邹城八中届九级上第一次月考数学试卷含答案解析

合集下载

2024年山东省济宁市邹城八中中考数学一模试卷+答案解析

2024年山东省济宁市邹城八中中考数学一模试卷+答案解析

2024年山东省济宁市邹城八中中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.函数中自变量x 的取值范围是( )A. B.C.D.2.已知点关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( )A.B.C.D.3.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降低的百分率为x ,根据题意列出的方程是( )A. B.C. D.4.计算的结果是( )A.B.C.D.5.如图源于我国汉代数学家赵爽的弦图,它是由四个全等直角三角形与一个小正方形拼成的一个大正方形.若小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则的值为( )A.B.C.D.6.在解二元一次方程组时,若①-②可直接消去未知数y ,则m 和n 满足下列条件是( )A. B. C. D.7.已知,函数与在同一平面直角坐标系中的大致图象可能是( )A. B. C. D.8.如图,矩形ABCD的顶点A在反比例函数的图象上,顶点B、C在x轴上,对角线DB的延长线交y轴于点E,连接CE,若的面积是6,则k的值为( )A. 6B. 8C. 9D. 129.如图,二次函数的图象经过点,,与y轴交于点下列结论:①;②当时,y随x的增大而增大;③;④其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个10.如图,AC为矩形ABCD的对角线,已知,,点P沿折线则过点P作于点E,以每秒1个单位长度的速度运动运动到D点停止,的面积y与点P运动的路程x间的函数图象大致是( )A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。

11.计算:______.12.分解因式:______.13.若关于x的一元二次方程有两个不相等的实数根,则点在第__________象限.14.如图,二次函数的图象与一次函数的图象交于、两点,则关于x的不等式的解集是______.15.如图,一段抛物线:记为,它与x轴交于两点O、;将绕旋转得到,交x轴将绕旋转得到,交x轴于;…如此进行下去,直至得到,若点在第6段抛物线上,则______.三、计算题:本大题共2小题,共13分。

最新人教版九年级数学上学期第一次月考统考测试题及答案解析.docx

最新人教版九年级数学上学期第一次月考统考测试题及答案解析.docx

上学期第一次月考九年级数学试卷时间:120分钟满分:150分一、选择题(本题有10小题,每小题4分,共40分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A. B.C.D.2.已知x=2是方程(3x﹣m)(x+3)=0的一个根,则m的值为( )A.6 B.﹣6 C.2 D.﹣23.下列命题中,正确的是()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同圆或等圆中,同弧所对的圆周角相等.A.③④⑤B.①②③C.①②⑤D.②④⑤4.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A. 55°B.60°C.65°D. 70°5.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()6.如图,在A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0△ABC中,∠CAB=70°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为( )A.35°B.40°C.50°D.65° 7.设点(-2,1y ),(1,2y )(2,3y )是抛物线122-+--=a x x y 上的三点,则1y 、2y 、3y 的大小关系为( )A. 1y >2y >3yB. 1y >3y >2yC. 3y >2y >1yD. 3y >1y >2y8. 已知关于x 的一元二次方程02=++c bx ax ,如果0>a ,b c a <+,那么方程02=++c bx ax 的根的情况是 ( ) A. 有两个不相等的实数根 B. 有两个相等的实数根C. 没有实数根D. 必有一个根为09.如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是( )A . 2015πB . 3019.5πC . 3018πD . 3024π10.如图,抛物线y=-x 2+2x+m+1交x 轴于点A (a ,0)和B (b ,0),交y 轴于点C ,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P (x 1,y 1)和Q (x 2,y 2),若x 1<1< x 2,且x 1+ x 2>2,则y 1> y 2;④点C 关于抛物线对称轴的对称点为E ,点G ,F分别在x 轴和y 轴上,当m=2时,四边形EDFG 周长的最小值为错误!未找到引用源。

2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。

2024届山东省邹城市第八中学中考一模数学试题含解析

2024届山东省邹城市第八中学中考一模数学试题含解析

2024届山东省邹城市第八中学中考一模数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△OAB 绕O 点逆时针旋转60°得到△OCD ,若OA =4,∠AOB =35°,则下列结论错误的是( )A .∠BDO =60°B .∠BOC =25° C .OC =4D .BD =42.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×1083.如图,在平行四边形ABCD 中,AE :EB=1:2,E 为AB 上一点,AC 与DE 相交于点F , S △AEF =3,则S △FCD 为( )A .6B .9C .12D .274.下列命题中,错误的是( )A .三角形的两边之和大于第三边B .三角形的外角和等于360°C .等边三角形既是轴对称图形,又是中心对称图形D .三角形的一条中线能将三角形分成面积相等的两部分5.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论:①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .46.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.A .3B .4C .5D .67.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( )A .平均数B .标准差C .中位数D .众数8.下列各数:1.414,2,﹣13,0,其中是无理数的为( ) A .1.414 B . 2 C .﹣13 D .09.如图,直线a 、b 被c 所截,若a ∥b ,∠1=45°,∠2=65°,则∠3的度数为( )A .110°B .115°C .120°D .130°10.不等式组21311326x x -≤⎧⎪⎨+>⎪⎩的解集在数轴上表示正确的是( ) A . B . C .D.11.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为12,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)12.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()1 2 3 4 5成绩(m)8.2 8.0 8.2 7.5 7.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知正八边形ABCDEFGH内部△ABE的面积为6cm1,则正八边形ABCDEFGH面积为_____cm1.14.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线6 yx(x>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是__________.15.如图,AB是⊙O的直径,点E是BF的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.16.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________17.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为______.18.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.20.(6分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.21.(6分)如图,在△ABC 中,∠C=90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E. F .试判断直线BC 与⊙O 的位置关系,并说明理由;若BD=2,BF=2,求⊙O 的半径.22.(8分)如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D .求证:BE =CF ;当四边形ACDE 为菱形时,求BD 的长.23.(8分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE = ,AE BE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 24.(10分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.25.(10分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:(1)这两种书的单价.(2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?26.(12分)已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S 与时间t之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:(1)图(1)中的BC长是多少?(2)图(2)中的a是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b是多少?27.(12分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【题目详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【题目点拨】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.2、A【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【题目点拨】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.3、D【解题分析】先根据AE :EB=1:2得出AE :CD=1:3,再由相似三角形的判定定理得出△AEF ∽△CDF ,由相似三角形的性质即可得出结论.【题目详解】解:∵四边形ABCD 是平行四边形,AE :EB=1:2,∴AE :CD=1:3,∵AB ∥CD ,∴∠EAF=∠DCF ,∵∠DFC=∠AFE ,∴△AEF ∽△CDF ,∵S △AEF =3, ∴AEF FCD S S =3FCD S =(13)2, 解得S △FCD =1.故选D.【题目点拨】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.4、C【解题分析】根据三角形的性质即可作出判断.【题目详解】解:A 、正确,符合三角形三边关系;B 、正确;三角形外角和定理;C 、错误,等边三角形既是轴对称图形,不是中心对称图形;D 、三角形的一条中线能将三角形分成面积相等的两部分,正确.故选:C .【题目点拨】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.5、C【解题分析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C .考点:反比例函数与一次函数的交点问题.6、C【解题分析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p (5)最大,故选C .7、B【解题分析】试题分析:根据样本A ,B 中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化. 故选B.考点:统计量的选择.8、B【解题分析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.9、A【解题分析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.10、A【解题分析】分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可.详解:21311 326xx-≤⎧⎪⎨+>⎪⎩①②由①得,x≤1,由②得,x>-1,故此不等式组的解集为:-1<x≤1.在数轴上表示为:故选A.点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11、D【解题分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k,即可求得答案.【题目详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【题目点拨】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.12、D【解题分析】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【题目点拨】本题考查众数;中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、14【解题分析】取AE中点I,连接IB,则正八边形ABCDEFGH是由8个与△IDE全等的三角形构成.解:取AE中点I,连接IB.则正八边形ABCDEFGH是由8个与△IAB全等的三角形构成.∵I是AE的中点,∴===3,则圆内接正八边形ABCDEFGH的面积为:8×3=14cm1.故答案为14.【题目点拨】本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形.14、1【解题分析】根据反比例函数图象上点的坐标特征设E点坐标为(t,6t),则利用AE:EB=1:3,B点坐标可表示为(4t,6t),然后根据矩形面积公式计算.【题目详解】设E点坐标为(t,6t ),∵AE:EB=1:3,∴B点坐标为(4t,6t ),∴矩形OABC的面积=4t•6t=1.故答案是:1.【题目点拨】考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.15、332 23π-【解题分析】首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用S△ADE﹣S扇形FOE=图中阴影部分的面积求出即可.解:连接OE,OF、EF,∵DE是切线,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=4sin6023,⨯=∵点E是弧BF的中点,∴∠EAB=∠DAE=30°,∴F,E是半圆弧的三等分点,∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=23,∴DE3∴AD=DE×tan60°333,=∴S△ADE113333222AD DE=⋅=⨯=∵△FOE和△AEF同底等高,∴△FOE和△AEF面积相等,∴图中阴影部分的面积为:S△ADE﹣S扇形FOE23360π2333260π.3⋅⨯==3323π-此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE 和△AEF 面积相等是解题关键.16、222()2a b a ab b +=++【解题分析】由图形可得:()2222a b a ab b +=++17、1【解题分析】首先连接BE ,由题意易得BF=CF ,△ACP ∽△BDP ,然后由相似三角形的对应边成比例,易得DP :CP=1:3,即可得PF :CF=PF :BF=1:1,在Rt △PBF 中,即可求得tan ∠BPF 的值,继而求得答案.【题目详解】如图: ,连接BE ,∵四边形BCED 是正方形,∴DF=CF=CD ,BF=BE ,CD=BE ,BE ⊥CD ,∴BF=CF ,根据题意得:AC ∥BD ,∴△ACP ∽△BDP ,∴DP :CP=BD :AC=1:3,∴DP :DF=1:1,∴DP=PF=CF=BF ,在Rt △PBF 中,tan ∠BPF==1,∵∠APD=∠BPF ,∴tan ∠APD=1.故答案为:1【题目点拨】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.【解题分析】由AG//BC可得△AFG与△BFD相似,△AEG与△CED相似,根据相似比求解.【题目详解】假设:AF=3x,BF=5x ,∵△AFG与△BFD相似∴AG=3y,BD=5y由题意BC:CD=3:2则CD=2y∵△AEG与△CED相似∴AE:EC=AG:DC=3:2.【题目点拨】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)12米;(2)(【解题分析】(1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.【题目详解】(1)如图,设DE=x,∵AB=DF=4,∠ACB=30°,∴AC=8,∵∠ECD=60°,∴△ACE是直角三角形,∵AF∥BD,∴∠CAF=30°,∴∠CAE=60°,∠AEC=30°,∴AE=16,∴Rt△AEF中,EF=8,即x﹣4=8,∴树DE的高度为12米;(2)延长NM交DB延长线于点P,则AM=BP=6,由(1)知CD=12CE=12×3AC=43,BC=43,∴PD=BP+BC+CD=6+43+43=6+83,∵∠NDP=45°,且∠NPD=90°,∴NP=PD=6+83,∴NM=NP﹣MP=6+83﹣4=2+83,∴食堂MN的高度为(2+83)米.【题目点拨】此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.20、见解析【解题分析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD绕点C顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE =∠ACB ,即∠BCD +∠DCA =∠DCA +∠ACE ,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE ∥BC.21、(1)相切,理由见解析;(1)1.【解题分析】(1)求出OD//AC ,得到OD ⊥BC ,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可.【题目详解】(1)直线BC 与⊙O 的位置关系是相切,理由是:连接OD,∵OA=OD ,∴∠OAD=∠ODA ,∵AD 平分∠CAB ,∴∠OAD=∠CAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODB=90°,即OD ⊥BC ,∵OD 为半径,∴直线BC与⊙O的位置关系是相切;(1)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB =BD +OD,即(R+1) =(1)+R,解得:R=1,即⊙O的半径是1.【题目点拨】此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.22、(1)证明见解析(22-1【解题分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22,于是利用BD=BE﹣DE求解.【题目详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE 为等腰直角三角形,∴BE=2AC=2,∴BD=BE ﹣DE=21-.考点:1.旋转的性质;2.勾股定理;3.菱形的性质. 23、(1)12,14;(2)证明见解析;(3)34m n =. 【解题分析】 (1)利用相似三角形的判定可得BCE CAE BAC ∆∆∆∽∽,列出比例式即可求出结论; (2)作//DH CF 交AB 于H ,设AE a =,则4BE a =,根据平行线分线段成比例定理列出比例式即可求出AH 和EH ,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作DH AB ⊥于H ,根据相似三角形的判定可得AEG CEA ∆∆∽,列出比例式可得2AE EG EC =,设3CG a =,2AE a =,EG x =,即可求出x 的值,根据平行线分线段成比例定理求出::5:8BD BC DH CE ==,设5BD AD b ==,8BC b =,3CD b =,然后根据勾股定理求出AC ,即可得出结论.【题目详解】(1)如图1中,当2m =时,2BC AC =.CE AB ⊥,90ACB ∠=︒,BCE CAE BAC ∴∆∆∆∽∽,∴12CE AC AE EB BC EC ===, 2EB EC ∴=,2EC AE =,∴14AE EB =. 故答案为:12,14. (2)如图11-中,作//DH CF 交AB 于H .2m =,3n =,∴tan ∠B=12CE AC BE BC ==,tan ∠ACE= tan ∠B=12AE CE = ∴BE=2CE ,12AE CE = 4BE AE ∴=,2BD CD =,设AE a =,则4BE a =, //DH AC ,∴2BH BD AH CD==, 53AH a ∴=,5233EH a a a =-=, //DH AF ,∴3223EF AE a DE EH a ===, 32EF DE ∴=. (3)如图2中,作DH AB ⊥于H .90ACB CEB ∠=∠=︒,90ACE ECB ∴∠+∠=︒,90B ECB ∠+∠=︒,ACE B ∴∠=∠,DA DB =,EAG B ∠=∠,EAG ACE ∴∠=∠,90AEG AEC ∠=∠=︒,AEG CEA ∴∆∆∽,2AE EG EC ∴=, 32CG AE =,设3CG a =,2AE a =,EG x =, 则有24(3)a x x a =+,解得x a =或4a -(舍弃),1tan tan tan 2EG EAG ACE B AE ∴∠=∠=∠==, 4EC a ∴=,8EB a =,10AB a =,DA DB =,DH AB ⊥,5AH HB a ∴==,52DH a ∴=, //DH CE ,::5:8BD BC DH CE ∴==,设5BD AD b ==,8BC b =,3CD b =,在Rt ACD ∆中,4AC b =,:4:3AC CD ∴=,mAC nDC =,::4:3AC CD n m ∴==,∴34m n =. 【题目点拨】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.24、(1)1;(2)详见解析;(3)750;(4)15. 【解题分析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【题目详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=15.【题目点拨】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.25、(1)文学书的单价为10元,则科普书的单价为15元;(2)27本【解题分析】(1)根据等量关系:文学书数量﹣科普书数量=4本可以列出方程,解方程即可.(2)根据题意列出不等式解答即可.【题目详解】(1)设文学书的单价为x元,则科普书的单价为1.5x元,根据题意得:2002401.5x x=4,解得:x=10,经检验:x=10是原方程的解,∴1.5x=15,答:文学书的单价为10元,则科普书的单价为15元.(2)设最多买科普书m本,可得:15m+10(56﹣m)≤696,解得:m≤27.2,∴最多买科普书27本.【题目点拨】此题考查分式方程的实际应用,不等式的实际应用,正确理解题意列出方程或是不等式是解题的关键.26、(1)8cm(2)24cm2(3)60cm2(4) 17s【解题分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.【题目详解】(1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) ;(2) a=S△ABC=12×6×8=24(㎝2) ;(3) 同理,由图象知CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝∴图1中的图象面积为6×14-4×6=60㎝2 ;(4) 图1中的多边形的周长为(14+6)×2=40㎝b=(40-6)÷2=17秒.27、(1)∠DOA =100°;(2)证明见解析.【解题分析】试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA的度数;(2)连接OE,利用SSS证明△EAO≌△EDO,根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED与⊙O相切.试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)证明:连接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直线ED与⊙O相切.考点:圆周角定理;全等三角形的判定及性质;切线的判定定理。

