第十一章计数原理概率随机变量及其分布列

合集下载

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

§11.8 条件概率、n 次独立重复试验与二项分布考纲展示►1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.考点1 条件概率条件概率 (1)定义设A ,B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生条件下,事件B 发生的条件概率.(2)性质①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).条件概率的性质.(1)有界性:0≤P (B |A )≤1.( )(2)可加性:如果B 和C 为互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ).( )[典题1] (1)从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数”,事件B :“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12(2)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )A.1127B.1124C.827D.924[点石成金] 条件概率的两种求解方法 (1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.考点2 事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=________,则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 也都相互独立,P (B |A )=________,P (A |B )=________.[典题2] 为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.[点石成金] 1.利用相互独立事件的概率乘法公式直接求解;2.正面计算较繁或难以入手时,可从其对立事件入手计算.在一块耕地上种植一种作物,每季种植成本为 1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.考点3 独立重复试验与二项分布独立重复试验与二项分布(1)[教材习题改编]某人抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n=⎩⎪⎨⎪⎧第n 次出现正面,-第n 次出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为________.(2)[教材习题改编]小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是________.二项分布:P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ).设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)的值是________.[典题3] [2019·湖南长沙模拟]博彩公司对2019年NBA 总决赛做了大胆地预测和分析,预测西部冠军是老辣的马刺队,东部冠军是拥有詹姆斯的年轻的骑士队,总决赛采取7场4胜制,每场必须分出胜负,场与场之间的结果互不影响,只要有一队获胜4场就结束比赛.前4场,马刺队胜利的概率为12,第5,6场马刺队因为平均年龄大,体能下降厉害,所以胜利的概率降为25,第7场,马刺队因为有多次打第7场的经验,所以胜利的概率为35.(1)分别求马刺队以4∶0,4∶1,4∶2,4∶3胜利的概率及总决赛马刺队获得冠军的概率; (2)随机变量X 为分出总冠军时比赛的场数,求随机变量X 的分布列.[点石成金] 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P (X =k )=C k n p k(1-p )n -k的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.[方法技巧] 1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P ABP A=n AB n A ,其中,在实际应用中P (B |A )=n ABn A是一种重要的求条件概率的方法.2.判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.3.n次独立重复试验中,事件A恰好发生k次可看作是C k n个互斥事件的和,其中每一个事件都可看作是k个A事件与n-k个A事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.[易错防范] 1.相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).2.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.真题演练集训1.[2018·重庆模拟]投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432C.0.36 D.0.3122.[2018·天津模拟]某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75C.0.6 D.0.45课外拓展阅读误用“二项分布与超几何分布”二项分布和超几何分布是两类重要的概率分布模型,这两种分布存在着很多的相似之处,在应用时应注意各自的适用条件和情境,以免混用出错.[典例1] 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.现在在总共8小块地中,随机选4小块地种植品种甲,另外4小块地种植品种乙.种植完成后若随机选出4块地,其中种植品种甲的小块地的数目记为X,求X的分布列和数学期望.[思路分析]判断分布的类型→确定X的取值及其概率→列出分布列并求数学期望易错提示本题容易错误地得到X 服从二项分布,每块地种植甲的概率为12,故X ~B (4,0.5).错误的根源在于每块地种植甲或乙不是相互独立的,它们之间是相互制约的,无论怎么种植都要保证8块地中有4块种植甲,4块种植乙,事实上X 应服从超几何分布.如果将题目改为:在8块地中,每块地要么种植甲,要么种植乙,那么在选出的4块地中种植甲的数目为X ,则这时X ~B (4,0.5)(这时这8块地种植的方法总数为28,会出现所有地都种植一种作物的情况,而题目要求4块地种植甲,4块地种植乙,其方法总数为C 48).[典例2] 某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.易错提示本题容易错误地得到甲、乙两考生正确完成的题数均服从二项分布,实际上题目中已知甲、乙两考生按照题目要求独立完成全部实验操作,甲考生正确完成的题数服从超几何分布,乙考生正确完成的题数服从二项分布.。

60 高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第二节 排列与组合)

60 高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第二节 排列与组合)

第二节排列与组合1.排列、组合的定义A m n=n(n-1)(n-2)…(n-m+1)=n!n-m!C m n=A m nA m m=n n-1n-2…n-m+1m!(1)C m n=C n-mn:从n个不同元素中取出m个元素的方法数等于取出剩余n-m个元素的方法数.(2)C m n+C m-1n=C m n+1:从n+1个不同元素中取出m个元素可分以下两种情况:①不含特殊元素A有C m n种方法;②含特殊元素A有C m-1n种方法.考点一排列问题[典例精析]有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.[解](1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).[解题技法]求解排列应用问题的6种主要方法[题组训练]1.(2019·太原联考)高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则不同排法的种数是()A.1 800B.3 600C.4 320D.5 040解析:选B先排除舞蹈节目以外的5个节目,共A55种,再把2个舞蹈节目插在6个空位中,有A26种,所以共有A55A26=3 600(种).2.(2019·石家庄模拟)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个解析:选C①当千位上的数字为4时,满足条件的四位数有A34=24(个);②当千位上的数字为3时,满足条件的四位数有A34=24(个).由分类加法计数原理得满足条件的四位数共有24+24=48(个),故选C.3.将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有()A.1 108种B.1 008种C.960种D.504种解析:选B将丙、丁两人进行捆绑,看成一人.将6人全排列有A22A66种排法;将甲排在排头,有A22A55种排法;乙排在排尾,有A22A55种排法;甲排在排头,乙排在排尾,有A22A44种排法.则甲不能在排头,乙不能在排尾,丙、丁两人必须相邻的不同排法共有A22A66-A22A55-A22A55+A22A44=1 008(种).考点二组合问题[典例精析]某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同取法有多少种?(2)其中某一种假货不能在内,不同取法有多少种?(3)恰有2种假货在内,不同取法有多少种?(4)至少有2种假货在内,不同取法有多少种?(5)至多有2种假货在内,不同取法有多少种?[解](1)从余下的34种商品中,选取2种有C234=561(种)取法,所以某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984(种)取法.所以某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100(种)取法.所以恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).所以至少有2种假货在内的不同的取法有2 555种.(5)法一:(间接法)选取3种商品的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.法二:(直接法)共有选取方式C320+C220C115+C120C215=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.[解题技法]组合问题的2类题型及求解方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外的元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.[题组训练]1.(2018·南宁二中、柳州高中第二次联考)从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个相邻,则不同的选法种数是()A.72B.70C.66D.64解析:选D从{1,2,3,…,10}中选取三个不同的数,恰好有两个数相邻,共有C12·C17+C17·C16=56种选法,三个数相邻共有C18=8种选法,故至少有两个数相邻共有56+8=64种选法.2.(2019·辽宁五校协作体联考)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.那么不同的搜寻方案有()A.10种B.40种C.70种D.80种解析:选B若Grace不参与任务,则需要从剩下的5位小孩中任意挑出1位陪同,有C15种挑法,再从剩下的4位小孩中挑出2位搜寻远处,有C24种挑法,最后剩下的2位小孩搜寻近处,因此一共有C15C24=30种搜寻方案;若Grace参与任务,则其只能去近处,需要从剩下的5位小孩中挑出2位搜寻近处,有C25种挑法,剩下3位小孩去搜寻远处,因此共有C25=10种搜寻方案.综上,一共有30+10=40种搜寻方案.3.(2018·全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故共有C 36-C 34=20-4=16(种).答案:16考点三 分组、分配问题考法(一) 整体均分问题[例1] 国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.[解析] 先把6个毕业生平均分成3组,有C 26C 24C 22A 33=15(种)方法.再将3组毕业生分到3所学校,有A 33=6(种)方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90(种)分派方法. [答案] 90考法(二) 部分均分问题[例2] 有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.[解析] 先把4名学生分为2,1,1共3组,有C 24C 12C 11A 22=6(种)分法,再将3组对应3个学校,有A 33=6(种)情况,则共有6×6=36(种)不同的保送方案.[答案] 36考法(三) 不等分问题[例3] 若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] 将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法;第2步,在余下的5名教师中任取2名作为一组,有C 25种取法;第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.[答案] 360[题组训练]1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种解析:选D 因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C 24C 12C 11A 22=6种,再分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36(种).2.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有______种.解析:5名水暖工去3个不同的居民小区,每名水暖工只去一个小区,且每个小区都要有人去检查,5名水暖工分组方案为3,1,1和1,2,2,则分配的方案共有⎝⎛⎭⎫C 35C 122+C 15C 242·A 33=150(种).答案:150 考点四 排列、组合的综合问题[典例精析](1)从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.300B.216C.180D.162(2)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个.(用数字作答)[解析] (1)分两类:第一类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 23·C 22·A 44=72(个)符合要求的四位数;第二类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 12·C 23·(A 44-A 33)=108(个)符合要求的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个).(2)当个位、十位和百位上的数字为三个偶数时,若选出的三个偶数含有0,则千位上把剩余数字中任意一个放上即可,方法数是C 23A 33C 14=72;若选出的三个偶数不含0,则千位上只能从剩余的非0数字中选一个放上,方法数是A 33C 13=18,故这种情况下符合要求的四位数共有72+18=90(个).当个位、十位和百位上的数字为一个偶数、两个奇数时,若选出的偶数是0,则再选出两个奇数,千位上只要在剩余数字中选一个放上即可,方法数为C23A33C14=72;若选出的偶数不是0,则再选出两个奇数后,千位上只能从剩余的非0数字中选一个放上,方法数是C13 C23A33C13=162,故这种情况下符合要求的四位数共有72+162=234(个).根据分类加法计数原理,可得符合要求的四位数共有90+234=324(个).[答案](1)C(2)324[解题技法]解决排列、组合综合问题的方法(1)仔细审题,判断是组合问题还是排列问题,要按元素的性质分类,按事件发生的过程进行分步.(2)以元素为主时,先满足特殊元素的要求,再考虑其他元素;以位置为主时,先满足特殊位置的要求,再考虑其他位置.(3)对于有附加条件的比较复杂的排列、组合问题,要周密分析,设计出合理的方案,一般先把复杂问题分解成若干个简单的基本问题,然后应用分类加法计数原理或分步乘法计数原理来解决,一般遵循先选后排的原则.[题组训练]1.(2019·广州调研)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.36种B.24种C.22种D.20种解析:选B根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法.2.(2019·成都诊断)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为________.(用数字作答)解析:根据题意,分2种情况讨论,若甲、乙之中只有一人参加,有C12·C46·A55=3 600(种);若甲、乙两人都参加,有C22·A36·A=241 440(种).则不同的安排种数为3 600+1 440=5 040.答案:5 040[课时跟踪检测]A级1.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16B.18C.24D.32解析:选C将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)方法,再将捆绑在一起的4个车位插入4个空当中,有4种方法,故共有4×6=24(种)方法.2.(2019·惠州调研)旅游体验师小明受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为()A.24B.18C.16D.10解析:选D分两种情况,第一种:最后体验甲景区,则有A33种可选的路线;第二种:不在最后体验甲景区,则有C12·A22种可选的路线.所以小李可选的旅游路线数为A33+C12·A22=10.3.(2019·开封模拟)某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为()A.6B.12C.18D.19解析:选D从六科中选考三科的选法有C36种,其中不选物理、政治、历史中任意一科的选法有1种,因此学生甲的选考方法共有C36-1=19种.4.(2019·沈阳教学质量监测)若4个人按原来站的位置重新站成一排,恰有1个人站在自己原来的位置,则不同的站法共有()A.4种B.8种C.12种D.24种解析:选B将4个人重排,恰有1个人站在自己原来的位置,有C14种站法,剩下3人不站原来位置有2种站法,所以共有C14×2=8种站法.5.(2018·甘肃二诊)某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有()A.18种B.24种C.36种D.48种解析:选C若甲、乙抢的是一个6元和一个8元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个6元和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个8和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22C23=6种;若甲、乙抢的是两个6元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A23=6种,根据分类加法计数原理可得,共有12+12+6+6=36种情况.6.(2019·南昌调研)某校毕业典礼上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校毕业典礼节目演出顺序的编排方案共有()A.120种B.156种C.188种D.240种解析:选A记演出顺序为1~6号,按甲的编排进行分类,①当甲在1号位置时,丙、丁相邻的情况有4种,则有C14A22A33=48种;②当甲在2号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36种;③当甲在3号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36种.所以编排方案共有48+36+36=120种.7.从5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为()A.48B.72C.90D.96解析:选D由于甲不参加生物竞赛,则安排甲参加另外3场竞赛或甲不参加任何竞赛.①当甲参加另外3场竞赛时,共有C13A34=72种选择方案;②当甲学生不参加任何竞赛时,共有A44=24种选择方案.综上所述,所有参赛方案有72+24=96(种).8.某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课方案的种数是()A.16B.24C.8D.12解析:选A根据题意,分三步进行分析,①要求语文与化学相邻,将语文和化学看成一个整体,考虑其顺序,有A22=2种情况;②将这个整体与英语全排列,有A22=2种情况,排好后,有3个空位;③数学课不排第一节,有2个空位可选,在剩下的2个空位中任选1个,安排物理,有2种情况,则数学、物理的安排方法有2×2=4种,则不同排课方案的种数是2×2×4=16.9.(2019·洛阳第一次统考)某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法有________种.(用数字作答)解析:第一步,选2名同学报名某个社团,有C 23C 14=12种报法;第二步,从剩余的3个社团里选一个社团安排另一名同学,有C 13C 11=3种报法.由分步乘法计数原理得共有12×3=36种报法.答案:3610.(2018·莆田期中)某学校需从3名男生和2名女生中选出4人,分派到甲、乙、丙三地参加义工活动,其中甲地需要选派2人且至少有1名女生,乙地和丙地各需要选派1人,则不同的选派方法有________种.(用数字作答)解析:由题设可分两类:一是甲地只选派1名女生,先考虑甲地有C 12C 13种情形,后考虑乙、丙两地,有A 23种情形,共有C 12C 13A 23=36种情形;二是甲地选派2名女生,则甲地有C 22种情形,乙、丙两地有A 23种情形,共有C 22A 23=6种情形.由分类加法计数原理可知共有36+6=42种情形.答案:4211.(2018·南阳二模)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有______种.(用数字作答)解析:根据题意,对于A ,B 两个方格,可在1,2,3,4中任选2个,大的放进A 方格,小的放进B 方格,有C 24=6种情况,对于C ,D 两个方格,每个方格有4种情况,则共有4×4=16种情况,则不同的填法共有16×6=96种.答案:96B 级1.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种 解析:选A 将4名学生均分为2个小组共有C 24C 22A 22=3(种)分法;将2个小组的同学分给2名教师共有A 22=2(种)分法;最后将2个小组的人员分配到甲、乙两地有A 22=2(种)分法.故不同的安排方案共有3×2×2=12(种).2.(2019·马鞍山模拟)某学校有5位教师参加某师范大学组织的暑期骨干教师培训,现有5个培训项目,每位教师可任意选择其中一个项目进行培训,则恰有两个培训项目没有被这5位教师中的任何一位教师选择的情况数为( )A.5 400B.3 000C.150D.1 500解析:选D 分两步: 第一步:从5个培训项目中选取3个,共C 35种情况;第二步:5位教师分成两类:①选择选出的3个培训项目的教师人数分别为1人,1人,3人,共C 35C 12C 11A 22种情况;②选择选出的3个培训项目的教师人数分别为1人,2人,2人,共C 25C 23C 11A 22种情况.故选择情况数为C 35⎝⎛⎭⎫C 35C 12C 11A 22+C 25C 23C 11A 22A 33=1 500(种). 3.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子中,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是( )A.40B.60C.80D.100解析:选A 根据题意,有且只有三个盒子的编号与放入的小球编号相同,在六个盒子中任选3个,放入与其编号相同的小球,有C 36=20种选法,剩下的三个盒子的编号与放入的小球编号不相同,假设这三个盒子的编号为4,5,6,则4号小球可以放入5,6号盒子,有2种选法,剩下的2个小球放入剩下的两个盒子,有1种情况,则不同的放法总数是20×2×1=40.4.(2019·赣州联考)将标号分别为1,2,3,4,5,6的6个小球放入3个不同的盒子中.若每个盒子放2个,其中标号为1,2的小球放入同一盒子中,则不同的放法共有( )A.12种B.16种C.18种D.36种解析:选C 先将标号为1,2的小球放入盒子,有3种情况;再将剩下的4个球平均放入剩下的2个盒子中,共有C 24·C 222!·A 22=6(种)情况,所以不同的放法共有3×6=18(种). 5.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有__________种.解析:五个元素没有限制全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得这样的排列数有A 55A 33×2=40(种). 答案:406.如图,∠MON 的边OM 上有四点A 1,A 2,A 3,A 4,ON 上有三点B 1,B 2,B 3,则以O ,A 1,A 2,A 3,A 4,B 1,B 2,B 3为顶点的三角形个数为________.解析:用间接法.先从这8个点中任取3个点,最多构成三角形C 38个,再减去三点共线的情形即可.共有C 38-C 35-C 34=42(个).答案:427.将7个相同的小球放入4个不同的盒子中.(1)不出现空盒时的放入方式共有多少种?(2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C36=20种不同的放入方式.(2)每种放入方式相当于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C310=120种不同的放入方式.。

