二轮复习专题5--抽象函数的奇偶性周期性对称性
函数对称性、周期性和奇偶性的规律总结大全-.
函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义〔略〕,请用图形来理解。
3、 对称性:我们知道:偶函数关于y 〔即x=0〕轴对称,偶函数有关系式)()(x f x f =-奇函数关于〔0,0〕对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:〔1〕函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
假设写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称〔2〕函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
最全最详细抽象函数的对称性、奇偶性和周期性常用结论
抽象函数的对称性、奇偶性与周期性常用结论一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。
分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
函数对称性、周期性和奇偶性的规律总结大全
函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式)()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
抽象函数单调性、奇偶性、周期性和对称性典例分析
抽象函数的对称性、奇偶性与周期性一、典例分析1.求函数值例 1.设是上的奇函数,当时,,则等于()(A)0.5; (B)-0.5; (C)1.5; (D)-1.5.例2.已知是定义在实数集上的函数,且,求的值.。
2、比较函数值大小例 3.若是以2为周期的偶函数,当时,试比较、、的大小.3、求函数解析式例4.设是定义在区间上且以2为周期的函数,对,用表示区间已知当时,求在上的解析式.例5.设是定义在上以2为周期的周期函数,且是偶函数,在区间上,求时,的解析式.4、判断函数奇偶性例6.已知的周期为4,且等式对任意均成立,判断函数的奇偶性.5、确定函数图象与轴交点的个数例7.设函数对任意实数满足,判断函数图象在区间上与轴至少有多少个交点.6、在数列中的应用例8.在数列中,,求数列的通项公式,并计算7、在二项式中的应用例9.今天是星期三,试求今天后的第天是星期几?8、复数中的应用例10.(上海市1994年高考题)设,则满足等式且大于1的正整数中最小的是(A) 3 ;(B)4 ;(C)6 ;(D)7.9、解“立几”题例11.ABCD—是单位长方体,黑白二蚁都从点A出发,沿棱向前爬行,每走一条棱称为“走完一段”。
白蚁爬行的路线是黑蚁爬行的路线是它们都遵循如下规则:所爬行的第段所在直线与第段所在直线必须是异面直线(其中.设黑白二蚁走完第1990段后,各停止在正方体的某个顶点处,这时黑白蚁的距离是(A)1;(B);(C);(D)0.例题与应用例1:f(x) 是R上的奇函数f(x)=- f(x+4) ,x∈[0,2]时f(x)=x,求f(2007) 的值例2:已知f(x)是定义在R上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求f(2009) 的值。
例3:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)=-2x+1,则当时求f(x)的解析式例4:已知f(x)是定义在R上的函数,且满足f(x+999)=,f(999+x)=f(999-x),试判断函数f(x)的奇偶性.例5:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)是减函数,求证当时f(x)为增函数例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a∈[5,9]且f(x)在[5,9]上单调.求a的值.例7:已知f(x)是定义在R上的函数,f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0,求在区间[-1000,1000]上f(x)=0至少有几个根?例8、函数y=f(x)是定义在实数集R上的函数,那么y=-f(x+4)与y=f(6-x)的图象之间()A.关于直线x=5对称 B.关于直线x=1对称 C.关于点(5,0)对称 D.关于点(1,0)对称例9、设f(x)是定义在R上的偶函数,其图象关于x=1对称,证明f(x)是周期函数。
最全最详细抽象函数的对称性、奇偶性与周期性常用结论
最全最详细抽象函数的对称性、奇偶性与周期性常用结论直线Ax By ^0成轴对称;2Ax By C =0成轴对称。
9, y_2B(A X + B 罗C))= o 关于直线③ F (x, y) = 0与F (x _经A 二二2 A 2 B 2Ax ? By ? C =0成轴对称。
、函数对称性的几个重要结论(一)函数y = f(x)图象本身的对称性(自身对称)若f(x a^_f(x b),则f(x)具有周期性;若f (a ?x)=:「f(b -x),则f (x)具有对称性:“内同表示周期性,内反表示对称性”。