山东省济宁市邹城八中度第一学期人教版九年级数学上册_第21章_一元二次方程_单元评估测试卷

山东省济宁市邹城八中度第一学期人教版九年级数学上册_第21章_一元二次方程_单元评估测试卷

山东省济宁市邹城八中度第一学期人教版九年级数学上册_第21章_一元二次方程_单元评估测试卷山东省济宁市邹城八中2019-2019学年度第一学期人教版九年级数学上册第21章 一元二次方程 单元评估测试卷考试总分: 100 分 考试时间:90 分钟学校:__________ 班级:__________ 姓名:__________考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.已知关于x 的方程(m +3)x 2−3m −1=0是一元二次方程,则m 的取值范围是( )A.m ≠0B.m ≠−3C.m ≠3D.m ≠x 2.方程(x −5)(x +2)=1的解为( )A.5B.−2C.5和−2D.以上结论都不对3.一元二次方程4x 2−3x −5=0的一次项系数是( )A.−5B.4C.−3D.34.方程x 2=x 的解是( )A.x =1B.x =0C.x 1=1 x 2=0D.x 1=−1 x 2=05.已知一元二次方程ax 2+bx +c =0中二次项系数,一次项系数和常数项之和为0,那么方程必有一根为( )A.0B.1C.−1D.±16.若关于x 的一元二次方程k 2x 2−(2k +1)x +1=0的两个实数根,则k 的取值范围为( )A.k >−14B.k ≥−14C.k >−14且k ≠0D.k ≥−14且k ≠0 7.小明和小红一起做作业,在解一道一元二次方程时,小明在化简过程中写错了常数项,因而得到方程的两个根是8和2;小红在化简过程中写错了一次项系数,因而得到的两个根是−9和−1,你知道原来方程可以是下列哪个方程吗?( )A.x 2−10x +16=0B.x 2+10x +9=0C.x 2−10x +9=0D.x 2+10x −16=08.方程x 2−8x +5=0左边配成一个完全平方式后,所得到的方程是( )A.(x −8)2=11B.(x −4)2=11C.(x −8)2=21D.(x −4)2=219.已知实数m ,n 满足m −n 2=1,则代数式m 2+2n 2+4m −1的最小值等于( )A.−12B.−1C.4D.无法确定10.已知a 、b 、c 为实数,且(a −c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( )A.有两个相等的实数根B.无实数根C.有两个不相等的实数根D.有一根为0二、填空题(共10 小题,每小题 3 分,共30 分)11.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草,若通道的宽设计成xm,则阴影部分的面积是________m2(用含x的代数式表示)12.已知α、β为方程x2+4x+2=0的两个实数根,则α2−4β+5=________.13.如图,在一块长为22m,宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300m2.道路宽为________.14.若实数x、y满足(x2+y2+2)(x2+y2−1)=0,则x2+y2=________.15.设x1,x2是方程x2−x−2013=0的两实数根,则x13+2014x2−2013=________.16.若一元二次方程(m+1)x2+2mx+m−3=0有两个实数根,则m的取值范围是________.17.已知⊙O1和⊙O2的半径分别为3cm和5cm,两圆的圆心距d是方程x2−12x+36=0的根,则两圆的位置关系是________.18.两个相邻偶数的积是168,则这两个偶数分别是________.19.写一个有两个相等的实数根的一元二次方程:________.20.已知关于x的方程x2−6x+m2−3m−5=0的一个根是−1,则m的值为________.三、解答题(共 5 小题,每小题8 分,共40 分)21.已知关于x的一元二次方程x2−(m+2)x+(2m−1)=0.(1)求证:方程总有两个不相等的实数根.(2)若此方程的一个根是1,求出方程的另一个根及m的值.22.已知关于x的一元二次方程x2−(2k+3)x+k2+3k+2=0(1)试判断上述方程根的情况.(2)已知△ABC的两边AB、AC的长是关于上述方程的两个实数根,BC的长为5.①当k为何值时,△ABC是以BC为斜边的直角三角形?②当k为何值时,△ABC是等腰三角形?请求出此时△ABC的周长.23.某商场将原来每件进价80元的某种商品按每件100元出售,一天可出售100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加20件.(1)求商场经营该商品原来一天可获利多少元?(2)若商场经营该商品一天要获得利润2160元,则每件商品应降价多少元?24.个人月收入(元)16002400320040004800…每月销售量(万件)12345…表格所示.根据以上表格提供的信息,解答下列问题:如果两个月内该营销员的销售量从2万件猛增到5万件,月收入两个月大幅度增长,且连续两个月的月收入的增长率是相同的,试求这个增长率(√2取1.41).25.如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,其中AB=30米,AD=20米.现欲将其扩建成一个三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ经过点C.(1)DQ=10米时,求△APQ的面积.(2)当DQ的长为多少米时,△APQ的面积为1600平方米.答案10.C11.(70x−2x2)12.1913.2米14.115.201416.m≥−3且m≠−1217.相交18.12,1419.x2+2x+1=020.1或221.(1)证明:∵△=[−(m+2)]2−4(2m−1)=m2−4m+8=(m−2)2+4,而(m−2)2≥0,∴△>0.∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴12−(m+2)+2m−1=0,解得:m=2,∴原方程为:x2−4x+3=0,解得:x1=1,x2=3.即m的值为2,方程的另一个根是3.22.解:(1)∵在方程x2−(2k+3)x+k2+3k+2=0中,△=b2−4ac=[−(2k+ 3)]2−4(k2+3k+2)=1>0,∴方程有两个不相等的实数根.(2)∵x2−(2k+3)x+k2+3k+2=(x−k−1)(x−k−2)=0,∴x1=k+1,x2=k+2.①不妨设AB=k+1,AC=k+2,∴斜边BC=5时,有AB2+AC2=BC2,即(k+1)2+(k+2)2=25,解得:k1=2,k2=−5(舍去).∴当k=2时,△ABC是直角三角形②∵AB=k+1,AC=k+2,BC=5,由(1)知AB≠AC,故有两种情况:(I)当AC=BC=5时,k+2=5,∴k=3,AB=3+1=4,∵4、5、5满足任意两边之和大于第三边,∴此时△ABC的周长为4+5+5=14;(II)当AB=BC=5时,k+1=5,∴k=4,AC=k+2=6,∵6、5、5满足任意两边之和大于第三边,∴此时△ABC的周长为6+5+5=16.综上可知:当k=3时,△ABC是等腰三角形,此时△ABC的周长为14;当k=4时,△ABC是等腰三角形,此时△ABC的周长为16.23.每件商品应降价2元或8元.24.这个增长率约为41%.25.解:(1)∵DC // AP,∴QD AQ =CDAP,∴10 30=30AP,∴AP=90,∴S△APQ=12AQ⋅AP=1350米2;(2)设DQ=x米,则AQ=x+20,∵DC // AP,∴QD QA =DCAP,∴x x+20=30AP,∴AP=30(x+20)x,由题意得12×30(x+20)x×(x+20)=1600,化简得3x2−200x+1200=0,解x=60或203.经检验:x=60或203是原方程的根,∴DQ的长应设计为60或203米.。

九年级上第一次月考数学试题含答案

九年级上第一次月考数学试题含答案

t/小时S/千米a 44056054321D CB A O 九年级数学试卷一、选择题(每小题3分,共计30分)1. 点M (-1,2)关于x 轴对称的点的坐标为( )(A )(-1,-2) (B )(-1,2) (C )(1,-2) (D )(2,-1)2. 下列计算正确的是( )(A )235a a a += (B )()326a a = (C )326a a a =÷ (D )a a a 632=⨯ 3. 下列图案中,既是轴对称图形又是中心对称图形的是( ) 4. 抛物线()2345y x =-+的顶点坐标是( )(A )(4,5) (B )(-4,5) C 、(4,-5) (D )(-4,5)5. 等腰三角形的一边长为4 cm,另一边长为9 cm,则它的周长为( )(A )13 cm (B )17 cm (C )22 cm (D )17 cm 或22 cm6. 已知反比例函数k y x=的图象经过点P(-l ,2),则这个函数的图象位于( ) (A )第二、三象限 (B )第一、三象限 (C )第三、四象限 (D )第二、四象限7. 某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到l 210辆,则该厂四、五月份的月平均增长率为( )(A )12.1% (B )20% (C )21% (D )10%8. 如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,△ADE 可以由△ABC 绕点 A 顺时针旋转900得到,点D 与点B 是对应点,点E 与点C 是对应点),连接CE ,则∠CED 的度数是( )(A )45° (B )30° (C )25° (D )15°9. 如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB=600,AB=5,则AD 的长是( )(A )53 (B )52 (C )5 (D )1010. 甲乙两车分别从M 、N 两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S (千米)与甲车所用时间t (小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是( ) (A )M 、N 两地的路程是1000千米; (B )甲到N 地的时间为 4.6小时;(C )甲车的速度是120千米/小时; (D )甲乙两车相遇时乙车行驶了440千米. 二、填空题(每小题3分,共计30分)11. 将2 580 000用科学记数法表示为 .12. 函数12y x =-的自变量x 的取值范围是 . 13..14. 分解因式:322_____________x x x ---=.15. 抛物线223y x bx =-+的对称轴是直线1x =-,则b 的值为 .16. 如图,CD 为⊙O 的直径,AB ⊥CD 于E ,DE =8cm ,CE =2cm ,则AB = cm.17.不等式组⎩⎨⎧-≤--14352x x >的解集是 .19. 在ΔABC 中,若,∠B=3020. 如图,△ABC ,AB=AC ,∠BAC=90°,点D 为BC 上一点,CE ⊥BC ,连接AD 、DE ,若CE=BD ,DE=4,则AD 的长为 .三、解答题(其中21-22题各7分.23-24题各8分.25-27题各l0分.共计60分)21. 先化简,再求值:2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x=12+. 22. 如图,图1和图2都是7×4正方形网格,每个小正方形的边长是1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画出一个等腰直角△ABC ;(2)在图2中画出一个钝角△ABD ,使△ABD 的面积是3.图1 图223. 某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查.将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:3,请你根据以上信息回答下列问题:(1)通过计算补全条形统计图;(2)在这次调查中,一共抽取了多少名学生?(3)如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?24. 已知:BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE=AF.(1)如图1,求证:四边形ADEF 是平行四边形;(2)如图2,若AB=AC ,∠A=36°,不添加辅助线,请你直接写出与DE 相等的所有线段(AF 除外).25. .某车队有载重量为8吨、10吨的卡车共12110吨残土. (1)(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?26. 如图,在⊙O 中,AB 、CE 是直径,BD ⊥CE 于G ,交⊙O 于点D ,连接CD 、CB.(1)如图1,求证:∠DCO=90°-21∠COB ; (2)如图2,连接BE ,过点G 作BE 的垂线分别交BE 、AB 、CD 于点F 、H 、M ,求证:MC=MD ;(3)在(2)的条件下,连接AC 交MF 于点N ,若MN=1,NH=4,求CG 的长.(第26题图1) (第26题图2) (第26题图3)27. 已知:如图,抛物线y=-x 2+bx+c 与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴正半轴交于点C ,OA=3,O B=1,点M 为点A 关于y 轴的对称点.(1)求抛物线的解析式;(2)点P 为第三象限抛物线上一点,连接PM 、PA ,设点P 的横坐标为t ,△PAM 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,PM 交y 轴于点N ,过点A 作PM 的垂线交过点C 与x 轴平行的直线于点G ,若ON ∶CG=1∶4,求点P 的坐标.答案一、ABCAC DDDAC二、11、2.58×106 12、x ≠2 13、23 14、-x(x+1)2 15、-4 16、817、x ≥5 18、30 19、34或38 20、22三、21、(7分)原式=2211=-x 22、(1)(3分) (2)(4分)23、(1)30%;(2分)(2)100-30-35-5=30,补图略;(3分)(3)(5÷100)×2000=100人(3分)24、(1)(4分)EB=ED=AF ,ED ∥AF∴四边形ADEF 为平行四边形;(2)(4分)CD 、BE 、BG 、FG25、(1)(4分)设89吨卡车有x 辆8x+10(12-x)=110解得:x=5,∴12-x=7;(2)(4分)设购进载重量8吨a 辆8(a+5)+10(6+7-a)≥165a≤2.5∵a 为整数,∴a 的最大值为226、(1)略 (2)略 (3)AC ∥BE ,△CNG ≌△BFH,设GN=x ,CE=x+1,BC=2x+2=FN=x+4,x=2CN=22,CG=3227、(1)322+--=x x y (2)963S 2-+=x x(3)过点A 作CG 的垂线,垂足为E ,四边形CEAO 为 正方形 △AGE ≌△MNO ,ON=EG ,CE=3ON=3,N (0,-1) 直线MP 解析式为131-=x y ,⎪⎩⎪⎨⎧+--=-=321312x x y x y 解得 P (6193-7-,18193-25-)。

九年级数学上学期第一次月考试卷(带答案和解释)

九年级数学上学期第一次月考试卷(带答案和解释)

