跨越a千瓦时,则跨越局部按根本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a=60.(2)若该用户九月份的均匀电费为0.36元,则九月份共用电90千瓦时,应第14页(共17页)交电费是32.40元.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x.【解答】解:(1)由题意,得0.4a+(84﹣a)×0.40×70%=30.72,解得a=60;(2)设九月份共用电x千瓦时,则0.40×60+(x﹣60)×0.40×70%=0.36x,解得x=90,所以0.36×XXX(元).答:九月份共用电90千瓦时,应交电费32.40元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳跨越800元的那局部稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应征税224元,若王老师获得的稿费为4000元,则应征税440元;(2)若王老师获稿费后征税420元,求这笔稿费是几何元?【分析】本题列出了不同的判断条件,要将本题中的稿费金额按照三种不同的条件进行分类讨论,然后再根据等量关系列方程求解.【解答】解:(1)若王老师获得的稿费为2400元,则应征税224元,若王老师获得的稿费为4000元,则应征税440元;第15页(共17页)(2)因为XXX纳税420元,所以由(1)可知XXX的这笔稿费高于800元,而低于4000元,设XXX老师的这笔稿费为x元,根据题意得:14%(x﹣800)=420x=3800元.答:XXX的这笔稿费为3800元.【点评】解题枢纽是要读懂问题标意思,依据问题给出的不同前提举行判断,然后分类会商,再根据问题给出的前提,找出合适的等量关系,列出方程,求解.29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,该厂家出产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则解得:.第16页(共17页),③设购乙种电视机y台,丙种电视机z台.则解得:(分歧题意,舍去);(2)计划一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.。

人教版数学《 一元一次方程》 单元测试题(含答案)

人教版数学《 一元一次方程》 单元测试题(含答案)

《 一元一次方程》 单元测试题一、填空题(共20分)1.写出一个解为1的一元一次方程 。

2.方程由2x+6=3x -7,变形为2x -3x=-7-6 ,这叫 ,依据是 。

3.已知352=+y x ,用含y 的式子表示x ,则x =_________。

4.已知代数式52x -的值与110互为倒数,则x = 。

5.①当x = 时,式子256x +与114x x ++的值互为相反数②解方程321=-x ,则x =_______。

6.若x = -3是方程3(x - a) = 7的解,则a = ________。

7.已知0421=+-m x 是一元一次方程,则m =8.飞机在A 、B 两城之间飞行,顺风速度是a 千米/时,逆风速度是b 千米/时,则风的速度是______________千米/时。

9.已知某商品降价20﹪后的售价为2800元,则该商品的原价为 元。

10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝_____ 瓶矿泉水。

二、选择题(共24分)11.下列方程中是一元一次方程的是( )A.23+=+y xB. x x -=+33C.11=x D.012=-x 12.下列等式变形错误的是( )A.若x-1=3,则x=4;B.若12x-1=x,则x-1=2x C.若x-3=y-3,则x-y=0; D.若3x+4=2x,则3x-2x=-413.在下列方程中,解是2的方程是( )A.33+=x xB.03=+-xC.62=xD.825=-x14.在解方程133221=+--x x 时,去分母正确的是( ) A .1)32(2)1(3=+--x x B .6)32(2)1(3=+--x xC .13413=+--x xD .63413=+--x x15.甲数比乙数的41还多1,设甲数为x ,则乙数可表示为 ( ) A .141+x B .14-x C .)1(4-x D .)1(4+x16.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( )A .54B .27C .72D .4517.小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x 千米/时,列方程得( )A .4325.2x +=B .3425.2x ⨯+=C .3(4)25.2x +=D .3(4)25.2x -=18.收费标准如下:用水每月不超过6m 3,按0.8元/m 3收费,如果超过6m 3,超过部分按1.2元/m 3收费。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案测试题:1. 解方程:2x + 3 = 72. 解方程:4(x - 5) = 163. 解方程:3(2x - 1) + 2 = 5(x + 3) - 14. 解方程:5x + 3 = 2 - 4x5. 解方程:2(3x + 4) - 5(x - 2) = 146. 解方程:3(2x - 1) = 4(3x + 2) - 17. 解方程:6x - 7 = 5(x - 3)8. 解方程组:2x + 3y = 74x - 2y = 89. 解方程组:3x + y = 4x - 2y = -110. 解方程组:2x + y = 13x - 2y = 4答案及解析:1. 解方程:2x + 3 = 7解:首先,将方程中的常数项移动到等号的右边,得到2x = 7 - 3。

