2007年江苏泰州中考数学试卷解析
【苏州市中考】--2007年苏州市初中毕业暨升学考试试卷及答案】
2007年苏州市初中毕业暨升学考试试卷化学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷l至2页,第Ⅱ卷3至8页;共5大题、30小题,满分100分;考试用时100分钟。
注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考点名称用钢笔或圆珠笔写在答题卡的相应位置上;将考场号、座位号、准考证号、考试科目用2B铅笔涂在答题卡上。
2.答第Ⅰ卷时,用2B铅笔将第Ⅰ卷答案涂在答题卡上相对应的位置,不能答在试卷上,否则答案无效。
3.考试结束,请将本试卷和答题卡一并交回。
可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Mg-24 S-32 Ca-35.5第Ⅰ卷(选择题,共30分)一、选择题(本题包括15小题,每小题2分,共30分。
每小题只有一个....选项符合题意。
)1.2007年苏州市政府对公共交通的财政支持力度不断加强,对购置低污染排放公交车辆的补贴预计达1600万元。
下列说法与改善空气质量关系最为密切的是A.抑制过快增长的私家车拥有量B.减缓城市交通拥堵的压力C.减少机动车燃油排放含氮、硫的氧化物的量D.提供市民乘公交车出行的便利2.下列物质中属于糖类的是A.蔗糖B.汽油C.油脂D.石蜡3.下列物质属于氧化物是是A.氧气(O2) B.水(H2O)C.乙醇(C2H6O) D.氯化钴(CoCl2)4.某含铁盐溶液能够在高浓度的碱性环境下长期稳定存在,且具有较强的灭菌消毒功能,该盐是一种绿色、无污染的净水剂,其化学式为Na2FeO3。
则其中铁元素的化合价是A.+2 B.+3 C.+4 D.+65.下列有关二氧化碳说法正确的是A.二氧化碳可由甲烷在足量氧气中充分燃烧产生B.二氧化碳可用燃着的木条鉴定C.二氧化碳在实验室可以用块状石灰石和浓硫酸反应制备D.干冰用于制造舞台云雾是因为二氧化碳能溶于水6.在做镁条燃烧实验时,用于夹持镁条的仪器是A.弹簧夹B.坩埚钳C.铁夹D.试管夹7.下列物质名称与其化学式相符合的是A.氢气(H) B.碳酸钠(NaCO3)C.氢氧化铁[Fe(OH)2] D.五氧化二磷(P2O5)8.是以土豆等副食品废料为原料,经多步处理而制成,是一种新型的可降解塑料。
【中考12年】江苏省泰州市2002-中考数学试题分类解析 专题07 统计与概率
泰州市2002-2013年中考数学试题分类解析 专题07 统计与概率一、选择题1.(江苏省泰州市2002年4分)在青年业余歌手卡拉OK 大奖赛中,8位评委给某选手所评分数如下表,计算方法是:去掉一个最高分,去掉一个最低分,其余分数的平均分作为该选手的最后得分,则该选手最后得分是【 】(精确到0.01)A 、9.70B 、9.71C 、9.72D 、9.732.(江苏省泰州市2005年3分)某工厂为了选拔1名车工参加加工直径为10mm 的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S 2甲、S 2乙的大小【 】A .S 2甲>S 2乙B .S 2甲=S 2乙 C .S 2甲<S 2乙 D .S 2甲≤S 2乙3.(江苏省泰州市2005年3分)下列说法正确的是【】A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大.B.为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行.C.彩票中奖的机会是1%,买100张一定会中奖.D.泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论.4.(江苏省泰州市2006年3分)下列说法正确的是【】A.为了了解我市今年夏季冷饮市场冰淇淋的质量可采用普查的调查方式进行.B.为了了解一本300页的书稿的错别字的个数,应采用普查的调查方式进行.C.销售某种品牌的鞋,销售商最感兴趣的是所销售的鞋的尺码的平均数.D.为了了解我市九年级学生中考数学成绩,从所有考生的试卷中抽取1000份试卷进行统计分析,在这个问题中,样本是被抽取的1000名学生.5.(江苏省泰州市2006年3分)投掷一枚普通的正方体骰子,四位同学各自发表了以下见解:①出现“点数为奇数”的概率等于出现“点数为偶数”的概率.②只要连掷6次,一定会“出现一点”.③投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大.④连续投掷3次,出现的点数之和不可能等于19.其中正确的见解有【】A. 1个 B.2个 C.3个 D.4个6.(江苏省泰州市2007年3分)下列说法正确的是【】A.小红和其他四个同学抽签决定从星期一到星期五的值日次序,她第三个抽签,抽到星期一的概率比前两个人小B.某种彩票中奖率为10%,小王同学买了10张彩票,一定有1张中奖C.为了了解一批炮弹的杀伤半径,应进行普查D.晚会前,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果由众数决定7.(江苏省泰州市2008年3分)有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有【】A.1个 B.2个 C. 3个 D.4个8.(江苏省2009年3分)某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是【】A.平均数B.众数C.中位数D.