九年级数学上学期第一次月考试卷(带答案和解释)2019九年级数学上学期第一次月考试卷(带答案和解释)没有那门学科能比数学更为清晰的阐明自然界的和谐性。

查字典数学网小编为大家准备了这篇2019九年级数学上学期第一次月考试卷,希望对同学们有所帮助。

2019九年级数学上学期第一次月考试卷(带答案和解释)一、选择题(本大题共12小题,每小题3分,共36分.每小题给出代号为A、B、C、D的四个结论,其中只有一个正确,请考生用2B铅笔在答题卷上将选定的答案标号涂黑).1.一元二次方程5x2﹣1=4x的二次项系数是()A.﹣1B.1C.4D.52.抛物线y=3x2+2x的开口方向是()A.向上B.向下C.向左D.向右3.方程x2+x=0的根为()A.x=﹣1B.x=0C.x1=0,x2=﹣1D.x1=0,x2=14.如图,可以看作是由一个等腰直角三角形旋转若干次生成的,则每次旋转的度数是()A.45°B.50°C.60°D.72°5.下列图形中即是轴对称图形,又是旋转对称图形的是()A.①②B.①②③C.②③④D.①②③④6.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x﹣4)2=9B.(x+4)2=9C.(x﹣8)2=16D.(x+8)2=5714.点P(2,3)关于x轴的对称点的坐标为.15.已知函数y=2(x+1)2+1,当x>时,y随x的增大而增大.16.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为.17.若方程kx2﹣6x﹣1=0有两个实数根,则k的取值范围是.18.对于每个非零自然数n,抛物线y=x2﹣ x+ 与x轴交于An,Bn两点,以An,Bn表示这两点间的距离,则A1B1+A2B2+…+A2019B2019+A2019B2019的值是.三、解答题(本大题共8小题,共66分)请将答案写在答题卡上19.解方程:9x2﹣1=0.20.解方程:x2﹣2x+1=25.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)以原点O为对称中心,画出△ABC与关于原点O对称的△A1B1C1,并写出C1的坐标.(2)以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A2B2C2.并写出C2的坐标.22.已知抛物线y=a(x﹣1)2经过点(2,2).(1)求此抛物线对应的解析式.(2)当x取什么值时,函数有最大值或最小值?23.如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕着点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,∠APB=135°,求PP′及PC的长.24.种植雪梨已成为我县乡镇农民增加收入的优势产业,今年小王家种植的雪梨又获得大丰收,小王家两年雪梨卖出情况是:第一年的销售总额是10000元,第三年的销售总额是12100元.(1)如果第二年、第三年销售总额的增长率相同,求销售总额增长率;(2)按照(1)中卖雪梨销售总额的增长速度,第四年该农户的销售总额是多少元?25.某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设商场老板每月获得的利润为P(元),求P与x之间的函数关系式;(3)如果想要每月获得2400元的利润,那么销售单价应定为多少元?26.如图所示,已知抛物线y=﹣x2+bx+c与x轴的一个交点为A(4,0),与y轴交于点B(0,3).(1)求此抛物线所对应的函数关系式;(2)在x轴的正半轴上是否存在点M.使得AM=BM?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.每小题给出代号为A、B、C、D的四个结论,其中只有一个正确,请考生用2B铅笔在答题卷上将选定的答案标号涂黑).1.一元二次方程5x2﹣1=4x的二次项系数是()A.﹣1B.1C.4D.5【考点】一元二次方程的一般形式.【分析】要确定二次项系数和常数项,首先要把方程化成一般形式.【解答】解:5x2﹣1﹣4x=0,5x2﹣4x﹣1=0,二次项系数为5.故选:D.【点评】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.抛物线y=3x2+2x的开口方向是()A.向上B.向下C.向左D.向右【考点】二次函数的性质.【分析】直接利用二次项系数判定抛物线的开口方向即可. 【解答】解:∵抛物线y=3x2+2x,a=3>0,∴抛物线开口向上.故选:A.【点评】此题考查二次函数的性质,确定抛物线的开口方向与二次项系数有关.3.方程x2+x=0的根为()A.x=﹣1B.x=0C.x1=0,x2=﹣1D.x1=0,x2=1【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】把方程左边进行因式分解x(x+1)=0,方程就可化为两个一元一次方程x=0或x+1=0,解两个一元一次方程即可. 【解答】解:x2+x=0,∴x(x+1)=0,∴x=0或x+1=0,∴x1=0,x2=﹣1.故选C.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.4.如图,可以看作是由一个等腰直角三角形旋转若干次生成的,则每次旋转的度数是()A.45°B.50°C.60°D.72°【考点】旋转对称图形.【分析】根据旋转的性质并结合一个周角是360°求解. 【解答】解:∵一个周角是360度,等腰直角三角形的一个锐角是45度,∴如图,是由一个等腰直角三角形每次旋转45度,且旋转8次形成的.∴每次旋转的度数是45°.故选:A.【点评】本题考查了旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.5.下列图形中即是轴对称图形,又是旋转对称图形的是()A.①②B.①②③C.②③④D.①②③④【考点】旋转对称图形;轴对称图形.【分析】直接利用轴对称图形的定义结合旋转对称图形定义得出答案.【解答】解:①不是轴对称图形,是旋转对称图形,故此选项错误;②是轴对称图形,是旋转对称图形,故此选项正确;③是轴对称图形,是旋转对称图形,故此选项正确;④是轴对称图形,是旋转对称图形,故此选项正确.故选:C.【点评】此题主要考查了旋转对称图形以及轴对称图形,正确把握定义是解题关键.6.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x﹣4)2=9B.(x+4)2=9C.(x﹣8)2=16D.(x+8)2=57【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上16,配方得到结果,即可做出判断.【解答】解:方程x2+8x+7=0,变形得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9,故选B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.已知方程x2+mx+3=0的两根是x1,x2,且x1+x2=4,则m 的值是()A.4B.﹣4C.3D.﹣3【考点】根与系数的关系.【分析】由方程x2+mx+3=0的两根是x1,x2,且x1+x2=4,根据根与系数的关系可得﹣m=4,继而求得答案.【解答】解:∵方程x2+mx+3=0的两根是x1,x2,∴x1+x2=﹣m,∵x1+x2=4,∴﹣m=4,解得:m=﹣4.故选B.【点评】此题考查了根与系数的关系.注意若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.8.抛物线y=2x2﹣8x﹣6的顶点坐标是()A.(﹣2,﹣14)B.(﹣2,14)C.(2,14)D.(2,﹣14) 【考点】二次函数的性质.【分析】已知抛物线解析式的一般式,利用配方法化为顶点式求得顶点坐标.【解答】解:∵y=2x2﹣8x﹣6=2(x﹣2)2﹣14,∴顶点的坐标是(2,﹣14).故选:D.【点评】此题考查二次函数的性质,利用配方法求抛物线的顶点坐标、对称轴是常用的一种方法.9.如图所示,已知平行四边形ABCD的两条对角线AC与BD 交于平面直角坐标系的原点,点D的坐标为(3,2),则点B 的坐标为()A.(﹣2,﹣3)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2) 【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出B与D关于原点O对称,即可得出点B的坐标.【解答】解:∵四边形ABCD是平行四边形,O为角线AC与BD的交点,∴B与D关于原点O对称,∵点D的坐标为(3,2),∴点B的坐标为(﹣3,﹣2);故选:D.【点评】本题考查了平行四边形的性质、坐标与图形性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,由关于原点对称的点的坐标特征得出点B的坐标是解决问题的关键.10.在平面直角坐标系中,抛物线y=x2+2x﹣3与x轴的交点个数是()A.0B.1C.2D.3【考点】抛物线与x轴的交点.【分析】令y=0,得到关于x的一元二次方程x2+2x﹣3=0,然后根据△判断出方程的解得个数即可.【解答】解:令y=0得:x2+2x﹣3=0,∵△=b2﹣4ac=22﹣4×1×(﹣3)=4+12=16>0,∴抛物线与x轴有两个交点.故选:C.【点评】本题主要考查的是抛物线与x轴的交点,将函数问题转化为方程问题是解题的关键.11.按一定的规律排列的一列数依次为:…,按此规律排列下去,这列数中的第7个数是()A. B. C. D.【考点】规律型:数字的变化类.【专题】规律型.【分析】通过观察和分析数据可知:分子是定值1,分母的变化规律是:奇数项的分母为:n2+1,偶数项的分母为:n2﹣1.据此规律判断即可.【解答】解:分子的规律:分子是常数1;分母的规律:第1个数的分母为:12+1=2,第2个数的分母为:22﹣1=3,第3个数的分母为:32+1=10,第4个数的分母为:42﹣1=15,第5个数的分母为:52+1=26,第6个数的分母为:62﹣1=35,第7个数的分母为:72+1=50,第奇数项的分母为:n2+1,第偶数项的分母为:n2﹣1,所以第7个数是 .故选D.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是通过分析分母找到分母的变化规律,奇数项的分母为:n2+1,偶数项的分母为:n2﹣1.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c 【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac∴x2+bx+c∴x2+(b﹣1)x+c﹣1 时,y随x的增大而增大.【考点】二次函数的性质.【分析】先求对称轴,再利用函数值在对称轴左右的增减性可得x的范围.【解答】解:函数y=2(x+1)2+1的对称轴是x=﹣1,∵a=2>0,∴函数图象开口向上,∴当x>﹣1时,函数值y随x的增大而增大.故答案为:﹣1.【点评】此题考查二次函数的性质,掌握函数的增减性和求抛物线的对称轴和顶点坐标的方法是解决问题的关键. 16.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为 (80﹣x)=7644 .【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(80﹣x)=7644,故答案为:(80﹣x)=7644.【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.17.若方程kx2﹣6x﹣1=0有两个实数根,则k的取值范围是k≥﹣9且k≠0 .【考点】根的判别式;一元二次方程的定义.【分析】由方程kx2﹣6x﹣1=0有两个实数根,可得△≥0且k≠0,继而求得答案.【解答】解:∵方程kx2﹣6x﹣1=0有两个实数根,∴△=b2﹣4ac=(﹣6)2﹣4×k×(﹣1)=36+4k≥0,解得:k≥﹣9,∵方程是一元二次方程,∴k≠0,∴k的取值范围是:k≥﹣9且k≠0.故答案为:k≥﹣9且k≠0.【点评】此题考查了一元二次方程的根的判别式.注意一元二次方程的二次项系数不为0.18.对于每个非零自然数n,抛物线y=x2﹣ x+ 与x轴交于An,Bn两点,以An,Bn表示这两点间的距离,则A1B1+A2B2+…+A2019B2019+A2019B2019的值是 .【考点】抛物线与x轴的交点.【专题】规律型.【分析】先转换抛物线解析式为两点式:y=x2﹣ x+ =(x﹣ )(x﹣ ),则易求该抛物线与x轴的两个交点坐标;然后根据两点间的坐标差求出距离,找出规律解答即可.【解答】解:y=x2﹣ x+ =(x﹣ )(x﹣ ),则故抛物线与x轴交点坐标为( ,0)、( ,0).由题意知,AnBn= ﹣,那么,A1B1+A2B2…+A2019B2019+A2019B2019,=(1﹣ )+( ﹣)+…+( ﹣ )+( ﹣ ),=1﹣,故答案为 .【点评】题考查的是抛物线与x轴的交点,在解答过程中,注意二次函数与一元二次方程之间的联系,并从中择取有用信息解题;求两点间的距离时,要利用两点间的坐标差来解答.三、解答题(本大题共8小题,共66分)请将答案写在答题卡上19.解方程:9x2﹣1=0.【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】先把方程变形为x2= ,然后利用直接开平方法解方程.【解答】解:x2= ,x=± ,所以x1= ,x2=﹣ .【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.20.解方程:x2﹣2x+1=25.【考点】解一元二次方程-配方法.【分析】把方程左边直接利用完全平方公式因式分解,直接开方得出答案即可.【解答】解:x2﹣2x+1=25(x﹣1)2=25x﹣1=±5x﹣1=5,x﹣1=﹣5,解得:x1=6,x2=﹣4.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)以原点O为对称中心,画出△ABC与关于原点O对称的△A1B1C1,并写出C1的坐标.(2)以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A2B2C2.并写出C2的坐标.【考点】作图-旋转变换.【分析】(1)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(2)利用对应点到旋转中心的距离相等,以及对应点与旋转中心所连线段的夹角等于旋转角,即可作出图形.【解答】解:(1)如图所示:C1的坐标为:(﹣4,1). (2)如图所示:C2的坐标为:(﹣1,﹣4).【点评】本题考查的是旋转变换作图.无论是何种变换都需先找出各关键点的对应点,然后顺次连接即可.22.已知抛物线y=a(x﹣1)2经过点(2,2).(1)求此抛物线对应的解析式.(2)当x取什么值时,函数有最大值或最小值?【考点】待定系数法求二次函数解析式;二次函数的最值. 【专题】计算题.【分析】(1)把已知点坐标代入抛物线解析式求出a的值,确定出解析式即可;(2)利用二次函数性质求出x的值,以及此时函数的最值即可.【解答】解:(1)把点(2,2)代入y=a(x﹣1)2得:a=2,∴此函数解析式为y=2(x﹣1)2=2x2﹣4x+2;(2)∵y=2(x﹣1)2,a=2>0,∴当x=1时,函数有最小值.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的最值,熟练掌握待定系数法是解本题的关键. 23.如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕着点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,∠APB=135°,求PP′及PC的长.【考点】旋转的性质;勾股定理;正方形的性质.【专题】计算题.【分析】先根据旋转的性质得到BP′=BP=4,P′C=AP=2,∠PBP′=90°,∠BP′C=∠BPA=135°,则可判断△PB P′是等腰直角三角形,根据等腰直角三角形的性质得PP′= BP=4 ,∠BP′P=45°,于是可计算出∠PP′C=90°,然后在Rt△PP′C中利用勾股定理计算PC的长.【解答】解:∵△PAB绕着点B顺时针旋转90°到△P′CB 的位置,∴BP′=BP=4,P′C=AP=2,∠PBP′=90°,∠BP′C=∠BPA=135°,∴△PB P′是等腰直角三角形,∴PP′= BP=4 ,∠BP′P=45°,∴∠PP′C=∠BP′C﹣∠BP′P=135°﹣45°=90°,在Rt△PP′C中,PC= = =6.答:PP′和PC的长分别为4 ,6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.本题的关键是证明△PB P′是等腰直角三角形.24.种植雪梨已成为我县乡镇农民增加收入的优势产业,今年小王家种植的雪梨又获得大丰收,小王家两年雪梨卖出情况是:第一年的销售总额是10000元,第三年的销售总额是12100元.(1)如果第二年、第三年销售总额的增长率相同,求销售总额增长率;(2)按照(1)中卖雪梨销售总额的增长速度,第四年该农户的销售总额是多少元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设销售总额的增长率为x,则第三年的销售总额为10000(1+x)2元,根据第三年的销售总额为12100元建立方程求出其解即可;(2)用第三年的销售总额加上增长的部分求得第四年该农户的销售总额.【解答】解:(1)设第二年、第三年销售总额的增长率为x,依题意得10000(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不符题意舍去);∴第二年、第三年销售总额的增长率为10%.(2)12100+12100×10%=13310(元).故第四年该农户的销售总额是13310元.【点评】本题考查一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时由增长率问题的数量关系建立方程是关键.25.某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y与x的函数关系式.(2)设商场老板每月获得的利润为P(元),求P与x之间的函数关系式;(3)如果想要每月获得2400元的利润,那么销售单价应定为多少元?【考点】二次函数的应用.【分析】(1)利用图象上的点的坐标,由待定系数法求一次函数解析式即可得出答案;(2)由每一件的利润×销售量=销售利润得出p与x的函数关系式为:p=(x﹣40)(﹣4x+360);(3)利用当P=2400时,列出方程求出x的值即可.【解答】解:(1)设y与x的函数关系式为:y=kx+b(k≠0),由题意得,解得 .故y=﹣4x+360(40≤x≤90);(2)由题意得,p与x的函数关系式为:p=(x﹣40)(﹣4x+360)=﹣4x2+520x﹣14400,(3)当P=2400时,﹣4x2+520x﹣14400=2400,解得:x1=60,x2=70,故销售单价应定为60元或70元.【点评】此题主要考查了一次函数与二次函数的实际应用,根据已知图象上点的坐标得出直线解析式是解题关键.26.如图所示,已知抛物线y=﹣x2+bx+c与x轴的一个交点为A(4,0),与y轴交于点B(0,3).(1)求此抛物线所对应的函数关系式;(2)在x轴的正半轴上是否存在点M.使得AM=BM?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数直接求之即可;(2)作AB的垂直平分线交x轴于点M,利用勾股定理算出OM 即可.【解答】解:(1)把点A(4,0),B(0,3)代入二次函数y=﹣x2+bx+c得解得:,c=3,所以二次函数的关系式为: ;(2)如图,作AB的垂直平分线交x轴于点M,连接BM,则BM=AM,设BM=AM=x,则OM=4﹣x,在直角△OBM中,BM2=OB2+OM2,即:x2=32+(4﹣x)2,解得:x= ,∴OM=4﹣ = ,所以点M的坐标为:( ,0);【点评】本题考查了待定系数求二次函数解析式、垂直平分线的性质、勾股定理等知识点,难度不大,属于基础题.第(2)问虽然简单,却是对称问题与勾股定理相结合的经典应用,要引起重视.小编为大家提供的2019九年级数学上学期第一次月考试卷,大家仔细阅读了吗?最后祝同学们学习进步。

九年级(上)第一次月考数学模拟试题(含答案).doc

九年级(上)第一次月考数学模拟试题(含答案).doc

第一学期第一月考模拟九年级数学(考试内容:第二I-一章——第二十二章第一节时间:120分钟,满分:150分)选择题(共40分)一、选择题(每小题4分,共40分)下列方程中,是关于兀的一元二次方程的是方程 2x(x -3) = 5(x — 3)的根为()如果x=4是一元二次方程X 2-3X = 6/2的一个根,贝I 」常数a 的值是三角形的两边长分別为3和6,第三边的长是方程疋-6x + 8 = 0的一个根,则这个三角形的周长是()8.从正方形铁片,截去2cm 宽的一个长方形,余下的血积是48cn?,贝U 原来的正方形铁片的面积是()9. —•个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25B.36C.25 或 36D. —25 或一36A. 2.3(X 4-1)2=2(X + 1);B. g +丄-2 = 0X X若函数y=做宀“一6是二次函数且图象开口向上,C. ax" +bx + c = 0 D ・ 2x = 14- A. -2 B. 4 C- 4或一2 D ・4或3关于函数y=,的性质表达正确的一项是(A.无论x 为任何实数,y 值总为正 C.它的图象关于y 轴对称B. D. 当兀值增人时,y 的值也增大 它的图象在第一、 三象限内一元二次方程X 2+3X = 0的解是(A ・ x = —3B. x { = 0?x 2 = —3C.D. x = 35.A. x = 2.5 B ・x = 3 C.x = 2.5 或兀=3D •以上都不对6.A ・2 B. -2 C. ±2D. ±4A. 13B. 11C. 9D. 147. A. 8cmB. 64cmC. 8cm 2D. 64cm 210.某经济开发区今年一刀份工业产值达50亿元,笫一季度总产值为175亿元,问二、三刀平均每刀的增长率是多少?设平均每月增长的百分率为x,根据题意得方程为()第II卷非选择题(共110分)二、填空题(每小题4分,共40分)11.把一元二次方程(兀一3)2=4化为一般形式为:_________ ,二次项系数为:__________ , 一次项系数为:________ ,常数项为: ________ .12.已知2是关于x的一元二次方程?+4x-p=0的一个根,则该方程的另一个根是_______________ ・13.已知兀】,JO是方程X2~2X+]= 0的两个根,则丄+丄=兀1 X214.若|/?-l|+V^4=0,且一元二次方程kx2+ax+b = 0有两个实数根,则R的取值范围是__________________ .15.已知函数y=(m-2)^+rnx-3(m为常数).⑴当〃7 ___________ 吋,该函数为二次函数;⑵当〃7 __________时,该函数为一次函数.16.二次函数y=ax2(a/0)(fy图象是__ ,当Q0时,开口向 ________ ;顶点坐标是 _____ ,对称轴是_______ .17.抛物线)=2,—加+3的对称轴是宜线x= -1,则b的值为______________ .18.抛物线y=—2,向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是___________ .19.如左下图,已知二次函数y=ax2+bx+c的图象与x轴交于4(1,0), 3(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是20.二次函数y=~x2+bx+c的图象如右上图所示,则一次函数y=bx+c的图象不经过第__________________ 象限.三、解答题(共70分)21.(8分)已知x = \是一元二次方程+ -m2x-2m-\ = 0的一个根.求m的值,并写出此吋的一元二次方程的一般形式.22.(每题7分,共14分)用适当的方法解下列方程:(l)2?-3x-5 = 0 (2) <—4x+4=0.23. (10分)九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高二01,与篮圈屮心的水平9距离为7m,当球出手后水平距离为4m 时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1) 建立如图所示的平而直角处标系,求抛物线的解析式并判断此球能否准确投中?(2) 此时,若对方队员乙在甲前面lm 处跳起盖帽拦截,已知乙的最人摸高为3.1m,那么他能否获得成功?(JC4m24. (12分)已知,在同一平面直角坐标系中,正比例函数y = -2x 与二次函数y=-x 2+2x+c 的图象交于点 4(— 1, m ).(1) 求加,e 的值;(2) 求:次函数图彖的对称轴和顶点坐标.25. (12分)某商场礼品柜台新年期间购进人址贺年卡,一种贺年卡平均每天可售岀500张,每张盈利0.3元. 为了尽快减少库存,商场决定采取适当的降价措施,调杏发现,如果这种贺年卡的售价每降低0」元,那么 商场平均每天可多售出100张,商场耍想平均每天盈利120元,每张贺年R应降价多少元?4m26. (14分)如图,抛物线y=ax 2-5x+4a 与x 轴相交于点A, B,且过点C (5,4).⑴求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二彖限,并写出平移后抛物线的解析式.20 (本题10分)解:由题意可知,抛物线经过(0, —),顶点坐标是(4, 4) • 9设抛物线的解析式是y = 6/(x-4)2+4,解得a = --,所以抛物线的解析式是y = --(x-4)2+4 ;篮9 9 圈的坐标是(7, 3),代入解析式得y = -£(7-+4 = 7,这个点在抛物线上,所以能够投中.1 C(2)当x = \时,),=一6(1_4)「+4 = 3<3.1,所以能够盖帽拦截成功.24. (本题12分)解:(1);・点A 在正比例函数y = -2x 的图象上,/.w=-2x (-1)=2.・••点A 坐标为(一1, 2). T 点A 在二次函数图象上—1 —2 + c=2,即c=5.参考答案一、 选择题(每小题4分,共40分)1. A2.B 3・ C 4.B 5・ C 6・ C 7.A 8. D 9. C 10. D二、 填空题(每小题4分,共40分)11. %2-6X + 5 = 0;1;-6;5 12. -6 13.2 14.^<4H/r^0 15. H 2;=216.抛物线;上;(0,0)17. -41& y = -(x + l 『+7三、 解答题(共60分) 19.(2-1)20.三21.(本题8分)解:m = 0 ,22. 解: (每题7分,共14分) (1) X] = -1, x 2 =—(2) Xj — %2 = 223.(2)・.•二次函数的解析式为y=—x2+2x+5,・・.y=—f+2x+5= -(兀一I)? +6 .・・・对称轴为直线x=l,顶点坐标为(1, 6).25.(本题12分)解:设每张贺年卡应降价兀元. 则根据题意得:(0.3-X)(500+型兰)=120,0.1整理,得:100/ + 20x —3 = 0, 解得:坷=0.1,兀2=-0.3 (不合题意,舍去).・・・兀=0・1.答:每张贺年卡应降价0」元.26.(本题14 分)解:(1)«=1, P(-,~匕‘ 4丿。

山东省邹城市第八中学2020届九年级中考模拟(一)数学试题(解析版)

山东省邹城市第八中学2020届九年级中考模拟(一)数学试题(解析版)