接着,将式子进行计算,得到2x = 4。

最后,将方程两边同时除以2,得到x = 2。

答案:x = 22. 解方程:4(x - 5) = 16解:首先,将括号内的式子进行计算,得到4x - 20 = 16。

接着,将常数项移动到等号的右边,得到4x = 16 + 20。

最后,将方程两边同时除以4,得到x = 9。

答案:x = 93. 解方程:3(2x - 1) + 2 = 5(x + 3) - 1解:首先,将括号内的式子进行计算,得到6x - 3 + 2 = 5x + 15 - 1。

接着,将常数项移动到等号的右边,得到6x - 1 = 5x + 14。

接着,将方程两边同时减去5x,得到x - 1 = 14。

最后,将方程右边的常数项移动到等号左边,得到x = 15。

答案:x = 154. 解方程:5x + 3 = 2 - 4x解:首先,将方程中的常数项移动到等号的右边,得到5x = 2 - 3 + 4x。

接着,将方程两边同时减去4x,得到x = 2 - 3。

最后,将右边的常数项进行计算,并化简方程,得到x = -1。

答案:x = -15. 解方程:2(3x + 4) - 5(x - 2) = 14解:首先,将括号内的式子进行计算,得到6x + 8 - 5x + 10 = 14。

人教版2024年七年级上册数学第5章《一元一次方程》单元检测卷 含答案

人教版2024年七年级上册数学第5章《一元一次方程》单元检测卷  含答案

人教版2024年七年级上册数学第5章《一元一次方程》单元检测卷满分100分时间90分钟题型选择题填空题解答题总分分值一、选择题(共30分)1.下列方程中,解是=1的方程是()A .781x +=B .660x -=C .()236x +=D .581x +=2.若等式ac bc =成立,则下列等式中不成立的是()A .a b=B .33ac bc +=+C .33ac bc -=-D .33ac bc=3.如图,等量关系不成立的是()A .29248x x +-=B .48292x x +=+C .48229x x-=-D .29248x x ++=4.下列是小明同学做的四道解方程,其中错误的是()A .5491x x x +=→=B .2351x x x --=→=C .3131x x x -=-+→=D .6282x x x -+=--→=-5.下列方程变形正确的是()A .方程3221x x -=+移项得3212x x -=-+;B .方程()3251x x -=--,去括号,得3251x x -=--;C .若ax ay =,则x y =;D .方程110.20.5x x--=化成36x =;6.设2223P y Q y =-=+,,有21P Q -=,则y 的值是()A .4-B .4C .1-D .17.小明解方程21132x x a-+=-去分母时,方程右边的1-忘记乘6,因而求出的解为2x =-,那么原方程正确的解为()A .5x =B .7x =-C .13x =-D .1x =8.某种商品的进价为80元,出售时的标价为110元.为了尽快减少库存,商店准备打折出售,但要使利润率10%,则该商品应打()A .6折B .7折C .8折D .9折9.已知规定一种新运算:1x y xy =+※;1x y x y =+-★,例如:723231=⨯+=※;232314=+-=★.若()45a ※★的值为17,且6a x a =※★,则x 的值为()A .1B .2C .3D .3-10.如图,表中给出的是某月的月历,任意选取某“H ”型框中的7个数(表中阴影部分仅作“H ”型框的例).请你运用所学的数学知识分析任取的这7个数的和不可能是()A .63B .98C .126D .161二、填空题(共21分)11.将方程21y x =+变形为用含y 的式子表示x :.12.若()2370a a x---=是一个关于x 的一元一次方程,则a 等于.13.已知x y =,则23x -+23y -+(填“>”“<”或“=”).14.若1x +与5互为相反数,则x =.15.某车间每天需生产50个零件,才能在规定时间内完成一批任务,实际上该车间每天比计划多生产了6个零件,结果比规定的时间提前3天完成且超额生产了120个零件.若设该车间要完成的零件任务为x 个,则可列方程为.16.关于x 的方程6719x +=与3183x m =-的解相同,则m 的值为.17.某校七年级11个班开展篮球单循环比赛(每班需进行10场比赛),比赛的规则是每场比赛都要分出胜负,胜1场得3分,负1场得1-分.已知七(2)班最终得到14分,则该班胜了场.三、解答题(共49分)18.(6分)解下列方程:(1)352x +=;(2)()2216x x -=+.19.(6分)解方程:(1)()5933x x -=--(2)3157123x x ---=20.(6分)某车间有27个工人生产甲、乙两种零件,每3个甲种零件与2个乙种零件配成一套,已知每个工人每天能加工甲种零件12个或乙种零件16个,为使每天生产的两种零件配套,则生产甲、乙零件的工人数各多少人?21.(7分)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程48x =和10x +=为“美好方程”.(1)请判断方程()451x x -+=与方程23y y --=是否互为“美好方程”;(2)若关于x 的方程30x m +=与方程4210x x -=+是“美好方程”,求m 的值;(3)若关于x 的一元一次方程1322022x x k +=+和1102022x +=是“美好方程”,求关于y 的一次方程()113222022y y k ++=++的解.22.(7分)七年级四班共有学生48人,其中男生人数比女生人数多2人,劳技课上,老师组织同学们自己动手设计制作便携式垃圾盒,每名学生一节课能做盒身11个或盒底26个(1)七年级四班有男生和女生各多少人?(2)原计划女生负责做盒身,男生负责做盒底,每个盒身匹配2个盒底,那么这节课做出的盒身和盒底不能完全配套,最后决定男生去支援女生,问有多少男生去支援女生,才能使这节课制作的盒身和盒底刚好配套.23.(8分)当今社会,随着生活水平的提高,人们越来越重视自己的身心健康,开始注重锻炼身体.