新高考数学一轮复习第十一章计数原理概率随机变量及其分布:离散型随机变量及其分布列pptx课件人教B版

新高考数学一轮复习第十一章计数原理概率随机变量及其分布:离散型随机变量及其分布列pptx课件人教B版

【解析】选B.由分布列的性质知2q2+ 11 -3q+ 1 =1,解得q=1或q= 1 ,
6
6
2
又因为2q2<1,0< 11 3q <1,所以舍去q=1,
6
所以q= 1 .
2
3.(选修2-3 P47习题2-1BT2改编)设随机变量X的概率分布列为
X
1
2
3
4
P
1
m
1
1
3
4
6
则P(|X-3|=1)=________.
④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机 变量的是 ( ) A.①② B.①③ C.①④ D.①②④
2.若随机变量X的概率分布列为
X
x1
x2
P
p1
p2
且p1=
1 2
p2,则p1等于
(
)
A. 1
B. 1
C. 1
D. 1
2
3
4
6
3.某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加
n
pi
=1.
i1
2.常见的两类分布列 (1)两点分布: 若随机变量X服从两点分布,即其分布列为
X
0
1
P
_1_-_p_
p
其中p= _P_(_X_=_1_)_称为成功概率.
(2)超几何分布
在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=
C C k nk M NM

CnN
k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.
【解析】选C.因为P(X=1)= 1 ,所以A,B不正确;

高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布 第2节 排列与组合课件 理 新人教B版

高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布 第2节 排列与组合课件 理 新人教B版

基础诊 断
考点突 破
@《创新设 计》
(4)(捆绑法)将女生看作一个整体与 3 名男生一起全排列,有 A44种方法,再将女生全 排列,有 A44种方法,共有 A44·A44=576(种). (5)(插空法)先排女生,有 A44种方法,再在女生之间及首尾 5 个空位中任选 3 个空位 安排男生,有 A35种方法,共有 A44·A35=1 440(种).
@《创新设 计》
第2节 排列与组合
基础诊 断
考点突 破
@《创新设 计》
最新考纲 1.理解排列、组合的概念;2.能利用计数原理推导 排列数公式、组合数公式;3.能解决简单的实际问题.
基础诊 断
考点突 破
@《创新设 计》
1.排列与组合的概念
知识梳 理
名称 排列 组合
定义
从n个不同元素 按照一__定__的__顺__序____排 成一列
基础诊 断
考点突 破
3.排列数、组合数的公式及性质 (1)Amn =_____n_(_n_-___1_)_(_n__-__2__)…___(_n_-___m__+=(1)n-n!m)!.
公式 (2)Cmn =AAmmnm=n(n-1)(n-m2!)…(n-m+1)
n! =___m_!__(__n_-__m__)__!___ (n,m∈N+,且 m≤n).特别地 C0n=1
名参加某项活动,则男女生都有的选法种数是( )
A.18
B.24
C.30
D.36
基础诊 断
考点突 破
@《创新设 计》
解析 法一 选出的 3 人中有 2 名男同学 1 名女同学的方法有 C24C13=18 种,选出 的 3 人中有 1 名男同学 2 名女同学的方法有 C14C23=12 种,故 3 名学生中男女生都 有的选法有 C24C13+C14C23=30 种. 法二 从 7 名同学中任选 3 名的方法数,再除去所选 3 名同学全是男生或全是女生 的方法数,即 C37-C34-C33=30. 答案 C

2023年高考数学(理科)一轮复习——离散型随机变量及其分布列

2023年高考数学(理科)一轮复习——离散型随机变量及其分布列
索引
感悟提升
分布列性质的两个作用 (1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性. (2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机 变量在某个范围内的概率.
索引
考点二 离散型随机变量的分布列
例1 (12分)某市某超市为了回馈新老顾客,决定在2022年元旦来临之际举行 “庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活 动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小 组提供的方案获得了征用.方案如下:将一个4×4×4的正方体各面均涂上红色, 再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记 它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.
索引
6.(2021·郑州检测)设随机变量X的概率分布列为
X1 2 34
P
1 3
m
1 4
1 6
5 则P(|X-3|=1)=___1_2____.
解析 由13+m+14+16=1,解得 m=14, P(|X-3|=1)=P(X=2)+P(X=4)=14+16=152.
索引
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
索引
P(ξ=1)=CC13·C29 16=1386=12, P(ξ=2)=CC23·C29 06=336=112.
所以ξ的分布列为
ξ 012
P
5 12
1 2
1 12
索引
感悟提升
1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超 几何分布的特征是: (1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查 某类个体数X的概率分布. 2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古 典概型.

