2021版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.2排列、组合与二项式定理练习苏教版
高三数学一轮复习 第11章第1课时课件
两个计数原理的综合应用
对于某些复杂的问题,有时既要用分类计数原理, 又要用分步计数原理,重视两个原理的灵活运用, 并注意以下几点: (1)认真审题,分析题目的条件、结论,特别要理 解题目中所讲的“事情”是什么,完成这件事情 的含义和标准是什么. (2)明 确 完 成 这 件 事 情 需 要 “ 分 类 ” 还 是 “ 分
2.混合问题一般是先分类再分步. 3.分类时标准要明确,做到不重复不遗漏. 4.要恰当画出示意图或树状图,使问题的分
析更直观、清楚,便于探索规律.
从近两年的高考试题来看,分类加法计数 原理和分步乘法计数原理是考查的热 点.题型为选择题、填空题,分值在5分左 右,属中档题.两个计数原理较少单独考 查,一般与排列、组合的知识相结合命 题.
(2010·广东卷)为了迎接 2010 年广州亚运会,某大
楼安装了 5 个彩灯,它们闪亮的顺序不固定,每
个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜
色,且这 5 个彩灯所闪亮的颜色各不相同,记这 5
个彩灯有序地各闪亮一次为一个闪烁,在每个闪
烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两
个闪烁的时间间隔均为 5 秒,如果要实现所有不
(2)确定第二象限的点,可分两步完成:第一 步确定 a,由于 a<0,所以有 3 种确定方法; 第二步确定 b,由于 b>0,所以有 2 种确定方 法.由分步乘法计数原理,得到第二象限点 的个数是 3×2=6.
(3)点 P(a,b)在直线 y=x 上的充要条件是 a =b.因此 a 和 b 必须在集合 M 中取同一元素, 共有 6 种取法,即在直线 y=x 上的点有 6 个.由(1)得不在直线 y=x 上的点共有 36- 6=30(个).
高三数学一轮复习第十一篇计数原理概率随机变量及其分布第2节排列与组合课件理(1)
个.
解析: (2)若 0 在 1,3 之间,则在 0,1,3 隔开的四个空位中插入 2,4 即可,此 时的五位数个数为 A22A24 =24;若 0 在 1,3 右边,则 1,3 之间需插入一个数,另 一个数在最高位,或者在 0 左右,此时五位数的个数为 A22C12 ×3=12;若 0 在 1,3 左边,此时 2,4 只能一个在 0 的左边(最高位)、一个在 1,3 之间,此时的 五位数个数为 A22A22 =4.故共可组成五位数有 24+12+4=40(个).
不同元素中取出 m 个元素的排列数
n 个不同元素中取出 m 个元素的组合数
排列数公式
A
m n
=n(n-1)(n-2)…
公 式
(n-m+1) =
n!
(n m)!
组合数公式
C
m n
=
Amn Amm
=
n(n 1)(n 2)...(n m 1) = n!
m!
m!(n m)!
性 质
A
n n
【即时训练】 (2015河南郑州市二次质量预测)某校开设A类选修课2 门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选 一门,则不同的选法共有( ) (A)3种 (B)6种 (C)9种 (D)18种
解析:直接法: C12C32 + C22C13 =9. 间接法: C35 -1=9. 故选 C.
答案: (2)40
备选例题
【例 1】
(1)若
3
A
3 x
=2
A2 x 1
+6
A
2 x
,则
x=
.
(2)若
Cx2 16
高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布
§11.8 条件概率、n 次独立重复试验与二项分布考纲展示►1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.考点1 条件概率条件概率 (1)定义设A ,B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生条件下,事件B 发生的条件概率.(2)性质①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).条件概率的性质.(1)有界性:0≤P (B |A )≤1.( )(2)可加性:如果B 和C 为互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ).( )[典题1] (1)从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数”,事件B :“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12(2)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )A.1127B.1124C.827D.924[点石成金] 条件概率的两种求解方法 (1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.考点2 事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=________,则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 也都相互独立,P (B |A )=________,P (A |B )=________.[典题2] 为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.[点石成金] 1.利用相互独立事件的概率乘法公式直接求解;2.正面计算较繁或难以入手时,可从其对立事件入手计算.在一块耕地上种植一种作物,每季种植成本为 1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.考点3 独立重复试验与二项分布独立重复试验与二项分布(1)[教材习题改编]某人抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n=⎩⎪⎨⎪⎧第n 次出现正面,-第n 次出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为________.(2)[教材习题改编]小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是________.二项分布:P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ).设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)的值是________.[典题3] [2019·湖南长沙模拟]博彩公司对2019年NBA 总决赛做了大胆地预测和分析,预测西部冠军是老辣的马刺队,东部冠军是拥有詹姆斯的年轻的骑士队,总决赛采取7场4胜制,每场必须分出胜负,场与场之间的结果互不影响,只要有一队获胜4场就结束比赛.前4场,马刺队胜利的概率为12,第5,6场马刺队因为平均年龄大,体能下降厉害,所以胜利的概率降为25,第7场,马刺队因为有多次打第7场的经验,所以胜利的概率为35.(1)分别求马刺队以4∶0,4∶1,4∶2,4∶3胜利的概率及总决赛马刺队获得冠军的概率; (2)随机变量X 为分出总冠军时比赛的场数,求随机变量X 的分布列.