方差9.(江苏省泰州市2011年3分)为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是【】A.某市八年级学生的肺活量 B.从中抽取的500名学生的肺活量C.从中抽取的500名学生 D.50010.(2012江苏泰州3分)有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确..的是【】A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件11.(2013年江苏泰州3分)事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是【】A.P(C)<P(A)=P(B) B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)二、填空题1. (江苏省泰州市2003年3分)在5月24日《中国青年报》上刊登了这样一幅图:请用简洁的语言描述出2003年5月13日到5月23日我国内地新发现SARS病例的变化情况:▲2.(江苏省泰州市2004年3分)泰州地区六月份某一周每天最高气温如下表:则这一周的最高气温的中位数是▲ ℃.3.(江苏省泰州市2005年3分)九年级(1)班进行一次数学测验,成绩分为优秀、良好、及格、不及格四个等级.测验结果反映在扇形统计图上,如下图所示,则成绩良好的学生人数占全班人数的百分比是▲ _ %.4.(江苏省泰州市2006年3分)小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如右图所示,则小明5次成绩的方差S 12与小兵5次成绩的方差S 22之间的大小关系为S 12 ▲ _S 22.(填“>”、“<”、“=”)5.(江苏省泰州市2007年3分)数据1,3-,4,2-的方差2S = ▲ .6.(江苏省泰州市2008年3分)有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是▲ .7.(江苏省2009年3分)如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)▲ P(奇数)(填“>”“<”或“=”).8.(江苏省泰州市2010年3分)数据-1,0,2,-1,3的众数为 ▲ .9.(江苏省泰州市2010年3分)一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是 ▲ .10.(江苏省泰州市2011年3分)甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数乙甲x x ,方差22S S <乙甲,则成绩较稳定的同学是 ▲ (填“甲”或“乙”)。
江苏省泰州市2001-2012年中考数学试题分类解析 专题7 统计与概率
2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题7:统计与概率一、选择题1.(江苏省泰州市2002年4分)在青年业余歌手卡拉OK 大奖赛中,8位评委给某选手所评分数如下表,计算方法是:去掉一个最高分,去掉一个最低分,其余分数的平均分作为该选手的最 后得分,则该选手最后得分是【 】(精确到0.01)9.A 、9.70 B 、9.71C 、9.72D 、9.73【答案】C 。
【考点】平均数。
【分析】平均数是指在一组数据中所有数据之和再除以数据的个数,因此,去掉打分的最大值和最小值,再把剩余的数相加除以6即可:该选手最后得分=(9.8+9.5+9.7+9.8+9.7+9.8)÷6≈9.72(分)。
故选C 。
2.(江苏省泰州市2005年3分)某工厂为了选拔1名车工参加加工直径为10mm 的精密零件的技术比赛, 随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S 2甲、S 2乙的大小【 】A .S 2甲>S 2乙 B .S 2甲=S 2乙C .S 2甲<S 2乙 D .S 2甲≤S 2乙【答案】A 。
【考点】方差,计算器的应用。
【分析】先计算出平均数后,再根据方差的计算公式计算进行比较:甲的平均数=(10.05+10.02+9.97+9.96+10)÷5=10, 乙的平均数=(10+10.01+10.02+9.97+10)÷5=10;2222221S [10.051010.02109.97109.96101010]0.05455=-+-+-+-+-=甲()()()()(),2222221S [101010.011010.02109.97101010]0.001455=-+-+-+-+-=乙()()()()()∴S 2甲>S 2乙。
故选A 。
3.(江苏省泰州市2005年3分)下列说法正确的是【 】A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大.B.为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行.C.彩票中奖的机会是1%,买100张一定会中奖.D.泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论.【答案】B。
江苏省泰州市2001-2012年中考数学试题分类解析 专题6 函数的图像与性质
2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题6:函数的图象与性质一、选择题1.(2001江苏泰州3分)下列函数中,当x >0时,y 随x 的增大而增大的函教是【 】。