某公司计划购买50个羽毛球拍和x个羽毛球,某体育用品商店每个羽毛球拍定价80元,每个羽毛球定价5元,经协商拟定了如下两种优惠方案(两种优惠方案不可混用):方案一:每买一个羽毛球拍就赠送2个羽毛球;方案二:羽毛球拍和羽毛球都按定价的90%付款.x=,请计算哪种方案划算;(1)若100x>,请用含x的代数式分别把两种方案的费用表示出来;(2)若100(3)请你帮助公司写出x取值不同时的所有划算的购买方案.AC=,24.(9分)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,C在原点左侧,且10t t>秒.动点P从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为()0(1)数轴上点C表示的数为______,并用含t的代数式表示点P所表示的数为______.(2)设M是AP的中点,N是CP的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,求线段MN的长度;(3)动点Q从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点R从点C出发,以每秒1个单位长度沿数轴向左匀速运动,若P、Q、R三点同时出发,在运动过程中,P到R的距离、P到Q的距离中,何时这两段距离相等,请直接写出此时t的值.参考答案一、选择题题号12345678910答案BADBDBBCCC二、填空题11.12y x -=12.3-13.=14.6-15.120350506x x +-=+16.4三、解答题17.解:设该班胜了x 场,由题意,得3(10)14x x --=,解得6x =.故答案为:6.18.(1)解:352x +=,移项合并同类项得:33x =-,系数化为1得:1x =-.(2)解:()2216x x -=+,去括号得:426x x -=+,移项,合并同类项得:38x =,系数化为1得:83x =.19.(1)解:去括号得,5939x x -=-+,移项得,5399x x +=+,合并同类项得,818x =,系数化为1得,94x =;(2)解:去分母得,()()3316257x x --=-,去括号得,9361014x x --=-,移项得,9101436x x -=-++,合并同类项得,5x -=-,系数化为1得,5x =.20.解:设应分配x 人生产甲种零件,则应分配(27)x -人生产甲种零件,由题意得:12216(27)3x x ⨯=-⨯,解得18x =,279x -=(人).答:应分配18人生产甲种零件,9人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.21.(1)方程()451x x -+=与方程23y y --=是互为“美好方程”,理由:解方程()451x x -+=得:2x =,方程23y y --=的解为:1y =-.∵211x y +=-=,∴方程()451x x -+=与方程23y y --=是互为“美好方程”;(2)关于x 的方程30x m +=的解为:3m x =-,方程4210x x -=+的解为:4x =,∵关于x 的方程30x m +=与方程4210x x -=+是“美好方程”,∴413m-+=,∴9m =;(3)方程1102022x +=的解为:2022x =-,∵关于x 的方程1102022x +=与1322022x x k +=+是“美好方程”,∴关于x 的方程1322022x x k +=+的解为:2023x =.∵关于y 的方程()113222022y y k ++=++就是:()1132(1)2022y y k ++=++,∴12023y x +==,∴2022y =.∴关于y 的方程()113222022y y k ++=++的解为:2022y =.22.(1)解:设女生人数为x 人,则男生人数为()2x +人,根据题意可得:248x x ++=,解得:23x =则225x +=,答:七年级四班有男生25人,女生23人.(2)解:设a 名男生去支援女生,才能使这节课制作的盒身和盒底刚好配套,根据题意有:()()262521123a a ⨯-=⨯⨯+,整理得:48144a =,解得:3a =,答:需要3名男生去支援女生,才能使这节课制作的盒身和盒底刚好配套.23.(1)解:当100x =时,方案一:80504000⨯=(元).方案二:805090%510090%4050⨯⨯+⨯⨯=(元).因为40004050<,所以当100x =时,方案一划算.答:若100x =,方案一划算.(2)解:当100x >时,方案一:()()8050100553500x x ⨯+-⨯=+元.方案二:()805090%590% 4.53600x x ⨯⨯+⨯=+元.答:方案一、方案二的费用用代数式分别表示为()53500x +元,()4.53600x +元.(3)解:若方案一和方案二的费用相等,当100x ≤时,方案一不需要单独再购买羽毛球,可得()50805080590%x ⨯=⨯+⨯,解得8009x =.因为80088899<<,所以,当088x <≤时,方案二划算;当89100x ≤≤时,方案一划算;当100x >时,方案一和方案二都需要单独购买羽毛球,可得()()508051005080590%x x ⨯+-=⨯+⨯,解得200x =.所以,当100200x <<时,方案一划算;当200x =时,方案一和方案二一样划算;当200x >时,方案二划算.综上可知,当088x <≤时,方案二划算;当89200x ≤<时,方案一划算;当200x =时,方案一和方案二一样划算;当200x >时,方案二划算.24.(1)解:由题意,点C 表示的数为:4106-=-,点P 表示的数为:14t -;故答案为:6-;14t -(2)不变;∵点A 表示的数为4,点P 表示的数为:14t -;∴点M 表示的数为:()41454222t t ---=-+①当点P 在C 点右侧时:点N 表示的数为:()14656222t t ----+=--,∴5522522MN t t ⎛⎫=-+---= ⎪⎝⎭;②当点P 在C 点左侧时:点N 表示的数为:()61456222t t -----=--,∴5522522MN t t ⎛⎫=-+---= ⎪⎝⎭;综上:MN 的值不变,为5;(3)由题意,点Q 表示的数为:43t -,点R 表示的数为:6t --,∴43143PQ t t t =--+=+,61437PR t t t =---+=-,∴337t t +=-,解得:1t =或5t =.。

