高考数学复习专题14计数原理与概率统计古典概型考点剖析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习专题14计数原理与概率统计古典概型考点剖析
古典概型
主标题:古典概型
副标题:为学生详细的分析古典概型的高考考点、命题方向以及规律总结。
关键词:古典概型,古典概型公式
难度:2
重要程度:4
考点剖析:
1.理解古典概型及其概率计算公式.
2.会计算一些随机事件所包含的基本事件数及事件发生的概率.
命题方向:
1.古典概型与统计的综合应用,是高考命题的热点,多以解答题的形式呈现,试题难度不大,多为容易题或中档题.
2.高考对古典概型与统计的综合应用的考查主要有以下几个命题角度:
(1)由频率来估计概率;
(2)由频率估计部分事件发生的概率;
(3)求方差(或均值)等.
规律总结:
4种方法——基本事件个数的确定方法
(1)列举法:(见本节考点一[方法规律]);
(2)列表法:(见本节考点一[方法规律]);
(3)树状图法:树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件个数的探求;
(4)计数原理法:如果基本事件的个数较多,列举有一定困难时,可借助于两个计数原理及排列组合知识直接计算出m,n,再运用公式求概率.
2个技巧——求解古典概型问题概率的技巧
(1)较为简单问题可直接使用古典概型的概率公式计算;
(2)较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接法,先求事件A的对立事件A的概率,再由P(A)=1-P(A)求事件A的概率.1个构建——构建不同的概率模型解决问题
(1)原则:建立概率模型的一般原则是“结果越少越好”,这就要求选择恰当的观察角
度,把问题转化为易解决的古典概型问题;
(2)作用:一方面,对于同一个实际问题,我们有时可以通过建立不同“模型”来解决,即“一题多解”,在这“多解”的方法中,再寻求较为“简捷”的解法;另一方面,我们又可以用同一种“模型”去解决很多“不同”的问题,即“多题一解”.
知识梳理
1.古典概型的两个特征
(1)试验的所有可能结果只有有限个.每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性都相同.2.古典概型的概率公式
对于古典概型,通常试验中的某一事件A 是由几个基本事件组成,如果试验的所有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为
P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n
. 3.建立古典概率模型时对基本事件的要求
(1)每次试验有且只有一个基本事件出现;
(2)基本事件的个数是有限的,并且它们的发生是等可能的.