[点石成金] 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P (X =k )=C k n p k(1-p )n -k的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.[方法技巧] 1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P ABP A=n AB n A ,其中,在实际应用中P (B |A )=n ABn A是一种重要的求条件概率的方法.2.判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.3.n次独立重复试验中,事件A恰好发生k次可看作是C k n个互斥事件的和,其中每一个事件都可看作是k个A事件与n-k个A事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.[易错防范] 1.相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).2.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.真题演练集训1.[2018·重庆模拟]投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432C.0.36 D.0.3122.[2018·天津模拟]某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75C.0.6 D.0.45课外拓展阅读误用“二项分布与超几何分布”二项分布和超几何分布是两类重要的概率分布模型,这两种分布存在着很多的相似之处,在应用时应注意各自的适用条件和情境,以免混用出错.[典例1] 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.现在在总共8小块地中,随机选4小块地种植品种甲,另外4小块地种植品种乙.种植完成后若随机选出4块地,其中种植品种甲的小块地的数目记为X,求X的分布列和数学期望.[思路分析]判断分布的类型→确定X的取值及其概率→列出分布列并求数学期望易错提示本题容易错误地得到X 服从二项分布,每块地种植甲的概率为12,故X ~B (4,0.5).错误的根源在于每块地种植甲或乙不是相互独立的,它们之间是相互制约的,无论怎么种植都要保证8块地中有4块种植甲,4块种植乙,事实上X 应服从超几何分布.如果将题目改为:在8块地中,每块地要么种植甲,要么种植乙,那么在选出的4块地中种植甲的数目为X ,则这时X ~B (4,0.5)(这时这8块地种植的方法总数为28,会出现所有地都种植一种作物的情况,而题目要求4块地种植甲,4块地种植乙,其方法总数为C 48).[典例2] 某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.易错提示本题容易错误地得到甲、乙两考生正确完成的题数均服从二项分布,实际上题目中已知甲、乙两考生按照题目要求独立完成全部实验操作,甲考生正确完成的题数服从超几何分布,乙考生正确完成的题数服从二项分布.。
数学课标通用(理科)一轮复习配套教师用书:第十一章 计数原理、概率、随机变量及其分布 二项式定理
§11.3 二项式定理考纲展示►1.能利用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.考点1 二项展开式中特定项或系数问题二项式定理二项式定理(a+b)n=________________二项式系数二项展开式中各项系数C k n (k=0,1,…,n)二项式通项T k+1=________,它表示第________项答案:C错误!a n+C错误!a n-1b+…+C错误!a n-k b k+…+C错误!b n(n∈N*)C k,n a n-k b k k+1(1)[教材习题改编](1-2x)7的展开式的第4项的系数是________.答案:-280解析:展开式中,T r+1=C错误!·(-2x)r=C错误!·(-2)r x r,当r =3时,T4=C错误!·(-2)3·x3=-280x3,所以第4项的系数为-280.(2)[教材习题改编]错误!12的展开式的常数项是________.答案:495解析:展开式中,T r+1=C错误!x12-r·错误!r=(-1)r C错误!x12-3r,当r=4时,T5=C412=495为常数项。
[典题1] (1)在二项式错误!5的展开式中,含x4的项的系数是()A.10 B.-10 C.-5 D.20[答案]A[解析] 由二项式定理可知,展开式的通项为C错误!(-1)r x10-3r,令10-3r=4,得r=2,所以含x4项的系数为C错误!(-1)2=10,故选A.(2)[2017·吉林长春模拟]错误!5的展开式中的常数项为()A.80 B.-80 C.40 D.-40[答案]C[解析]∵T r+1=C错误!(x2)5-r错误!r=(-2)r C错误!x10-5r,由10-5r=0,得r=2,∴T3=(-2)2C错误!=40.(3)[2015·湖南卷]已知错误!5的展开式中含x错误!的项的系数为30,则a=( )A.错误!B.-错误!C.6 D.-6[答案]D[解析] T r+1=C错误!(错误!)5-r·错误!r=C错误!(-a)r x,由错误!=错误!,解得r=1.由C错误!(-a)=30,得a=-6。
2025年高考数学一轮复习-第十一章-第二节-二项式定理【课件】
【解析】(2x+1)4的展开式通项为Tr+1=C4 2 4− ,令r=2,得T3=C42 2 2 =24x2,
故x2的系数为24.
解题技法
形如(a+b)n(n∈N*)的展开式的特定项的求解策略
(1)写出并化简通项;
(2)令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解
[例1](1)设 1 + =a0+a1x+a2x2+…+anxn,若a2=a3,则n=(
A.5
B.6
C.7
)
D.8
【解析】选A.(1+x)n展开式第r+1项Tr+1=C xr,因为a2=a3,所以C2 =C3 ,所以n=2+3=5.
24
(2)(2023·南昌模拟)在(2x+1)4的展开式中,x2的系数为
(4)二项式的展开式中系数最大的项与二项式系数最大项是相同的.(
× )
提示:由二项展开式某一项的系数与某一项的二项式系数的定义可知(4)错误.
2.(选修第三册P31练习T4)(x-y)n的二项展开式中,第m项的系数是(
A.C
C.C−1
B.C+1
D.(-1)m-1C−1
【解析】选D.(x-y)n的展开式中,
2
【解析】选A.(1-2 )8展开式的通项公式为Tk+1=C8 (-2 )k=(-2)kC8 .
要求x项的二项式系数,只需 =1,解得k=2,
2
2 8×7
所以x项的二项式系数为C8 = =28.
2×1
)
核心考点·分类突破
核心考点·分类突破
新课改地区2021版高考数学一轮复习第十一章计数原理概率随机变量及其分布112排列组合与二项式定理课
(1 ? 2x)10 的第5项的系数是C140 24=3 360,第5项的二项式系数是C140=210.
【易错点索引】
序号 易错警示
1 分不清是排列还是组合
2
排列、组合中计算有重复、 遗漏
3 排列组合问题计算出错
4 二项式定理中通项出错 5 二项展开式的系数错误
典题索引
考点一、T1,2 考点二、T1
C
m n
.
3.排列数、组合数的公式及性质
4.排列与组合的比较
名称 相同点
不同点
排列
组合
都是从n个不同元素中取出m(m≤n )个元素,元素无重复
排列与顺序有关
组合与顺序无关
两个排列相同,当且仅当这两个排 两个组合相同,当且仅当这两个组 列的元素及其排列顺序完全相同 合的元素完全相同
5.二项式定理
叫做从n个不同元素中取出m个元素的排列数,记作
A
m n
.