1、f(a+x) = f(b —x) u y = f(x)图象关于直线 x =l a Z x LL (b _x) =a £b 对称2 2推论1: f (a ? x) = f (a - x) = y = f (x)的图象关于直线 x = a 对称推论2、f (x) = f (2a - x) = y = f (x)的图象关于直线 x = a 对称推论3、f(-x)二f (2a ? x) := y = f (x)的图象关于直线 x = a 对称2、 f(a+x) + f (b —x) =2c 二y=f(x)的图象关于点(兰匕c)对称2推论 1、f (a ? x) ? f (a -x) = 2b := y = f (x)的图象关于点(a,b)对称推论2、f (x) ? f (2a - x) = 2b := y = f (x)的图象关于点(a,b)对称推论3、f (-x) ? f(2a ? x) =2b = y = f(x)的图象关于点(a,b)对称(二)两个函数的图象对称性(相互对称) (利用解析几何中的对称曲线轨迹方程理解)1、偶函数y =f(x)与y = f(-x)图象关于Y 轴对称2、奇函数y =f(x)与y 二-f(-x)图象关于原点对称函数3、函数y = f (x)与y - - f (x)图象关于X 轴对称4、互为反函数y 二f (x)与函数y 二f'(x)图象关于直线y =x 对称② 函数…(x)与一2驚¥。
抽象函数周期性对称性相关定理全总结
抽象函数周期性对称性相关定理全总结1. Fourier级数定理:Fourier级数定理是抽象函数周期性对称性的基本理论定理之一、它表明,任何以L为周期的可积函数f(x)都可以展开成正弦函数与余弦函数的无穷级数形式,即Fourier级数。
这个级数可以表示为:f(x) = a0 + Σ(an*cos(nπx/L) + bn*sin(nπx/L))其中,L是函数周期,a0是常数项,an和bn分别是系数。
2.奇偶周期性与对称性:奇周期性与对称性是周期性对称性的两种特例。
如果一个函数满足f(x) = -f(-x),则称其为奇函数。
奇函数可以展开成sin函数的Fourier级数形式。
如果一个函数满足f(x) = f(-x),则称其为偶函数。
偶函数可以展开成cos函数的Fourier级数形式。
3. 对称函数的Fourier级数展开与傅里叶定理:对称函数的Fourier级数展开是指将一个以L为周期的对称函数展开成cos函数的Fourier级数形式。
傅里叶定理表明,对于一个以L为周期的函数f(x),如果f(x)是一个对称函数,则其Fourier级数展开只包含cos函数;如果f(x)是一个奇函数,则其Fourier级数展开只包含sin函数。
4. 函数的周期拓展与周期函数的Fourier级数:函数的周期拓展是指将一个以L为周期的函数f(x)拓展成以2L为周期的函数。
周期拓展后的函数可以用以L为周期的函数的Fourier级数展开。
具体而言,如果将f(x)的周期拓展后的函数记作F(x),则对于周期拓展后的函数F(x),存在一个以L为周期的函数g(x),使得F(x) = g(x)在[-L, L]上成立。
所以,F(x)的Fourier级数展开实际上是以L为周期的函数g(x)的Fourier级数展开。
综上所述,抽象函数周期性对称性相关定理涉及四个方面:Fourier级数定理、奇偶周期性与对称性、对称函数的Fourier级数展开与傅里叶定理、函数的周期拓展与周期函数的Fourier级数。
【高考数学二轮复习 函数专题】 第5讲 函数的周期性-原卷版
第5讲 函数的周期性知识与方法函数的周期性与单调性,奇偶性一样,是函数的重要性质.在高中所学的基本初等函数中,只有三角函数具备周期性,能体现出周期性的独特魅力.除了三角函数,分段函数与抽象函数也往往是考查周期函数的载体. 一、三角函数恒等变形的基本策略 1.常值代换:特别是“1”的代换.2.项的分拆与角的配凑:如()2222αααβαβααβββββ-⎛⎫⎛⎫----⎪ ⎪⎝⎭⎝⎭+=+=+,=等. 3.降次与升次:利用升幂和降幂公式,注意遇无理变有理.4.转化法:遇切化弦、化同角(或同边)、复角化单角、异名化同名、高次化低次等. 5.合一变形:化为()sin y A x ωϕ=+(一角一名一次)的形式. 二、函数周期性的几个重要结论1.()()()f x a f x b y f x ⇔+=+=的周期为T b a -=. 2.若()f x 满足以下条件,则均可得到()f x 周期为2a : (1)()()f x a f x a -+=; (2)()()f x a f x -+=; (3)()()1f x a f x +=; (4)()()1f x a f x -+=; (5)()()()11f x f x a f x -+=+.3.()()()()11f x f x a y f x f x ⇔-++==的周期为4T a =. 4.()()()()2f x a f x a f x y f x -⇔+=+=的周期为6T a =. 5.双轴双心两倍距,单轴单心四倍距.三、易错警示图象平移和【解析】式变换之间的关系有两个易错点,一是移动的起点和目标的顺序,二是移动的量.平时所说的“左加右减、上加下减”的单位数是特指“一个正的x 或y ”的变化率.典型案例:()2212y f x ----=的图象可由()2231y f x --=++的图象通过“向左平移2个单位长度,向下平移3个单位长度”的平移得到.