A.y=2x - B. y=2x+2- C. 2y=x- D. 2y=2x - 【答案】C 。
【考点】正比例函数、一次函数、反比例函数和二次函数的性质。
【分析】根据正比例函数、一次函数、反比例函数和二次函数的性质逐一作出判断:A.y=2x -的k=-2<0,∴y 随x 的增大而减小;B. y=2x+2-的k=-2<0,∴y 随x 的增大而减小;C. 2y=x-的k=-2<0,∴当x >0时,y 随x 的增大而增大; D. 2y=2x -的a=-2<0,对称轴为x=0,∴当x >0时,y 随x 的增大而减小。
故选C 。
2.(2001江苏泰州4分)抛物线()2y=x 2m 1x 2m ---与x 轴的两个交点坐标分别为A (x 1,0),B (x 2,0),且12x =1x ,则m 的值为【 】。
A.12- B. 0 C. 12± D. 12【答案】D 。
【考点】抛物线与x 轴的交点问题,一元二次方程根与系数的关系。
【分析】∵抛物线()2y=x 2m 1x 2m ---与x 轴的两个交点坐标分别为A (x 1,0),B (x 2,0),且12x =1x , ∴12x x =-,即12x +x =0。
又根据一元二次方程根与系数的关系,12x +x =2m 1-,∴2m 1=0-。
解得1m=2。
故选D 。
3.(江苏省泰州市2004年4分)用某种金属材料制成的高度为h 的圆柱形物体甲如右图放在桌面上,它对桌面的压强为1000帕,将物体甲锻造成高度为21h 的圆柱形的物体乙(重量保持不变),则乙对桌面的压强为【 】 A .500帕B .1000帕C .2000帕D .250帕【答案】A 。
【考点】反比例函数的应用。
2007年全国各地中考试题130多份标题汇总
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
江苏省泰州市中考数学试卷含答案解析版
2018年江苏省泰州市中考数学试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂再答题卡相应位置上)1.(3分)(2018•泰州)﹣(﹣2)等于()A.﹣2B.2C.12D.±22.(3分)(2018•泰州)下列运算正确的是()A.√2+√3=√5B.√18=2√3C.√2•√3=√5D.√2÷√1 2=23.(3分)(2018•泰州)下列几何体中,主视图与俯视图不相同的是()A.正方体B.四棱锥C.圆柱D.球4.(3分)(2018•泰州)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球5.(3分)(2018•泰州)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0C.x1•x2>0D.x1<0,x2<06.(3分)(2018•泰州)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A 出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写再答题卡相应位置上)7.(3分)(2018•泰州)8的立方根等于.8.(3分)(2018•泰州)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.9.(3分)(2018•泰州)计算:12x•(﹣2x2)3=.10.(3分)(2018•泰州)分解因式:a3﹣a=.11.(3分)(2018•泰州)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是 .12.(3分)(2018•泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为 .13.(3分)(2018•泰州)如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC +BD=16,则△BOC 的周长为 .14.(3分)(2018•泰州)如图,四边形ABCD 中,AC 平分∠BAD ,∠ACD=∠ABC=90°,E 、F 分别为AC 、CD 的中点,∠D=α,则∠BEF 的度数为 (用含α的式子表示).15.(3分)(2018•泰州)已知3x ﹣y=3a 2﹣6a +9,x +y=a 2+6a ﹣9,若x ≤y ,则实数a 的值为 .16.(3分)(2018•泰州)如图,△ABC 中,∠ACB=90°,sinA=513,AC=12,将△ABC 绕点C 顺时针旋转90°得到△A'B'C ,P 为线段A′B’上的动点,以点P 为圆心,PA′长为半径作⊙P ,当⊙P 与△ABC 的边相切时,⊙P 的半径为 .三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(2018•泰州)(1)计算:π0+2cos30°﹣|2﹣√3|﹣(12)﹣2;(2)化简:(2﹣x−1x+1)÷x 2+6x+9x 2−1. 18.(8分)(2018•泰州)某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a ,m 的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.19.(8分)(2018•泰州)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A 、B 两个景点中任意选择一个游玩,下午从C 、D 、E 三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B 和C 的概率.20.(8分)(2018•泰州)如图,∠A=∠D=90°,AC=DB ,AC 、DB 相交于点O .求证:OB=OC .21.(10分)(2018•泰州)为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.(10分)(2018•泰州)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3√3,DF=3,求图中阴影部分的面积.23.(10分)(2018•泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0。