2.组合与组合数
(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做
从n个不同元素中任取m个任意取出m(m≤n)个元素的所有组合的个数,
叫做从n个不同元素中,任意取出m个元素的组合数,记作
(a+b)n= _C_0n_a_n _?_C_1n_a_n_?1_b1_?__…__?_C_kn_a_n?_k_b_k _?_…__?_C__nnb_n___(n∈N *).
6.二项展开式的通项与二项式系数
Tk+1=__C_kn_a_n?_k_b_k _,其中
C
k n
是第k+1项的二项式系数(k=0,1,2,…,n).
的两位数的个数为_________.(用数字作答)
高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)队长中至少有1人参加;
(4)既要有队长,又要有女运动员.
解 (1)分两步完成:第 1 步,选 3 名男运动员,有C63 种选派方法;第 2 步,选 2 名女
运动员,有C42 种选派方法.由分步乘法计数原理可得,共有C63 × C42 =120 种选派
A.1 800
B.3 600
C.4 320
)
D.5 040
(3)(2024九省联考)甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间
恰有2人,则不同排法共有(
A.20种
B.16种
)
C.12种
D.8种
答案 (1)B (2)B
(3)B
解析 (1)因为 A 在 B 的前面出场,且 A,B 都不在 3 号位置,则情况如下:
n!.
-1
4.kC =nC-1 .
5.C
=
-1
C-1
=
6.A
=
C
·A
.
-
C-1
=
- +1
-1
·C .
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)所有元素完全相同的两个排列为相同排列.( × )
(2)两个组合相同的充要条件是其中的元素完全相同.( √
有 2C84 + C83 =196 种选派方法.
5
(方法 2 间接法)从 10 人中任选 5 人有C10
种选派方法,其中不选队长的选派
高三数学复习总目录
第二章函数的概念、基本初等函数(1)与应用2.1 函数及其表示2.2 函数的单调性与最大(小)值2.3 函数的奇偶性与周期性2.4 二次函数2.5 基本初等函数(1)2.6 函数与方程2.7 函数模型及其应用第三章三角函数(基本初等函数(2))3.1 弧度制及任意角的三角函数3.2 同角三角函数的基本关系及诱导公式3.3 三角函数的图象与性质3.4 三角函数图象的变换3.5 三角函数模型的应用3.6 三角恒等变换3.7 正弦定理、余弦定理及其应用第四章平面向量4.1 平面向量的概念及其线性运算4.2 平面向量的基本定理及坐标表示4.3 平面向量的数量积4.4 平面向量的综合应用第五章数列5.1 数列的概念与简单表示法5.2 等差数列5.3 等比数列5.4 数列求和及其应用第六章不等式6.1 不等关系与不等式6.2 一元二次不等式及其解法6.3 二元一次不等式(组)与简单的线性规划问题6.4 基本不等式及其应用第七章立体几何7.1 空间几何体的结构、三视图、直观图7.2 空间几何体的表面积与体积7.3 空间点、线、面之间的位置关系7.4 空间中的平行关系7.5 空间中的垂直关系7.6 空间向量及其加减、数乘和数量积运算7.7 空间向量的坐标表示及运算7.8 空间向量的应用第八章平面解析几何8.1 直线的方程8.2 两条直线的位置关系8.3 圆的方程8.4 直线与圆的位置关系8.5 曲线与方程8.6 椭圆8.7 双曲线8.8 抛物线8.9 直线与圆锥曲线的位置关系第九章导数9.1 导数的概念及运算9.2 导数的应用(一)9.3 导数的应用(二)9.4 定积分第十章算法初步10.1 算法与程序框图10.2 基本算法语句与算法案例第十一章计数原理、概率、随机变量及其分布11.1 分类加法计数原理与分步乘法计数原理11.2 排列与组合11.3 二项式定理11.4 随机事件的概率11.5 古典概型11.6 几何概型11.7 互斥、对立、独立、独立重复试验及其应用11.8 离散型随机变量及其分布列11.9 二项分布及其应用11.10 离散型随机变量的均值与方差11.11 正态分布第十二章统计12.1 随机抽样12.2 用样本估计总体12.3 变量间的相关关系与线性回归方程12.4 统计案例第十三章推理与证明13.1 合情推理与演绎推理13.2 直接证明与间接证明13.3 数学归纳法第十四章数系的扩充与复数的引入14.1 数系的扩充和复数的概念14.2 复数代数形式的四则运算14.3。
2021高考数学一轮复习 第11章 计数原理、概率、随机变量及其分布 第1节 两个计数原理、排列与组
第11章计数原理、概率、随机变量及其分布全国卷五年考情图解高考命题规律把握1.考查形式高考在本章一般命制1道小题或者1道解答题,分值占5~17分.2.考查内容计数原理常与古典概型综合考查;几何概型均以选择题的形式单独考查;对二项式定理的考查主要是利用通项公式求特定项;对正态分布的考查,可能单独考查也可能在解答题中出现;以实际问题为背景,考查分布列、期望等是高考的热点题型.3.备考策略从2019年高考试题可以看出,概率统计试题的阅读量和信息量都有所加强,考查角度趋向于应用概率统计知识对实际问题作出决策.[最新考纲] 1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.3.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,…,在第n类办法中有m n种方法.那么,完成这件事共有N=m1+m2+…+m n种方法.(也称加法原理)2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,…,做第n步有m n种方法.那么,完成这件事共有N=m1×m2×…×m n种方法.3.排列、组合的定义排列的定义从n个不同元素中取出m(m≤n)按照一定的顺序排成一列组合的定义个元素合成一组排列数组合数定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数公式A m n=n(n-1)(n-2)…(n-m+1)=n!n-m!C m n=A m nA m m=n n-1n-2…n-m+1m!性质A n n=n!,0!=1C m n=C n-mn,C m n+C m-1n=Cmn+1一、思考辨析(正确的打“√”,错误的打“×”)(1)所有元素完全相同的两个排列为相同排列.( )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)k C k n=n C k-1n-1.( )[答案] (1)×(2)√(3)√(4)√二、教材改编1.图书馆的一个书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取1本书,不同的取法有( ) A.12 B.16C.64 D.120B[书架上共有3+5+8=16本不同的书,从中任取一本共有16种不同的取法,故选B.]2.用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为( )A.8 B.24C.48 D.120C[末位只能从2,4中选一个,其余的三个数字任意排列,故这样的偶数共有A34C12=4×3×2×2=48个.故选C.]3.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144 B.120C.72 D.24D[“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.]4.五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种. (用数字作答)4554[五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.]