典型例题【例1】 下列区间中,函数()7sin 6f x x π⎛⎫- ⎪⎝⎭=的单调递增区间是( )A .02π⎛⎫⎪⎝⎭,B .2ππ⎛⎫ ⎪⎝⎭,C .32ππ⎛⎫ ⎪⎝⎭,D .322ππ⎛⎫ ⎪⎝⎭,【例2】 (多选题)已知函数()()02f x x πωϕωϕ⎛⎫ ⎪⎝⎭=+>,<的部分图象如图所示,将()f x 的图象向右平移()0a a >个单位长度后,得到函数()g x 的图象,若对于任意的()24x g x g π⎛⎫∈ ⎪⎝⎭R ,,则a 的值可以为( )A .12π B .4πC .512πD .1112π【例3】 (多选题)已知函数()sin 23f x x π⎛⎫ ⎪⎝⎭=+,将()f x 图象上每一点的横坐标缩短到原来的12(纵坐标不变),得到函数()g x 的图象,则( ) A .当724x π=时,()g x 取最小值 B .()g x 在123ππ⎡⎤⎢⎥⎣⎦,上单调递减 C .()g x 的图象向左平移24π个单位长度后对应的函数是偶函数D .直线12y =与()302g x x π⎛⎫⎪⎝⎭<<图象的所有交点的横坐标之和为194π【例4】设函数()e 2x f x x a =+-(a ∈R ,e 为自然对数的底数),若曲线sin y x =上存在点()00,x y ,使得()()0f f y y=,则a 的取值范围是( )A.1e 1,e 1-⎡⎤-+⎣⎦B.[1,e 1]+C.[e,e 1]+D.[1,e]【例5】(多选题)已知函数()sin (0)f x x x ωωω=+>图象上相邻的最高点之间的距离为2π,则下列结论中正确的是( ) A.()f x 的图象关于点2,03π⎛⎫⎪⎝⎭中心对称B.()f x 的图象关于直线12x π=对称C.()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的值域为[1,2]D.将()f x 图象上所有点的横坐标缩短为原来的12,然后向左平移4π个单位长度,所得图象对应函数72sin 212y x π⎛⎫=+⎪⎝⎭【例6】设函数()()2cos sin 2f x x a x a a R =-+++∈ (1)求函数()f x 在R 上的最小值; (2)若不等式()0f x <在0,2π⎡⎤⎢⎥⎣⎦上恒成立,求a 的取值范围; (3)若方程()0f x =在(0,)π上有四个不相等的实数根,求a 的取值范围.【例7】(多选)设函数()cos2cos2=22xxf x --( )A.()f x 在0,2π⎛⎫⎪⎝⎭上单调递增B.()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C.()f x 的一个周期为πD.4f x π⎛⎫+⎪⎝⎭的图象关于点,04π⎛⎫ ⎪⎝⎭对称 【例8】若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A.65-B.25-C.25D.65【例9】(多选)已知曲线()sin 04y x ωωπ⎛⎫=+ ⎪⎝⎭>在区间()0,1恰有一条对称轴和一个对称中心,则下列结论中正确的是( ) A.存在ω,使2sin 42ωπ+⎛⎫>⎪⎝⎭ B .存在ω,使2sin 42ωπ+⎛⎫=⎪⎝⎭ C.有且仅有一个0(0,1)x ∈,使04sin 45x πω⎛⎫+= ⎪⎝⎭ D.存在0(0,1)x ∈,使0sin 04x πω⎛⎫+< ⎪⎝⎭【例10】(多选题) 已知函数 ()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>> ⎪⎝⎭的图象与 x 轴交于点 ,A B , 与 y 轴交于点 C , 如图, 2,3BC BD OCB π=∠=,221||2,||3OA AD ==. 则下列说法中正确的为( ) A.()f x 的最小正周期为12B.6πϕ=-C.()f x 的最大值为163D.()f x 在(14,17)上单调递增【例11】(多选题)已知函数()sin |||cos |f x x x =-,则下列结论中正确的是( ) A.()f x 是偶函数B.()f x 是周期函数C.()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D.()f x 的最大值为1【例12】已知函数()sin()0,0,,()2f x A x A f x πϕϕ⎛⎫⎛⎫=+>∈ ⎪ ⎪⎝⎭⎝⎭的部分图象如图所示, ,P Q 分别为该图象的最高点和最低点, 点P 的坐标为,4A π⎛⎫⎪⎝⎭, 点R 的坐标为,04π⎛⎫ ⎪⎝⎭, 且 2tan 2PRQ π∠=-.(1)求()f x 解析式;(2)若方程sin cos 1()(1)x x af x a +=在区间30,4π⎡⎤⎢⎥⎣⎦上恰有一个根,求实数a 的取值范围.【例13】在等腰Rt OAB ∆中,90,,AOB M N ∠=︒在线段AB 上,且30MON ∠=︒,求MON AOBS S ∆∆的最小值.【例14】已知a ∈R ,函数211(1),0,()sin 2,0,22x x x a x x f x x π--+⎧++<⎪⎪=⎨⎪>⎪+⎩若函数()f x 的图象上有且只有两对点关于y 轴对称,则a 的取值范围是 ( )。
抽象函数的奇偶性、周期性和对称性