高考数学一轮复习第十一章计数原理概率随机变量及其分布第二节排列与组合课件理

高考数学一轮复习第十一章计数原理概率随机变量及其分布第二节排列与组合课件理

(4)排列定义规定给出的 n 个元素各不相同,并且
只研究被取出的元素也各不相同的情况.也就是说,
如果某个元素已被取出,则这个元素就不再取
了.( )
(5)C22+C23+C24+…+C2n=C3n+1.(
)
答案:(1)× (2)× (3)× (4)√ (5)√
2.用数字 1、2、3、4、5 组成的无重复数字的四 位偶数的个数为( )
当个位、十位和百位上的数字为一个偶数、两 个奇数时,若选出的偶数是 0,则再选出两个奇数, 千位上只要在剩余数字中选一个放上即可,方法数 为 C23A33C14=72;若选出的偶数不是 0,则再选出两 个奇数后,千位上只能从剩余的非 0 数字中选一个 放上,方法数是 C13C23A33C13=162.故这种情况下符合 要求的四位数共有 72+162=234(个).
4.将某师范大学 4 名大四学生分成 2 人一组,安排 到 A 城市的甲、乙两所中学进行教学实习,并推选甲校 张老师、乙校李老师作为指导教师,则不同的实习安排方 案共有________种.
解析:采取“学校”选“人”的思路,则不同的 实习安排方案有 C24C22=6 种.
答案:6
5.方程 3A3x=2A2x+1+6A2x的解为________. 解析:由排列数公式可知 3x(x-1)(x-2)=2(x+1)x+6x(x-1), ∵x≥3 且 x∈N*, ∴3(x-1)(x-2)=2(x+1)+6(x-1), 即 3x2-17x+10=0,解得 x=5 或23(舍去),∴x=5.
[典题 2] (1)若从 1,2,3,…,9 这 9 个整数中同时取 4 个不同的数,其和为偶数,则不同的取法的种数是( )
A.60 种 B.63 种 C.65 种 D.66 种 (2)要从 12 人中选出 5 人去参加一项活动,A,B,C 三人必须入选,则有________种不同选法.

2022届高考一轮复习第11章计数原理概率随机变量及其分布第4节随机事件的概率课时跟踪检测理含解

2022届高考一轮复习第11章计数原理概率随机变量及其分布第4节随机事件的概率课时跟踪检测理含解

第十一章 计数原理、概率、随机变量及其分布第四节 随机事件的概率A 级·基础过关 |固根基|1.如果事件A 与B 是互斥事件,且事件A∪B 发生的概率是0.64,事件B 发生的概率是事件A 发生的概率的3倍,则事件A 发生的概率为( )A .0.64B .0.36C .0.16D .0.84解析:选C 设P(A)=x ,则P(B)=3x ,所以P(A∪B)=P(A)+P(B)=x +3x =0.64,解得x =0.16,故选C .2.(2019届西安五校模拟)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,如果事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡解析:选A “2张全是移动卡”的对立事件是“2张不全是移动卡”,即至多有一张移动卡. 3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13 B .12 C .23D .34解析:选C 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P=23.4.从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .310B .15C .12D .35解析:选A 从1,2,3,4,5这5个数中任取3个数,共有10种情况,其中三个数可作为三角形边长的有(2,3,4),(2,4,5),(3,4,5)3种情况,故所求概率P =310.故选A .5.(2019届湖南长沙模拟)同时掷3枚硬币,至少有1枚正面向上的概率是( ) A .78 B .58 C .38D .18解析:选A 由题意知本题是一个等可能事件的概率,试验发生包含的事件是将1枚硬币连续抛掷三次,共有8种结果,满足条件的事件的对立事件是3枚硬币都是背面向上,有1种结果,所以至少一枚正面向上的概率是1-18=78.故选A .6.(2019年全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16 B .14 C .13D .12解析:选D 将两位男同学分别记为A 1,A 2,两位女同学分别记为B 1,B 2,则四位同学排成一列,情况有A 1A 2B 1B 2,A 1A 2B 2B 1,A 2A 1B 1B 2,A 2A 1B 2B 1,A 1B 1A 2B 2,A 1B 2A 2B 1,A 2B 1A 1B 2,A 2B 2A 1B 1,B 1A 1A 2B 2,B 1A 2A 1B 2,B 2A 1A 2B 1,B 2A 2A 1B 1,A 1B 1B 2A 2,A 1B 2B 1A 2,A 2B 1B 2A 1,A 2B 2B 1A 1,B 1B 2A 1A 2,B 1B 2A 2A 1,B 2B 1A 1A 2,B 2B 1A 2A 1,B 1A 1B 2A 2,B 1A 2B 2A 1,B 2A 1B 1A 2,B 2A 2B 1A 1,共有24种,其中两位女同学相邻的有12种,所以所求概率P =12.故选D .7.(2019年全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .15解析:选B 设3只测量过某项指标的兔子为A ,B ,C ,另2只兔子为a ,b ,从这5只兔子中随机取出3只,则基本事件共有10种,分别为(A ,B ,C),(A ,B ,a),(A ,B ,b),(A ,C ,a),(A ,C ,b),(A ,a ,b),(B ,C ,a),(B ,C ,b),(B ,a ,b),(C ,a ,b),其中“恰有2只测量过该指标”的取法有6种,分别为(A ,B ,a),(A ,B ,b),(A ,C ,a),(A ,C ,b),(B ,C ,a),(B ,C ,b),因此所求的概率为610=35,故选B . 8.(2019届云南质检)在2,0,1,8这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A .34B .58C .12D .14解析:选C 分析题意可知,共有(0,1,2),(0,2,8),(1,2,8),(0,1,8)4种取法,符合题意的取法有2种,故所求概率P =12.9.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是( )A .16B .13C .12D .38解析:选 C 将两张卡片排在一起组成两位数,所组成的两位数有12,13,20,21,30,31,共6个,两位数为奇数的有13,21,31,共3个,故所组成的两位数为奇数的概率为36=12.10.(2019届银川模拟)已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为13,则甲胜的概率和甲不输的概率分别为( )A .16,16 B .12,23 C .16,23D .23,12解析:选C 因为“甲胜”是“和棋或乙胜”的对立事件,所以甲胜的概率为1-12-13=16.设“甲不输”为事件A ,则A 可看作是“甲胜”与“和棋”这两个互斥事件的和事件,所以P(A)=16+12=23(或设“甲不输”为事件A ,则A ⎭⎪⎫可看作是“乙胜”的对立事件,所以P (A )=1-13=23. 11.(2019届吉林模拟)从分别写有0,1,2,3,4的五张卡片中取出一张卡片.记下数字后放回,再从中取出一张卡片,则两次取出的卡片上的数字之和恰好等于4的概率是________.解析:从0,1,2,3,4五张卡片中取出两张卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),共5种,所以数字之和恰好等于4的概率是P =15.答案:1512.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔 4 000元”,由已知,得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.13.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率; (3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A 的学生有27+3=30(人),仅使用B 的学生有24+1=25(人),A ,B 两种支付方式都不使用的学生有5人,故样本中A ,B 两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A ,B 两种支付方式都使用的人数为40100×1 000=400.(2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则P(C)=125=0.04.(3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 由(2)知,P(E)=0.04.可以认为有变化.理由如下:因为P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化,所以可以认为有变化.B 级·素养提升 |练能力|14.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:选B 这批米内夹谷为28254×1 534≈169(石),故选B .15.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b),n =(1,2),则向量m 与向量n 不共线的概率是( )A .16B .1112C .112D .118解析:选B 若m 与n 共线,则2a -b =0,即2a =b.(a ,b)的可能情况有36种,符合2a =b 的有(1,2),(2,4),(3,6),共3种,故共线的概率是336=112,从而不共线的概率是1-112=1112.16.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P(A)=2-a ,P(B)=3a -4,则实数a 的取值范围为( )A .⎝ ⎛⎦⎥⎤43,32B .⎝ ⎛⎦⎥⎤1,32C .⎝ ⎛⎭⎪⎫43,32 D .⎝ ⎛⎭⎪⎫12,43 解析:选A 由题意,知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,即⎩⎪⎨⎪⎧0<2-a<1,0<3a -4<1,2a -2≤1,解得43<a ≤32,所以实数a 的取值范围为⎝ ⎛⎦⎥⎤43,32.故选A .17.(2019届合肥模拟)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率为( )A .13B .23C .14D .34解析:选B 由题意知,此人从小区A 前往小区H 的所有最短路径为:A→B→C→E→H,A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,A→D→F→G→H,共6条.记“此人经过市中心O”为事件M ,则M 包含的基本事件为:A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,共4个,所以P(M)=46=23,即他经过市中心O 的概率为23.。

高考数学第11章计数原理、概率、随机变量及其分布第1节两个计数原理、排列与组合课件理北师大版

高考数学第11章计数原理、概率、随机变量及其分布第1节两个计数原理、排列与组合课件理北师大版

公 Amn =n(n-1)(n-2)…(n-m+ 式 1)=n-n!m!
性 Ann=_n_!__, 质 0!=_1__
Cmn =AAmnmm= nn-1n-2…n-m+1
m!
Cmn =Cnn-m, Cmn +Cmn -1=Cmn+1
11
一、思考辨析(正确的打“√”,错误的打“×”)
座,因此任何两人不相邻的坐法种数为 A34=4×3×2=24.]
15
4.五名学生报名参加四项体育比赛,每人限报一项,则不同的 报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不 并列),则获得冠军的可能性有________种. (用数字作答)
45 54[五名学生参加四项体育比赛,每人限报一项,可逐个学 生落实,每个学生有 4 种报名方法,共有 45 种不同的报名方法.五 名学生争夺四项比赛的冠军,可对 4 个冠军逐一落实,每个冠军有 5 种获得的可能性,共有 54 种获得冠军的可能性.]
(2)从 E 到 G 需要分两步完成:先从 E 到 F,再从 F 到 G.从 F 到 G 的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横 向路径即可确定,故从 F 到 G 的最短路径共有 3 条.如图,从 E 到 F 的最短路径有两类:先从 E 到 A,再从 A 到 F,或先从 E 到 B,再
7
课 前自 主 回顾
8
1.分类加法计数原理 完成一件事,可以有 n 类办法,在第一类办法中有 m1 种方法, 在第二类办法中有 m2 种方法,…,在第 n 类办法中有 mn 种方法.那 么,完成这件事共有_N_=__m_1_+__m_2_+__…__+__m__n 种方法.(也称加法原理) 2.分步乘法计数原理 完成一件事需要经过 n 个步骤,缺一不可,做第一步有 m1 种方 法,做第二步有 m2 种方法,…,做第 n 步有 mn 种方法.那么,完 成这件事共有__N_=__m_1_×__m__2×__…__×__m__n __种方法.