考点1 两个计数原理的综合应用利用两个基本计数原理解决问题的步骤第一步,审清题意,弄清要完成的事件是怎样的.第二步,分析完成这件事应采用分类、分步、先分类后分步、先分步后分类这四种方法中的哪一种.第三步,弄清在每一类或每一步中的方法种数.第四步,根据两个基本计数原理计算出完成这件事的方法种数.(1)如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为( )A.240 B.204C.729 D.920(2)(2016·全国卷Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18C.12 D.9(3)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( )A.24 B.48C.72 D.96(1)A(2)B(3)C[(1)如果这个三位数含0,则0必在末位,共有这样的凸数C29个;如果这个三位数不含0,则这样的凸数共有C39A22+C29个.即共有2C29+C39A22=240个.(2)从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B 到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.(3)法一:(以位置为主考虑)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.法二:(以颜色为主考虑)分两类.(1)取4色:着色方法有2A44=48(种).(2)取3色:着色方法有A34=24(种).所以共有着色方法48+24=72(种).](1)应用两个计数原理的难点在于明确是分类还是分步:分类要做到“不重不漏”,正确把握分类标准是关键;分步要做到“步骤完整”,步步相连才能将事件完成.(2)较复杂的问题可借助图表来完成.(3)对于涂色问题:①分清元素的数目以及在不相邻的区域内是否可以使用同类元素;②注意对每个区域逐一进行,分步处理.[教师备选例题]1.甲、乙、丙三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有( )A.4种B.6种C.10种D.16种B[分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图);同理,甲第一次踢给丙时,满足条件的也有3种传递方式.由分类加法计数原理可知,共有3+3=6(种)传递方式.]2.如图所示的几何体是由三棱锥PABC与三棱柱ABCA1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有( )A.6种B.9种C.12种D.36种C[先涂三棱锥PABC的三个侧面,有3×2=6(种)涂法;然后涂三棱柱的三个侧面,有2×1=2(种)涂法.共有6×2=12(种)不同的涂法.]1.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有( ) A.6种B.8种C.12种D.48种D[从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有C16种选法,参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有C14种选法,参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任选一个,有C12种选法,则共有C16C14C12=48(种)线路.故选D.]2.(2019·河北六校联考)甲与其四位同事各有一辆私家车,车牌尾数分别是9,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为( )A.64 B.80C.96 D.120B[5日至9日,日期尾数分别为5,6,7,8,9,有3天是奇数日,2天是偶数日.第一步,安排偶数日出行,每天都有2种选择,共有2×2=4(种);第二步,安排奇数日出行,分两类,第一类,选1天安排甲的车,另外2天安排其他车,有3×2×2=12(种),第二类,不安排甲的车,每天都有2种选择,共有23=8(种),共计12+8=20(种).根据分步乘法计数原理,不同的用车方案种数为4×20=80.]考点2 排列问题求解排列应用问题的6种常用方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法相隔问题把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反、等价转化的方法3名女生和5名男生排成一排.(1)若女生全排在一起,有多少种排法?(2)若女生都不相邻,有多少种排法?(3)[一题多解]若女生不站两端,有多少种排法?(4)其中甲必须排在乙左边(可不邻),有多少种排法?(5)[一题多解]其中甲不站最左边,乙不站最右边,有多少种排法?[解] (1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同5名男生合在一起有6个元素,排成一排有A66种排法,而其中每一种排法中,3名女生之间又有A33种排法,因此共有A66·A33=4 320种不同排法.(2)(插空法)先排5名男生,有A55种排法,这5名男生之间和两端有6个位置,从中选取3个位置排女生,有A36种排法,因此共有A55·A36=14 400种不同排法.(3)法一(位置分析法):因为两端不排女生,只能从5名男生中选2人排,有A25种排法,剩余的位置没有特殊要求,有A66种排法,因此共有A25·A66=14 400种不同排法.法二(元素分析法):从中间6个位置选3个安排女生,有A36种排法,其余位置无限制,有A55种排法,因此共有A36·A55=14 400种不同排法.(4)8名学生的所有排列共A 88种,其中甲在乙左边与乙在甲左边的各占12,因此符合要求的排法种数为12A 88=20 160. (5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法):甲在最右边时,其他的可全排,有A 77种不同排法;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任一个上,有A 16种,其余人全排列,共有A 16·A 16·A 66种不同排法.由分类加法计数原理知,共有A 77+A 16·A 16·A 66=30 960种不同排法.法二(特殊位置法):先排最左边,除去甲外,有A 17种排法,余下7个位置全排,有A 77种排法,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960种排法.法三(间接法):8名学生全排列,共A 88种,其中,不符合条件的有甲在最左边时,有A 77种排法,乙在最右边时,有A 77种排法,其中都包含了甲在最左边,同时乙在最右边的情形,有A 66种排法.因此共有A 88-2A 77+A 66=30 960种排法.(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.1.把5件不同的产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C不相邻,则不同的摆法有________种.36 [(捆绑法和插空法的综合应用)记其余两种产品为D ,E .将A ,B 视为一个元素,先与D ,E 进行排列,有A 22A 33种方法,再将C 插入,每种排列均只有3个空位可选, 故不同的摆法共有A 22A 33×3=2×6×3=36(种).]2.(2019·衡水高三大联考)现有一圆桌,周边有标号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有________种.(用数字作答)8 [先按排甲,其选座方法有C 14种,由于甲、乙不能相邻,所以乙只能坐甲对面,而丙、丁两位同学坐另两个位置的坐法有A 22种,所以共有坐法种数为C 14·A 22=4×2=8种.]