抽象函数的奇偶性、周期性和对称性一、奇偶性1、奇函数的定义:一般地,如果对于函数()f x 的定义域内任意一个x ,都有)()(x f x f -=-,那么 函数()f x 就叫做奇函数。
(1)定义域必须关于原点对称;(2)对定义中的任意一个x ,都有)()(x f x f -=-;(3)图象特征:奇函数图象关于原点对称。
(这是判断奇函数的直观方法)2、偶函数定义:一般地,如果对于函数()f x 的定义域内任意一个x ,都有)()(x f x f =-,那么函数 ()f x 就叫做偶函数。
(1)定义域必须关于原点对称;(2)对定义中的任意一个x ,都有)()(x f x f =-; (3)图象特征:偶函数图象关于y 轴对称。
(这是判断偶函数的直观方法) 二、周期性周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期,并不是所有周期函数都存在最小正周期。
例如,狄利克雷函数,当x 为有理数时,()f x 取1;当x 为非有理数时,()f x 取0。
(1)如果函数)(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。
(2)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 4为周期的周期函数。
(3)如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 2为周期的三、对称性1、函数图象本身的对称性(自身对称)题设:函数)(x f y =对定义域内一切x 来说,其中a 为常数,函数)(x f y =满足: (1))()(x a f x a f -=+⇔函数)(x f y =图象关于直线a x =成轴对称; (2))()2(x f x a f =-⇔函数)(x f y =的图象关于直线a x =成轴对称;(3))()(x b f x a f -=+⇔函数)(x f y =图象关于直线22)()(b a x b x a x +=-++=成轴对称; (4))(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称(偶函数); (5))(2)2(x f b x a f -=-⇔函数)(x f y =图象关于),(b a 成中心对称; (6))(x f -=—)(x f ⇔函数)(x f y =图象关于原点成中心对称(奇函数);(7)如果函数)(x f y=满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的 常数),则)(x f y =是以为)(212T T -为周期的周期函数;(8)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 4为周期(9)如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 2为周期 的周期函数。
函数奇偶性、对称性、周期性知识点总结
函数奇偶性、对称性、周期性知识点总结推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x fy-=图象关于直线afay=与)2(xx=对称推论3:函数)fy+=图象关于直线aa2(xf(xy-=与)=x-对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y=f(x)关于直线x=a轴对称,则以下三个式子成立且等价:(1)f(a+x)=f(a-x) (2)f(2a-x)=f(x) (3)f(2a+x)=f(-x)性质2 若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1)f(a+x)=-f(a-x)(2)f(2a-x)=-f(x)(3)f(2a+x)=-f(-x)易知,y=f(x)为偶(或奇)函数分别为性质1(或2)当a=0时的特例。
2、复合函数的奇偶性定义1、若对于定义域内的任一变量x,均有f[g(-x)]=f[g(x)],则复数函数y=f[g(x)]为偶函数。
函数对称性、周期性和奇偶性的规律总结大全
函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式)()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解
高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。
抽象函数,函数奇偶性对称性周期性,函数恒成立与存在问题
个性化学科教师辅导教案)证明f(x)在x>0)求证:对任意R x ∈都有对任意,x y R ∈,都有()f xy =时,[)()0,1f x ∈。
(I )判断9,求a 的取值范围。