七年级数学一元一次方程单元测试题[1]

七年级数学一元一次方程单元测试题[1]

(完整版)七年级数学一元一次方程单元测试题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)七年级数学一元一次方程单元测试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)七年级数学一元一次方程单元测试题(word版可编辑修改)的全部内容。

人教版七年级数学一元一次方程单元测试题一、选择题(每题3分,共24分)1、下列四个方程中,是一元一次方程的是 ( ) A 11x = B 1x = C 211x -= D 6x y +=2、已知某数x,若比它的43大1的数的相反数是5,求x 。

则可列出方程 ( ) A.5143=+-x B 。

5)1(43=+-x C 。

5143=-x D 。

5)143(=+-x 3、如果方程(m -1)x + 2 =0是表示关于x 的一元一次方程,那么m 的取值范围是 ( )A .m ≠0B .m ≠1C .m=-1D .m=04、小华想找一个解为x=—6的方程,那么他可以选择下面哪一个方程 ( )A 、2x-1=x+7B 、131x 21-=xC 、()x x --=+452D 、232-=x x 5、当3x =时,代数式23510x ax -+的值为7,则a 等于 ( )A 2B -2C 1D -16、某工厂去年三月份辣条x 袋,四月份比三月份增加了2倍,五月份增加到四月份的2倍,且这三个月共生产辣条3000袋,求每月生产的辣条袋数,则有题意列出的方程为 ( )A 323000x x x ++=B 243000x x x ++=C 363000x x x ++=D 233000x x x ++=7、某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩 ( )A 不赔不赚B 赚9元C 赔18元D 赚18元8一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是A 106元B 105元C 118元D 108元二、填空题(每题3分,共24分)9、已知54123m x -+=是关于x 的一元一次方程,那么m =________. 10、已知|36|(3)0x y -++=,则32x y +的值是__________。

浙教版七年级上册数学第五章《一元一次方程》单元检测题(含答案)

浙教版七年级上册数学第五章《一元一次方程》单元检测题(含答案)

《一元一次方程》单元检测题学号___ 姓名______一、选择题(每小题3分,共30分)1、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11xx =- 2、方程212=-x 的解是( ) (A );41-=x (B );4-=x (C );41=x (D ).4-=x 3、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a(C );523+=bc ac (D ).3532+=b a 4、方程042=-+a x 的解是2-=x ,则a 等于( ) (A );8- (B );0 (C );2 (D ).85、解方程2631x x =+-,去分母,得( ) (A );331x x =-- (B );336x x =--(C );336x x =+- (D ).331x x =+-6、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x(B )方程()1523--=-x x ,去括号,得;1523--=-x x(C )方程2332=t ,未知数系数化为1,得;1=x (D )方程15.02.01=--x x 化成.63=x 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.(A )3年后; (B )3年前; (C )9年后; (D )不可能.8、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为x ,则列出的方程正确的是( )(A );323x x -= (B )();3253x x -=(C )();3235x x -= (D ).326x x -=9、珊瑚中学修建综合楼后,剩有一块长比宽多5m 、周长为50m 的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是a 元,那么种植草皮至少需用( )(A )a 25元; (B )a 50元; (C )a 150元; (D )a 250元.10、银行教育储蓄的年利率如右下表:小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )(A )直接存一个3年期;(B )先存一个1年期的,1年后将利息和自动转存一个2年期;(C )先存一个1年期的,1年后将利息和自动转存两个1年期;(D )先存一个2年期的,2年后将利息和自动转存一个1年期.