考点3 组合问题组合问题的常见类型与处理方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生当选;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.[解] (1)只有一名女生当选等价于有一名女生和四名男生当选.故共有C15·C48=350种.(2)两队长当选,共有C22·C311=165种.(3)至少有一名队长当选含有两类:只有一名队长当选,有两名队长当选.故共有C12·C411+C22·C311=825种.(或采用排除法:C513-C511=825(种)).(4)至多有两名女生当选含有三类:有两名女生当选,只有一名女生当选,没有女生当选.故选法共有C25·C38+C15·C48+C58=966种.含有附加条件的组合问题通常用直接法或间接法,应注意“至少”“最多”“恰好”等词的含义的理解.1.某单位拟安排6位员工在今年6月9日至11日值班,每天安排2人,每人值班1天.若6位员工中的甲不值9日,乙不值11日,则不同的安排方法共有( ) A.30种B.36种C.42种D.48种C[若甲在11日值班,则在除乙外的4人中任选1人在11日值班,有C14种选法,9日、10日有C24C22种安排方法,共有C14C24C22=24(种)安排方法;若甲在10日值班,乙在9日值班,余下的4人有C14C13C22种安排方法,共有12种安排方法;若甲、乙都在10日值班,则共有C24C22=6(种)安排方法.所以总共有24+12+6=42(种)安排方法.]2.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ) A.232 B.252C.472 D.484C[分两类:第一类,含有1张红色卡片,不同的取法共有C14C212=264(种);第二类,不含有红色卡片,不同的取法共有C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法有264+208=472(种).]考点4 分组、分配问题分组、分配问题是排列组合的综合问题,解题思想是先分组后分配.(1)分组问题属于“组合”问题,常见的分组方法有三种:①完全均匀分组,每组元素的个数都相等;②部分均匀分组,应注意不要重复;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,常见的分配方法有三种:①相同元素的分配问题,常用“挡板法”;②不同元素的分配问题,利用分步乘法计数原理,先分组,后分配;③有限制条件的分配问题,采用分类求解.整体均分问题国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.90 [先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法.] 本题属于整体均分问题,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A nn (n 为均分的组数),避免重复计数.部分均分问题将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有________种.(用数字作答)1 560 [把6本不同的书分成4组,每组至少1本的分法有2种.①有1组3本,其余3组每组1本,不同的分法共有C 36C 13C 12C 11A 33=20(种); ②有2组每组2本,其余2组每组1本,不同的分法共有C 26C 24A 22·C 12C 11A 22=45(种). 所以不同的分组方法共有20+45=65(种).然后把分好的4组书分给4个人,所以不同的分法共有65×A 44=1 560(种).]本题属于局部均分问题,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.(2019·淄博模拟)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京举行,为了保护各国元首的安全,将5个安保小组全部安排到指定三个区域内工作,且这三个区域每个区域至少有一个安保小组,则这样的安排方法共有( )A .96种B .100种C .124种D .150种D [因为三个区域每个区域至少有一个安保小组,所以可以把5个安保小组分成三组,有两种分组的情况:一种是1,1,3,另一种是1,2,2.当按照1,1,3来分时,共有N 1=C 15C 14C 33A 22·A 33=60(种),当按照1,2,2来分时,共有N 2=C 25C 23C 11A 22·A 33=90(种),根据分类加法计数原理知N =N 1+N 2=150种.]不等分问题(1)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.(2)把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法种数为( )A .35B .70C .165D .1 860 (1)360 (2)C [(1)将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种分法;第2步,在余下的5名教师中任取2名作为一组,有C 25种分法;第3步,余下的3名教师作为一组,有C 33种分法.根据分步乘法计数原理,共有C 16C 25C 33=60种分法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.(2)根据题意,分4种情况讨论:①没有空盒,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选3个,插入隔板,将小球分成4组,顺次对应4个盒子,有C 37=35种放法;②有1个空盒,在4个盒中任选3个,放入小球,有C 34=4种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选2个,插入隔板,将小球分成3组,顺次对应3个盒子,有C 27=21种分组方法,则有4×21=84种放法; ③有2个空盒,在4个盒中任选2个,放入小球,有C 24=6种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选1个,插入隔板,将小球分成2组,顺次对应2个盒子,有C 17=7种分组方法,则有6×7=42种方法;④有3个空盒,即将8个小球全部放进1个盒子,有4种放法.故一共有35+84+42+4=165种放法.]本题属于不等分问题,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.1.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A.18种B.24种C.36种D.72种C[1个路口3人,其余路口各1人的分配方法有C13C22A33种.1个路口1人,2个路口各2人的分配方法有C23C22A33种,由分类加法计数原理知,甲、乙在同一路口的分配方案为C13C22A33+C23C22A33=36种.]2.(2019·唐山二模)将六名教师分配到甲、乙、丙、丁四所学校任教,其中甲校至少分配两名教师,其它三所学校至少分配一名教师,则不同的分配方案共有________种.(用数字作答)660 [若甲校2人,乙、丙、丁其中一校2人,共有C26C24A33种,若甲校3人,乙、丙、丁每校1人,共有C36A33种,则不同的分配方案共有C26C24A33+C36A33=660种.]。
2021高考一轮总复习课件(北师大版):第十一章 计数原理与概率理概率文-7.ppt
走向高考 ·高考一轮总复习 ·北师大版 ·数学
2.设离散型随机变量 X 的概率分布如下:
X1 2 34
P
1 6
1 3
1 6
p
则 p 的值为( )
1
1
A.2
B.6
1
1
C.3
D.4
[答案] C
第十一章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[解析] 由分布列的性质可知 p=1-16-13-16=13.