(2)已知()f x 为奇函数,当0x ≥时,2()2f x x x =+,当0x <时,求)(x f 解析式5.利用奇偶性求参数的值例5:(1)定义R 上的偶函数)(x f 在)0,(-∞单调递减,若)123()12(22+-<++a a f a a f 恒成立,求a 的范围.(2)定义R 上单调递减的奇函数()f x 满足对任意t R ∈,若22(2)(2)0f t t f t k -+-<恒成立,求k 的范围.6.利用图像解题例6:(1)设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时,f(x)的图象如右图,则不等式()0<x f 的解是 .(2)若函数()f x 在(,0)(0,)-∞⋃+∞上为奇函数,且在(0,)+∞上单调递增,(2)0f -=,则不等式()0xf x <的解集为 .7.利用性质选图像例7:(1)设1a >,实数,x y 满足1||log 0a x y-=,则y 关于x 的函数的图像形状大致是( )xy1xy1xy1xy1A B C D(2)函数x xx xe eye e--+=-的图象大致为三、周期函数结论:(1)()()f x f x a=+,T a=f(x-a)=f(x+a)(a>0), T=2a函数的奇偶性对称性与周期性综合例 已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1,(1)求证:f (x )是周期函数;(2)当x ∈[1,2]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2013)的值.1.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ).A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)2.奇函数满足对任意都有,且,则的值为( )A.-9 B.9 C.0 D.3.函数()f x 为奇函数,定义域为R ,若()2f x +为偶函数,且()11f =,则( )A. 2-B. 1-C. 0D. 1()f x x R ∈(2)(2)0f x f x ++-=(1)9f =(2010)(2011)(2012)f f f ++。
复习专题5--抽象函数的奇偶性周期性对称性
复习专题5--抽象函数的奇偶性周期性对称性抽象函数的奇偶性、周期性和对称性是数学中重要的概念,它们用来描述函数的特点和性质。
在本文中,我们将对这些概念进行复习和详细解释。
首先,我们来复习抽象函数的奇偶性。
奇函数是指满足f(-x)=-f(x)的函数,即对于函数的定义域内的任意x,函数值f(-x)与f(x)有相反的符号。
奇函数的图像关于原点对称,通常呈现出关于原点对称的特点。
例如,f(x)=x^3是一个奇函数,因为f(-x)=-x^3、对于奇函数,如果其函数图像在原点通过,则其图像也必然经过一些关于原点对称的点。
与奇函数相对的是偶函数。
偶函数是指满足f(-x)=f(x)的函数,即对于函数的定义域内的任意x,函数值f(-x)与f(x)相等。
偶函数的图像关于y轴对称,通常呈现出关于y轴对称的特点。
例如,f(x)=x^2是一个偶函数,因为f(-x)=(-x)^2=x^2、对于偶函数,如果其函数图像在y轴通过,则其图像在整个y轴上对称。
接下来,我们来复习抽象函数的周期性。
周期函数是指满足f(x+T)= f(x)的函数,其中T是一个常数,称为函数的周期,函数定义域内的任意x都满足这个条件。
周期函数的特点是其函数图像在横坐标上以一定的间隔重复出现。
例如,f(x) = sin(x)是一个周期函数,它的周期是2π,即对于任意x,f(x+2π) = sin(x)。
最后,我们来复习抽象函数的对称性。
对称函数是指满足f(x)=f(-x)的函数,即对于函数的定义域内的任意x,函数值f(x)与f(-x)相等。
对称函数的图像有一个对称轴,即对于任意在对称轴上的点x,其关于对称轴的对称点也属于函数的图像。
例如,f(x)=x^4是一个对称函数,因为f(x)=f(-x)=x^4、对称函数的对称轴可以是y轴、原点或其他直线。
综上所述,奇偶性、周期性和对称性是抽象函数重要的特性。
它们可以帮助我们更好地理解函数的性质和图像,并在解决问题中起到指导作用。
抽象函数的性质-奇偶性、对称性、周期性、单调性课件-2024届高三数学一轮复习
∓()()
f(x±y)=
余弦函数f(x)=cos x
正切函数f(x)=tan x
常见的几类抽象函数与其对应的特殊函数模型:
抽象函数f(x)具有的性质
f(x+y)=f(x)+f(y)
f(x+y)=f(x)+f(y)-b
f(xy)=f(x)f(y)
f(xy)= f(x)f(y)或者
g(x)=f′(x).若 f( -2x),g(2+x)均为偶函数,则(
A.f(0)=0
解析:法一
B.g(-)=0
C.f(-1)=f(4)
)
D.g(-1)=g(2)
不妨取 f(x)=1(x∈R),经验证满足题意,但 f(0)=1,所以选项 A 不正确.
因为 f( -2x)为偶函数,所以 f( -2x)=f( +2x), 所以 f( -2× )=f( +2× ),即 f(-1)=f(4),所以 C 正确;
()
f(x±y)=f(x)g(y)±g(x)f(y)
f(x±y)=f(x)f(y)∓g(x)g(y)
f(x+y)+f(x-y)=2f(x)f(y)
()±()
f(x±y)=
∓()()
正弦函数f(x)=sin x 余弦函数g(x)=cos x
余弦函数f(x)=cos x 正弦函数g(x)=sin x
f(2)=3f(2)=3,所以 f(2)=1.
因为 f(2)=f( × )=f( )+f( )=2f( ),所以 2f( )=1,
所以 f( )= .