山东省邹城市第八中学2020届九年级中考模拟(一)数学试题一.选择题(共8小题)1.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠0 3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=5705.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.46.甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时7.如图,在平面直角坐标系中,A(1,2),B(1,﹣1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.a≤﹣1或a≥2B.≤a≤2C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤28.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)二.填空题(共5小题)9.因式分解:x3﹣9x=.10.已知=+,则实数A=.11.如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD∥x轴、双曲线y=(x>0)经过A,B两点,则菱形ABCD的面积为.12.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题)14.计算:+﹣﹣()﹣1.15.如图,AB为⊙O的直径,弦CD∥AB,E是AB延长线上一点,∠CDB=∠ADE.(1)DE是⊙O的切线吗?请说明理由;(2)求证:AC2=CD•BE.16.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?17.如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠0【分析】由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.【解答】解:(1)当k=0时,﹣6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+2x﹣1=0有实数根,∴△=22﹣4k×(﹣1)≥0,解得k≥﹣1,由(1)、(2)得,k的取值范围是k≥﹣1.故选:A.3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A 错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.4【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x =﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.6.甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时【分析】根据图象确定两个车间的生产速度,再由乙车间剩余工作量推得复工后生产时间,得到乙车间加工零件数量y与x之间的函数关系式即可.【解答】解:由图象可知,甲车间每小时加工零件个数为720÷9=80个,则A正确;由题意总零件个数为720+420=1140个,则B正确;乙车间生产速度为120÷2=60个/时,则C正确;乙车间复工后生产时间为(420﹣120)÷60=5小时,故乙车间维修设备时间为9﹣5﹣2=2小时,则D错误.故选:D.7.如图,在平面直角坐标系中,A(1,2),B(1,﹣1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.a≤﹣1或a≥2B.≤a≤2C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤2【分析】当抛物线经过点A时,a=2,当抛物线经过点B时,a=﹣1,当抛物线经过C 时,a=,根据二次函数开口大小的性质可得结论.【解答】解:如图所示,∵A(1,2),B(1,﹣1),C(2,2),当抛物线经过点A时,a=2,当抛物线经过点B时,a=﹣1,当抛物线经过C时,a=,∵a>0时,a越大,开口越小;a<0时,a越大,开口越大;∴抛物线y=ax2(a≠0)经过△ABC区域(包括边界),a的取值范围是:0<a≤2或﹣1≤a<0;故选:D.8.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【分析】观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2019÷4=504…3,A2019在x轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【解答】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.二.填空题(共5小题)9.因式分解:x3﹣9x=x(x+3)(x﹣3).【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).10.已知=+,则实数A=1.【分析】先计算出+=,再根据已知等式得出A、B的方程组,解之可得.【解答】解:+=+=,∵=+,∴,解得:,故答案为:1.11.如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD∥x轴、双曲线y=(x>0)经过A,B两点,则菱形ABCD的面积为.【分析】连接AC,与BD交于点M,通过A、B两点的横坐标,求得AM=,BM=3,即可求得AC=,BD=6,根据菱形的面积公式即可求得.【解答】解:连接AC,与BD交于点M,∵菱形对角线BD∥x轴,∴AC⊥BD,∵点A、B横坐标分别为1和4,双曲线y=(x>0)经过A,B两点,∴AM=5﹣=,BM=4﹣1=3,∴AC=,BD=6,∴菱形ABCD的面积:AC•BD=,故答案为.12.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加(4﹣4)m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m <.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三.解答题(共4小题)14.计算:+﹣﹣()﹣1.【分析】原式利用负整数指数幂法则,以及二次根式性质化简,合并即可得到结果.【解答】解:原式=2+﹣﹣=.15.如图,AB为⊙O的直径,弦CD∥AB,E是AB延长线上一点,∠CDB=∠ADE.(1)DE是⊙O的切线吗?请说明理由;(2)求证:AC2=CD•BE.【分析】(1)连接OD.只要证明OD⊥DE即可;(2)只要证明:AC=BD,△CDB∽△DBE即可解决问题;【解答】(1)解:结论:DE是⊙O的切线.理由:连接OD.∵∠CDB=∠ADE,∴∠ADC=∠EDB,∵CD∥AB,∴∠CDA=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠ADO=∠EDB,∵AB是直径,∴∠ADB=90°,∴∠ADB=∠ODE=90°,∴DE⊥OD,∴DE是⊙O的切线.(2)∵CD∥AB,∴∠ADC=∠DAB,∠CDB=∠DBE,∴=,∴AC=BD,∵∠DCB=∠DAB,∠EDB=∠DAB,∴∠EDB=∠DCB,∴△CDB∽△DBE,∴=,∴BD2=CD•BE,∴AC2=CD•BE.16.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?【分析】(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.【解答】解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.17.如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)把A(﹣1,0),C(0,3)代入y=ax2+2x+c即可得到结果;(2)在y=﹣x2+2x+3中,令y=0,则﹣x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=﹣x+3,由于AD∥BC,设直线AD的解析式为y=﹣x+b,即可得到结论;(3)①由BC∥AD,得到∠DAB=∠CBA,只要当=或=时,△PBC∽△ABD,求出AD=5,AB=4,BC=3,代入比例式解得BP的长度,即可得到P(,0)或P(﹣,0).【解答】解:(1)∵次函数y=ax2+2x+c的图象经过点A(﹣1,0)和点C(0,3),∴,解得,∴二次函数的表达式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,令y=0,则﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴B(3,0),由已知条件得直线BC的解析式为y=﹣x+3,∴设直线AD的解析式为y=﹣x+b,∴0=1+b,∴b=﹣1,∴直线AD的解析式为y=﹣x﹣1.(3)①∵BC∥AD,∴∠DAB=∠CBA,又∵D(4,﹣5),∴∠ABD≠45°,点P在点B得到左侧,∴只可能△ABD∽△BPC或△ABD∽△BCP,∴=或=时,∵A(﹣1,0),B(3,0),C(0,3),D(4,﹣5),∵AD=5,AB=4,BC=3,即=或=,解得BP=或BP=,∵3﹣=,3﹣=﹣,∴P(,0)或P(﹣,0).。

2024年山东省济宁市邹城市九级九年级数学第一学期开学学业质量监测模拟试题【含答案】

2024年山东省济宁市邹城市九级九年级数学第一学期开学学业质量监测模拟试题【含答案】

2024年山东省济宁市邹城市九级九年级数学第一学期开学学业质量监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)平行四边形ABCD的一边长为10,则它的两条对角线长可以是()A.10和12B.12和32C.6和8D.8和102、(4分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD3、(4分)下列变形错误的是()A.32364422x yx y y-=-B.33()1()x yy x-=--C.32312()4()27()9x a b x a ba b--=-D.22223(1)9(1)3x y a xxy a y-=--4、(4分)在一次统考中,从甲、乙两所中学初二学生中各抽取50名学生进行成绩分析,甲校的平均分和方差分别是82分和245分,乙校的平均分和方差分别是82分和190分,根据抽样可以粗略估计成绩较为整齐的学校是()A.甲校B.乙校C.两校一样整齐D.不好确定哪校更整齐5、(4分)如图所示,正方形ABCD的边长为6,M在DC上,且DM=4,N是AC上的动点,则DN+MN的最小值是()A .3+B .C .D .96、(4分)如图1,四边形中,,,.动点从点出发沿折线方向以1单位/秒的速度匀速运动,在整个运动过程中,的面积与运动时间(秒)的函数图象如图2所示,则等于A .5B .C .8D .7、(4分)如图,在四边形ABCD 中,点D 在AC 的垂直平分线上,AB CD ∥.若25BAC ︒∠=,则ADC ∠的度数是()A .130︒B .120︒C .100︒D .50°8、(4分)已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数(0)ky k x =≠的图象上,且x 1<x 2<x 3,()A .若3y <1y <2y ,则1x +2x +3x >0B .若1y <3y <2y ,则1x 2x 3x <0C .若2y <3y <1y ,则1x +2x +3x >0D .若2y <1y <3y ,则1x 2x 3x <0二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)中,字母x 的取值范围是__________.10、(4分)如图,已知菱形ABCD 的周长为16,面积为E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为______.11、(4分)在△ABC 中,∠C =90°,若b =7,c =9,则a =_____.12、(4分)平行四边形ABCD 中,AB:BC=3:2,∠DAB=60°,点E 在AB 上且AE:EB=1:2,点F 是BC 中点,过D 作DP⊥AF 于点P,DQ⊥CE 于点Q,则DP:DQ=_______.13、(4分)正方形111A B C O ,2221A B C C ,3332A B C C ,...按如图的方式放置,点1A ,2A ,3A ...和点1C ,2C ,3C ...分别在直线1y x =+和x 轴上,则点2019B 的坐标为_______.三、解答题(本大题共5个小题,共48分)14、(12分)对于平面直角坐标系x O y 中的点P 和正方形给出如下定义:若正方形的对角线交于点O ,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q ,满足PQ≤1时,称点P 为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P 1(0,0),P 2(-1,1),P 3(3,2)中,原点正方形的友好点是__________;②点P 在直线y =x 的图象上,若点P 为原点正方形的友好点,求点P 横坐标的取值范围;(2)乙次函数y =-x +2的图象分别与x 轴,y 轴交于点A ,B ,若线段AB 上存在原点正方形的友好点,直接写出原点正方形边长a 的取值范围.15、(8分)如图,在平行四边形ABCD 中,点E ,F 分别是边AD ,BC 上的点,且AE=CF ,求证:AF=CE .16、(8分)如图,在矩形ABCD 中,点E ,F 分别在边CD ,AB 上,且DE BF =.(1)求证:四边形AFCE 是平行四边形.(2)若四边形AFCE 是菱形,8AB =,4=AD ,求菱形AFCE 的周长.17、(10分)已知函数4y x =-,(1)在平面直角坐标系中画出函数图象;(2)函数图象与x 轴交于点A ,与y 轴交于点B ,已知(),P x y 是图象上一个动点,若OPA 的面积为6,求P 点坐标;(3)已知直线()10y kx k =+≠与该函数图象有两个交点,求k 的取值范围.18、(10分)已知T 229633a a a a a -=+++()().(1)化简T ;(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的______________(填”平均数”“众数”或“中位数”)20、(4分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿AB c m 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒lcm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′,设Q 点运动的时间为t 秒,若四边形QP ′CP 为菱形,则t 的值为_____.21、(4分)“a 的3倍与b 的差不超过5”用不等式表示为__________.22、(4分)若一次函数2y kx k =++的图象不.经过第一象限,则k 的取值范围为_______.23、(4分)要使分式有意义,则应满足的条件是二、解答题(本大题共3个小题,共30分)24、(8分)已知y 是x 的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式.25、(10分)如图,四边形ABCD 中,AB=10,BC=13,CD=12,AD=5,AD ⊥CD ,求四边形ABCD 的面积.26、(12分)已知:线段a 、c .求作:Rt ABC ∆,使BC a =,AB c =,90A ∠=︒参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据平行四边形的性质推出OA=OC=12AC,OB=OD=12BD,求出每个选项中OA和OB 的值,再判断OA、OB、AD的值是否能组成三角形即可.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,A、∵AC=10,BD=12,∴OA=5,OD=6,∵6-5<10<6+5,∴此时能组成三角形,故本选项符合题意;B、∵AC=12,BD=32,∴OA=6,OD=16,∵16-6=10,∴此时不能组成三角形,故本选项不符合题意;C、∵AC=6,BD=8,∴OA=3,OD=4,∵3+4<10,∴此时不能组成三角形,故本选项不符合题意;D、∵AC=8,BD=10,∴OA=4,OD=5,∵4+5<10,∴此时不能组成三角形,故本选项不符合题意;故选:A.本题考查了三角形的三边关系定理和平行四边形的性质,关键是判断OA、OB、AD的值是否符合三角形的三边关系定理.2、D【解析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,∵四边形ABCD 的对角线互相平分,∴四边形ABCD 是平行四边形,∵AC=BD ,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD 是矩形,故选D .考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.3、D 【解析】试题解析:A 选项分子和分母同时除以最大公因式322x y ;B 选项的分子和分母互为相反数;C 选项分子和分母同时除以最大公因式()3a b -,D 选项正确的变形是22223(1)9(1)3x y a x xy a y -=-所以答案是D 选项故选D.4、B 【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲校和乙校的平均数是相等的,甲校的方差大于乙校的方差,∴成绩较为整齐的学校是乙校.故选B .本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、B【解析】连BD ,BM ,BM 交AC 于N′,根据正方形的性质得到B 点与D 点关于AC 对称,则有N′D+N′M=BM ,利用两点之间线段最短得到BM 为DN+MN 的最小值,然后根据勾股定理计算即可.【详解】连BD,BM,BM 交AC 于N′,如图,∵四边形ABCD 为正方形,∴B 点与D 点关于AC 对称,∴N′D=N′B ,∴N′D+N′M=BM ,∴当N 点运动到N′时,它到D 点与M 点的距离之和最小,最小距离等于MB 的长,而BC=CD=6,DM=4,∴MC=2,∴.故选:B.此题考查轴对称-最短路线问题,勾股定理,正方形的性质,解题关键在于作辅助线.6、B 【解析】根据图1和图2得当t =3时,点P 到达A 处,即AB =3;当S =15时,点P 到达点D 处,可求出BC =5,利用勾股定理即可求解.【详解】解:当t =3时,点P 到达A 处,即AB =3,过点A 作AE ⊥CD 交CD 于点E ,则四边形ABCE 为矩形,∵AC =AD ,∴DE =CE =CD ,∴CD =6,当S =15时,点P 到达点D 处,则S =CD•BC =3×BC =15,则BC =5,由勾股定理得AD =AC =,故选:B .本题考查了动点问题的函数图象、三角形面积公式等知识,看懂函数图象是解决问题的关键.7、A 【解析】根据平行线的性质可得25BAC ACD ︒∠=∠=,再由线段垂直平分线的性质可得AD=CD ,根据等腰三角形的性质可得25DAC ACD ︒∠=∠=,由三角形的内角和定理即可求得ADC ∠的度数.【详解】∵AB CD ∥,∴25BAC ACD ︒∠=∠=,∵点D 在AC 的垂直平分线上,∴AD=CD,∴25DAC ACD ︒∠=∠=,∴°180130ADC ADC ACD ︒∠=-∠-∠=.故选A.本题考查了平行线的性质、线段垂直平分线的性质及等腰三角形的性质,正确求得25DAC ACD ︒∠=∠=是解决问题的关键.8、B【解析】反比例函数(0)k y k x =≠的图像及x 1<x 2<x 3分别进行判断即可【详解】反比例函数(0)k y k x =≠的图像及x 1<x 2<x 3分别进行判断若3y <1y <2y ,k 为负在二四象限,且x 1<x 2<0,x 3>0,则1x +2x +3x 不一定大于0,故A 错;若1y <3y <2y ,k 为正在一三象限,x 1<0,0<x 2<x 3,则1x 2x 3x <0,故B 正确;若2y <3y <1y ,k 为负在二四象限,且x 1<0,0<x 2<x 3,则1x +2x +3x 不一定大于0,故C 错;若2y <1y <3y ,k 为正在一三象限,x 1<x 2<0,0<x 3则1x 2x 3x >0,故D 错误;故选B 熟练掌握反比例函数的图像及增减性是解决本题的关键二、填空题(本大题共5个小题,每小题4分,共20分)9、1x ≥【解析】二次根式有意义的条件就是被开方数是非负数,即可求解.【详解】根据题意得:x ﹣1≥0,解得:x ≥1.故答案为x ≥1.a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10、.【解析】解:如图作CE′⊥AB 于E′,甲BD 于P′,连接AC 、AP′.首先证明E′与E 重合,∵A 、C 关于BD 对称,∴当P 与P′重合时,PA′+P′E 的值最小,∵菱形ABCD 的周长为16,面积为,∴AB=BC=4,,∴CE 的长故答案为.考点:1、轴对称﹣最短问题,2、菱形的性质11、【解析】利用勾股定理:a 2+b 2=c 2,直接解答即可【详解】∵∠C =90°∴a 2+b 2=c 2∵b =7,c =9,∴a ==4故答案为本题考查了勾股定理,对应值代入是解决问题的关键12、:【解析】【分析】连接DE 、DF ,过F 作FN ⊥AB 于N ,过C 作CM ⊥AB 于M ,根据三角形的面积和平行四边形的面积得出S △DEC =S △DFA =12S 平行四边形ABCD ,求出AF×DP=CE×DQ ,设AB=3a ,BC=2a ,则BF=a ,BE=2a ,BN=12a ,BM=a ,FN=2a ,CM=a ,求出a ,a ,代入求出即可.【详解】连接DE 、DF ,过F 作FN ⊥AB 于N ,过C 作CM ⊥AB 于M ,∵根据三角形的面积和平行四边形的面积得:S △DEC =S △DFA =12S 平行四边形ABCD ,即12AF×DP=12CE×DQ ,∴AF×DP=CE×DQ ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB :BC=3:2,∴设AB=3a ,BC=2a ,∵AE :EB=1:2,F 是BC 的中点,∴BF=a ,BE=2a ,BN=12a ,BM=a ,由勾股定理得:FN=32a ,a ,a ,,a•DQ ,∴DP :,故答案为:【点睛】本题考查了平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,求出AF×DP=CE×DQ 和AF 、CE 的值是解题的关键.13、()2019201821,2-【解析】按照由特殊到一般的思路,先求出点A 1、B 1;A 2、B 2;A 3、B 3;A 4、B 4的坐标,得出一般规律,进而得出点A n 、B n 的坐标,代入即得答案.【详解】解:∵直线1y x =+,x =0时,y =1,∴OA 1=1,∴点A 1的坐标为(0,1),点B 1的坐标为(1,1),∵对直线1y x =+,当x =1时,y =2,∴A 2C 1=2,∴点A 2的坐标为(1,2),点B 2的坐标为(3,2),∵对直线1y x =+,当x =3时,y =4,∴A 3C 2=4,∴点A 3的坐标为(3,4),点B 3的坐标为(7,4),∵对直线1y x =+,当x =7时,y =8,∴A 4C 3=8,∴点A 4的坐标为(7,8),点B 4的坐标为(15,8),……∴点A n 的坐标为(2n ﹣1﹣1,2n ﹣1),点B n 的坐标为(2n ﹣1,2n ﹣1)∴点2019B 的坐标为(22019﹣1,22018)本题主要考查一次函数图象上点的坐标特征、正方形的性质和规律的探求,解决这类问题一般从特殊情况入手,找出数量上的变化规律,从而推出一般性的结论.三、解答题(本大题共5个小题,共48分)14、(1)①P 2,P 3,②1≤x ≤2+2或22--≤x ≤-1;(2)≤a ≤1.【解析】(1)由已知结合图象,找到点P 所在的区域;(2)分别求出点A 与B 的坐标,由线段AB 的位置,通过做圆确定正方形的位置.【详解】解:(1)①∵原点正方形边长为4,当P 1(0,0)时,正方形上与P 1的最小距离是2,故不存在Q 使P 1Q≤1;当P 2(-1,1)时,存在Q (-2,1),使P 2Q≤1;当P 3(3,2)时,存在Q (2,2),使P 3Q≤1;故答案为P ₂、P ₃;②如图所示:阴影部分就是原点正方形友好点P 的范围,由计算可得,点P 横坐标的取值范围是:1≤x≤2+22或-2-22≤x≤-1;(2)一次函数y=-x+2的图象分别与x 轴,y 轴交于点A ,B ,∴A (0,2),B (2,0),∵线段AB 上存在原点正方形的友好点,如图所示:原点正方形边长a 的取值范围≤a≤1.本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.15、见解析【解析】根据平行四边形ABCD 的对边平行得出AD ∥BC ,又AE=CF ,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF 为平行四边形,然后根据平行四边形的对边相等证得结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AE ∥CF ,又∵AE=CF ,∴四边形AECF 为平行四边形,∴AF=CE .本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.16、(1)见解析;(2)20.【解析】(1)由矩形的性质得出//AB CD ,AB CD =,90B ∠=︒,证出AF CE =,即可得出四边形AFCE 是平行四边形.(2)由菱形的性质得出AF FC CE AE ===,4BC AD ==,设AF CF x ==,则8BF x =-,在Rt BCF ∆中,由勾股定理得出方程,解方程即可.【详解】(1)证明:四边形ABCD 是矩形,//AB CD ∴,AB CD =,90B ∠=︒,DE BF =,AF CE ∴=,∴四边形AFCE 是平行四边形.(2)四边形AFCE 是菱形,AF FC CE AE ∴===,4BC AD ==,设AF CF x ==,则8BF x =-,在Rt BCF ∆中,由勾股定理得:()22284x x -+=,解得:5x =,5AF FC CE AE ∴====,∴菱形AFCE 的周长4520=⨯=.此题考查了菱形的性质、矩形的性质、平行四边形的判定以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.17、(1)图略;(2)()7,3P 或()1,3;(3)k 的取值范围是104-<<k 或01k <<.【解析】(1)去绝对值,化为常见的一次函数,画出图像即可;(2)由OPA 的面积可先求出P 点纵坐标y 的值,再由函数解析式求出x 值;(3)当直线1y kx =+介于经过点A 的直线与平行于直线()44y x x =-≥时,其与函数图像有两个交点.【详解】解:()144444x x y x x x -<⎧=-=⎨-≥⎩,所以函数图像如图所示()2如图,作PC y ⊥轴学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………4,6OPA OA S ==6243PC ∴=⨯÷=43x ∴-=7x ∴=或1()7,3P ∴或()1,3()3直线1y kx =+与y 轴的交点为()0,1①当直线1y kx =+经过()4,0A 时,1410,4k k +=∴=-②当直线1y kx =+平行于直线()44y x x =-≥时,1k =k ∴的取值范围是104-<<k 或01k <<本题考查了函数的图像,合理的将图像与一次函数相结合是解题的关键.18、(1)1a ;(2)13.【解析】(1)原式通分并利用同分母分式的加法法则计算即可求出值;(2)由正方形的面积求出边长a 的值,代入计算即可求出T 的值.【详解】(1)T 22222a 96a 3a 31a a 3a a 3a a 3a -++=+==+++()()()()();(2)由正方形的面积为9,得到a =3,则T 13=.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、中位数【解析】七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,【详解】解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.故答案为:中位数.考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.20、1【解析】作PD⊥BC 于D,PE⊥AC 于t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC 为直角三角形,∴∠A=∠B=45°,∴△APE 和△PBD 为等腰直角三角形,∴PE=AE=2AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四边形PECD 为矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE 中,PC 1=PE 1+CE 1=t 1+(6﹣t)1,在Rt△PDQ 中,PQ 1=PD 1+DQ 1=(6﹣t)1+(6﹣1t)1,∵四边形QPCP′为菱形,∴PQ=PC,∴t 1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t 1=1,t 1=6(舍去),∴t 的值为1.故答案为1.【点睛】此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用.21、35a b -≤【解析】根据“a 的3倍与b 的差不超过5”,则35a b -≤.【详解】解:根据题意可得出:35a b -≤;故答案为:35a b -≤此题主要考查了由实际问题抽象出一元一次不等式,注意不大于即为小于等于.22、k≤-2.【解析】根据一次函数与系数的关系得到20kk+≤⎧⎨⎩<,然后解不等式组即可.【详解】∵一次函数y=kx+k+2的图象不经过第一象限,∴20 kk+≤⎧⎨⎩<∴k≤-2.故答案为:k≤-2.本题考查了一次函数与系数的关系:对于一次函数y=kx+b(k≠0),k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b 的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.23、≠1【解析】根据题意得:-1≠0,即≠1.二、解答题(本大题共3个小题,共30分)24、y=x-1.【解析】试题分析:设这个一次函数的解析式为y="kx+b,"分别将x=3,y=1和x=−1,y=−4分别代入y=kx+b得方程组,解这个方程组即可求得k、b的值,也就求得了函数的解析式.试题解析:解:设这个一次函数的解析式为y="kx+b,"将x=3,y=1和x=−1,y=−4分别代入y=kx+b得,31{24 k bk b+=-+=-,解这个方程组得,1{2 kb==-.∴所求一次函数的解析式为y=x—1.考点:用待定系数法求函数解析式.25、S四边形ABCD=1.【解析】试题分析:连接AC,过点C作CE⊥AB于点E,在Rt△ACD中根据勾股定理求得AC 的长,再由等腰三角形的三线合一的性质求得AE 的长,在Rt △CAE 中,根据勾股定理求得CE 的长,根据S 四边形ABCD =S △DAC +S △ABC 即可求得四边形ABCD 的面积.试题解析:连接AC ,过点C 作CE ⊥AB 于点E .∵AD ⊥CD ,∴∠D=1°.在Rt △ACD 中,AD=5,CD=12,AC=.∵BC=13,∴AC=BC .∵CE ⊥AB ,AB=10,∴AE=BE=AB=.在Rt △CAE 中,CE=.∴S 四边形ABCD =S △DAC +S △ABC =26、见解析【解析】直接利用作一角等于直角的作法得出∠BAC=90°,再截取AB=c ,进而以B 为圆心,BC=a 的长为半径画弧,得出C 点位置,进而得出答案.【详解】解:如图:再截取AB=c,进而以B为圆心,BC=a的长为半径画弧,得出C点位置,连接CB,△ACB即为所求三角形.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。