解得
q=1± 22,又1-2q≥,q2≥0,故q=1-
2 2.
第十一章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
4.袋中有大小相同的红球 6 个、白球 5 个,从袋中每次 任意取出 1 个球,直到取出的球是白球时为止,所需要的取 球次数为随机变量 X,则 X 的可能值为( )
A.1,2,…,6 B.1,2,…,7 C.1,2,…,11 D.1,2,3,… [答案] B
第十一章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[解析] 由于抛掷一颗骰子,可能出现的点数是 1,2,3,4,5,6 这 6 种情况之一,而 X 表示抛掷两颗骰子所得点数 之和,所以 X=4=1+3=2+2,表示的随机试验结果是:一 颗是 1 点,另一颗是 3 点,或者两颗都是 2 点.
数为 p 的两点分布.
第十一章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[答案] 1.随机变量 离散型随机变量 ≥0 1 概率之和 2.CkMCCnNnN--kM 3.1-p
第十一章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
基础自测 1.抛掷两颗骰子,所得点数之和记为 X,那么 X=4 表示 的随机试验结果是( ) A.两颗都是 4 点 B.两颗都是 2 点 C.一颗是 1 点,另一颗是 3 点 D.一颗是 1 点,另一颗是 3 点,或者两颗都是 2 点 [答案] D
2023版高考数学一轮总复习11-2离散型随机变量及其分布列均值与方差课件
例 (2020山东泰安三模)某水果批发商经销某种水果(以下简称A水果),购 入价为300元/袋,并以360元/袋的价格售出,若前8小时内所购进的A水果 没有售完,则批发商将没售完的A水果以220元/袋的价格低价处理完毕 (根据经验,2小时内完全能够把A水果低价处理完,且当天不再购进).该水 果批发商根据往年的销量,统计了100天内A水果在每天的前8小时的销售 量,制成如下条形统计图.
+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机
变量X服从超几何分布.
4.离散型随机变量的均值与方差
1)均值的定义:一般地,若离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
则E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望,它反映了离散 型随机变量取值的平均水平.
2
3)=P(ξ=-3)= 1 ,P(ξ=1)=P(ξ=-1)= 3,故随机变量|ξ|的分布列为
8
8
|ξ|
1
故E(|ξ|)=1×3 +3× 1= ,3
4
42
D(|ξ|)=1
3 2
2
×
3+
4
3
3 2
2
×
=14
.故3 选B.
4
答案 B
应用 利用均值、方差进行决策 解决均值、方差实际问题的策略 1)把握“1”实质:随机变量的均值反映了随机变量取值的平均水平,方差 反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变 量,是实际生产中用于方案取舍的重要理论依据. 2)运用“2”策略: ①当均值不同时,两个随机变量取值的水平有区别,可直接对问题作出判断. ②若两随机变量的均值相同或相差不大,则可通过方差来研究两随机变 量的离散程度或者稳定程度,进行决策.
人教版高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布-第七节 正态分布
02
研考点 题型突破
题型一 正态密度曲线的运用
典例1(多选题)某工厂加工一种零件,有两种不同
的工艺选择,用这两种工艺加工一个零件所需时间
(单位:h)均近似服从正态分布,用工艺1加工一个
零件所用时间~ 1, 12 ,用工艺2加工一个零件所
B.40
C.228
D.455
[解析]由正态分布 , 可知 = , = ,∴ + = , + = ,
∴ ≤ ≤ ≈
. −.
= . , ≥ ≈
−.
= . ,
直径高于22的个数大约为 ÷ . × . = .故选D.
,
,无法比较
[对点训练1]已知随机变量服从正态分布 , 2 ,若函数 = ≤ ≤ + 1
为偶函数,则 =() C
1
2
1
2
A.− B.0C. D.1
[解析]因为函数 为偶函数,所以 − = ,即
− ≤ ≤ − + = ≤ ≤ + ,所以 =
B.曲线关于直线 = 对称
C.曲线呈现“中间高,两边低”的钟形形状
D.曲线与轴之间的面积为1
[解析]由正态曲线的特点,易知B,C,D说法正确;对于A,曲线与轴不相交,故
A错误.故选.
2.已知随机变量服从正态分布 1, 2 ,若 > 2 = 0.15,则 0 ≤ ≤ 1 =
知,当 > 时,的密度曲线与轴所围成的面积大于的密度曲线与轴所围成的面
积,即 > > > ,所以 ≤ < ≤ ,所以应选择工艺2,所以C
北师版高考总复习一轮数学精品课件 第11章计数原理、概率、随机变量及其分布 概率与统计中的综合问题
1 1 3 3
2 1 3 3
3 1 3 1
P(ξ=0)=C3 ( ) = ,P(ξ=1)=C3 ( ) = ,P(ξ=2)=C3 ( ) = ,P(ξ=3)=C3 ( ) = , ....6
2
8
2
8
2
8
2
8
所以 ξ 的分布列为
分
ξ
P
0
1
1
8
2
3
8
3
3
8
1
8
........................................................................................................................... 7 分
(1)设X表示指定的两只小白鼠中分配到对照组的只数,求X的分布列和数
学期望;
关键点:结合题意弄清楚X服从的是超几何分布还是二项分布.
(2)试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2
18.8 20.2
21.3
22.5 23.2
25.8
26.5 27.5
34.3
34.8 35.6
35.6
C47
C13 C34
P(η=1)=
C47
=
12
C23 C24
,P(η=2)=
35
C47
=
18
C33 C14
,P(η=3)=
35
C47
1
2
=
4
.