答案:(1)
抽象函数周期性、对称性、奇偶性
抽象函数周期性、对称性、奇偶性综述抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识.函数的周期性、对称性一般与抽象函数结合,综合函数的其它性质一起考查.函数的周期性要紧扣周期函数的定义.要注意,函数的周期性只涉及到一个函数.函数的对称性比较复杂,要分清是一个函数的对称性,还是两个函数的对称性;分清是轴对称还是中心对称.一、基本定义1、定义1:(周期函数)对于函数()f x ,如果存在一个非零常数T ,使得当x 取定义域的每一个值时,都有()()f x T f x +=,那么,函数()f x 就叫做周期函数.非零常数T 叫做这个函数的周期.2、定义2:(同一函数图象的对称性)若函数)(x f y =图象上任一点关于点P (或直线l )的对称点仍在函数)(x f y =的图象上,则称函数)(x f y =的图象关于点P (或直线l )对称.3、定义3:(两个函数图象的对称性)若函数)(x f y =图象上任一点关于点P (或直线l )的对称点在函数()y g x =的图象上;反过来,函数()y g x =图象上任一点关于点P (或直线l )的对称点也在函数)(x f y =的图象上,则称函数)(x f y =与()y g x =的图象关于点P (或直线l )对称.二、关于周期性、对称性的几个基本结论及证明1、若函数)(x f y =的定义域为R ,且()()f a x f x b +=-恒成立,则函数)(x f y =是以T a b =+为周期的周期函数;2、若函数)(x f y =的定义域为R ,且()()f a x f b x +=-恒成立,则函数)(x f y =的图象关于直线2a bx +=对称;3、若函数)(x f y =的定义域为R ,且()()f a x f b x +=--恒成立,则函数)(x f y =的图象关于点(,0)2a b +对称;4、若函数)(x f y =的定义域为R ,且()()f a x f x b +=--恒成立,则函数)(x f y =是以2()T a b =+为周期的周期函数;5、若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =-的图象关于直线2b a x -=对称;6、若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 略证:1、 ()f x a b ++[()]f x b a =++[()]()f x b b f x =+-=,∴函数)(x f y =是以T a b =+为周期的周期函数.2、函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线2a b x +=的对称点为00(,)Q a b x y +-, 00()[()]f a b x f b x a +-=-+000[()]()f b b x f x y =--==∴点Q 仍在函数)(x f y =的图象上,从而函数)(x f y =的图象关于直线2a b x +=对称.3、函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于点(,0)2a b +的对称点为00(,)Q a b x y +--, 00()[()]f a b x f b x a +-=-+000[()]()f b b x f x y =---=-=-∴点Q 仍在函数)(x f y =的图象上,从而函数)(x f y =的图象关于点(,0)2a b+对称. 4、 (22)[(2)]f x a b f x a b a ++=+++[(2)]()f x a b b f x a b =-++-=-++[()]{[()]}()f x b a f x b b f x =-++=--+-=,∴函数)(x f y =是以2()T a b =+为周期的周期函数.5、函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于直线2b a x -=的对称点为00(,)Q b a x y --, 000[()]()f b b a x f a x y ---=+=∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2b a x -=的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2b a x -=对称.6、函数()y f a x =+图象上的任一点00(,)P x y (满足00()f x y =)关于点(,0)2b a -的对称点为00(,)Q b a x y ---, 000[()]()f b b a x f a x y ----=-+=-∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称.三、关于周期性、对称性的若干易混淆的常用结论1、若函数)(x f y =满足()()f x f x =-,则函数)(x f y =的图象关于y 轴对称;函数)(x f y =和函数()y f x =-的图象也关于y 轴对称.2、若函数)(x f y =满足()()f x f x =--,则函数)(x f y =的图象关于原点对称;函数)(x f y =和函数()y f x =--的图象也关于原点对称.3、若函数)(x f y =满足()()f x a f a x -=-,则函数)(x f y =的图象关于y 轴对称;而函数()y f x a =-和函数()y f a x =-的图象关于直线x a =对称.4、若函数)(x f y =满足()()f x a f a x -=--,则函数)(x f y =的图象关于原点对称.而函数()y f x a =-和函数()y f a x =--的图象关于点(,0)a 对称.5、若函数)(x f y =满足)()(x m f x m f +=-,则函数)(x f y =的图象关于直线m x =对称;而函数()y f m x =-和函数()y f m x =+的图象关于y 轴对称.6、若函数)(x f y =满足)()(x m f x m f +-=-,则函数)(x f y =的图象关于点)0,(m 对称;而函数()y f m x =-和函数()y f m x =-+的图象关于原点对称.7、若函数)(x f y =满足()(2)f x f b x =-,则函数)(x f y =的图象关于直线x b =对称;函数()y f x =和函数(2)y f b x =-的图象也关于直线x b =对称.8、若函数)(x f y =满足()(2)f x f b x =--,则函数)(x f y =的图象关于点(,0)b 对称;函数()y f x =和函数(2)y f b x =--的图象也关于点(,0)b 对称.9、若函数)(x f y =满足()()f m x f x m +=-,则函数)(x f y =是以2T m =为周期的周期函数;若函数)(x f y =满足()()f m x f x m +=--,则函数)(x f y =是以4T m =为周期的周期函数.