二、填空题(每小题3分,共30分)11、如果457+=x x ,那么.47=-x12、某数的3倍比它的一半大2,若设某数为y ,则列方程为____.13、当=x ___时,代数式24+x 与93-x 的值互为相反数.14、在公式()h b a s +=21中,已知4,3,16===h a s ,则=b ___. 15、如右图是2003年12月份的日历,4个数 ,请用一个等式表示d c b a ,,,之间的关系______________. 16、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.17、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.18、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).19乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.20、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元.三、解答题(共40分)21、(4分)解方程: ()()x x 2152831--=--22、(6分)已知21=x 是方程32142m x m x -=--的根,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值. 23、(6分)期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?24、(8分)在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.25、(8分)某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?26、(8分)黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?《一元一次方程》单元检测题㈠参考答案一、选择题 BACDB DCBCA二、填空题 11、;5x 12、2213+=y y 或2213=-y y 或;2123y y =- 13、;1 14、;5 15、c b d a +=+或2++=+b a d c 或;14-+=+d b c a 16、;8.12 17、;64 18、;3 19、;10 20、.10000三、解答题 21、7=x 22、5=m ,原式.2612-=--=m23、答:能. 解:设小贝加入后打x 分钟完成任务,根据题意,列方程1305030=++x x 解这个方程,得:5.7=x则小贝完成共用时5.37分405.37< ∴他能在要求的时间内打完.24、解:(1)设㈡班代表队答对了x 道题,根据题意,列方程()142503=--x x解这个方程,得:48=x答:㈡班代表队答对了48道题.(2)答:不能. 设㈡班代表队答对了x 道题,根据题意列方程()145503=--x x解这个方程,得:4348=x 因为题目个数必须是自然数,即4348=x 不符合该题的实际情景,所以此题无解. 即㈠班代表队的最后得分不可能为145分.25、解:(1)设平均每分钟一道侧门可以通过x 名学生,则一道正门可以通过()40+x 名学生,根据题意,列方程()4004022=++x x解这个方程,得:80=x∴ 12040=+x答:平均每分钟一道侧门可以通过80名学生,则一道正门可以通过120名学生.(2)这栋楼最多有学生10804564=⨯⨯(人)拥挤时5分钟3道门能通过()12801002018012025=⎪⎭⎫ ⎝⎛-⨯+⨯⨯(人)10801280>∴ 建造的3道门符合安全规定.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程单元测试题
时间45分钟 班级 姓名
一、选择题(30分)
1.在方程4x-y=0, x+1x-2
=0,-2x=1,x 2-2x+7=0中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个
2.解方程x 2 -1=x-13
时,去分母正确的是( ) A .3x-3=2x-2 B .3x-6=2x-2 C .3x-6=2x-1 D .3x-3=2x-1
3.方程x-2=2-x 的解是( )
A .x=1
B .x= - 1
C .x=2
D .x=0
4.如果等式ax=bc 成立,则下列等式成立的是( )
A .abx=abc ;
B .x= bc a
; C .b-ax=a-bc D .b+ax=b+bc
5. 增加2倍的值比 扩大5倍少3,列方程得( )
A .2x=5x+3
B .2x=5x-3
C .3x=5x+3
D .3x=5x-3
6.方程3a 10 +2x+42
=4(x-1)的解为x=3,则 a 的值为( ) A .2; B .22; C .10; D .-2
7.已知a ≠1,则关于x 的方程(a-1)x=1-a 的解是( )
A .x=0
B .x=1
C .x=- 1
D .无解
8.对∣x-2∣+3=4,下列说法正确的是( )
A .不是方程;
B .是方程,其解为1;
C .是方程,其解为3;
D .是方程,其解为1、3。