35
所以 η 的分布列为
η
P
所以 Eη=0×
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.2 排列、组合与二项式定理考点一排列、组合的基本问题1.某校根据2017版新课程标准开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A.30种B.35种C.42种D.48种2.在由数字1、2、3、4、5组成的所有没有重复数字的5位数中,大于23 145且小于43 521的数共有( )A.56个B.57个C.58个D.60个3.八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有________种安排办法.4.(2018·浙江高考)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成________个没有重复数字的四位数.(用数字作答)【解析】1.选A.按照所选的3门课程中A类的情形分两类:第一类,2门A类选修课,1门B类选修课,有种方法;第二类,1门A类选修课,2门B类选修课,有种方法,所以由分类加法计数原理得不同的选法共有+=12+18=30(种).2.选C.按照首位的大小分类:(1)开头为231的,有一个.(2)开头为23的,第三位从4,5中选一个,有种,余下的后两位,有种,共有=4个.(3)开头为2,第2位从4,5中选一个,有种,余下的后3位,有种,共有=12个.(4)开头为3,后四位由1,2,4,5全排列,有4!=24个.(5)开头为4,第二位为1,2中的一个,有2种方法,后三位有3!=6种方法,共有2×6=12个.(6)开头为43,第三位从1,2中选一个,有2种方法,后两位有2!种方法,共有2×2=4个.(7)开头为435的,只有1个,所以由分类加法计数原理得所求的数共有1+4+12+24+12+4+1=58(个).3.方法一:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用分类加法计数原理,在每类情况下,划分“乙、丙坐下”“甲坐下”“其他五人坐下”三个步骤,又要用到分步乘法计数原理,这样可有如下算法:··+··=8 640(种).方法二:采取“总方法数减去不符合题意的所有方法数”的算法.把“甲坐在前排的八人坐法数”看成“总方法数”,这个数目是·.在这种前提下,不合题意的方法是“甲坐在前排,且乙、丙坐两排的八人坐法,”这个数目是····.其中第一个因数表示甲坐在前排的方法数,表示从乙、丙中任选出一人的方法数,表示把选出的这个人安排在前排的方法数,下一个则表示乙、丙中未安排的那个人坐在后排的方法数,就是其他五人的坐法数,于是总的方法数为·-····=8 640(种). 答案:8 6404.分类讨论:第一类:不含0的,按照分步乘法计数原理: =10×3×24=720;第二类:包含0的,按照分步乘法计数原理: =10×3×3×6=540,所以一共有1 260个没有重复数字的四位数.答案:1 2601.求解有限制条件的排列问题的主要方法直接法分类法选定一个适当的分类标准,将要完成的事件分成几个类型,分别计算每个类型中的排列数,再由分类加法计数原理得出总数分步法选定一个适当的标准,将事件分成几个步骤来完成,分别计算出各步骤的排列数,再由分步乘法计数原理得出总数捆绑法相邻问题捆绑处理,即可以把相邻几个元素看作一个整体与其他元素进行排列,同时注意捆绑元素的内部排列插空法不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空中除法对于定序问题,可先不考虑顺序限制,排列后,再除以已定元素的全排列间接法对于分类过多的问题,按正难则反,等价转化的方法2.两类含有附加条件的组合问题的方法(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,用直接法分类复杂时,可用间接法求解.考点二排列、组合的综合问题【典例】1.从A,B,C,D,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为 ( )A.24B.48C.72D.1202.把20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的方法种数为________.3.对于任意正整数n,定义“n的双阶乘n!!”如下:当n为偶数时,n!!=n··……6·4·2,当n为奇数时,n!!=n··……5·3·1,现有四个结论:①(2018!!)·(2019!!)=2019!,②(2n)!!=2n,③2018!!的个位数字是8,④<,则四个结论中正确的是________.【解题导思】序号联想解题1 由“A不参加物理、化学竞赛”联想到分类:A参加,A不参加.由题意知小球没有区别,及盒子内球数不小于编号数,联想到先在2,3号盒2子里分别放上1,2个球,变成了挡板问题.3 看到双阶乘,联想到阶乘.【解析】1.选C.因为A参加时参赛方案有=48(种);A不参加时参赛方案有=24(种),所以不同的参赛方案共72种.2.先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中,即可共有C=120种方法.答案:1203.因为(2018!!)·(2019!!)=(2018×2016×…×6×4×2)×(2019×2017×…×5×3×1)=2019×2018×2017×…×5×4×3×2×1=2019!所以①是正确的.因为(2n)!!=··……6·4·2=2n··……3·2·1=2n, 所以②是正确的.因为由②知道2018!!中有因数5,也有因数2,所以个位数字是0,所以③是错误的.因为对任意正整数n,都有<,所以=,<,=,<,…,=,<,把上面的2n个式子作乘法,得<,所以两边开方得<,所以④是正确的.答案:①②④解决排列、组合的综合问题的关键点(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理作最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决.分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.(4)熟记排列数、组合数公式及其变形,准确计算.1.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为 ( )A.24B.48C.60D.72【解析】选D.分两步:第一步,先排个位,有种选择;第二步,排前4位,有种选择.由分步乘法计数原理,知有·=72个.2.某班组织文艺晚会,准备从A,B等8个节目中选出4个节目演出,要求A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为( )A.1 860B.1 320C.1 140D.1 020【解析】选C.当A,B节目中只选一个时,共有=960种演出顺序;当A,B节目都被选中时,由插空法得共有=180种演出顺序.