江苏省泰州市2001-2012年中考数学试题分类解析 专题9 三角形
2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题9:三角形一、选择题1.(江苏省泰州市2002年4分)Rt△ABC中,∠C=90°,a:b=3:4,运用计算器计算,∠A的度数是【】(精确到1°)A、30°B、37°C、38°D、39°【答案】B。
【考点】三角函数定义,计算器的应用。
【分析】根据题中所给的条件,在直角三角形中应用正切函数解题:∵Rt△ABC中,∠C=90°,,∴tan A= a:b=3:4=0.75。
运用计算器得,∠A≈37°。
故选B。
2.(江苏省泰州市2003年4分)如图,某防洪大坝的横断面是梯形,斜坡AB的坡度i=1∶2.5,则斜坡AB的坡角 为【】(精确到1°)A.24° B.22° C.68° D.66°【答案】B。
【考点】解直角三角形的应用(坡度坡角问题),正切函数定义,计算器的应用。
【分析】算出坡角的正切值,用计算器即可求得坡角:如图,∵坡度tanα=铅直高度AC:水平距离BC=1:2.5=0.4,∴α=21.8°≈22°。
故选B。
3.(江苏省泰州市2003年4分)在Rt△ABC的直角边AC边上有一点P(点P与点A、C不重合),过点P作直线截△ABC,使截得的三角形与△ABC相似,满足条件的直线共有【】A.1条 B.2条 C.3条 D.3条或4条【答案】D。
【考点】相似三角形的判定。
【分析】过点P作直线与另一边相交,使所得的三角形与原三角形已经有一个公共角,只要再作一个等于△ABC 的另一个角即可:(1)若AC <BC (如图1),过点P 作PD 1⊥AB,或作PD 2⊥AC,或作PD 3∥AB,或作∠PD 4C=∠A,这样截得的三角形与△ABC 相似。
即满足条件的直线共有4条。
(2)若AC >BC 且PC BC >(如图2),同(1)有PD 1,PD 2,PD 3。
2007年泰州市中考数学试题及答案
泰州市2007年初中毕业、升学统一考试数学试题(考试时间:120分钟,满分:150分)第一部分 选择题(共36分)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共36分) 1.的倒数是( ) 3A .B .C .D . 3133-13-2.下列运算正确的是( ) A .B .C .D .236a a a = 236()y y -=2353()m n m n =222253x x x -+=3.下列函数中,随的增大而减小的是( ) y x A . B . C .() D .() 1y x=-2y x=3y x =-0x >4y x=0x <4.如图所示的几何体中,俯视图形状相同的是( )A .①④B .②④C .①②④D .②③④(第4题图)①②③④5.已知:如图,,,以为位似中心, (42)E -,(11)F --,O 按比例尺,把缩小,则点的对应点的坐标 1:2EFO △E E '为( )A .或B .或(21)-,(21)-,(84)-,(84)-,C .D .(21)-,(84)-,6.函数的取值范围是( ) y =x A .B .1x -≥12x -≤≤(第5题图)C .D . 12x -<≤2x <7.下列说法正确的是( )A .小红和其他四个同学抽签决定从星期一到星期五的值日次序,她第三个抽签,抽到星期一的概率比前两个人小B .某种彩票中奖率为10%,小王同学买了10张彩票,一定有1张中奖C .为了了解一批炮弹的杀伤半径,应进行普查D .晚会前,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果由众数决定 8.按右边方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内33⨯( )A .B .C .D .9.如图,王大伯家屋后有一块长12m ,宽8m 的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在处的一棵树上,为了不A 让羊吃到菜,拴羊的绳长可以选用( )A .3mB .5mC .7mD .9m10.2008年奥运会日益临近,某厂经授权生产的奥运纪念品深受人们欢迎,今年1月份以来,该产品原有库存量为()的情况下,日销量与产m 0m >量持平,3月底以来需求量增加,在生产能力不变的情况下,该产品一度脱销,下图能大致表示今年1月份以来库存量与时间之间函数关系的是y t ( )A .B .C .D .11.现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中.