11.计数原理与概率、随机变量及其分布

11.计数原理与概率、随机变量及其分布

第十一章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理两个计数原理(1)每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事.(2)各类方法之间是互斥的、并列的、独立的.(1)每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.(2)各步之间是相互依存的,并且既不能重复也不能遗漏.二、常用结论1.完成一件事可以有n类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.2.完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.考点一分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.答案:362.如图,从A 到O 有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:53.若椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.答案:204.如果一个三位正整数如“a 1a 2a 3”满足a 1<a 2且a 2>a 3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a 2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a 2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a 2=4,满足条件的“凸数”有3×4=12(个),…,若a 2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).答案:240考点二 分步乘法计数原理[典例精析](1)已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P可表示坐标平面上第二象限的点的个数为()A.6B.12C.24D.36(2)有6名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.[解析](1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).[答案](1)A(2)120[解题技法]利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.[题组训练]1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:632.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:18 6考点三两个计数原理的综合应用[典例精析](1)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72D.96(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36D.24[解析](1)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.(2)第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.[答案](1)C(2)D(3)B[解题技法]1.利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.2.涂色、种植问题的解题关注点和关键(1)关注点:首先分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素.(2)关键:是对每个区域逐一进行,选择下手点,分步处理.[题组训练]1.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有________种.解析:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).答案:722.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案:40[课时跟踪检测]A级1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15D.21解析:选B当x=2时,x≠y,点的个数为1×7=7.当x≠2时,∵P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).2.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504B.210C.336D.120解析:选A分三步,先插第一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.10解析:选C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析:选A将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C12=2(种).共有2×2×2×2×2=32(个)子集.5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8解析:选D 当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12,13,23时,也有4个.故共有8个等比数列.6.将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法为( )A.6种B.12种C.18种D.24种解析:选A 根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A 或B 处,若8放在B 处,则可以从5,6,7这3个数字中选一个放在C 处,剩余两个位置固定,此时共有3种方法,同理,若8放在A 处,也有3种方法,所以共有6种方法.7.(2019·郴州模拟)用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A.4 320种B.2 880种C.1 440种D.720种 解析:选A 分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有6×5×4×3×3×4=4 320(种)不同的涂色方法.8.(2019·惠州调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A.18个B.15个C.12个D.9个解析:选B 由题意知,这个四位数的百位数,十位数,个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共有3+6+3+3=15(个).9.在某一运动会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.故安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).故安排这8人的方式共有24×120=2 880(种).答案:2 88010.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种(用数字作答).解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8B级1.把3封信投到4个信箱,所有可能的投法共有()A.24种B.4种C.43种D.34种解析:选C第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种投法.2.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个解析:选B由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).3.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()A.24种B.72种C.84种D.120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按A―→B―→C―→D顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有4×3×2×2=48种不同的涂法.(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有4×3×1×3=36种不同的涂法.故共有48+36=84种不同的涂色方法.4.(2018·湖南十二校联考)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数是2×10×5×3=300.答案:300-3,-2,-1,0,1,2,若a,b,c∈M,则:5.已知集合M={}(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.第二节排列与组合1.排列、组合的定义2.排列数、组合数的定义、公式、性质正确理解组合数的性质:从n个不同元素中取出m个元素的方法数等于取出剩余n-m个元素的(1)C m n=C n-mn方法数.=C m n+1:从n+1个不同元素中取出m个元素可分以下两种情况:①不含(2)C m n+C m-1n种方法.特殊元素A有C m n种方法;②含特殊元素A有C m-1n考点一排列问题[典例精析]有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.[解](1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).[解题技法]求解排列应用问题的6种主要方法[题组训练]1.(2019·太原联考)高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则不同排法的种数是()A.1 800B.3 600C.4 320D.5 040解析:选B先排除舞蹈节目以外的5个节目,共A55种,再把2个舞蹈节目插在6个空位中,有A26种,所以共有A55A26=3 600(种).2.(2019·石家庄模拟)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个解析:选C①当千位上的数字为4时,满足条件的四位数有A34=24(个);②当千位上的数字为3时,满足条件的四位数有A34=24(个).由分类加法计数原理得满足条件的四位数共有24+24=48(个),故选C.3.将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有()A.1 108种B.1 008种C.960种D.504种解析:选B将丙、丁两人进行捆绑,看成一人.将6人全排列有A22A66种排法;将甲排在排头,有A22A55种排法;乙排在排尾,有A22A55种排法;甲排在排头,乙排在排尾,有A22A44种排法.则甲不能在排头,乙不能在排尾,丙、丁两人必须相邻的不同排法共有A22A66-A22A55-A22A55+A22A44=1 008(种).考点二组合问题[典例精析]某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同取法有多少种?(2)其中某一种假货不能在内,不同取法有多少种?(3)恰有2种假货在内,不同取法有多少种?(4)至少有2种假货在内,不同取法有多少种?(5)至多有2种假货在内,不同取法有多少种?[解](1)从余下的34种商品中,选取2种有C234=561(种)取法,所以某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984(种)取法.所以某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100(种)取法.所以恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).所以至少有2种假货在内的不同的取法有2 555种.(5)法一:(间接法)选取3种商品的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.法二:(直接法)共有选取方式C320+C220C115+C120C215=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.[解题技法]组合问题的2类题型及求解方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外的元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.[题组训练]1.(2018·南宁二中、柳州高中第二次联考)从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个相邻,则不同的选法种数是()A.72B.70C.66D.64解析:选D从{1,2,3,…,10}中选取三个不同的数,恰好有两个数相邻,共有C12·C17+C17·C16=56种选法,三个数相邻共有C18=8种选法,故至少有两个数相邻共有56+8=64种选法.2.(2019·辽宁五校协作体联考)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.那么不同的搜寻方案有()A.10种B.40种C.70种D.80种解析:选B若Grace不参与任务,则需要从剩下的5位小孩中任意挑出1位陪同,有C15种挑法,再从剩下的4位小孩中挑出2位搜寻远处,有C24种挑法,最后剩下的2位小孩搜寻近处,因此一共有C15C24=30种搜寻方案;若Grace参与任务,则其只能去近处,需要从剩下的5位小孩中挑出2位搜寻近处,有C25种挑法,剩下3位小孩去搜寻远处,因此共有C25=10种搜寻方案.综上,一共有30+10=40种搜寻方案.3.(2018·全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故共有C36-C34=20-4=16(种).答案:16考点三分组、分配问题考法(一) 整体均分问题[例1] 国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.[解析] 先把6个毕业生平均分成3组,有C 26C 24C 22A 33=15(种)方法.再将3组毕业生分到3所学校,有A 33=6(种)方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90(种)分派方法. [答案] 90考法(二) 部分均分问题[例2] 有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.[解析] 先把4名学生分为2,1,1共3组,有C 24C 12C 11A 22=6(种)分法,再将3组对应3个学校,有A 33=6(种)情况,则共有6×6=36(种)不同的保送方案.[答案] 36考法(三) 不等分问题[例3] 若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] 将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法;第2步,在余下的5名教师中任取2名作为一组,有C 25种取法;第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.[答案] 360[题组训练]1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种解析:选D 因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C 24C 12C 11A 22=6种,再分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36(种).2.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有______种.解析:5名水暖工去3个不同的居民小区,每名水暖工只去一个小区,且每个小区都要有人去检查,5名水暖工分组方案为3,1,1和1,2,2,则分配的方案共有⎝⎛⎭⎫C 35C 122+C 15C 242·A 33=150(种).答案:150考点四 排列、组合的综合问题[典例精析](1)从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.300B.216C.180D.162(2)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个.(用数字作答)[解析] (1)分两类:第一类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 23·C 22·A 44=72(个)符合要求的四位数;第二类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 12·C 23·(A 44-A 33)=108(个)符合要求的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个).(2)当个位、十位和百位上的数字为三个偶数时,若选出的三个偶数含有0,则千位上把剩余数字中任意一个放上即可,方法数是C 23A 33C 14=72;若选出的三个偶数不含0,则千位上只能从剩余的非0数字中选一个放上,方法数是A33C13=18,故这种情况下符合要求的四位数共有72+18=90(个).当个位、十位和百位上的数字为一个偶数、两个奇数时,若选出的偶数是0,则再选出两个奇数,千位上只要在剩余数字中选一个放上即可,方法数为C23A33C14=72;若选出的偶数不是0,则再选出两个奇数后,千位上只能从剩余的非0数字中选一个放上,方法数是C13C23A33C13=162,故这种情况下符合要求的四位数共有72+162=234(个).根据分类加法计数原理,可得符合要求的四位数共有90+234=324(个).[答案](1)C(2)324[解题技法]解决排列、组合综合问题的方法(1)仔细审题,判断是组合问题还是排列问题,要按元素的性质分类,按事件发生的过程进行分步.(2)以元素为主时,先满足特殊元素的要求,再考虑其他元素;以位置为主时,先满足特殊位置的要求,再考虑其他位置.(3)对于有附加条件的比较复杂的排列、组合问题,要周密分析,设计出合理的方案,一般先把复杂问题分解成若干个简单的基本问题,然后应用分类加法计数原理或分步乘法计数原理来解决,一般遵循先选后排的原则.[题组训练]1.(2019·广州调研)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.36种B.24种C.22种D.20种解析:选B根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法.2.(2019·成都诊断)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为________.(用数字作答) 解析:根据题意,分2种情况讨论,若甲、乙之中只有一人参加,有C12·C46·A55=3 600(种);。

第十一章计数原理概率随机变量及其分布列

第十一章计数原理概率随机变量及其分布列

第十一章计数原理概率随机变量及其分布列概率论是数学的一个重要分支,它研究的是随机现象的规律性。

而计数原理则是概率论的基本工具之一,用于计算事件的可能性。

本章将介绍计数原理、概率、随机变量及其分布列等概念与相关理论。

首先,我们来介绍计数原理。

计数原理是概率论的基础,它包含了排列、组合和乘法原理。

排列是指从n个不同的元素中取出m个元素(m<=n),按照一定顺序排列的方式。

组合是指从n个不同的元素中取出m个元素(m<=n),不考虑排列顺序的方式。

排列和组合都与阶乘有关,即n!=n(n-1)(n-2)...3x2x1、乘法原理是指在多个步骤中,每个步骤的可能性相乘,得到整个过程的可能性。

接下来,我们来介绍概率的概念。

概率是研究随机事件可能性大小的数学工具,它是一个介于0和1之间的实数。

概率越接近于0,表示事件发生的可能性越小;概率越接近于1,表示事件发生的可能性越大。

我们用事件的概率来描述事件的可能发生性,概率可以通过实验或推理来确定。

然后,我们来介绍随机变量及其分布列。

随机变量是以数值形式表示随机事件的变量,它可以是离散型的或连续型的。

离散型随机变量取有限或可列无穷个数值,而连续型随机变量则可以取任意实数。

在概率论中,我们通过分布列(也称为概率质量函数)来描述随机变量的取值及其可能发生的概率。

对于离散型随机变量,分布列列举了所有可能的取值及其对应的概率。

分布列可以用一个表格或一个函数来表示,其中表格的每一行表示一个取值,对应的每一列表示概率值。

每个取值的概率必须在0和1之间,所有可能的取值的概率之和为1、分布列通常用于描述投掷骰子、抽取球等离散性事件的概率。

对于连续型随机变量,分布列被替换为密度函数,它表示变量取到其中一数值的概率密度。

密度函数是将随机变量的取值映射到一个非负实数上的函数,其积分在整个实数范围内等于1、在连续型随机变量的情况下,我们通常使用概率密度函数来描述其分布。

总结起来,本章主要介绍了计数原理、概率、随机变量及其分布列等重要概念。

2025届高考数学一轮总复习第十一章计数原理概率随机变量及其分布第二节排列与组合

2025届高考数学一轮总复习第十一章计数原理概率随机变量及其分布第二节排列与组合
故选 B.
(2)先排除舞蹈节目以外的 5 个节目,共A55 种排法,再把 2 个舞蹈节目插在 6 个
空位中,有A26 种排法,所以共有A55 A26 =3 600 种排法.故选 B.
(3)把丙、丁看成一个元素,则(丙、丁)、乙、戊的排列共有A33 A22 =12(种)不同
的排法.
又由于甲不站在两端,利用“插空法”可得甲只有C21 种不同的排法.
类课程中各至少选一门,则不同的选法有(
)
A.18种 B.12种
C.30种 D.48种
答案 C
解析 分以下2种情况:
(1)A 类选修课选 1 门,B 类选修课选 2 门,有C31 C42 种不同的选法.
(2)A 类选修课选 2 门,B 类选修课选 1 门,有C32 C41 种不同的选法.
所以不同的选法共有C31 C42 + C32 C41 =18+12=30(种).
·C200

30
30
C.C400
·C200

40
20
D.C400
·C200

(2)(2023新高考Ⅰ,13)某学校开设了4门体育类选修课和4门艺术类选修课,
学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同
的选课方案共有
种(用数字作答).
答案 (1) D
(2) 64
解析 (1)由题意,初中部和高中部总共有 400+200=600(人),按照分层随机抽
档中,有A33 种不同排法;第三步,2 名小学生有A22 种不同排法,3 名初中生有A33 种
不同排法.则共有A22 A33 A22 A33 =144 种不同排法.故选 B.