9.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。

若经过x 个月后,两厂库存钢材相等,则x =()
A.3;B.5; C.2; D.4
10.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()。

A.80元; B.85元; C.90元; D.95元
二、填空题(30分)
11.代数式-2a+1与1+4a互为相反数,则a=
12.如果 - 3x2a+1+6=0是一元一次方程,那么a= ,方程的解为x=。

13.若x= -4是方程ax2-6x-8=0的一个解,则a=
14.如果5a2b-3(2m+1)与-3a2b2(m+3)是同类项,则m= 。

15.编写一个解是X= -1的一元一次方程为
16.要锻造直径为16厘米、高为5厘米的圆柱形毛坯,设需截取边长为6厘米的的方钢x 厘米,可得方程为
17.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:⑴稿费不高于800元的不纳税;⑵稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费14%的税;
⑶稿费高于4000元,应缴纳全部稿费的11%的税。

某老师获得了2000元稿费,他应纳
税元。

18.某商店有两个进价不同的计算器都卖64元,一个赢利60%,另一个亏本20%。

在这次买卖中,你觉得这家商店元(填赚或亏的数目) 。

19.3年前,父亲年龄是儿子年龄的4倍,3年后父亲年龄是儿子年龄的3倍,求父子年龄各多少岁。

设3年前儿子年龄为X岁,那么父亲年龄是岁;今年儿子的年龄是岁,父亲的年龄是岁;3年后儿子年龄是岁,父亲年龄是岁,列出的方
程: 。

20.小明在某月的日历上圈出2×2个数,和是52,则它们分别是。

三、解方程(8分)
21.2y-1
3
=
2+y
4
-1
22.-2(x-1)=4
四、解答题(32分)
23.设y1= x
2
+1, y2=
1+2x
4
,当x为何值时,y1、y2互为相反数?(5分)
24.在"希望工程"义演中,成人票8元,学生票5元,一共售出1000张票。

所得的票款可能是6932元吗?如果可能。

成人票比学生票多售出多少张?(9分)
25.某商品的进价是2000元,标价是3000元,商店要求以利润不低于5%的售价打折出售。

最低可以打几折出售?(8分)
26.小毅和小明同时从学校出发到科技馆参加活动,小毅每小时走6千米,小明每小时走8千米,走了1小时后,小明忘带材料返回学校取材料立即按原路去追小毅。

小明几小时追上小毅?(10分)。

相关文档
最新文档