已知:(1)每所学校至少有他们中的一名学生;(2)在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;(3)乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;(4)丁、戊是同一所学校的三好学生.根据以上叙述可以断定甲所在的学校为( ) A .一中 B .二中 C .三中 D .不确定 12.已知:二次函数,下列说法错误的是( )24y x x a =--(第9题图)A DA .当时,随的增大而减小 1x <y xB .若图象与轴有交点,则x 4a ≤C .当时,不等式的解集是3a =240x x a -+>13x <<D .若将图象向上平移1个单位,再向左平移3个单位后过点,则(12)-,3a =-第二部分 非选择题(共114分)二、填空题(每题3分,共24分)13.数据,,,的方差 .13-42-2S =14.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.15.请写出一个原命题是真命题,逆命题是假命题的命题 .16.直线,直线与轴围成图形的周长是 (结果保留根号). y x =-2y x =+x 17.我国城镇居民2004年人均收入为9422元,2006年为11759元,假设这两年内人均收入平均年增长率相同,则年增长率为 (精确到0.1%).18.如图,直角梯形中,,,,ABCD AD BC ∥AB BC ⊥2AD =,,将腰以点为中心逆时针旋转至3BC =45BCD ∠= CD D 90,连结,则的面积是 .ED AE CE ,ADE △19.用半径为12cm ,圆心角为的扇形做成一个圆锥模型的侧面,150则此圆锥的高为 cm (结果保留根号).20.如图,在的正方形格纸中,有一个以格点为顶点的,请你找出格纸中所有与22⨯ABC △成轴对称且也以格点为顶点的三角形,这样的三角形共有 个.ABC △(第20题图)ABC三、解答下列各题(21题8分,22,23每题9分,共26分)21.计算:.11453(2007π)2-⎛⎫+⨯- ⎪⎝⎭(第18题图)A BCDE22.先化简,再求值:,其中,是方程的根. 2224124422a a a a a a ⎛⎫--÷ ⎪-+--⎝⎭a 2310x x ++=23.如图,在四边形中,点,分别是的中点,分别是ABCD E F AD BC ,G H ,BD AC,的中点,满足什么条件时,四边形是菱形?请证明你的结论. AB CD ,EGFH(第23题图)四、(本题满分9分)24.数学课上,年轻的刘老师在讲授“轴对称”时,设计了如下四种教学方法: ①教师讲,学生听; ②教师让学生自己做;③教师引导学生画图,发现规律;④教师让学生对折纸,观察发现规律,然后画图.数学教研组长将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种,他随机抽取了60名学生的调查问卷,统计如图:(1)请将条形统计图补充完整,并计算扇形统计图中方法③的圆心角.(2)全年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人? (3)假如抽取的60名学生集中在某两个班,这个调查结果还合理吗?为什么? (4)请你对老师的教学方法提出一条合理化的建议.④③①②表示教学方法序号n五、(本题满分9分)25.已知:如图,中,,点为的中点,以为直径的切ABC △CA CB =D AC AD O BC 于点,.E 2AD =(1)求的长;(2)过点作交于点,求的长.BE D DF BC ∥O F DF六、(本题满分10分) 26.2007年5月17日我市荣获“国家卫生城市称号”.在“创卫”过程中,要在东西方向M N ,两地之间修建一条道路.已知:如图点周围180m 范围内为文物保护区,在上点处测C MN A 得在的北偏东方向上,从向东走500m 到达处,测得在的北偏西方向上. C A 60A B C B 45(1))MN 1.732(第26题图)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?(第25题图)A B CE D FO七、(本题满分10分)27.某学校七年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明.(第27题图)(2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规完:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.(3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?八、(本题满分12分)28.通过市场调查,一段时间内某地区某一种农副产品的需求数量(千克)与市场价格(元y x /千克)()存在下列关系:030x <<(元/千克)x 5 10 15 20 (千克)y 4500400035003000又假设该地区这种农副产品在这段时间内的生产数量(千克)与市场价格(元/千克)成z x 正比例关系:().现不计其它因素影响,如果需求数量等于生产数量400z x =030x <<y ,那么此时市场处于平衡状态.z (1)请通过描点画图探究与之间的函数关系,并求出函数关系式; y x元/千克)(第28题图)(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量与市场价格的函数关系z x 发生改变,而需求数量与市场价格的函数关系未发生变化,那么当市场处于平衡状态时,y x 该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?