所以一共有960+180=1140种演出顺序.3.已知i,m,n是正整数,且1<i≤m<n,求证:.【证明】(用分析法)原不等式等价于<,左边==···…·,于是只要证明<即可,联想到“糖水不等式:若0<a<b,m>0,则0<<<1”及不等式的可乘性,所以···…·<··…=,所以原不等式成立.考点三二项式定理命题精解读考什么:(1)考查二项展开式的通项及由通项求某一项的系数或常数项.(2)考查应用赋值法求某些数列的和.怎么考:求二项展开式的通项或某指定项的系数或常数项,或知道某项系数或二项式系数,反求参数的值,考查二项展开式中组合思想的应用.新趋势:结合二项展开式的特征,与数列求和或不等式等知识交汇考查二项式定理.学 1.求解二项式定理问题的关键霸好方法(1)熟记二项式定理,会用组合思想解决展开式的通项,或某些指定项.(2)熟悉二项展开式的特征,掌握赋值法解某项数列求和问题.2.交汇问题解决与数列、不等式等知识交汇问题时,先用赋值法构造求和模型,再转化为熟悉的问题.二项展开式的通项及其应用【典例】1.(2018·全国卷Ⅲ)的展开式中x4的系数为()A.10B.20C.40D.802.的展开式中常数项为( )A. B.160 C.- D.-160【解析】1.选C.展开式的通项公式为T r+1=(x 2)5-r=2r x10-3r,令10-3r=4可得r=2,则x4的系数为22=40.2.选A.的展开式的通项为T r+1=x6-r=x 6-2r,令6-2r=0,得r=3,所以展开式中的常数项是T4==.如何解决与二项展开式的通项有关的问题?提示:(1)求展开式中的特定项或其系数.可依据条件写出第k+1项,再由特定项的特点求出k 值即可.(2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k+1项,由特定项得出k值,最后求出其参数.二项式系数的性质与各项的和【典例】1.(2019·郑州模拟)若二项式的展开式的二项式系数之和为8,则该展开式所有项的系数之和为( )A.-1B.1C.27D.-272.(2019·盐城斯模拟)在的展开式中,x3的系数等于-5,则该展开式的各项的系数中最大值为( )A.5B.10C.15D.203.(2019·襄阳模拟)设(x2+1)(2x+1)8=a0+a1(x+2)+a2(x+2)2+…+a10(x+2)10,则a0+a1+a2+…+a10的值为________.【解析】1.选A.依题意得2n=8,解得n=3,取x=1,得该二项展开式每一项的系数之和为(1-2)3=-1.2.选B.的展开式的通项为T r+1=x5-r·=(-a)r x5-2r,令5-2r=3,则r=1,所以-a×5=-5,即a=1,展开式中第2,4,6项的系数为负数,第1,3,5项的系数为正数,故各项的系数中最大值为=10.3.在所给的多项式中,令x=-1可得(1+1)×(-2+1)8=a0+a1+a2+…+a10,即a0+a1+a2+…+a10=2.答案:2如何求解二项式系数或展开式系数的最值问题?提示:求解二项式系数或展开式系数的最值问题一般分两步:第一步,要弄清所求问题是“展开式系数最大”、“二项式系数最大”两者中的哪一个.第二步,若是求二项式系数的最大值,则依据(a+b)n中n的奇偶及二次项系数的性质求解.若是求展开式系数的最大值则在系数均为正值的前提下,求最大值只需解不等式组即可求得答案.二项式定理的综合应用【典例】1.(x+y)(2x-y)6的展开式中x4y3的系数为( )A.-80B.-40C.40D.802.(2019·枣阳模拟)(x2+x+y)5的展开式中x5y2的系数为( )A.10B.20C.30D.60【解析】1.选D.(2x-y)6的展开式的通项公式为T r+1=(2x)6-r(-y)r,当r=2时,T3=240x4y2,当r=3时,T4=-160x3y3,故x4y3的系数为240-160=80.2.选C.(x2+x+y)5的展开式的通项为=(x2+x)5-r·y r,令r=2,则T3=(x2+x)3y2,又(x2+x)3的展开式的通项为(x2)3-k·x k=,令6-k=5,则k=1,所以(x2+x+y)5的展开式中,x5y2的系数为=30.如何求解(a+b)m(c+d)n或(a+b+c)n展开式的某一项的系数?提示:(1)若n,m中一个比较小,可考虑把它展开得到多个,如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展开分别求解.(2)若三项能用完全平方公式,那当然比较简单;若三项不能用完全平方公式,只需根据题目特点,把“三项”当成“两项”看,再利用二项展开式的通项公式去求特定项的系数.(3)观察(a+b)(c+d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x2)5(1-x)2.(4)分别得到(a+b)n,(c+d)m的通项公式,综合考虑.1.已知展开式中,各项系数的和与各项二项式系数的和之比为64,则n等于( )A.4B.5C.6D.7【解析】选C.展开式中,各项系数的和为4n,各项二项式系数的和为2n,由已知得=2n=64,所以n=6.2.将多项式a6x6+a5x5+…+a1x+a0分解因式得,m为常数,若a5=-7,则a0=( )A.-2B.-1C.1D.2【解析】选D.因为(x+m)5的通项公式为T r+1=x5-r m r,a5x5=x·x5-1m1+(-2)x5=(5m-2)x5,所以a5=5m-2,又因为a5=-7,所以5m-2=-7,所以m=-1,所以常数项a0=(-2)×(-1)5=2.3.在的展开式中,含x5项的系数为( )A.6B.-6C.24D.-24【解析】选B.由=-+-…-+,可知只有-的展开式中含有x5,所以的展开式中含x5项的系数为-=-6.4.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.【解析】设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,得(a+1)×24=a0+a1+a2+a3+a4+a5.①令x=-1,得0=a0-a1+a2-a3+a4-a5.②①-②得16(a+1)=2(a1+a3+a5)=2×32,所以a=3.答案:31.(2019·湘潭模拟)若(1-3x)2 020=a0+a1x+…+a2 020x2 020,x∈R,则a1·3+a2·32+…+a2 020·32 020的值为( )A.22 020-1B.82 020-1C.22 020D.82 020【解析】选B.由已知,令x=0,得a0=1,令x=3,得a0+a1·3+a2·32+…+a2 020·32 020=(1-9)2 020=82 020,所以a1·3+a2·32+…+a2 020·32 020=82 020-a0=82 020-1.2.的展开式中常数项为( )A.-30B.30C.-25D.25【解析】选C.=x 2-3x +,的展开式的通项为T r+1=(-1)r,易知当r=4或r=2时原式有常数项,令r=4,T5=(-1)4,=5-30=-25.令r=2,T3=(-1)2·,故所求常数项为-3×- 11 -。