人教版高考数学总复习第十一章计数原理概率、随机变量及其分布第六节离散型随机变量及其分布列、均值与方差

人教版高考数学总复习第十一章计数原理概率、随机变量及其分布第六节离散型随机变量及其分布列、均值与方差

3ቤተ መጻሕፍቲ ባይዱ基础知识 4.基本方法 5.基本能力 6.基本应用
3.(多选题)(离散型随机变量的概念)下列随机变量 X 是离散型随机变量的是( ) A.某市每天查到违章驾车的车辆数 X B.某网站中的歌曲《爱我中华》一天内被点击的次数 X C.一天内的温度 X D.射手对目标进行射击,击中目标得 1 分,未击中目标得 0 分,用 X 表示该射手在 一次射击中的得分 【解析】选 ABD.因为 A,B,D 的结果均可以一一列出,而 C 不能一一列出.
第六节 离散型随机变量及其
分布列、均值与方差
第十一章
计数原理、概率、随机变量及其分布
知识梳理·思维激活 考点探究·悟法培优
【考试要求】 1.了解离散型随机变量的概念,理解离散型随机变量分布列及数字特点 2.掌握离散型随机变量的分布列 3.掌握离散型随机变量的均值与方差 【高考考情】 考点考法:离散型随机变量的分布列、均值及方差是高考考查重点,一般以 实际问题为命题载体,考查分布列、均值与方差在决策问题中的应用.试题 以选择题、填空题、解答题形式呈现,难度中档. 核心素养:数据分析、数学运算、逻辑推理
x+0.1+0.3+y=1, 【解析】选 D.由
7x+8×0.1+9×0.3+10y=8.9,
解得 y=0.4.
6.(离散型随机变量的方差)有甲、乙两种品牌的手表,它们的日误差分别为 X,Y(单 位:s),其分布列如下:
X -1 0 1 P 0.1 0.8 0.1
Y -2 -1 0 1 2 P 0.1 0.2 0.4 0.2 0.1 则两种品牌中质量好的是__________. 【解析】E(X)=E(Y)=0,D(X)=0.2,D(Y)=1.2. 因为 E(X)=E(Y),D(X)<D(Y),所以甲品牌质量好. 答案:甲

湘教版高考数学一轮总复习课后习题 第十一章 计数原理、概率、随机变量及其分布 课时规范练56

湘教版高考数学一轮总复习课后习题 第十一章 计数原理、概率、随机变量及其分布 课时规范练56

课时规范练56《素养分级练》P3851.(山东泰安三模)已知随机变量X 服从正态分布N(3,σ2),若P(X<2)·P(X>4)=136,则P(2<X<3)=( )A.13B.14C.16D.19答案:A解析:因为随机变量X 服从正态分布N(3,σ2),由对称性可知,P(X<2)=P(X>4),又P(X<2)·P(X>4)=136,所以P(X<2)=P(X>4)=16,故P(2<X<3)=1-P (X<2)-P (X>4)2=1-16-162=13.2.(山东济南历城二中检测)从一批含有13件正品,2件次品的产品中不放回地抽3次,每次抽取1件,设抽到的次品数为ξ,则E(5ξ+1)=( ) A.2 B.1 C.3 D.4答案:C解析:ξ的可能取值为0,1,2. P(ξ=0)=C 133C 153=2235, P(ξ=1)=C 21C 132C 153=1235, P(ξ=2)=C 22C 131C 153=135.∴ξ的分布列为于是E(ξ)=0×2235+1×1235+2×135=25,故E(5ξ+1)=5E(ξ)+1=5×25+1=3.3.(东北师大附中高三开学考试)下图是一块高尔顿板示意图.在一块木块上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,4,5,6,用X 表示小球落入格子的号码,假定底部6个格子足够长,投入160粒小球,则落入3号格的小球大约有 粒.答案:50解析:设A=“向右下落”,则A =“向左下落”,且P(A)=P(A )=12,设Y=X-1,∵小球下落过程中共碰撞5次, ∴Y~B 5,12,∴P(Y=k)=P(X=k+1)=C 5k12k1-125-k=C 5k 125,k=0,1,2,3,4,5,∴P(X=3)=C52125=516,故投入160粒小球,则落入3号格的小球大约有160×516=50粒.4.(河北唐山一模)为了监控某种食品的生产包装过程,检验员每天从生产线上随机抽取k(k∈N+)包食品,并测量其质量(单位:g).根据长期的生产经验,这条生产线正常状态下每包食品质量服从正态分布N(μ,σ2).假设生产状态正常,记ξ表示每天抽取的k包食品中其质量在(μ-3σ,μ+3σ)之外的包数,若ξ的数学期望E(ξ)>0.05,则k的最小值为.附:若随机变量X服从正态分布N(μ,σ2),则在区间(μ-3σ,μ+3σ)内的概率约为99.73%.答案:19解析:依题意P(μ-3σ<X<μ+3σ)≈0.9973,所以在(μ-3σ,μ+3σ)之外的概率P=1-0.9973=0.0027,则ξ~B(k,0.0027),则E(ξ)=0.0027k,因为E(ξ)>0.05,所以0.0027k>0.05,解得k>50027≈18.52,因为k∈N+,所以k 的最小值为19.5.(广东广州一模)某从事智能教育技术研发的科技公司开发了一个“AI 作业”项目,并且在甲、乙两个学校的高一学生中做用户测试.经过一个阶段的试用,为了解“AI作业”对学生学习的促进情况,该公司随机抽取了200名学生,对他们的“向量数量积”知识点掌握的情况进行调查,样本调查结果如下表:假设每位学生是否掌握“向量数量积”知识点相互独立.(1)从样本中没有掌握“向量数量积”知识点的学生中随机抽取2名学生,用ξ表示抽取的2名学生中使用“AI作业”的人数,求ξ的分布列和数学期望;(2)用样本频率估计概率,从甲校高一学生中抽取一名使用“AI作业”的学生和一名不使用“AI作业”的学生,用“X=1”表示该名使用“AI作业”的学生基本掌握了“向量数量积”知识点,用“X=0”表示该名使用“AI作业”的学生没有掌握“向量数量积”知识点,用“Y=1”表示该名不使用“AI作业”的学生基本掌握了“向量数量积”知识点,用“Y=0”表示该名不使用“AI作业”的学生没有掌握“向量数量积”知识点.比较方差D(X)和D(Y)的大小关系.解:(1)依题意,ξ=0,1,2,且P(ξ=0)=C 200C 402C 602=2659,P(ξ=1)=C 201C 401C 602=80177, P(ξ=2)=C 202C 400C 602=19177,所以ξ的分布列为故E(ξ)=1×80177+2×19177=23.(2)由题意,易知X 服从二项分布X~B 1,45,D(X)=45×15=425,Y 服从二项分布Y~B 1,23,D(Y)=23×13=29,故D(X)<D(Y).6.(福建厦门模拟)某公司全年圆满完成预定的生产任务,为答谢各位员工一年来的锐意进取和辛勤努力,公司决定在联欢晚会后,拟通过摸球兑奖的方式对500位员工进行奖励,规定:每位员工从一个装有4张奖券的箱子中,一次随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.(1)若箱子中所装的4张奖券中有1张面值为80元,其余3张均为40元,试比较员工获得80元奖励与获得120元奖励的概率的大小;(2)公司对奖励总额的预算是6万元,预定箱子中所装的4张奖券有两种方案:第一种方案是2张面值20元和2张面值100元;第二种方案是2张面值40元和2张面值80元.为了使员工得到的奖励总额尽可能地符合公司的预算且每位员工所获得的奖励额相对均衡,请问选择哪一种方案比较好?并说明理由.解:(1)用X 表示员工所获得的奖励额. 因为P(X=80)=C 32C 42=12,P(X=120)=C 31C 11C 42=12,所以P(X=80)=P(X=120).故员工获得80元奖励与获得120元奖励的概率相等. (2)第一种方案中4张奖券的面值为20,20,100,100, 设员工所获得的奖励额为X 1,则X 1的分布列为所以X 1的数学期望为E(X 1)=40×16+120×23+200×16=120,X 1的方差为D(X 1)=(40-120)2×16+(120-120)2×23+(200-120)2×16=64003;第二种方案中4张奖券的面值为40,40,80,80,设员工所获得的奖励额为X 2,则X 2的分布列为所以X 2的数学期望为E(X 2)=80×16+120×23+160×16=120,X 2的方差为D(X 2)=(80-120)2×16+(120-120)2×23+(160-120)2×16=16003,又因为500E(X 1)=500E(X 2)=60000(元),所以两种方案奖励额的数学期望都符合要求,但第二种方案的方差比第一种方案的小,故应选择第二种方案. 7.(山东德州模拟)教育部门最近出台了“双减”政策,即有效减轻义务教育阶段学生过重作业负担和校外培训负担,持续规范校外培训(包括线上培训和线下培训).“双减”政策的出台对校外的培训机构经济效益产生了严重影响.某大型校外培训机构为了规避风险,寻求发展制定科学方案,工作人员对的前200名报名学员消费等情况进行了统计整理,其中消费情况数据如表.(1)该大型校外培训机构转型方案之一是将文化课主阵地辅导培训向音体美等兴趣爱好培训转移,为了深入了解当前学生的兴趣爱好,工作人员利用分层随机抽样的方法在消费金额为[9,11)和[11,13)的学员中抽取了5人,再从这5人中选取3人进行有奖问卷调查,求抽取的3人中消费金额为[11,13)的人数的分布列和数学期望;(2)以频率估计概率,假设该大型校外培训机构所有学员的消费可视为服从正态分布N(μ,σ2),μ,σ2分别为报名前200名学员消费的平均数x 以及方差s 2(同一区间的数据用区间的中点值替代).(ⅰ)试估计该机构学员消费金额为[5.2,13.6)的概率(保留一位小数); (ⅱ)若从该机构所有学员中随机抽取4人,记消费金额为[5.2,13.6)的人数为η,求η的分布列及方差.参考数据:√2≈1.4;若随机变量ξ服从正态分布N(μ,σ2),则在区间(μ-σ,μ+σ)内的概率约为68.27%,在区间(μ-2σ,μ+2σ)内的概率约为95.45%,在区间(μ-3σ,μ+3σ)内的概率约为99.73%.解:(1)由题意得,抽中的5人中消费金额为[9,11)的人数为25×5=2,消费金额为[11,13)的人数为35×5=3,设消费金额为[11,13)的人数为X,则X=1,2,3,所以P(X=1)=C 22C 31C 53=310,P(X=2)=C 21C 32C 53=35,P(X=3)=C 20C 33C 53=110,X 的分布列为则E(X)=1×310+2×35+3×110=95.(2)(ⅰ)由题意得μ=x=4×0.15+6×0.25+8×0.3+10×0.1+12×0.15+14×0.05=8,σ2=(4-8)2×0.15+(6-8)2×0.25+(10-8)2×0.1+(12-8)2×0.15+(14-8)2×0.05=8,所以σ=√8=2√2≈2.8,所以P(5.2≤ξ<13.6)≈P(8-2.8≤ξ<8+2×2.8)≈0.47725+0.34135≈0.8.(ⅱ)由题意及(ⅰ)得η~B4,45,所以P(η=0)=C4045154=1 625,P(η=1)=C4145153=16625,P(η=2)=C42452152=96625,P(η=3)=C4345315=256625,P(η=4)=C44454150=256625,η的分布列为D(η)=np(1-p)=4×45×15=1625.。