九年级上第一次月考数学试卷附答案解析

九年级上第一次月考数学试卷附答案解析

2016-2017学年山东省济宁市邹城八中九年级(上)第一次月考数学试卷一、选择题(3分&#215;10=30分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=93.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣24.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程2x的范围是()<x<6.19 D.6.19<x<6.205.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y26.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x﹣1)=28 D.x(x+1)=287.若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1 C.x=2 D.x=38.已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13 B.11或13 C.11 D.129.下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0 B.x2﹣4x+4=0 C.x2+4x+10=0 D.x2+4x﹣5=010.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s 的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.二、填空题(3分&#215;6=18分)11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=.12.一个小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣4(t﹣1)2+5,则小球距离地面的最大高度是米.13.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得.14.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是.15.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.16.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③b2﹣4ac>0;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;⑥方程ax2+bx+c=3有两个相等的实数根.其中正确的有.三、解答题(本大题共7小题,满分52分,解答应写出文字说明、证明过程或演算步骤)17.解方程:(1)(x﹣3)2+2x(x﹣3)=0;(2)4x2﹣8x﹣1=0(用配方法解).18.已知x2﹣3x﹣6=0,求的值.19.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.20.某市2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.21.某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为16米(如图所示),设这个花草园垂直于墙的一边长为x米.(1)若花草园的面积为100平方米,求x;(2)若平行于墙的一边长不小于10米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个花草园的面积不小于88平方米时,直接写出x的取值范围.22.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲=,y乙=;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?23.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;=4S BOC,求点P的坐标;(2)若点P在抛物线上,且S△AOP(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2016-2017学年山东省济宁市邹城八中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(3分&#215;10=30分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B3.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣2【考点】二次函数图象与几何变换.【分析】根据图象右移减,上移加,可得答案.【解答】解:把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x﹣1)2+2,故选:C.4.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程2x的范围是()<x<6.19 D.6.19<x<6.20【考点】抛物线与x轴的交点.【分析】利用二次函数和一元二次方程的性质.【解答】解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选C.5.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【考点】二次函数图象上点的坐标特征.【分析】分别计算x=﹣4、﹣3、1时的函数值,然后比较大小即可.【解答】解:当x=﹣4时,y1=(﹣4)2+4×(﹣4)﹣5=﹣5;当x=﹣3时,y2=(﹣3)2+4×(﹣3)﹣5=﹣8;当x=﹣1时,y3=12+4×1﹣5=0,所以y2<y1<y3.故选B.6.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x﹣1)=28 D.x(x+1)=28【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选:B.7.若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1 C.x=2 D.x=3【考点】二次函数的性质.【分析】由已知,点(2,5)、(4,5)是该抛物线上关于对称轴对称的两点,所以只需求两对称点横坐标的平均数.【解答】解:因为点(2,5)、(4,5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;故选D.8.已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13 B.11或13 C.11 D.12【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】由一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,利用因式分解法求解即可求得等腰△ABC的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案.【解答】解:∵x2﹣8x+15=0,∴(x﹣3)(x﹣5)=0,∴x﹣3=0或x﹣5=0,即x1=3,x2=5,∵一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC的周长为:3+3+5=11;∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC的周长为:3+5+5=13;∴△ABC的周长为:11或13.故选B.9.下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0 B.x2﹣4x+4=0 C.x2+4x+10=0 D.x2+4x﹣5=0【考点】根与系数的关系.【分析】找出四个选项中二次项系数a,一次项系数b及常数项c,计算出b2﹣4ac的值,当b2﹣4ac大于等于0时,设方程的两个根为x1,x2,利用根与系数的关系x1+x2=﹣求出各项中方程的两个之和,即可得到正确的选项.【解答】解:A、x2+2x﹣4=0,∵a=1,b=2,c=﹣4,∴b2﹣4ac=4+16=20>0,设方程的两个根为x1,x2,∴x1+x2=﹣=﹣2,本选项不合题意;B、x2﹣4x+4=0,∵a=1,b=﹣4,c=4,∴b2﹣4ac=16﹣16=0,设方程的两个根为x1,x2,∴x1+x2=﹣=4,本选项不合题意;C、x2+4x+10=0,∵a=1,b=4,c=10,∴b2﹣4ac=16﹣40=﹣24<0,即原方程无解,本选项不合题意;D、x2+4x﹣5=0,∵a=1,b=4,c=﹣5,∴b2﹣4ac=16+20=36>0,设方程的两个根为x1,x2,∴x1+x2=﹣=﹣4,本选项符合题意,故选D10.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s 的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象;二次函数的图象.【分析】解决本题的关键是正确确定y与x之间的函数解析式.【解答】解:∵运动时间x(s),则CP=x,CO=2x;=CP•CO=x•2x=x2.∴S△CPO∴则△CPO的面积y(cm2)与运动时间x(s)之间的函数关系式是:y=x2(0≤x≤3),故选:C.二、填空题(3分&#215;6=18分)11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=2015.【考点】一元二次方程的解.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2015=0得:a+b﹣2015=0,即a+b=2015.故答案是:2015.12.一个小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣4(t﹣1)2+5,则小球距离地面的最大高度是5米.【考点】二次函数的应用.【分析】根据二次函数的性质可得.=5,【解答】解:由h=﹣4(t﹣1)2+5知,当t=1时,h最大即小球距离地面的最大高度是5米,故答案为:5.13.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得x2﹣70x+825=0.【考点】由实际问题抽象出一元二次方程.【分析】本题设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.【解答】解:由题意得:(80﹣2x)(60﹣2x)=1500整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.14.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.【考点】二次函数的应用.【分析】根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.【解答】解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.15.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为﹣2.【考点】根与系数的关系.【分析】根据根与系数的关系找出x1+x2=﹣6、x1•x2=3,将+变形为,代入数据即可得出结论.【解答】解:∵x1,x2是方程x2+6x+3=0的两实数根,∴x1+x2=﹣6,x1•x2=3,∴+==﹣2.故答案为:﹣2.16.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③b2﹣4ac>0;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;⑥方程ax2+bx+c=3有两个相等的实数根.其中正确的有①③⑤⑥.【考点】二次函数与不等式(组);二次函数图象与系数的关系;抛物线与x轴的交点.【分析】①利用对称轴x=1判定;②根据图象确定a、b、c的符号;③根据抛物线与x轴交点的个数确定;④根据对称性判断;⑤由图象得出,在1<x<4时,抛物线总在直线的上面,则y2<y1;⑥方程ax2+bx+c=3的根,就是图象上当y=3是所对应的x的值.【解答】解:①因为抛物线的顶点坐标A(1,3),所以对称轴为:x=1,则﹣=1,2a+b=0,故①正确;②∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故②不正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④因为抛物线对称轴是:x=1,B(4,0),所以抛物线与x轴的另一个交点是(﹣2,0),故④不正确;⑤由图象得:当1<x<4时,有y2<y1;故⑤正确;⑥∵抛物线的顶点坐标A(1,3),∴方程ax2+bx+c=3有两个相等的实数根是x=1,故⑥正确;则其中正确的有:①③⑤⑥;故答案为:①③⑤⑥.三、解答题(本大题共7小题,满分52分,解答应写出文字说明、证明过程或演算步骤)17.解方程:(1)(x﹣3)2+2x(x﹣3)=0;(2)4x2﹣8x﹣1=0(用配方法解).【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)因式分解法求解可得;(2)配方法求解可得.【解答】解:(1)(x﹣3)(x﹣3+2x)=0,即(x﹣3)(3x﹣3)=0,∴x﹣3=0或3x﹣3=0,解得:x=3或x=1;(2)4x2﹣8x=1,x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,∴x=1±.18.已知x2﹣3x﹣6=0,求的值.【考点】分式的化简求值.【分析】首先根据分式的混合运算法则,化简得,然后由x2﹣3x ﹣6=0,求得x2﹣3x=6,然后代入即可求得答案.【解答】解:====.∵x2﹣3x﹣6=0,∴x2﹣3x=6.∴原式=.19.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程-因式分解法;根与系数的关系.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.20.某市2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.【解答】解:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元),答:2017年该地区将投入教育经费3327.5万元.21.某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为16米(如图所示),设这个花草园垂直于墙的一边长为x米.(1)若花草园的面积为100平方米,求x;(2)若平行于墙的一边长不小于10米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个花草园的面积不小于88平方米时,直接写出x的取值范围.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(30﹣2x)=﹣2x2+30x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【解答】解:(1)根据题意知平行于墙的一边的长为(30﹣2x)米,则有:x(30﹣2x)=100,解得:x=5或x=10,∵0<30﹣2x≤16,∴7≤x<15,故x=10;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x,∵a=﹣2<0,∴苗圃园的面积y有最大值,∵30﹣2x≥10,解得:x≤10,∴7≤x≤10,∴当x=时,即平行于墙的一边长15>10米,y最大=112.5平方米;当x=10时,y最小=100;(3)由题意得﹣2x2+30x≥88,解得:x≤4或x≥11,又∵7≤x<15,∴11≤x<15.22.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲=10x+40,y乙=10x+20;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?【考点】二次函数的应用.【分析】(1)根据题意可以列出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式;(2)根据每周甲商品的销售量不低于乙商品的销售量的,列出不等式求出x的取值范围,根据题意列出二次函数的解析式,根据二次函数的性质求出对称轴方程,得到答案.【解答】解:(1)由题意得,y甲=10x+40;y乙=10x+20;(2)由题意得,W=(10﹣x)(10x+40)+(20﹣x)(10x+20)=﹣20x2+240x+800,由题意得,10x+40≥(10x+20)解得x≤2,W=﹣20x2+240x+800=﹣20(x﹣6)2+1520,∵a=﹣20<0,∴当x<6时,W随x增大而增大,∴当x=2时,W的值最大.答:当x定为2元时,才能使小明每周销售甲、乙两种商品获得的总利润最大.23.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b ,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,求线段DQ长度的最大值.【考点】二次函数综合题.【分析】(1)把点A 、C 的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P 点坐标为(x ,﹣x 2﹣2x +3),根据S △AOP =4S △BOC 列出关于x 的方程,解方程求出x 的值,进而得到点P 的坐标;(3)先运用待定系数法求出直线AC 的解析式为y=x +3,再设Q 点坐标为(x ,x +3),则D 点坐标为(x ,x 2+2x ﹣3),然后用含x 的代数式表示QD ,根据二次函数的性质即可求出线段QD 长度的最大值.【解答】解:(1)把A (﹣3,0),C (0,3)代入y=﹣x 2+bx +c ,得,解得.故该抛物线的解析式为:y=﹣x 2﹣2x +3.(2)由(1)知,该抛物线的解析式为y=﹣x 2﹣2x +3,则易得B (1,0).∵S △AOP =4S △BOC ,∴×3×|﹣x 2﹣2x +3|=4××1×3.整理,得(x +1)2=0或x 2+2x ﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P 的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC 的解析式为y=kx +t ,将A (﹣3,0),C (0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.2016年12月9日。

人教版九年级数学上册第一学期月考试题答案

人教版九年级数学上册第一学期月考试题答案

2015--2016学年邹城八中第一学期九年级第一次月考数学试题一、选择题1.B2.A3.D4.C5.B6.C7.D8.B9.D 10.C二、填空题(3分×6=18分)11. x 1=0,x 2=3 . 12. 6米 . 13. x 2﹣70x+825=0 .14. y =﹣(x +6)2+4 . 15. __-2 __ 16. 0.5米 .三、解答题(本大题共8小题,满分52分,解答应写出文字说明、证明过程或演算步骤) 17. (本题满分4分)解方程: 0)3(2)3(2=-+-x x x解:0)23)(3(=+--x x x …………………1分0)33)(3(=--x x ……………2分03=-x 或033=-x …………3分即31=x 或12=x …………4分 18. (本题满分5分)先化简再求值:已知06x 3x 2=--,求x x 1x 3x 12++--的值. 解:x x 1x 3x 12++-- ⋅++--=)1x (x 1x 3x 1 x13x 1--=………………1分 )3x (x 3x )3x (x x ----= ………2分 .x 3x 32-= ………………3分 因为 06x 3x 2=--,所以 .6x 3x 2=-所以 原式.21= …………………5分 19. (本题满分6分)已知:关于x 的方程0122=-+kx x . (1)求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k 值. 解:(1)证明:∵a=2,b=k ,c=-1,∴△=k 2-4×2×(-1)=k 2+8,∵不论k 为何实数,k 2≥0,∴k 2+8>0,即△>0,因此,不论k 为何实数,方程总有两个不相等的实数根.…………………3分(2)把x=-1代入原方程得,2-k-1=0∴k=1 ……………………………………4分∴原方程化为2x 2+x-1=0,解得:x 1=-1,x 2=21 即另一个根为21.…………………6分。

邹城八中2017届九年级上第一次月考数学试卷含答案解析

邹城八中2017届九年级上第一次月考数学试卷含答案解析

A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9
3.把抛物线 y=﹣2x2 先向右平移 1 个单位长度,再向上平移 2 个单位长度后,所得函数的
表达式为( )
A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣2
4.根据下列表格中二次函数 y=ax2+bx+c 的自变量 x 与函数值 y 的对应值,判断方程
ax2+bx+c=0(a≠0,a,b,c 为常数)的一个解 x 的范围是( )
x
6.17 6.18 6.19 6.20
y=ax2+bx+c ﹣0.03 ﹣0.01 0.02 0.04
A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6#215;10=30 分) 1.下列方程中,一元二次方程有( )
①3x2+x=20;②2x2﹣3xy+4=0;③
;④x2=1;⑤
A.2 个 B.3 个 C.4 个 D.5 个 【考点】一元二次方程的定义. 【分析】本题根据一元二次方程的定义解答. 一元二次方程必须满足四个条件: (1)未知数的最高次数是 2; (2)二次项系数不为 0; (3)是整式方程; (4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答 案. 【解答】解:①符合一元二次方程定义,正确; ②方程含有两个未知数,错误; ③不是整式方程,错误; ④符合一元二次方程定义,正确; ⑤符合一元二次方程定义,正确. 故选 B.
即(x﹣1)2=6. 故选:B

山东省济宁市邹城八中度第一学期人教版九年级数学上册九月第一次月考试卷(第21、22章)

山东省济宁市邹城八中度第一学期人教版九年级数学上册九月第一次月考试卷(第21、22章)