四、函数周期性与对称性的关系1、定义在R 上的函数()f x ,若同时关于直线x a =和()x b a b =>对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=+,()()f b x f b x -=+,则函数()f x 是以2()T a b =-为周期的周期函数.2、定义在R 上的函数()f x ,若同时关于点(,0)a 和点(,0)()b a b >对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=-+,()()f b x f b x -=-+,则函数()f x 是以2()T a b =-为周期的周期函数.3、定义在R 上的函数()f x ,若同时关于直线x a =和点(,0)()b a b ≠对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=+,()()f b x f b x -=-+,则函数()f x 是以4T a b =-为周期的周期函数.略证:1、 [2()]f x a b +-[(2)]f a x a b =++-[(2)]f a x a b =-+-=(2)f b x =-[()]f b b x =+-[()]()f b b x f x =--=,∴函数)(x f y =是以2()T a b =-为周期的周期函数.2、3同理可证.五、函数周期性、对称性与奇偶性的关系1、定义在R 上的函数()f x ,若同时关于直线x a =和2x a =对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=+,(2)(2)f a x f a x -=+,则函数()f x 是以2T a =为周期的周期函数,且是偶函数.2、定义在R 上的函数()f x ,若同时关于直线x a =和点(2,0)a 对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=+,(2)(2)f a x f a x -=-+,则函数()f x 是以4T a =为周期的周期函数,且是奇函数.3、定义在R 上的函数()f x ,若同时关于点(,0)a 和直线2x a =对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=-+,(2)(2)f a x f a x -=+,则函数()f x 是以4T a =为周期的周期函数,且是偶函数.4、定义在R 上的函数()f x ,若同时关于点(,0)a 和点(2,0)a 对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=-+,(2)(2)f a x f a x -=-+,则函数()f x 是以2T a =为周期的周期函数,且是奇函数.5、若偶函数()f x 关于直线x a =对称,即对于任意的实数x ,函数()f x 满足()()f a x f a x -=+,则()f x 是以2T a =为周期的周期函数.6、若偶函数()f x 关于点(,0)a 对称,即对于任意的实数x ,函数()f x 满足()()f a x f a x -=-+,则()f x 是以4T a =为周期的周期函数.7、若奇函数()f x 关于直线x a =对称,即对于任意的实数x ,函数()f x 满足()()f a x f a x -=+,则()f x 是以4T a =为周期的周期函数.8、若奇函数()f x 关于点(,0)a 对称,即对于任意的实数x ,函数()f x 满足()()f a x f a x -=-+,则()f x 是以2T a =为周期的周期函数.略证:1、由上述四中的第1点即可得函数()f x 是以2T a =为周期的周期函数, 又()f x -[()]f a x a =-+[()]f a x a =++(2)f a x =+(2)f a x =-[()]f a a x =+-[()]()f a a x f x =--=∴函数)(x f y =是偶函数.2、3、4同理可证.5、6、7、8可利用上述四中的结论证得.以上各条结论均可结合正弦、余弦函数为特例来加以理解.六、其它结论1、若函数()y f x a =+为偶函数,则函数)(x f y =的图象关于直线x a =对称.2、若函数()y f x a =+为奇函数,则函数)(x f y =的图象关于点(,0)a 对称.注:上述两个结论可以通过图象的平移来理解. 3、定义在R 上的函数()f x 满足()()f a x f a x -=+,且方程()0f x =恰有2n 个实根,则这2n 个实根的和为2na .4、定义在R 上的函数)(x f y =满足()()(,,)f a x f b x c a b c ++-=为常数,则函数)(x f y =的图象关于点(,)22a b c+对称. 略证;任取x R ∈,令12,x a x x b x =+=-,则12x x a b +=+,12()()f x f x c +=,由中点公式知点11(,())x f x 与点22(,())x f x 关于点(,)22a b c+对称.由x 的任意性,知函数)(x f y =的图象关于点(,)22a b c+对称. 5、能得出函数为周期函数的常见结论还有:函数()y f x =满足对定义域内任一实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; ②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; ③()()1f x a fx +=±,则()x f 是以2T a =为周期的周期函数;④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数.⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.注:上述结论可以通过反复运用已知条件来证明.七、知识运用1、(2005·广东 19)设函数()f x 在(-∞,+∞)上满足(2)(2)f x f x -=+,(7)(7)f x f x -=+,且在闭区间[0,7]上,只有(1)(3)0f f ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习专题5--抽象函数的周期性与对称性