高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第六节 离散型随机变量及其分布列)

高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第六节 离散型随机变量及其分布列)

第六节 离散型随机变量及其分布列一、基础知识1.随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示 (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质(1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n此表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时也用等式P X =x i =p i ,i =1,2,…,n 表示X 的分布列.(2)分布列的性质①p i ≥0,i =1,2,3,…,n ;② i =1np i =1.3.常见的离散型随机变量的分布列 (1)两点分布列X 0 1 P1-pp若随机变量X 的分布列具有左表的形式,则称X 服从两点分布❸,并称p =P X =1为成功概率.(2)超几何分布列在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.X 01… mPC 0M C n -N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC nN. 若X 是随机变量,则Y =aX +b (a ,b 为常数)也是随机变量. 表中第一行表示随机变量的取值;第二行对应变量的概率. 两点分布的试验结果只有两个可能性,其概率之和为1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:(1)考察对象分两类; (2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X 的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型. m =min{M ,n }的理解m 为k 的最大取值,当抽取的产品件数不大于总体中次品件数,即n ≤M 时,k (抽取的样本中次品的件数)的最大值为m =n ;当抽取的产品件数大于总体中次品件数,即n >M 时,k 的最大值为m =M .考点一 离散型随机变量的分布列的性质1.设X 是一个离散型随机变量,其分布列为X -1 0 1 P132-3qq 2则q 的值为( )A.1B.32±336C.32-336D.32+336解析:选C 由分布列的性质知 ⎩⎪⎨⎪⎧2-3q ≥0,q 2≥0,13+2-3q +q 2=1,解得q =32-336.2.离散型随机变量X 的概率分布规律为P (X =n )=an n +1(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45D.56解析:选D 由⎝⎛⎭⎫11×2+12×3+13×4+14×5×a =1,知45a =1,得a =54.故P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=12×54+16×54=56. 3.设离散型随机变量X 的分布列为(1)求随机变量Y =2(2)求随机变量η=|X -1|的分布列; (3)求随机变量ξ=X 2的分布列. 解:(1)由分布列的性质知,0.2+0.1+0.1+0.3+m =1,得m =0.3. 首先列表为:从而Y =2X +1(2)列表为∴P (η=0)=P (X =1)P (η=1)=P (X =0)+P (X =2)=0.2+0.1=0.3, P (η=2)=P (X =3)=0.3, P (η=3)=P (X =4)=0.3. 故η=|X -1|的分布列为(3)首先列表为从而ξ=X 2的分布列为考点二 超几何分布[典例精析]在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.[解] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M =C 48C 510=518. (2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 0 1 2 3 4 P1425211021521142[题组训练]某项大型赛事,需要从高校选拔青年志愿者,某大学学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X ,求X 的分布列.解:因为8名学生会干部中有5名男生,3名女生,所以X 的分布列服从参数N =8,M =3,n =3的超几何分布.X 的所有可能取值为0,1,2,3,其中P (X =i )=C i 3C 3-i 5C 38(i =0,1,2,3),则P (X =0)=C 03C 35C 38=528,P (X =1)=C 13C 25C 38=1528,P (X =2)=C 23C 15C 38=1556,P (X =3)=C 33C 05C 38=156.所以X 的分布列为X 0 1 2 3 P5281528 1556156考点三 求离散型随机变量的分布列[典例精析]已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列.[解] (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )=A 12A 13A 25=310. (2)X 的可能取值为200,300,400,则P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=35.故X 的分布列为X 200 300 400 P11031035[题组训练]有编号为1,2,3,…,n 的n 个学生,入座编号为1,2,3,…,n 的n 个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X ,已知X =2时,共有6种坐法.(1)求n 的值;(2)求随机变量X 的分布列.解:(1)因为当X =2时,有C 2n 种坐法, 所以C 2n=6,即n n -12=6, n 2-n -12=0,解得n =4或n =-3(舍去),所以n =4. (2)因为学生所坐的座位号与该生的编号不同的学生人数为X , 由题意知X 的可能取值是0,2,3,4, 所以P (X =0)=1A 44=124,P (X =2)=C 24×1A 44=624=14,P (X =3)=C 34×2A 44=824=13,P (X =4)=9A 44=38,所以随机变量X 的分布列为[课时跟踪检测]A 级1.若随机变量X 的分布列为则当P (X <a )=0.8时,实数a 的取值范围是( ) A.(-∞,2] B.[1,2] C.(1,2]D.(1,2)解析:选C 由随机变量X 的分布列知:P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].2.设随机变量X 的分布列为P (X =k )=a ⎝⎛⎭⎫13k (其中k =1,2,3),则a 的值为( ) A.1 B.913 C.1113D.2713解析:选D 因为随机变量X 的分布列为 P (X =k )=a ⎝⎛⎭⎫13k(k =1,2,3),所以根据分布列的性质有a ×13+a ⎝⎛⎭⎫132+a ⎝⎛⎭⎫133=1,所以a ⎝⎛⎭⎫13+19+127=a ×1327=1, 所以a =2713.3.(2019·赣州模拟)一袋中装有5个球,编号为1,2,3,4,5,在袋中同时取出3个,以ξ表示取出的三个球中的最小号码,则随机变量ξ的分布列为( )A. B.C. D.解析:选C 随机变量ξ的可能取值为1,2,3,P (ξ=1)=C 24C 35=35,P (ξ=2)=C 23C 35=310,P (ξ=3)=C 22C 35=110,故选C.4.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,下列概率等于n -m A 2mA 3n的是( ) A.P (X =3) B.P (X ≥2) C.P (X ≤3)D.P (X =2)解析:选D 依题意知,n -m A 2mA 3n是取了3次,所以取出白球应为2个.5.已知在10件产品中可能存在次品,从中抽取2件检查,其中次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A.10%B.20%C.30%D.40%解析:选B 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x 10-x 45=1645,∴x =2或8.∵次品率不超过40%,∴x =2,∴次品率为210=20%.6.某射击选手射击环数的分布列为X 7 8 9 10 P0.30.3ab若射击不小于9环为优秀,其射击一次的优秀率为________.解析:由分布列的性质得a +b =1-0.3-0.3=0.4,故射击一次的优秀率为40%. 答案:40%7.已知随机变量X 的概率分别为p 1,p 2,p 3,且依次成等差数列,则公差d 的取值范围是________.解析:由分布列的性质及等差数列的性质得p 1+p 2+p 3=3p 2=1,p 2=13,又⎩⎪⎨⎪⎧p 1≥0,p 3≥0,即⎩⎨⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎡⎦⎤-13,13 8.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是________.解析:设所选女生人数为X ,则X 服从超几何分布, 其中N =6,M =2,n =3,则P (X ≤1)=P (X =0)+P (X =1)=C 02C 34C 36+C 12C 24C 36=45.答案:459.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列.解:(1)由已知,得P (A )=C 22C 23+C 23C 23C 48=635. 所以事件A 发生的概率为635.(2)随机变量X 的所有可能取值为1,2,3,4,其中P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4).故P (X =1)=C 15C 33C 48=114,P (X =2)=C 25C 23C 48=37,P (X =3)=C 35C 13C 48=37,P (X =4)=C 45C 03C 48=114,所以随机变量X 的分布列为X 1 2 3 4 P114373711410.(2019·长春质检)长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:点击量 [0,1 000](1 000,3 000](3 000,+∞)节数61812(1)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3 000的节数; (2)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1 000]内,则需要花费40分钟进行剪辑,若点击量在区间(1 000,3 000]内,则需要花费20分钟进行剪辑,点击量超过3 000,则不需要剪辑,现从(1)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X 的分布列.解:(1)根据分层抽样可知,选出的6节课中点击量超过3 000的节数为1236×6=2.(2)由分层抽样可知,(1)中选出的6节课中点击量在区间[0,1 000]内的有1节,点击量在区间(1 000,3 000]内的有3节,故X 的可能取值为0,20,40,60.P (X =0)=1C 26=115,P (X =20)=C 13C 12C 26=615=25,P (X =40)=C 12+C 23C 26=515=13, P (X =60)=C 13C 26=315=15,则X 的分布列为X 0 20 40 60 P11525131511.(2018·郑州第一次质量预测)为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行.市政府为了了解民众低碳出行的情况,统计了该市甲、乙两个单位各200名员工12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如图所示,(1)若甲单位数据的平均数是122,求x ;(2)现从图中的数据中任取4天的数据(甲、乙两个单位中各取2天),记抽取的4天中甲、乙两个单位员工低碳出行的人数不低于130的天数分别为ξ1,ξ2,令η=ξ1+ξ2,求η的分布列.解:(1)由题意知110[105+107+113+115+119+126+(120+x )+132+134+141]=122,解得x =8.(2)由题得ξ1的所有可能取值为0,1,2,ξ2的所有可能取值为0,1,2,因为η=ξ1+ξ2,所以随机变量η的所有可能取值为0,1,2,3,4.因为甲单位低碳出行的人数不低于130的天数为3,乙单位低碳出行的人数不低于130的天数为4,所以P (η=0)=C 27C 26C 210C 210=745,P (η=1)=C 17C 13C 26+C 27C 14C 16C 210C 210=91225, P (η=2)=C 23C 26+C 27C 24+C 17C 13C 16C 14C 210C 210=13, P (η=3)=C 23C 16C 14+C 17C 13C 24C 210C 210=22225, P (η=4)=C 23C 24C 210C 210=2225.所以η的分布列为B 级1.若P (ξ≤x 2)=1-β,P (ξ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤ξ≤x 2)等于( ) A.(1-α)(1-β) B.1-(α+β) C.1-α(1-β)D.1-β(1-α)解析:选B 显然P (ξ>x 2)=β,P (ξ<x 1)=α.由概率分布列的性质可知P (x 1≤ξ≤x 2)=1-P (ξ>x 2)-P (ξ<x 1)=1-α-β.2.一个人有n 把钥匙,其中只有一把可以打开房门,他随意地进行试开,若试开过的钥匙放在一旁,试过的次数X 为随机变量,则P (X =k )等于( )A.k nB.1nC.k -1nD.k !n !解析:选B {X =k }表示“第k 次恰好打开,前k -1次没有打开”,∴P (X =k )=n -1n ×n -2n -1×…×n -k -1n -k -2×1n -k -1=1n .3.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完即为旧的,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为________.解析:事件“X =4”表示取出的3个球有1个新球,2个旧球,故P (X =4)=C 19C 23C 312=27220.答案:27220.4.某班级50名学生的考试分数x 分布在区间[50,100)内,设考试分数x 的分布频率是f (x )且f (x )=⎩⎨⎧n10-0.4,10n ≤x <10n +1,n =5,6,7,-n5+b ,10n ≤x <10n +1,n =8,9.考试成绩采用“5分制”,规定:考试分数在[50,60)内的成绩记为1分,考试分数在[60,70)内的成绩记为2分,考试分数在[70,80)内的成绩记为3分,考试分数在[80,90)内的成绩记为4分,考试分数在[90,100)内的成绩记为5分.在50名学生中用分层抽样的方法,从成绩为1分、2分及3分的学生中随机抽出6人,再从这6人中随机抽出3人,记这3人的成绩之和为ξ(将频率视为概率).(1)求b 的值,并估计该班的考试平均分数; (2)求P (ξ=7); (3)求ξ的分布列.解:(1)因为f (x )=⎩⎨⎧n10-0.4,10n ≤x <10n +1,n =5,6,7,-n5+b ,10n ≤x <10n +1,n =8,9,所以⎝⎛⎭⎫510-0.4+⎝⎛⎭⎫610-0.4+⎝⎛⎭⎫710-0.4+⎝⎛⎭⎫-85+b +⎝⎛⎭⎫-95+b =1,所以b =1.9. 估计该班的考试平均分数为⎝⎛⎭⎫510-0.4×55+⎝⎛⎭⎫610-0.4×65+⎝⎛⎭⎫710-0.4×75+⎝⎛⎭⎫-85+1.9×85+⎝⎛⎭⎫-95+1.9×95=76.(2)按分层抽样的方法分别从考试成绩记为1分,2分,3分的学生中抽出1人,2人,3人,再从这6人中抽出3人,所以P (ξ=7)=C 23C 11+C 13C 22C 36=310. (3)因为ξ的可能取值为5,6,7,8,9,所以P (ξ=5)=C 11C 22C 36=120,P (ξ=6)=C 11C 12C 13C 36=310,P (ξ=7)=310,P (ξ=8)=C 23C 12C 36=310,P (ξ=9)=C 33C 36=120.故ξ的分布列为。