山东省济宁市邹城八中2021-2021学年度第一学期人教版九年级数学上册九月第一次月考试卷〔第21、22章〕考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题〔共 10 小题,每题 3 分,共 30 分〕1.以下方程一定是关于x的一元二次方程的是〔〕A.1 2x2+1x−2=0 B.ax2+bx+c=0C.(n2+1)x2+n=0D.mx2+3x=n2.直线y=52x−2与抛物线y=x2−12x的交点个数是〔〕A.0个B.1个C.2个D.互相重合的两个3.一元二次方程(x−4)2=2x−3化为一般式是〔〕A.x2−10x+13=0B.x2−10x+19=0C.x2−6x+13=0D.x2−6x+19=04.二次函数y=ax2+bx+c(a≠0)的图象如下图,那么以下结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2−4ac>0,其中正确的结论的序号是〔〕A.①②B.①③C.③④D.②④5.以下一元二次方程没有实数根的是〔〕A.x2+2x+1=0B.x2+x+2=0C.x2−1=0D.x2−2x−1=06.抛物线y=ax2+bx+c(a<0)过A(−3, 0)、O(1, 0)、B(−5, y1)、C(5, y2)四点,那么y1与y2的大小关系是〔〕A.y1>y2B.y1=y2C.y1<y2D.不能确定7.设a,b是方程x2+x−2017=0的两个实数根,那么a2+2a+b的值为〔〕A.2014B.2015C.2016D.20178.假设方程(x2+y2−1)2=16,那么x2+y2=( )A.5或−3B.5C.±4D.49.关于二次函数y=x2+4x−7的最大〔小〕值,表达正确的选项是〔〕A.当x=2时,函数有最大值B.当x=2时,函数有最小值C.当x=−2时,函数有最大值D.当x=−2时,函数有最小值10.用配方法解方程x2+2x−5=0时,原方程应变形为〔〕A.(x+1)2=6B.(x−1)2=6C.(x+2)2=9D.(x−2)2=9二、填空题〔共 10 小题,每题 3 分,共 30 分〕11.用配方法把函数y=2x2−4x化成y=a(x+ℎ)2+k的形式是y=________.12.某商品原价为a元,后连续两次以同一个百分率降价,假设设此百分率为x,那么两次降价后该商品的售价为________元〔用含a与x的代数式表示〕.13.用配方法将二次函数y=2x2−4x+5化为y=a(x−ℎ)2+k的形式是________.14.二次函数y=−x2+2x+m的局部图象如下图,那么关于x的一元二次方程−x2+2x+m=0的解为________.15.假设m为任意实数,且满足(m2+2m)2+2(m2+2m)−15=0,那么第 1 页2009−2m2−4m=________.16.关于x的一元二次方程x2+√k−1x−1=0有两个不相等的实数根,那么k的取值范围是________.17.如图,用长为24m的篱笆,一面利用墙〔墙足够长〕围成一块留有一扇tm宽门的长方形花圃.设花圃宽AB为xm,面积为ym2,那么y与x的函数表达式为________.18.某种植物的主干长出假设干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,那么每个支干长出的小分支数目为________.19.α、β是方程x2+2x−5=0的两个实数根,那么α2+β2+αβ的值为________.20.体育测试时,初三一名学生推铅球,铅球所经过的道路为抛物线y=−1x2+x+12的一局部,该同学的成绩是________.12三、解答题〔共 6 小题,每题 10 分,共 60 分〕21.用适当的方法解以下方程:(1)2x2−10x=3 (2)(x+3)2=(1−2x)2(3)(x+4)2=5(x+4) (4)(x+1)2−3(x+1)+2=0.22.函数y=(m+2)x m2+m−4是关于x的二次函数.(1)求m的值.(2)假如这个二次函数的图象经过点P(3√2, −18),求m的值;(3)对于(2)中二次函数,函数有无最大值?假设有,此时的x为何值.23.要建一个如下图的面积为300m2的长方形围栏,围栏总长50m,一边靠墙〔墙长25m〕.(1)求围栏的长和宽;(2)能否围成面积为400m2的长方形围栏?假如能,求出该长方形的长和宽,假如不能请说明理由.24.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查发现:在一段时间内,当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.假设商场要获得10000元销售利润,该玩具销售单价应定为多少元?售出玩具多少件?25.如图,在△ABC中,∠B=90∘,AB=12cm,BC=24cm,动点P从点A开场沿着边AB向点B以2cm/s的速度挪动〔不与点B重合〕,动点Q从点B开场沿着边BC向点C以4cm/s的速度挪动〔不与点C重合〕.假设P、Q两点同时挪动t(s);(1)当挪动几秒时,△BPQ的面积为32cm2.(2)设四边形APQC的面积为S(cm2),当挪动几秒时,四边形APQC的面积为108cm2?26.如图,抛物线y=ax2+bx+5与x轴交于A(−1, 0)、B(5, 0)两点,直线y=−3x+3与y轴交于点C,与x轴交于点D.点P是抛物线上一动点,过点P作直线4PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)假设点P在x轴上方的抛物线上,当PE=5EF时,求点F的坐标;(3)假设点E’是点E关于直线PC的对称点,当点E’落在y轴上时,请直接写出m的值.答案1.C2.C3.B4.C5.B6.A7.C8.B9.D10.A11.2(x−1)2−212.a(1−x)213.y=2(x−1)2+314.x1=4,x2=−215.200316.k≥117.y=−2x2+(24+t)x18.919.920.6+6√521.解:(1)2x2−10x−3=0,∴△=(−10)2−4×2×(−3)=124,∴x=10±√1244=5±√312,(2)(x+3)2−(1−2x)2=0,(x+3+1−2x)(x+3−1+2x)=0,(4−x)(3x+2)=0,∴x=4或x=−23,(3)(x+4)2−5(x+4)=0,(x+4)(x+4−5)=0,∴x=−4或x=1,(4)(x+1−1)(x+1−2)=0,∴x=0或x=1,22.解:(1)∵函数y=(m+2)x m2+m−4是关于x的二次函数,∴m2+m−4=2,且m+2≠0,解得:m1=2,m2=−3,故m的值为:2或−3;(2)∵这个二次函数的图象经过点P(3√2, −18),∴−18=(m+2)×(3√2)2,第 3 页解得:m =−3;(3)∵m +2=−3+2=−1, ∴二次函数有最大值,∵y =−x 2,开口向下,顶点坐标在原点, ∴当函数取到最值,此时的x 为0.23.围栏的长为20米,围栏的宽为15米.(2)假设能围成,设围栏的宽为y 米,那么围栏的长为(50−2y)米,依题意得:y(50−2y)=400,即2y 2−50y +400=0, ∵△=(−50)2−2×4×400=−700<0, ∴该方程没有实数根.故假设不成立,即不能围成面积为400m 2的长方形围栏.24.该玩具销售单价应定为50元或80元,售出玩具为500件或200件.25.当挪动2秒或4秒时,△BPQ 的面积为32cm 2.(2)S =S △ABC −S △BPQ =12AB ⋅BC −(24t −4t 2)=4t 2−24t +144=108, 解得:t =3.答:当挪动3秒时,四边形APQC 的面积为108cm 2.26.解:(1)∵抛物线y =−x 2+bx +c 与x 轴交于A (−1, 0),B(5, 0)两点, ∴{−1−b +c =0−25+5b +c =0, 解得{b =4c =5,∴抛物线的解析式为y =−x 2+4x +5.(2)∵点P 的横坐标为m , ∴P(m, −m 2+4m +5),E(m, −34m +3),F(m, 0). ∴PE =|y P −y E |=|(−m 2+4m +5)−(−34m +3)|=|−m 2+194m +2|,EF =|y E −y F |=|(−34m +3)−0|=|−34m +3|. 由题意,PE =5EF ,即:|−m 2+194m +2|=5|−34m +3|=|−154m +15|①假设−m 2+194m +2=−154m +15,整理得:2m 2−17m +26=0,解得:m =2或m =132;②假设−m 2+194m +2=−(−154m +15),整理得:m 2−m −17=0,解得:m =1+√692或m =1−√692.由题意,m 的取值范围为:−1<m <5,故m =132、m =1−√692这两个解均舍去.∴m =2或m =1+√692.∴点F 的坐标为(2, 0)或(1+√692, 0).(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=−34x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM // x轴,交y轴于点M,易得△CEM∽△CDO,∴ME OD =CECD,即|m|2=CE5,解得CE=54|m|,∴PE=CE=54|m|,又由(2)可知:PE=|−m2+194m+2|∴|−m2+194m+2|=54|m|.①假设−m2+194m+2=54m,整理得:2m2−7m−4=0,解得m=4或m=−12;②假设−m2+194m+2=−54m,整理得:m2−6m−2=0,解得m1=3+√11,m2=3−√11.由题意,m的取值范围为:−1<m<5,故m=3+√11这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E′三点重合与y轴上,也符合题意,∴P(0, 5)综上所述,存在满足条件的m的值为0或−12或4或3+√11.第 5 页。

山东省济宁市邹城八中九年级数学上学期期中试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

山东省济宁市邹城八中九年级数学上学期期中试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

2016-2017学年某某省某某市邹城八中九年级(上)期中数学试卷一.选择题(请将答案正确涂在答题卡上.每题3分,共30分)1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点3.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.115°B.120°C.125°D.145°4.若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=﹣4的解为()A.x1=0,x2=4 B.x1=x2=2 C.x1=2,x2=﹣2 D.x1=x2=﹣25.关于x的方程x2+2kx﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能6.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.37.如图,抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根8.如图,在△ABC中,∠B=90°,AB=4,BC=3,将△ABC绕点A逆时针旋转,使点B落在线段AC上的点D处,点C落在点E处,则C、E两点间的距离为()A. B. C.3 D.9.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC 为边的等腰三角形,则点D在量角器上对应的度数是()A.40° B.70° C.70°或80°D.80°或140°10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.二.填空题(请将答案正确填写在答案卷上.每题3分,共15分)11.一元二次方程x(x﹣2)=2﹣x的正整数根是.12.如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为.13.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.14.如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为.15.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P7的坐标是,点P2016的坐标为.三、解答题(共7小题,满分0分)16.已知:平行四边形ABCD的两边AB、AD的长是关于x的方程x2﹣mx+=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?17.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.18.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.(1)用列表法或画树状图法,求小丽参赛的概率.(2)你认为这个游戏公平吗?请说明理由.19.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.20.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;(2)求y与x之间的函数关系式;(3)当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?21.小明是个爱动脑筋的孩子,他在学完与圆有关的角圆周角、圆心角后,意犹未尽,又查阅到了与圆有关的另一种角﹣﹣﹣﹣﹣﹣弦切角.请同学们先仔细阅读下面的材料,再完成后面的问题.材料:顶点在圆上,一边与圆相交,另一边与圆相切的角叫做弦切角.如图1,弧是弦切角∠PAB所夹的弧,他发现弦切角与它所夹的弧所对的圆周角有关系.问题1:如图2,直线DB切⊙O于点A,∠PCA是圆周角,当圆心O位于边AC上时,求证:∠PAD=∠PCA,请你写出这个证明过程.问题拓展:如果圆心O不在∠PCA的边上,∠PAD=∠PCA还成立吗?如图3,当圆心O在∠PCA的内部时,小明证明了这个结论是成立的.他的思路是:作直线AE,联结PE,由问题1的结论可知∠PAD=∠PEA,而∠PCA=∠PEA,从而证明∠PAD=∠PC.问题2:如图4,当圆心O在∠PCA的外部时,∠PAD=∠PCA仍然成立.请你仿照小明的思路证明这个结论.运用:如图5,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.(提示:可以直接使用本题中的结论)22.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.2016-2017学年某某省某某市邹城八中九年级(上)期中数学试卷参考答案与试题解析一.选择题(请将答案正确涂在答题卡上.每题3分,共30分)1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进行分析可以选出答案.【解答】解:A、不是轴对称图形,也不是中心对称图形.故A选项错误;B、是轴对称图形,也是中心对称图形.故B选项错误;C、不是轴对称图形,是中心对称图形.故C选项正确;D、是轴对称图形,不是中心对称图形.故D选项错误.故选:C.2.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【考点】二次函数的性质.【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.3.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.115°B.120°C.125°D.145°【考点】旋转的性质.【分析】先利用互余计算出∠BAC=60°,再根据旋转的性质得到∠BAB′等于旋转角,然后利用邻补角计算∠BAB′的度数即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴∠BAB1等于旋转角,且∠BAB1=180°﹣∠BAC=120°,∴旋转角等于120°.故选B.4.若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=﹣4的解为()A.x1=0,x2=4 B.x1=x2=2 C.x1=2,x2=﹣2 D.x1=x2=﹣2【考点】抛物线与x轴的交点.【分析】根据题意可知抛物线经过点(0,0),由抛物线的对称性可求得b=﹣4,然后将b=﹣4代入方程得到关于x的一元二次方程,最后的方程的解即可.【解答】解:令y=0得:x2+bx=0.解得:x1=0,x2=﹣b.∵抛物线的对称轴为x=2,∴﹣b=4.解得:b=﹣4.将b=﹣4代入x2+bx=﹣4得:x2﹣4x=﹣4.整理得:x2﹣4x+4=0,即(x﹣2)2=0.解得:x1=x2=2.故选:B.5.关于x的方程x2+2kx﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能【考点】根的判别式.【分析】先计算判别式的值得到△=4k2+4,根据非负数的性质得△>0,然后根据判别式的意义进行判断.【解答】解:△=4k2﹣4×(﹣1)=4k2+4,∵4k2≥0,∴4k2+4>0∴方程有两个不相等的实数根.故选B.6.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3【考点】圆内接四边形的性质;坐标与图形性质;含30度角的直角三角形.【分析】先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.【解答】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°﹣∠BAO=90°﹣60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选:C.7.如图,抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根【考点】二次函数图象与系数的关系;二次函数的性质;抛物线与x轴的交点.【分析】根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c 是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.【解答】解:A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(﹣1,0),对称轴是x=1,设另一交点为(x,0),﹣1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选D.8.如图,在△ABC中,∠B=90°,AB=4,BC=3,将△ABC绕点A逆时针旋转,使点B落在线段AC上的点D处,点C落在点E处,则C、E两点间的距离为()A. B. C.3 D.【考点】旋转的性质;勾股定理.【分析】由旋转的性质可求得AD、DE,由勾股定理可求得AC,则可求得CD,连接CE,在Rt△CDE中可求得CE的长.【解答】解:在△ABC中,∠C=90°,AB=4,BC=3,∴AC=5,∵△ABC绕点A逆时针旋转得到△AED,∴∠DEA=∠C=90°,AD=AB=4,DE=BC=3,∴CD=AC﹣AD=5﹣4=1,连接CE,在Rt△CDE中,由勾股定理可得CE=,即C、E两点间的距离为,故选A.9.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC 为边的等腰三角形,则点D在量角器上对应的度数是()A.40° B.70° C.70°或80°D.80°或140°【考点】角的计算.【分析】如图,点O是AB中点,连接DO,易知点D在量角器上对应的度数=∠DOB=2∠BCD,只要求出∠BCD的度数即可解决问题.【解答】解:如图,点O是AB中点,连接DO.∵点D在量角器上对应的度数=∠DOB=2∠BCD,∵当射线CD将△ABC分割出以BC为边的等腰三角形时,∠BCD=40°或70°,∴点D在量角器上对应的度数=∠DOB=2∠BCD=80°或140°,故选D.10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD上运动,依次得出S与t的关系式即可得出函数图象.【解答】解:①点P在AB上运动,点Q在BC上运动,此时AP=t,QB=2t,故可得S=AP•QB=t2,函数图象为抛物线;②点P在AB上运动,点Q在CD上运动,此时AP=t,△APQ底边AP上的高保持不变,为正方形的边长4,故可得S=AP×4=2t,函数图象为一次函数.综上可得总过程的函数图象,先是抛物线,然后是一次增函数.故选:D.二.填空题(请将答案正确填写在答案卷上.每题3分,共15分)11.一元二次方程x(x﹣2)=2﹣x的正整数根是x=2 .【考点】解一元二次方程-因式分解法.【分析】因式分解法求解可得答案.【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,解得:x=2或x=﹣1,即正整数根是x=2,故答案为:x=2.12.如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为.【考点】几何概率.【分析】设正方形的边长为a,再分别计算出正方形与圆的面积,计算出其比值即可.【解答】解:设正方形的边长为a,则S正方形=a2,因为圆的半径为,所以S圆=π=,所以“小鸡正在圆圈内”啄食的概率为:=.13.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为 4 .【考点】切线的性质.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.14.如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为π.【考点】正多边形和圆;弧长的计算.【分析】求出圆心角∠AOB的度数,再利用弧长公式解答即可.【解答】解:如图,连接OA、OB,∵ABCDEF为正六边形,∴∠AOB=360°×=60°,的长为=π.故答案为:π.15.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P7的坐标是(2,0),点P2016的坐标为(0,0).【考点】规律型:点的坐标.【分析】计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2016的坐标.【解答】解:点P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),从而可得出6次一个循环,∵2016÷6=336,∴点P2016的坐标与P6相同,坐标为(0,0).故答案为(0,0).三、解答题(共7小题,满分0分)16.已知:平行四边形ABCD的两边AB、AD的长是关于x的方程x2﹣mx+=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?【考点】根与系数的关系;平行四边形的性质;菱形的判定与性质.【分析】(1)根据菱形的性质可得出AB=AD,根据根的判别式△=0即可求出m的值,将其代入原方程,解方程即可求出菱形的边长;(2)将x=2代入原方程求出m的值,再将m的值代入原方程,解方程即可求出平行四边形的临边,结合平行四边形的周长即可得出结论.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∵△=m2﹣4×()=m2﹣2m+1=(m﹣1)2=0,∴当(m﹣1)2=0时,即m=1时,四边形ABCD是菱形.把m=1代入x2﹣mx+=0中,得:x2﹣x+=0,解得:x1=x2=,∴菱形ABCD的边长是.(2)把x=2代入x2﹣mx+=0中,得:4﹣2m+=0,解得:m=,把m=代入x2﹣mx+=0中,得:x2﹣x+1=0,解得:x1=2,x2=,∴AD=.∵四边形ABCD是平行四边形,∴平行四边形ABCD的周长是5.17.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.【考点】作图-旋转变换;扇形面积的计算.【分析】(1)根据旋转的性质得出对应点旋转后位置进而得出答案;(2)利用勾股定理得出AB=5,再利用扇形面积公式求出即可.【解答】解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.18.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.(1)用列表法或画树状图法,求小丽参赛的概率.(2)你认为这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列表或树状图得出所有等可能的情况数,找出数字之和为偶数的情况数,求出小丽去参赛的概率;(2)由小丽参赛的概率求出小华参赛的概率,比较即可得到游戏公平与否.【解答】解:(1)法1:根据题意列表得:第一次2 3 4 5第二次2 ﹣﹣﹣(3,2)(4,2)(5,2)3 (2,3)﹣﹣﹣(4,3)(5,3)4 (2,4)(3,4)﹣﹣﹣(5,4)5 (2,5)(3,5)(4,5)﹣﹣﹣由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字和为偶数的结果有4种,分别是(2,4)、(3,5)、(4,2)、(5,3),所以小丽参赛的概率为=;法2:根据题意画树状图如下:由树状图可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字和为偶数的结果有4种,分别是(2,4)、(3,5)、(4,2)、(5,3),所以小丽参赛的概率为=;(2)游戏不公平,理由为:∵小丽参赛的概率为,∴小华参赛的概率为1﹣=,∵≠,∴这个游戏不公平.19.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可;(2)求出OP、DP长,分别求出扇形DOB和三角形ODP面积,即可求出答案.【解答】(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°,∴∠DOP=180°﹣120°=60°,∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°,∴OD⊥DP,∵OD为半径,∴DP是⊙O切线;(2)解:∵∠P=30°,∠ODP=90°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm,∴图中阴影部分的面积S=S△ODP﹣S扇形DOB=×3×3﹣=(﹣π)cm220.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;(2)求y与x之间的函数关系式;(3)当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?【考点】二次函数的应用.【分析】(1)设每个面包的利润为(x﹣5)角.(2)依题意可知y与x的函数关系式.(3)把函数关系式用配方法可解出x=10时y有最大值.【解答】解:(1)每个面包的利润为(x﹣5)角卖出的面包个数为[160﹣(x﹣7)×20])(2)y=(x﹣5)=﹣20x2+400x﹣1500即y=﹣20x2+400x﹣1500(3)y=﹣20x2+400x﹣1500=﹣20(x﹣10)2+500∴当x=10时,y的最大值为500.∴当每个面包单价定为10角时,该零售店每天获得的利润最大,最大利润为500角.21.小明是个爱动脑筋的孩子,他在学完与圆有关的角圆周角、圆心角后,意犹未尽,又查阅到了与圆有关的另一种角﹣﹣﹣﹣﹣﹣弦切角.请同学们先仔细阅读下面的材料,再完成后面的问题.材料:顶点在圆上,一边与圆相交,另一边与圆相切的角叫做弦切角.如图1,弧是弦切角∠PAB所夹的弧,他发现弦切角与它所夹的弧所对的圆周角有关系.问题1:如图2,直线DB切⊙O于点A,∠PCA是圆周角,当圆心O位于边AC上时,求证:∠PAD=∠PCA,请你写出这个证明过程.问题拓展:如果圆心O不在∠PCA的边上,∠PAD=∠PCA还成立吗?如图3,当圆心O在∠PCA的内部时,小明证明了这个结论是成立的.他的思路是:作直线AE,联结PE,由问题1的结论可知∠PAD=∠PEA,而∠PCA=∠PEA,从而证明∠PAD=∠PC.问题2:如图4,当圆心O在∠PCA的外部时,∠PAD=∠PCA仍然成立.请你仿照小明的思路证明这个结论.运用:如图5,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.(提示:可以直接使用本题中的结论)【考点】圆的综合题.【分析】问题1:利用切线的以及圆周角定理即可证明∠PAD=∠PCA;问题2:首先连接AO并延长交⊙O于点D′,连接PD′,由圆周角定理可得∠D′=∠C,又由AD′是直径,AB切圆于点A,易证得∠PAD=∠PCA,继而证得结论;运用:连接DF,AD是△ABC中∠BAC的平分线,⊙O与BC切于点D,可得∠FDC=∠EAD,又由圆周角定理可得∠EAD=∠EFD,继而证得结论.【解答】解:问题1:证明:∵AC是圆的直径,∴∠APC=90°,∴∠ACP+∠PAC=90°,∵直线DB切⊙O于点A,∴∠DAC=90°,∴∠PAD+∠PAC=90°,∴∠PAD=∠PCA;问题2:如图4,连接AO并延长交⊙O于点D′,连接PD′,由问题1可知∠PAD=∠D′,∵∠C=∠D′,∴∠PAD=∠PCA;运用:连接DF,如图5,∵AD是△ABC中∠BAC的平分线,∴∠EAD=∠DAC,∵⊙O与BC切于点D,∴∠FDC=∠DAC,∴∠FDC=∠EAD,∵在⊙O中∠EAD=∠EFD,∴∠FDC=∠EFD,∴EF∥BC.22.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【考点】二次函数综合题;二次函数的性质;二次函数图象上点的坐标特征;两点间的距离.【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m 的函数关系式,再结合点M在x轴下方可找出m的取值X围,利用二次函数的性质即可解决最值问题;(3)假设存在,设出点P的坐标为(2,n),结合(2)的结论可求出点N的坐标,结合点N、B的坐标利用两点间的距离公式求出线段PN、PB、BN的长度,根据等腰三角形的性质分类讨论即可求出n值,从而得出点P的坐标.【解答】解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为(,),∴PB==,PN=,BN==.△PBN为等腰三角形分三种情况:①当PB=PN时,即=,解得:n=,此时点P的坐标为(2,);②当PB=BN时,即=,解得:n=±,此时点P的坐标为(2,﹣)或(2,);③当PN=BN时,即=,解得:n=,此时点P的坐标为(2,)或(2,).综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点P的坐标为(2,)、(2,﹣)、(2,)、(2,)或(2,).。