知识点梳理
一、 抽象函数的对称性
定理 1. 若函数)(x f y =定义域为R ,且满足条件:)()(x b f x a f -=+,则函数)(x f y =的图象关于直线
2
b a x +=
对称。
推论 1. 若函数)(x f y =定义域为R ,且满足条件:)()(x a f x a f -=+,则函数)(x f y =的图像关于直线
a x =对称。
推论2. 若函数)(x f y =定义域为R ,且满足条件:)2()(x a f x f -=),则函数)(x f y =的图像关于直线a
x =对称。
总结:x 的系数一个为1,一个为-1,相加除以2,可得对称轴方程
定理2. 若函数)(x f y =定义域为R ,且满足条件:c x b f x a f =-++)()((c b a ,,为常数),则函数)
(x f y =的图象关于点)2
,2(c b a +对称。
推论1. 若函数)(x f y =定义域为R ,且满足条件:0)()(=-++x b f x a f 成立,则)(x f y = 的图象关于点
)0,2
(b a +对称。
推论2.若函数)(x f y =定义域为R ,且满足条件:0)()(=-++x a f x a f (a 为常数),则函数)(x f y =的
图象关于点)0,(a 对称。
总结:x 的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。
定理3.若函数)(x f y = 定义域为R ,则函数)(x a f y +=与)(x b f y -=两函数的图象关于直线2a b x -=
对称(由x b x a -=+可得)。
推论1. 函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。
推论2. 函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对称。
推论. 函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2
(
a b -对称。
二、抽象函数的周期性
定理5.若函数)(x f y = 定义域为R ,且满足条件)()(b x f x a f -=+,则)(x f y =是以b a T +=为周期的
周期函数。
推论1.若函数)(x f y = 定义域为R ,且满足条件)()(b x f x a f --=+,则)(x f y =是以)(2b a T +=为周
期的周期函数。
推论2.若函数满足条件()()
1,f x a f x +=-||则T=2a 则)(x f y =是以a T 2=为周期的周期函数。
推论3. 若函数满足条件()()
()
1,1f x f x a f x ++=||-则T=4a 则)(x f y =是以a T 4=为周期的周期函数。
定理7.若函数)(x f y =的图象关于直线 a x =与 )(b a b x ≠=对称,则)(x f y =是以)(2a b T -=为周期的
周期函数。
定理8.若函数)(x f y =的图象关于点)0,(a 与点))(0,(b a b ≠ 对称,则)(x f y =是以)(2a b T -=为周期的周
期函数。
定理9.若函数)(x f y =的图象关于直线a x =与 点))(0,(b a b ≠,则)(x f y =是以)(4a b T -=为周期的周期
函数。
总结:x 的系数同为为1,具有周期性。
例题讲解:
题型一、抽象函数的对称轴
1、若函数()2
f x x bx c =++对一切实数都有f (2+x) = f (2-x)则( ) A.f (2)<f (1)< f(4) B.f (1)<f (2)< f(4) C.f (2)<f (4)< f(1) D.f (4)<f (2)< f(1)
2、设函数y= f (x)定义在实数集R 上,则函数y= f (x -1)与y= f (1-x)的图象关于( )对称。
A.直线y=0
B.直线 x=0
C.直线 y=1
D.直线 x=1
题型二、抽象函数的对称中心
1、已知定义为R 的函数()x f 满足()()4x f x f +-=-,且函数()x f 在区间()∞+,2上单调递增.如果21x 2x <<,且4x x 21<+,则()()21x f x f +的值( )
A. 恒小于0
B.恒大于0 C .可能为0 D .可正可负
2、函数y =f(x)是定义在实数集R 上的函数,那么y =-f(x +4)与y =f(6-x)的图象之间(D )
A .关于直线x =5对称
B .关于直线x =1对称
C .关于点(5,0)对称
D .关于点(1,0)对称
题型三、抽象函数的周期性
2、设f(x)是定义在R 上的函数,且满足f(10+x)=f(10-x),f(20-x)=-f(20+x),则f(x)是( )
A .偶函数,又是周期函数
B .偶函数,但不是周期函数
C .奇函数,又是周期函数
D .奇函数,但不是周期函数
2、定义在R 上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( )
A.是偶函数,也是周期函数
B.是偶函数,但不是周期函数
C.是奇函数,也是周期函数
D.是奇函数,但不是周期函数
3、已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则
5(())2
f f 的值是( ) A.0
B.12
C.1
D.52
4、设f(x)是定义在R 上的偶函数,且f(1+x)= f(1-x),当-1≤x ≤0时,f (x) = -
21x ,则f (8.6 ) = _______
4、已知()113x f x x
+=
-,()()1f x f f x =⎡⎤⎣⎦,()()21f x f f x =⎡⎤⎣⎦,…,()()1n n f x f f x +=⎡⎤⎣⎦,则()20042f -=( ). A.17
- B. 17 C. 35
- D.3 6、在数列12211(*)n n n n x x x x x x n N ++===-∈{}中,已知,,则100x =
7、()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =f(2009)=_ 8、已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=
9、函数)(x f 在R 上有定义,且满足)(x f 是偶函数,且()02005f =,()()1g x f x =-是奇函数,则()2005f 的值为。