第十一章 计数原理、概率、随机变量及其分布列

第十一章  计数原理、概率、随机变量及其分布列

第十一章⎪⎪⎪ 计数原理、概率、随机变量及其分布列第一节 排列、组合本节主要包括2个知识点: 1.两个计数原理; 2.排列、组合问题.突破点(一) 两个计数原理[基本知识]1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法.3.两个计数原理的比较[基本能力]1.判断题(1)在分类加法计数原理中,某两类不同方案中的方法可以相同.( )(2)在分步乘法计数原理中,只有各步骤都完成后,这件事情才算完成.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )答案:(1)× (2)√ (3)√2.填空题(1)从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数是________.解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6(种).答案:6(2)从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有________个.解析:∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.答案:36(3)书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从第1,2,3层分别各取1本书,则不同的取法种数为________.解析:由分步乘法计数原理,从1,2,3层分别各取1本书不同的取法种数为4×5×6=120.答案:120[全析考法](1)完成一件事有若干种方法,这些方法可以分成n类.(2)用每一类中的每一种方法都可以完成这件事.(3)把各类的方法数相加,就可以得到完成这件事的所有方法数.[例1](1)三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种(2)(2018·杭州二中月考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10[解析](1)分两类:甲第一次踢给乙时,满足条件的有3种方法(如图),同理,甲先踢给丙时,满足条件有3种方法.由分类加法计数原理,共有3+3= 6种传递方式.(2)①当a =0时,有x =-b 2,b =-1,0,1,2,有4种可能; ②当a ≠0时,则Δ=4-4ab ≥0,ab ≤1,(ⅰ)当a =-1时,b =-1,0,1,2,有4种可能;(ⅱ)当a =1时,b =-1,0,1,有3种可能;(ⅲ)当a =2时,b =-1,0,有2种可能.∴有序数对(a ,b )的个数为4+4+3+2=13.[答案] (1)B (2)B[易错提醒](1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.分步乘法计数原理(1)完成一件事需要经过n 个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.[例2] (1)从-2,0,1,8这四个数中选三个数作为函数f (x )=ax 2+bx +c 的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).(2)如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A ,B ,C ,D ,E ,F ,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.[解析] (1)一个二次函数对应着a ,b ,c (a ≠0)的一组取值,a 的取法有3种,b 的取法有3种,c 的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b =0,同理可知共有3×2=6个偶函数.(2)因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.[答案](1)186(2)63[易错提醒](1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.两个计数原理的综合问题原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求解.分类的关键在于做到“不重不漏”,分步的关键在于正确设计分步的程序,即合理分类,准确分步.[例3](1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个(2)如图矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.[解析](1)由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).(2)区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法,所以共有5×4×4+5×4×3×3=260种涂色方法.[答案](1)B(2)260[方法技巧]使用两个计数原理进行计数的基本思想对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.[全练题点]1.[考点二]某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504 B.210C.336 D.120解析:选A分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.2.[考点二]某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20 B.25C.32 D.60解析:选C依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.3.[考点一]从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3 B.4C.6 D.8解析:选D先考虑递增数列,以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.同理可得到4个递减数列,∴所求的数列的个数为2(2+1+1)=8.4.[考点一]在三位正整数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”.比如“102”,“546”为“驼峰数”,由数字1,2,3,4可构成无重复数字的“驼峰数”有________个.解析:十位数的数为1时,有213,214,312,314,412,413,共6个,十位上的数为2时,有324,423,共2个,所以共有6+2=8(个).答案:85.[考点三]如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有________种.解析:按区域1与3是否同色分类.①区域1与3同色:先涂区域1与3,有4种方法,再涂区域2,4,5(还有3种颜色),有3×2×1=6种方法.所以区域1与3涂同色时,共有4×6=24种方法.②区域1与3不同色:先涂区域1与3,有4×3=12种方法,第二步,涂区域2有2种涂色方法,第三步,涂区域4只有一种方法,第四步,涂区域5有3种方法.所以这时共有12×2×1×3=72种方法.故由分类加法计数原理,不同的涂色方法的种数为24+72=96.答案:96突破点(二)排列、组合问题[基本知识]1.排列与排列数4.排列与组合的区别[基本能力]1.判断题(1)所有元素完全相同的两个排列为相同排列.()(2)两个组合相同的充要条件是其中的元素完全相同.()(3)若组合式C x n=C m n,则x=m成立.()(4)(n+1)!-n!=n·n!.().()(5)A m n=n A m-1n-1.()(6)k C k n=n C k-1n-1答案:(1)×(2)√(3)×(4)√(5)√(6)√2.填空题(1)A、B、C、D、E五人并排站成一排,不同的排法共有________种.答案:120(2)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了毕业留言________条.解析:由题意,得毕业留言共A240=1 560(条).答案:1 560(3)甲、乙两人从4门课程中各选修2门,则甲、乙两人所选的课程中恰有1门相同的选法有________种.解析:依题意得知,满足题意的选法共有C14·C13·C12=24(种).答案:24(4)方程3A3x=2A2x+1+6A2x的解为________.解析:由排列数公式可知3x(x-1)(x-2)=2(x+1)x+6x(x-1),∵x≥3且x∈N*,∴3(x -1)(x -2)=2(x +1)+6(x -1),解得x =5或x =23(舍去),∴x =5. 答案:5(5)已知1C m 5-1C m 6=710C m 7,则m =________. 解析:由已知得m 的取值范围为{}m |0≤m ≤5,m ∈Z ,原等式可化为m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2. 答案:2[全析考法][例1] (1)的排法共有( )A .192种B .216种C .240种D .288种(2)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.[解析] (1)第一类:甲在最左端,有A 55=120种排法;第二类:乙在最左端,有4A 44=96种排法,所以共有120+96=216种排法.(2)记其余两种产品为D ,E ,由于A ,B 相邻,则视为一个元素,先与D ,E 排列,有A 22A 33种方法.再将C 插入,仅有3个空位可选,共有A 22A 33C 13=2×6×3=36种不同的摆法.[答案] (1)B (2)36[方法技巧] 求解排列问题的六种主要方法选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为() A.85 B.86C.91 D.90(2)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.130 B.120C.90 D.60(3)(2017·浙江高考)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答).[解析](1)法一(直接法):由题意,可分三类考虑:第1类,男生甲入选,女生乙不入选的方法种数为:C13C24+C23C14+C33=31;第2类,男生甲不入选,女生乙入选的方法种数为:C14C23+C24C13+C34=34;第3类,男生甲入选,女生乙入选的方法种数为:C23+C14C13+C24=21.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.法二(间接法):从5名男生和4名女生中任意选出4人,男、女生都有的选法有C49-C45-C44=120种;男、女生都有,且男生甲与女生乙都没有入选的方法有C47-C44=34种.所以男生甲与女生乙至少有1人入选的方法种数为120-34=86.(2)易知|x1|+|x2|+|x3|+|x4|+|x5|=1或2或3,下面分三种情况讨论.其一:|x1|+|x2|+|x3|+|x4|+|x5|=1,此时,从x1,x2,x3,x4,x5中任取一个让其等于1或-1,其余等于0,于是有C15C12=10种情况;其二:|x1|+|x2|+|x3|+|x4|+|x5|=2,此时,从x1,x2,x3,x4,x5中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有2C25+C25C12=40种情况;其三:|x1|+|x2|+|x3|+|x4|+|x5|=3,此时,从x1,x2,x3,x4,x5中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有2C 35+C 25C 13+C 15C 24=80种情况.所以满足条件的元素个数为10+40+80=130.(3)从8人中选出4人,且至少有1名女学生的选法种数为C 48-C 46=55.从4人中选出队长1人,副队长1人,普通队员2人的选法为A 24=12种.故总共有55×12=660种选法.[答案] (1)B (2)A (3)660[方法技巧]有限制条件的组合问题的解法组合问题的限制条件主要体现在取出元素中“含”或“不含”某些元素,或者“至少”或“最多”含有几个元素:(1)“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型.考虑逆向思维,用间接法处理.分组分配问题分组后分配.关于分组问题,有整体均分、部分均分和不等分三种,无论分成几组,都应注意只要有一些组中元素的个数相等,就存在均分现象.[例3] (1)教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.(2)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为________.(3)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] (1)先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故将6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种不同的分派方法.(2)分两步完成:第一步,将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第二步,将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种.(3)将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种分法;第2步,在余下的5名教师中任取2名作为一组,有C 25种分法;第3步,余下的3名教师作为一组,有C 33种分法.根据分步乘法计数原理,共有C 16C 25C 33=60种分法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.[答案] (1)90 (2)36 (3)360[方法技巧] 分组分配问题的三种类型及求解策略[全练题点]1.[考点一]某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行.则安排这6项工程的不同方法种数为( )A .10B .20C .30D .40 解析:选B 因为工程丙完成后立即进行工程丁,若不考虑与其他工程的顺序,则安排这6项工程的不同方法数为A 55,对于甲、乙、丙、丁所处位置的任意排列有且只有一种情况符合要求,因此,符合条件的安排方法种数为A 55A 33=5×4=20. 2.[考点三]世界华商大会的某分会场有A ,B ,C 三个展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数为( )A .12B .10C .8D .6解析:选D ∵甲、乙两人被分配到同一展台,∴可以把甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上进行全排列,即有A 33种,∴甲、乙两人被分配到同一展台的不同分法的种数为A 33=6. 3.[考点三]某局安排3名副局长带5名职工去3地调研,每地至少去1名副局长和1名职工,则不同的安排方法总数为( )A .1 800B .900C .300D .1 440解析:选B 分三步:第一步,将5名职工分成3组,每组至少1人,则有⎝⎛⎭⎫C 35C 12C 11A 22+C 15C 24C 22A 22种不同的分组方法;第二步,将这3组职工分到3地有A 33种不同的方法;第三步,将3名副局长分到3地有A 33种不同的方法.根据分步乘法计数原理,不同的安排方案共有⎝⎛⎭⎫C 35C 12C 11A 22+C 15C 24C 22A 22·A 33A 33=900(种),故选B. 4.[考点一、二](2017·天津高考)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)解析:(1)有一个数字是偶数的四位数有C 14C 35A 44=960个. (2)没有偶数的四位数有A 45=120个.故这样的四位数一共有960+120=1 080个.答案:1 0805.[考点二]现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.解析:第一类,含有1张红色卡片,不同的取法有C 14C 212=264种.第二类,不含有红色卡片,不同的取法有C 312-3C 34=220-12=208种.由分类加法计数原理,不同的取法种数为264+208=472.答案:472[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种解析:选D 第一步:将4项工作分成3组,共有C 24种分法.第二步:将3组工作分配给3名志愿者,共有A 33种分配方法,故共有C 24·A 33=36种安排方法.2.(2016·全国卷Ⅱ)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18C.12 D.9解析:选B分两步:第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.3.(2016·全国卷Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个解析:选C当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…,a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C14=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C13=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任意一个为0均可,有C12=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C13=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14(个),故选C.4.(2014·全国大纲卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有()A.60种B.70种C.75种D.150种解析:选C从6名男医生中选出2名有C26种选法,从5名女医生中选出1名有C15种选法,由分步乘法计数原理得不同的选法共有C26·C15=75(种).故选C.[课时达标检测][小题对点练——点点落实]对点练(一)两个计数原理1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一个有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15 D.21解析:选B当x=2时,x≠y,点的个数为1×7=7个.当x≠2时,由P⊆Q,∴x=y,∴x可从3,4,5,6,7,8,9中取,有7种方法,因此满足条件的点的个数是7+7=14.2.(2018·云南调研)设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是()A.7 B.10C.25D.52解析:选B因为集合A={-1,0,1},集合B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3},所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2×5=10(个).3.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种解析:选B赠送1本画册,3本集邮册.需从4人中选取1人赠送画册,其余赠送集邮册,有4种方法.赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有6种方法.由分类加法计数原理,不同的赠送方法有4+6=10(种).4.(2018·绍兴模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900个三位数,其中无重复数字的三位数有9×9×8=648个,∴有重复数字的三位数的个数为900-648=252.5.有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.需选择一套服装参加“五一”节歌舞演出,则不同的选择方式种数为()A.24 B.14C.10 D.9解析:选B第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式;第二类:选2套连衣裙中的一套服装有2种选法,由分类加法计数原理,共有12+2=14种选择方式.6.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为________.解析:先染顶点S,有5种染法,再染顶点A有4种染法,染顶点B有3种染法,顶点C的染法有两类:若C与A同色,则顶点D有3种染法;若C与A不同色,则C有2种染法,D有2种染法,所以共有5×4×3×3+5×4×3×2×2=420种染色方法.答案:420对点练(二)排列、组合问题1.(2018·福建漳州八校联考)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种解析:选C特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12·A44·A22=96种排法,故选C.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20C.30 D.40解析:选B将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22A22=20(种).3.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为() A.13 B.24C.18 D.72解析:选D可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C34种不同的选法;第二步,在调查时,“住房”安排的顺序有A13种可能情况;第三步,其余3个热点调查的顺序有A33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C34A13A33=72.4.(2017·舟山二模)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析:选C1个路口3人,其余路口各1人的分配方法有C13A33种.1个路口1人,2个路口各2人的分配方法有C23A33种,由分类加法计数原理知,甲、乙在同一路口的分配方案为C13A33+C23A33=36(种).5.(2018·豫南九校联考)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72种B.36种C.24种D.18种解析:选B A12(C23C13+C13C23)=36(种).6.7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高逐渐降低,共有________种排法.解析:先排最中间位置有1种排法,再排左边3个位置,由于顺序一定,共有C36种排法,再排剩下右边三个位置,共1种排法,所以排法种数为C36=20.答案:207.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.答案:968.若把英语单调“good”的字母顺序写错了,则可能出现的错误种数共有________种.解析:把g,o,o,d 4个字母排一行,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12种.其中正确的有一种,所以错误的共A24-1=12-1=11(种).答案:11[大题综合练——迁移贯通]1.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)解:(1)从4名男生中选出2人,有C24种选法,从6名女生中选出3人,有C36种选法,根据分步乘法计数原理知选出5人,再把这5个人进行排列共有C24C36A55=14 400(种).(2)在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步乘法计数原理知共有C24C36A33A24=8 640(种).2.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.解:(1)先选后排,可以是2女3男,也可以是1女4男,先选有C 35C 23+C 45C 13种情况,后排有A 55种情况,则符合条件的选法数为(C 35C 23+C 45C 13)·A 55=5 400.(2)除去该女生后,先选后排,则符合条件的选法数为C 47·A 44=840.(3)先选后排,但先安排该男生,则符合条件的选法数为C 47·C 14·A 44=3 360. (4)先从除去该男生该女生的6人中选3人有C 36种情况,再安排该男生有C 13种情况,选出的3人全排有A 33种情况,则符合条件的选法数为C 36·C 13·A 33=360.3.有编号分别为1,2,3,4的四个盒子和四个小球,把小球全部放入盒子.(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?解:(1)∵1号球可放入任意一个盒子内,有4种放法.同理,2,3,4号小球也各有4种放法,∴共有44=256种放法.(2)恰有一个空盒,则这4个盒子中只有3个盒子内有小球,且小球数只能是1,1,2.先从4个小球中任选2个放在一起,有C 24种方法,然后与其余2个小球看成三组,分别放入4个盒子中的3个盒子中,有A 34种放法.∴由分步乘法计数原理知共有C 24A 34=144种不同的放法.(3)恰有2个盒子内不放球,也就是把4个小球只放入2个盒子内,有两类放法: ①一个盒子内放1个球,另一个盒子内放3个球.先把小球分为两组,一组1个,另一组3个,有C 14种分法,再放到2个盒子内,有A 24种放法,共有C 14A 24种放法;②把4个小球平均分成2组,每组2个,有C 242种分法,放入2个盒子内,有A 24种放法,共有12C 24A 24种放法. ∴由分类加法计数原理知共有C 14A 24+12C 24A 24=84种不同的放法.第二节 二项式定理本节主要包括2个知识点:1.二项式的通项公式及应用;2.二项式系数的性质及应用.突破点(一) 二项式的通项公式及应用[基本知识]。