山东省邹城八中学2024-2025学年数学九年级第一学期开学检测试题【含答案】

山东省邹城八中学2024-2025学年数学九年级第一学期开学检测试题【含答案】

山东省邹城八中学2024-2025学年数学九年级第一学期开学检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在△ABC 中,a 、b 、c 分别是∠A ,∠B ,∠C 的对边,若(a ﹣2)2+|b ﹣2|=0,则这个三角形一定是()A .等腰三角形B .直角三角形C .等腰直角三角形D .钝角三角形2、(4分)如图,在ABCD 中,对角线AC 与BD 交于点O ,添加下列条件不能判定ABCD 为矩形的只有()A .AC BD =B .6AB =,8BC =,10AC =C .AC BD ⊥D .12∠=∠3、(4分)a 的取值范围是()A .a <1B .a≤1C .a≥1D .a >14、(4分)某课外兴趣小组为了了解所在学校的学生对体育运动的爱好情况,设计了四种不同的抽样调查方案,你认为比较合理的是()A .在校园内随机选择50名学生B .从运动场随机选择50名男生C .从图书馆随机选择50名女生D .从七年级学生中随机选择50名学生5、(4分)下列各组数中,以它们为边长的线段能构成直角三角形的是()A .2,4,5B .6,8,11C .5,12,12D .1,16、(4分)方程(1)0-=x x 的根是()A .0x =B .1x =C .10x =,21x =D .10x =,21x =-7、(4分)下面哪个点在函数y =2x -1的图象上()A .(-2.5,-4)B .(1,3)C .(2.5,4)D .(0,1)8、(4分)如图,在平行四边形中,下列结论不一定成立的是()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平行四边形ABCD 中,BC=8cm,AB=6cm,BE 平分∠ABC 交AD 边于点E,则线段DE 的长度为_____.10、(4分)计算:21()-=_____.11、(4分)如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B'位置,A 点落在A'位置,若AC ⊥A'B',则∠BAC 的度数是__.12、(4分)若方程x 2+kx +9=0有两个相等的实数根,则k =_____.13、(4分)如图,在△ABC 中,AB=5,AC=7,BC=10,点D ,E 都在边BC 上,∠ABC的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,则PQ 的长______.三、解答题(本大题共5个小题,共48分)14、(12分)在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND;(2)如图1,若DF=,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.15、(8分)一个有进水管与出水管的容器,从某时刻开始8min 内既进水又出水,在随后的4min 内只进水不出水,每分钟的进水量和出水量是两个常数.容器内的水量y (单位:L )与时间x (单位:min )(0≤x ≤12)之间的关系如图所示:(1)求y 关于x 的函数解析式;(2)每分钟进水、出水各多少升?16、(8分)如图,一次函数4y x =-+的图象与y 轴交于点A ,与x 轴交于点B ,过AB 的中点D 的直线CD 交x 轴于点(2,0)C -.(1)求A ,B 两点的坐标及直线CD 的函数表达式;(2)若坐标平面内的点F ,能使以点B ,C ,D ,F 为顶点的四边形为平行四边形,请直接写出满足条件的点F 的坐标.17、(10分)如图,在△ABC 中,AC =BC ,∠C =36°,AD 平分∠BAC 交BC 于点D .求证:AB =DC .18、(10分)某水上乐园普通票价20元/张,假期为了促销,新推出两种优惠卡:贵宾卡售价600元/张,每次凭卡不再收费;会员卡售价200元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x 次时,所需总费用为y 元.(1)分别写出假期选择会员卡、普通票消费时,y 与x 之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C、D 的坐标,并直接写出选择哪种消费方式更合算.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=14x 相交于点A,和双曲线y=2x交于点B,且AB=6,则点B的坐标是______.20、(4分)计算.21、(4分)如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),如果要使△ABD与△ABC全等,且点D坐标在第四象限,那么点D的坐标是__________;22、(4分)在1,2,3,4-这四个数中,任选两个数的积作为k的值,使反比例函数ykx=的图象在第二、四象限的概率是________.23、(4分)一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间为t 秒.(1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;25、(10分)“金牛绿道行“活动需要租用A 、B 两种型号的展台,经前期市场调查发现,用16000元租用的A 型展台的数量与用24000元租用的B 型展台的数量相同,且每个A 型展台的价格比每个B 型展台的价格少400元.(1)求每个A 型展台、每个B 型展台的租用价格分别为多少元(列方程解应用题);(2)现预计投入资金至多80000元,根据场地需求估计,A 型展台必须比B 型展台多22个,问B 型展台最多可租用多少个.26、(12分)如图,在四边形ABCD 中,DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F ,DE =BF ,∠ADB =∠CBD .求证:四边形ABCD 是平行四边形.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】根据非负数的性质列出方程,解出a 、b 、c 的值后,再用勾股定理的逆定理进行判断.【详解】解:根据题意,得a -2=0,b -=0,c -2=0,解得a =2,b =,c =2,∴a =c ,又∵2222222+2a c b +==,∴∠B =90°,∴△ABC 是等腰直角三角形.故选C .本题考查了非负数的性质和勾股定理的逆定理,属于基础题型,解题的关键是熟悉非负数的性质,正确运用勾股定理的逆定理.2、C 【解析】根据矩形的判定即可求解.【详解】A.AC BD =,对角线相等,可以判定ABCD 为矩形B.6AB =,8BC =,10AC =,可知△ABC 为直角三角形,故∠ABC=90°,故可以判定ABCD 为矩形C.AC BD ⊥,对角线垂直,不能判定ABCD 为矩形D.12∠=∠,可得AO=BO,故AC=BD ,可以判定ABCD 为矩形故选C.此题主要考查矩形的判定,解题的关键是熟知矩形的判定定理.3、C由二次根式有意义的条件可知a-1≥0,解不等式即可.【详解】由题意a-1≥0解得a ≥1故选C.本题考查了二次根式的意义,掌握被开方数需大于等于0即可解题.4、A 【解析】抽样调查中,抽取的样本不能太片面,一定要具有代表性.【详解】解:A 、在校园内随机选择50名学生,具有代表性,合理;B 、从运动场随机选择50名男生,喜欢运动,具有片面性,不合理;C 、从图书馆随机选择50名女生,喜欢读书,具有片面性,不合理;D 、从七年级学生中随机选择50名学生,具有片面性,不合理;故选:A .本题考查了抽样调查的性质:①全面性;②代表性.5、D 【解析】试题分析:因为222245+≠,所以选项A 错误;因为2226811+≠,所以选项B 错误;因为22251212+≠,所以选项C 错误;因为22211+=,所以选项D 正确;故选D.考点:勾股定理的逆定理.6、C【解析】由题意推出x=0,或(x-1)=0,解方程即可求出x 的值【详解】(1)0x x -=,10x ∴=,21x =,此题考查解一元二次方程-因式分解法,掌握运算法则是解题关键7、C 【解析】将点的坐标逐个代入函数解析式中,若等号两边相等则点在函数上,否则就不在.【详解】解:将x=-2.5,y=-4代入函数解析式中,等号左边-4,等号右边-6,故选项A 错误;将x=1,y=3代入函数解析式中,等号左边3,等号右边1,故选项B 错误;将x=2.5,y=4代入函数解析式中,等号左边4,等号右边4,故选项C 正确;将x=0,y=1代入函数解析式中,等号左边1,等号右边-1,故选项D 错误;故选:C .本题考查了一次函数图像上点的坐标特征,一次函数y=kx+b ,(k ≠0,且k ,b 为常数)的图像是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b .8、D 【解析】根据平行四边形的性质得到AD//BC 、、从而进行判断.【详解】因为四边形是平行四边形,所以AD//BC 、、,(故B 、C 选项正确,不符合题意)所以,(故A 选项正确,不符合题意).故选:D.考查了平行四边形的性质,解题关键是熟记平行四边形的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、2cm.【解析】试题解析:∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD=BC=8cm ,∴∠AEB=∠EBC ,∵BE 平分∠ABC ,∴∠ABE=∠EBC ,∴∠ABE=∠AEB ,∴AB=AE=6cm ,∴DE=AD ﹣AE=8﹣6=2(cm ).10、9-【解析】分析:应用完全平方公式,求出算式的值是多少即可.详解:21()=8﹣+1=9﹣.故答案为9﹣.点睛:本题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.11、70°【解析】由旋转的角度易得∠ACA′=20°,若AC ⊥A'B',则∠A′、∠ACA′互余,由此求得∠ACA′的度数,由于旋转过程并不改变角的度数,因此∠BAC=∠A′,即可得解.【详解】解:由题意知:∠ACA′=20°;若AC ⊥A'B',则∠A′+∠ACA′=90°,得:∠A′=90°-20°=70°;由旋转的性质知:∠BAC=∠A′=70°;故∠BAC 的度数是70°.故答案是:70°本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.12、±1【解析】试题分析:∵方程x 2+kx+9=0有两个相等的实数根,∴△=0,即k 2﹣4•1•9=0,解得k=±1.故答案为±1.考点:根的判别式.13、1【解析】证明△ABQ ≌△EBQ ,根据全等三角形的性质得到BE=AB=5,AQ=QE ,根据三角形中位线定理计算即可.【详解】解:在△ABQ 和△EBQ 中,ABQ EBQ BQ BQ AQB EQB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABQ ≌△EBQ (ASA ),∴BE=AB=5,AQ=QE ,同理CD=AC=7,AP=PD ,∴DE=CD-CE=CD-(BC-BE )=2,∵AP=PD ,AQ=QE ,∴PQ=12DE=1,故答案为:1.本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)AE =(3)(3)12AG AF =,理由见解析.【解析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x ,则AE=2x ,得到△GBE 是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt △AMC ≌Rt △AND ,最后通过计算求得AE 的长;(3)延长F 1G 到M,延长BA 交11FC 的延长线于N,使得1GM FG =,可得GMB ∆≌11GFC ∆,从而得到111BM FC DF ==1BMG GF N ∠=,可知BM ∥1F N ,再根据题意证明ABM ∆≌1ADF ∆,进一步说明1AMF ∆是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN 是正方形,∴AM=AN ∠AMC=∠N=90°∴△AMC,△AND 是Rt △∵△ABC 是等边三角形∴AB=AC ∵旋转后AB=AD ∴AC=AD ∴Rt △AMC ≌Rt △AND(HL)(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x则AE=2x 易得△GBE 是等腰直角三角形∴BG=EG∴AB=BC=1)x 易得∠DHF=30°∴HD=2DF=,HF=3∴BF=BH+HF=3∵Rt △AMC ≌Rt △AND(HL)∴易得CF=DF=∴BC=BF-CF=33+=+∴1)3x =+∴x =∴AE =2x =(3)12AG AF =;理由:如图2中,延长F 1G 到M,延长BA 交11FC 的延长线于N,使得1GM FG =,则GMB ∆≌11GFC ∆,∴111BM FC DF ==1BMG GF N ∠=,∴BM ∥1F N ,∴MBA N∠=∠∵0190NAO OF D ∠=∠=1AON DOF ∠=∠∴1N ADF ∠=∠∴1ABM ADF ∠=∠,∵AB AD =∴ABM ∆≌1ADF ∆(SAS )∴1AM AF =1MAB DAF ∠=∠∴0190MAF BAD ∠=∠=∴1AMF ∆是等腰直角三角形∴1AG MF ⊥1AG GF =∴1AF =∴12AG AF =本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.15、(1)5084530812x x y x x ⎧≤≤⎪=⎨⎪-<≤⎩;(2)每分钟进水5升,出水154升.【解析】(1)根据题意和函数图象可以求得y 与x 的函数关系式;(2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.【详解】解:(1)当0≤x≤8时,设y 关于x 的函数解析式是y=kx ,8k=10,得k=54,即当0≤x≤8时,y 与x 的函数关系式为y=54x ,当8≤x≤12时,设y 与x 的函数关系式为y=ax+b ,8101215a b a b +=⎧⎨+=⎩,得530a b =⎧⎨=-⎩,即当8≤x≤12时,y 与x 的函数关系式为y=5x-30,由上可得,y=5,(08)4530,(812)x x x x ⎧≤≤⎪⎨⎪-≤≤⎩;(2)进水管的速度为:20÷4=5L/min ,出水管的速度为:51230124⨯--=154L/min 答:每分钟进水、出水各5L,154L.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、(1)(0,4)A ,(4,0)B ,112y x =+;(2)点F 的坐标为(8,2)或(4,2)-或(0,2)-.【解析】(1)先根据一次函数4y x =-+求出A,B 坐标,然后得到中点D 的坐标,利用待定系数法求出直线CD 的解析式即可求解;(2)根据题意分3种情况,利用坐标平移的性质即可求解.【详解】解:(1)一次函数4y x =-+,令0x =,则4y =;令0y =,则4x =,∴(0,4)A ,(4,0)B ,∵D 是AB 的中点,∴(2,2)D ,设直线CD 的函数表达式为y kx b =+,则22,02,k b k b =+⎧⎨=-+⎩解得1,21,k b ⎧=⎪⎨⎪=⎩∴直线CD 的函数表达式为112y x =+.(2)①若四边形BCDF 是平行四边形,则DF ∥CB,DF=CB ,而点C 向右平移6个单位长度得到点B ,∴点D 向右平移6个单位长度得到点F (8,2);②若四边形BCFD 是平行四边形,则DF ∥CB,DF=CB ,而点B 向左平移6个单位长度得到点C ,∴点D 向左平移6个单位长度得到点F (-4,2);③若四边形BDCF 是平行四边形,则BF ∥DC,BF=DC ,而点D 向左平移4个单位长度、向下平移2个单位长度得到点C ,∴点B 向左平移4个单位长度、向下平移2个单位长度得到点F (0,-2);综上,点F 的坐标为(8,2)或(4,2)-或(0,2)-.此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的运用及平行四边形的性质.17、详见解析【解析】根据等腰三角形的性质和三角形的内角和求出∠B =∠ADB ,∠C =∠DAC 解答即可.【详解】解:∵在△ABC 中,AC =BC ,∠C =36°,∴∠B =∠BAC =72°,∵AD 平分∠BAC 交BC 于点D ,∴∠BAD =36°,∠DAC =36°,∴∠ADB =72°,∴∠B =∠ADB ,∴AB =AD ,∵∠C =∠DAC =36°,∴AD =DC ,∴AB =DC .此题考查等腰三角形的性质与判定,三角形的角平分线,关键是根据等腰三角形的性质和三角形的内角和解答.18、(1)120y x =,210200y x =+;(2)A(0,200),B(20,400),C(40,600),D(30,600),当020x <<时,选择普通消费;当x =20时,选择普通消费或会员卡都可以;当2040x <<时,选择会员卡;当x =40时,选择贵宾卡或会员卡都可以;当40x >时,选择贵宾卡【解析】(1)根据会员卡售价200元/张,每次凭卡另收10元,以及普通票价20元/张,设游泳x 次时,分别得出所需总费用为y 元与x 的关系式即可;(2)利用函数交点坐标求法分别得出即可;利用点的坐标以及结合得出函数图象得出答案.【详解】解:(1)根据题意得:普通消费:120y x =,会员卡:210200y x =+;(2)令12y y =,即2010200x x =+,解得x =20,y =400,即A(0,200),B(20,400),D(30,600),当y =600时,代入2y 解得:x =40,即点C 的坐标为C(40,600),当020x <<时,选择普通消费,当x =20时,选择普通消费或会员卡都可以,当2040x <<时,选择会员卡,当x =40时,选择贵宾卡或会员卡都可以,当40x >时,选择贵宾卡.此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、(,34-)或(,4)【解析】根据直线l ⊥y 轴,可知AB ∥x 轴,则A 、B 的纵坐标相等,设A (m ,14m )(m >0),列方程214m x =,可得点B 的坐标,根据AB=6,列关于m 的方程可得结论.【详解】如图,设A (m ,14m )(m >0),如图所示,∴点B 的纵坐标为14m ,∵点B 在双曲线y =2x 上,∴214m x =,∴x=8m ,∵AB=6,即|m-8m |=6,∴m-8m =6或8m -m=6,∴m 1或m 2<0(舍),m 3(舍),m 4,∴B (,34-)或(,4),故答案为:(,4).本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.20、【解析】分析:先把各根式化简,然后进行合并即可得到结果.详解:原式+=点睛:本题主要考查二次根式的加减,比较简单.21、(3,-3)【解析】根据全等三角形的性质,三条对应边均相等,又顶点C 与顶点D 相对应,所以点D 与C 关于AB 对称,即点D 与点C 对与AB 的相对位置一样.【详解】解:∵△ABD 与△ABC 全等,∴C 、D 关于AB 对称,顶点C 与顶点D 相对应,即C 点和D 点到AB 的相对位置一样.∵由图可知,AB 平行于x 轴,∴D 点的横坐标与C 的横坐标一样,即D 点的横坐标为3.又∵点A 的坐标为(0,2),点C 的坐标为(3,3),点D 在第四象限,∴C 点到AB 的距离为2.∵C 、D 关于AB 轴对称,∴D 点到AB 的距离也为2,∴D 的纵坐标为-3.故D (3,-3).22、12【解析】四个数任取两个有6种可能.要使图象在第四象限,则k<0,找出满足条件的个数,除以6即可得出概率.【详解】依题可得,任取两个数的积作为k 的值的可能情况有6种(1,2)、(1,3)、(1,-4)、(2,3)、(2,-4)、(3,-4),要使反比例函数y=kx 的图象在第二、四象限,则k <0,这样的情况有3种即(1,-4)、(2,-4)、(3,-4),故概率为:36=12.本题考查反比例函数的选择,根据题意找出满足情况的数量即是解题关键.23、x >-2【解析】试题解析:根据图象可知:当x >-2时,一次函数y=kx+b 的图象在x 轴的上方.即kx+b >0.考点:一次函数与一元一次不等式.二、解答题(本大题共3个小题,共30分)24、(1)PQ =(2)能.当83t =时.【解析】(1)利用勾股定理,根据题意求出PB 和BQ 的长,再由PB 和BQ 可以求得PQ 的长;(2)由题意可知P 、Q 两点是逆时针运动,则第一次形成等腰三角形是PB=QB ,再列式即可得出答案.【详解】(1)由题意可得8PB t =-,2BQ t =,因为t=2,所以6PB =,4BQ =,则由勾股定理可得PQ ===(2)能.由题意可得8PB t =-,2BQ t =,又因为题意可知P 、Q 两点是逆时针运动,则第一次第一次形成等腰三角形是PB=QB ,所以28BQ t t PB ==-=,即当83t =时,第一次形成等腰三角形.本题考查勾股定理、等腰三角形的性质和动点问题,属于综合题,难度适中,解题的关键是熟练掌握勾股定理、等腰三角形的性质.25、(1)每个A 型展台,每个B 型展台的租用价格分别为800元、1200元;(2)B 型展台最多可租用31个.【解析】(1)首先设每个A 型展台的租用价格为x 元,则每个B 型展台的租用价格为(x+400)元,根据关键语句“用1600元租用的A 型展台的数量与用2400元租用的B 型展台的数量相同.”列出方程,解方程即可.(2)根据预计投入资金至多80000元,列不等式可解答.【详解】解:(1)设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,由题意得:16002400400 x x=+,解得:x=800,经检验:x=800是原分式方程的解,∴B型展台价格:x+400=800+400=1200,答:每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)设租用B型展台a个,则租用A型展台(a+22)个,800(a+22)+1200a≤80000,a≤31.2,答:B型展台最多可租用31个.本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A、B两种展台的租用价格,确认相等关系和不等关系是解决问题的关键.26、见解析.【解析】根据∠ADB=∠CBD,可知AD∥BC,由题意DE⊥AC,BF⊥AC,可知∠AED=∠CFB=90°,因为DE=BF,所以证出△ADE≌△CBF(AAS),根据有一组对边平行且相等的四边形是平行四边形即可证出.【详解】∵∠ADB=∠CBD,∴AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,又∵DE=BF,∴△ADE≌△CBF(AAS),∴AD=BC,∴四边形ABCD是平行四边形.题关键.。

山东省济宁市邹城市第八中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

山东省济宁市邹城市第八中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

山东省济宁市邹城市第八中学2025届九年级数学第一学期开学质量跟踪监视模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列说法中错误的是()A .“买一张彩票中奖”发生的概率是0B .“软木塞沉入水底”发生的概率是0C .“太阳东升西落”发生的概率是1D .“投掷一枚骰子点数为8”是确定事件2、(4分)如图,在▱ABCD 中,AD =8,点E ,F 分别是AB ,AC 的中点,则EF 等于()A .2B .3C .4D .53、(4分)龙华区某校改造过程中,需要整修校门口一段全长2400m 的道路,为了保证开学前师生进出不受影响,实际工作效率比原计划提高了20 %,结果提前8天完成任务,若设原计划每天整个道路x 米,根据题意可得方程()A .240024008(120%)x x -=+B .240024008(120%)x x -=+C .240024008(120%)x x -=-D .240024008(120%)x x-=-4、(4分)()A .B C D .5、(4分)若关于x 的方程()2230m x mx -+-=是一元二次方程,则m 的取值范围是()A .2m ≠B .2m =C .2m >D .0m ≠6、(4分)2022年将在北京---张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了滑雪选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:队员1队员2队员3队员4甲组176177175176乙组178175177174设两队队员身高的平均数依次为x 甲,x 乙,方差依次为2S 甲,2S 乙,则下列关系中完全正确的是().A .22x x S S 甲乙甲乙>,>B .22=x x S S 甲乙甲乙,>C .22x x S S 甲乙甲乙<,<D.22=x x S S 甲乙甲乙,<7、(4分)现有一块长方形绿地,它的短边长为20m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是()A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=3008、(4分)下列各组长度的线段中,可以组成直角三角形的是()A .1,2,3B .,3C .5,6,7D .5,12,13二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,四边形ABCD 中,090,2,5A ABC AD BC ∠=∠===,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F.若△BCD 是等腰三角形,则四边形BDFC 的面积为_______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年山东省济宁市邹城八中九年级(上)第一次月考数学试卷一、选择题(3分&#215;10=30分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=93.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣24.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程2x的范围是()<x<6.19 D.6.19<x<6.205.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y26.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x﹣1)=28 D.x(x+1)=287.若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1 C.x=2 D.x=38.已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13 B.11或13 C.11 D.129.下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0 B.x2﹣4x+4=0 C.x2+4x+10=0 D.x2+4x﹣5=010.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s 的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.二、填空题(3分&#215;6=18分)11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=.12.一个小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣4(t﹣1)2+5,则小球距离地面的最大高度是米.13.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得.14.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是.15.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.16.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③b2﹣4ac>0;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;⑥方程ax2+bx+c=3有两个相等的实数根.其中正确的有.三、解答题(本大题共7小题,满分52分,解答应写出文字说明、证明过程或演算步骤)17.解方程:(1)(x﹣3)2+2x(x﹣3)=0;(2)4x2﹣8x﹣1=0(用配方法解).18.已知x2﹣3x﹣6=0,求的值.19.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.20.某市2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.21.某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为16米(如图所示),设这个花草园垂直于墙的一边长为x米.(1)若花草园的面积为100平方米,求x;(2)若平行于墙的一边长不小于10米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个花草园的面积不小于88平方米时,直接写出x的取值范围.22.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲=,y乙=;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?23.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;=4S BOC,求点P的坐标;(2)若点P在抛物线上,且S△AOP(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2016-2017学年山东省济宁市邹城八中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(3分&#215;10=30分)1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B3.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣2【考点】二次函数图象与几何变换.【分析】根据图象右移减,上移加,可得答案.【解答】解:把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x﹣1)2+2,故选:C.4.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程2x的范围是()<x<6.19 D.6.19<x<6.20【考点】抛物线与x轴的交点.【分析】利用二次函数和一元二次方程的性质.【解答】解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选C.5.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【考点】二次函数图象上点的坐标特征.【分析】分别计算x=﹣4、﹣3、1时的函数值,然后比较大小即可.【解答】解:当x=﹣4时,y1=(﹣4)2+4×(﹣4)﹣5=﹣5;当x=﹣3时,y2=(﹣3)2+4×(﹣3)﹣5=﹣8;当x=﹣1时,y3=12+4×1﹣5=0,所以y2<y1<y3.故选B.6.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x﹣1)=28 D.x(x+1)=28【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选:B.7.若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1 C.x=2 D.x=3【考点】二次函数的性质.【分析】由已知,点(2,5)、(4,5)是该抛物线上关于对称轴对称的两点,所以只需求两对称点横坐标的平均数.【解答】解:因为点(2,5)、(4,5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;故选D.8.已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13 B.11或13 C.11 D.12【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】由一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,利用因式分解法求解即可求得等腰△ABC的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案.【解答】解:∵x2﹣8x+15=0,∴(x﹣3)(x﹣5)=0,∴x﹣3=0或x﹣5=0,即x1=3,x2=5,∵一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC的周长为:3+3+5=11;∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC的周长为:3+5+5=13;∴△ABC的周长为:11或13.故选B.9.下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0 B.x2﹣4x+4=0 C.x2+4x+10=0 D.x2+4x﹣5=0【考点】根与系数的关系.【分析】找出四个选项中二次项系数a,一次项系数b及常数项c,计算出b2﹣4ac的值,当b2﹣4ac大于等于0时,设方程的两个根为x1,x2,利用根与系数的关系x1+x2=﹣求出各项中方程的两个之和,即可得到正确的选项.【解答】解:A、x2+2x﹣4=0,∵a=1,b=2,c=﹣4,∴b2﹣4ac=4+16=20>0,设方程的两个根为x1,x2,∴x1+x2=﹣=﹣2,本选项不合题意;B、x2﹣4x+4=0,∵a=1,b=﹣4,c=4,∴b2﹣4ac=16﹣16=0,设方程的两个根为x1,x2,∴x1+x2=﹣=4,本选项不合题意;C、x2+4x+10=0,∵a=1,b=4,c=10,∴b2﹣4ac=16﹣40=﹣24<0,即原方程无解,本选项不合题意;D、x2+4x﹣5=0,∵a=1,b=4,c=﹣5,∴b2﹣4ac=16+20=36>0,设方程的两个根为x1,x2,∴x1+x2=﹣=﹣4,本选项符合题意,故选D10.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s 的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象;二次函数的图象.【分析】解决本题的关键是正确确定y与x之间的函数解析式.【解答】解:∵运动时间x(s),则CP=x,CO=2x;=CP•CO=x•2x=x2.∴S△CPO∴则△CPO的面积y(cm2)与运动时间x(s)之间的函数关系式是:y=x2(0≤x≤3),故选:C.二、填空题(3分&#215;6=18分)11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=2015.【考点】一元二次方程的解.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2015=0得:a+b﹣2015=0,即a+b=2015.故答案是:2015.12.一个小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣4(t﹣1)2+5,则小球距离地面的最大高度是5米.【考点】二次函数的应用.【分析】根据二次函数的性质可得.=5,【解答】解:由h=﹣4(t﹣1)2+5知,当t=1时,h最大即小球距离地面的最大高度是5米,故答案为:5.13.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得x2﹣70x+825=0.【考点】由实际问题抽象出一元二次方程.【分析】本题设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.【解答】解:由题意得:(80﹣2x)(60﹣2x)=1500整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.14.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.【考点】二次函数的应用.【分析】根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.【解答】解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.15.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为﹣2.【考点】根与系数的关系.【分析】根据根与系数的关系找出x1+x2=﹣6、x1•x2=3,将+变形为,代入数据即可得出结论.【解答】解:∵x1,x2是方程x2+6x+3=0的两实数根,∴x1+x2=﹣6,x1•x2=3,∴+==﹣2.故答案为:﹣2.16.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③b2﹣4ac>0;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;⑥方程ax2+bx+c=3有两个相等的实数根.其中正确的有①③⑤⑥.【考点】二次函数与不等式(组);二次函数图象与系数的关系;抛物线与x轴的交点.【分析】①利用对称轴x=1判定;②根据图象确定a、b、c的符号;③根据抛物线与x轴交点的个数确定;④根据对称性判断;⑤由图象得出,在1<x<4时,抛物线总在直线的上面,则y2<y1;⑥方程ax2+bx+c=3的根,就是图象上当y=3是所对应的x的值.【解答】解:①因为抛物线的顶点坐标A(1,3),所以对称轴为:x=1,则﹣=1,2a+b=0,故①正确;②∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故②不正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④因为抛物线对称轴是:x=1,B(4,0),所以抛物线与x轴的另一个交点是(﹣2,0),故④不正确;⑤由图象得:当1<x<4时,有y2<y1;故⑤正确;⑥∵抛物线的顶点坐标A(1,3),∴方程ax2+bx+c=3有两个相等的实数根是x=1,故⑥正确;则其中正确的有:①③⑤⑥;故答案为:①③⑤⑥.三、解答题(本大题共7小题,满分52分,解答应写出文字说明、证明过程或演算步骤)17.解方程:(1)(x﹣3)2+2x(x﹣3)=0;(2)4x2﹣8x﹣1=0(用配方法解).【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)因式分解法求解可得;(2)配方法求解可得.【解答】解:(1)(x﹣3)(x﹣3+2x)=0,即(x﹣3)(3x﹣3)=0,∴x﹣3=0或3x﹣3=0,解得:x=3或x=1;(2)4x2﹣8x=1,x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,∴x=1±.18.已知x2﹣3x﹣6=0,求的值.【考点】分式的化简求值.【分析】首先根据分式的混合运算法则,化简得,然后由x2﹣3x ﹣6=0,求得x2﹣3x=6,然后代入即可求得答案.【解答】解:====.∵x2﹣3x﹣6=0,∴x2﹣3x=6.∴原式=.19.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程-因式分解法;根与系数的关系.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.20.某市2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.【解答】解:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元),答:2017年该地区将投入教育经费3327.5万元.21.某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为16米(如图所示),设这个花草园垂直于墙的一边长为x米.(1)若花草园的面积为100平方米,求x;(2)若平行于墙的一边长不小于10米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个花草园的面积不小于88平方米时,直接写出x的取值范围.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(30﹣2x)=﹣2x2+30x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【解答】解:(1)根据题意知平行于墙的一边的长为(30﹣2x)米,则有:x(30﹣2x)=100,解得:x=5或x=10,∵0<30﹣2x≤16,∴7≤x<15,故x=10;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x,∵a=﹣2<0,∴苗圃园的面积y有最大值,∵30﹣2x≥10,解得:x≤10,∴7≤x≤10,∴当x=时,即平行于墙的一边长15>10米,y最大=112.5平方米;当x=10时,y最小=100;(3)由题意得﹣2x2+30x≥88,解得:x≤4或x≥11,又∵7≤x<15,∴11≤x<15.22.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲=10x+40,y乙=10x+20;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?【考点】二次函数的应用.【分析】(1)根据题意可以列出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式;(2)根据每周甲商品的销售量不低于乙商品的销售量的,列出不等式求出x的取值范围,根据题意列出二次函数的解析式,根据二次函数的性质求出对称轴方程,得到答案.【解答】解:(1)由题意得,y甲=10x+40;y乙=10x+20;(2)由题意得,W=(10﹣x)(10x+40)+(20﹣x)(10x+20)=﹣20x2+240x+800,由题意得,10x+40≥(10x+20)解得x≤2,W=﹣20x2+240x+800=﹣20(x﹣6)2+1520,∵a=﹣20<0,∴当x<6时,W随x增大而增大,∴当x=2时,W的值最大.答:当x定为2元时,才能使小明每周销售甲、乙两种商品获得的总利润最大.23.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b ,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,求线段DQ长度的最大值.【考点】二次函数综合题. 【分析】(1)把点A 、C 的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P 点坐标为(x ,﹣x 2﹣2x +3),根据S △AOP =4S △BOC 列出关于x 的方程,解方程求出x 的值,进而得到点P 的坐标;(3)先运用待定系数法求出直线AC 的解析式为y=x +3,再设Q 点坐标为(x ,x +3),则D 点坐标为(x ,x 2+2x ﹣3),然后用含x 的代数式表示QD ,根据二次函数的性质即可求出线段QD 长度的最大值. 【解答】解:(1)把A (﹣3,0),C (0,3)代入y=﹣x 2+bx +c ,得,解得.故该抛物线的解析式为:y=﹣x 2﹣2x +3.(2)由(1)知,该抛物线的解析式为y=﹣x 2﹣2x +3,则易得B (1,0). ∵S △AOP =4S △BOC ,∴×3×|﹣x 2﹣2x +3|=4××1×3.整理,得(x +1)2=0或x 2+2x ﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P 的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC 的解析式为y=kx +t ,将A (﹣3,0),C (0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.2016年12月9日。

相关文档
最新文档