高考数学一轮复习第十一章计数原理概率随机变量及其分布111基本计数原理课件苏教版

高考数学一轮复习第十一章计数原理概率随机变量及其分布111基本计数原理课件苏教版

必备知识·自主学习
当十位数字为2时,个位数字是3,4,5,6,7,8,9,有7种, 当十位数字为1时,个位数字是2,3,4,5,6,7,8,9,有8种, 所以共有1+2+3+4+5+6+7+8=36(种).
必备知识·自主学习
方法二:所有的两位数从10,到99共90个,按照个位数字与十位数字的大小分为三 类: (1)个位数字等于十位数字,这样的两位数有9个, (2)个位数字大于十位数字,设这样的两位数为x个, (3)个位数字小于十位数字,其中个位数字为0的两位数有9个,个位数字不是0的两 位数有x个, 所以列得方程9+x+9+x=90,解得x=36.
A.10种 B.15种 C.4种
D.5种
必备知识·自主学习
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休息 一下眼睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对身 体不好哦~
必备知识·自主学习
【解析】选D.从5类元素中任选2类元素, 它们相生的选取有:火土,土金,金水,水 木,木火,共5种.
必备知识·自主学习
2.(选修2-3P9习题1.1T9改编)设集合A={1,3,5,7,9},B={2,4,6,8},a∈A,b∈B,
则直线ax+by=2 021有______条. ( )
A.4
B.5
C.20
D.9
必备知识·自主学习
【解析】选C.分两个步骤:第一步确定a,有5种方法,第二步确定b,有4种方法,所 以由分步乘法计数原理得直线有5×4=20(条).
必备知识·自主学习
3.(选修2-3P10习题1.1T16改编)五行学说是华夏民族创造的哲学思想,是华夏文 明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如 图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中 任选2类元素,则2类元素相生的选取方案共有( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章计数原理概率随机变量及其分布列计数原理是概率论中的重要概念之一,它是研究集合元素个数或事件发生次数的基础。

本章将介绍计数原理、概率、随机变量及其分布列的概念与性质。

首先,我们来介绍计数原理。

计数原理包括排列、组合和乘法原理。

排列是指从一组元素中选取若干元素,按一定顺序排列的方法数。

排列的基本公式为nPm=n!/(n-m)!(n≥m),其中n为元素个数,m为选取个数,n!表示n的阶乘。

组合是指从一组元素中选取若干元素,不考虑其排列顺序的方法数。

组合的基本公式为nCm=n!/[m!(n-m)!],其中n为元素个数,m为选取个数。

乘法原理是指若有多个相互独立的事件,每个事件发生的方法数分别为n1,n2,…,nk,则这些事件同时发生的方法数为
n1·n2·····nk。

计数原理在概率论中有着重要的应用,它可以帮助我们计算事件发生的可能性。

接下来,我们来介绍概率的概念。

概率是指其中一事件在所有可能事件中发生的可能性大小。

概率的取值范围在0到1之间,0表示不可能发生,1表示必然发生。

概率的计算可以使用频率法、古典概型和几何概率等方法。

频率法是通过大量实验的结果来估计概率,公式为P(A)=n/N,其中n 为事件A发生的次数,N为试验总次数。

古典概型是指每个事件发生的可能性相等的情况下,计算概率。

公式为P(A)=m/n,其中m为事件A包含的基本事件数,n为所有基本事件的总数。

几何概率是指利用几何方法计算概率。

例如,在正方形区域中随机选择一个点,落在一些子区域中的概率等于子区域的面积与正方形区域的面积之比。

随机变量是指对随机事件的其中一种度量或描述。

随机变量可以分为离散型随机变量和连续型随机变量。

离散型随机变量的值在其中一区间内只能取有限或可数个值。

离散型随机变量的分布列可以通过概率函数或分布列来描述。

概率函数表示离散型随机变量取值的概率。

例如,设X为一些离散型随机变量,其取值为x1,x2,…,xn,对应的概率为p1,p2,…,pn,则其概率函数为P(X=xi)=pi。

分布列是概率函数的一种累计形式。

例如,设X为一些离散型随机变量,其取值为x1,x2,…,xn,对应的概率为p1,p2,…,pn,则其分布列为F(x)=P(X≤x)=[∑(i=1 to k) Pi,x ≤ xi]。

连续型随机变量的取值可以是实数区间内的任意一个值,概率函数无法用离散的形式表示,而是使用密度函数来描述。

本章介绍了计数原理、概率、随机变量及其分布列的概念与性质。

这些概念与方法是概率论中的基础,对于理解和应用概率论具有重要意义。

同时,它们也是其他概率统计学科的基础,如统计推断、回归分析等。

相关文档
最新文档