九、(本题满分14分)29.如图①,中,,.它的顶点的坐标为,顶点Rt ABC △90B ∠=30CAB ∠=A (100),B 的坐标为,,点从点出发,沿的方向匀速运动,同时点(510AB =P A A B C →→Q 从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,(02)D ,y P C 设运动的时间为秒. t (1)求的度数.BAO ∠(2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象P AB OPQ △S t 为抛物线的一部分,(如图②),求点的运动速度.P (3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标. S t S P (4)如果点保持(2)中的速度不变,那么点沿边运动时,的大小随着P Q ,P AB OPQ ∠时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小,当点沿t BC OPQ ∠t P 这两边运动时,使的点有几个?请说明理由. 90OPQ ∠=P(第29题图①)x t (第29题图②)参考答案二、填空题(每题3分,共24分) 13.7.514. 15.如:对顶角相等(答案不唯一)65.410⨯16. 17.18.1920.2+11.7%15三、解答下列各题(21题8分,22、23每题9分,共26分)21.解:原式 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分 231=+⨯ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分 2134=-+=22.解:原式 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分 2(2)(2)1(2)(2)22a a a a a a ⎡⎤+--=+⨯⎢⎥--⎣⎦ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分 21(2)222a a a a a +-⎛⎫=+⨯⎪--⎝⎭(3)2a a +=∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分21(3)2a a =+ 是方程的根,a 2310x x ++= ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分 2310a a ∴++= ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分231a a ∴+=- 原式 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分 ∴12=-23.(1)当时,四边形是菱形. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分 AB CD =EGFH (2)证明:点分别是的中点,E G ,AD BD ,,同理,.12EG AB ∴∥12HF AB ∥EG HF ∴∥四边形是平行四边形 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分∴EGFH ,又可同理证得,12EG AB = 12EH CD =, AB CD = ,EG EH ∴=四边形是菱形. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分 ∴EGFH (用分析法由四边形是菱形推出满足条件“”也对)EGFH AB CD =四、(本题满分9分) 24.(1)补横轴------教学方法 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分 补条形图-------方法②人数为(人) ∙∙∙∙∙∙∙∙∙∙∙∙2分60618279---=方法③的圆心角为: ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分 1836010860⨯=(2)方法④,(人) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分42045189⨯=%(3)不合理,缺乏代表性. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分 (4)如:鼓励学生主动参与、加强师生互动等 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分 五、(本题满分9分) 25.(1)连结交于点, OE FD G 切于,.BC O E BE BC ∴⊥CE ∴===. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分4BE ∴=-(2), DF BC ∥,OGD OEC ∴△∽△.GD OD EC OC∴=,.13=GD ∴=,,OE BC ∴⊥OE FG ∴⊥. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分 2FD GD ∴==六、(本题满分10分)26.(1)过作于点,设, CCH AB ⊥H m CH x =则,.AH =HBx =,AH HB AB += (第25题图)B AB C (第26题图)N HM. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分500x +=, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分 183180x ∴==>不会穿过保护区. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分∴(2)设原计划完成这项工程需要天,y 则, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分 11(125)5y y=+⨯-%解之得:. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分 25y =经检验知:是原方程的根. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分 25y =答:(略) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分 (其它解法类似给分) 七、(本题满分10分)(1)树状图略 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分 41()123P ==进入迷宫中心(2)不公平,理由如下: 法一:由树状图可知,, 51()3P =的倍数,. 521()126P ==非的倍数的奇数561()122P ==非的倍数的偶数所以不公平.法二:从(1)中树状图得知,不是5的倍数时,结果是奇数的有2种情况,而结果是偶数的有6种情况,显然小李胜面大,所以不公平. 法三:由于积是5的倍数时两人得分相同,所以可直接比较积不是5的倍数时,奇数、偶数的概率.,, 1()4P =奇数3()4P =偶数所以不公平. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分可将第二道环上的数4改为任一奇数. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分 (3)设小军次进入迷宫中心,x 则, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分 23(10)28x x +-≤解之得.2x ≥所以小军至少2次进入迷宫中心. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分 八、(本题满分12分)(1)描点略. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分 设,用任两点代入求得, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分 y kx b =+1005000y x =-+再用另两点代入解析式验证. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分 (2),,y z = 1005000400x x ∴-+=.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分 10x ∴=总销售收入(元) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分 ∴10400040000=⨯=农副产品的市场价格是10元/千克,∴农民的总销售收入是40000元. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分 (3)设这时该农副产品的市场价格为元/千克,a 则, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分 (1005000)4000017600a a -+=+解之得:,.118a =232a =,. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11分 030a << 18a ∴=这时该农副产品的市场价格为18元/千克. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分∴九、(本题满分14分)(1). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分 60BAO =∠(2)点的运动速度为2个单位/秒. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分 P(3)()(10)P t -05t ≤≤ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分1(22)(10)2S t t =+- . 2912124t ⎛⎫=--+ ⎪⎝⎭当时,有最大值为, ∴92t =S 1214此时. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分112P ⎛ ⎝(4)当点沿这两边运动时,的点有2个. ∙∙∙∙∙∙∙∙∙∙11分 P 90OPQ =∠P ①当点与点重合时,,P A 90OPQ <∠当点运动到与点重合时,的长是12单位长度, P B OQ 作交轴于点,作轴于点,90OPM =∠y M PH y ⊥H 由得:, OPH OPM △∽△11.5OM ==所以,从而.OQ OM >90OPQ >∠所以当点在边上运动时,的点有1个. ∙∙∙∙∙∙∙∙∙∙13分P AB 90OPQ =∠P ②同理当点在边上运动时,可算得. PBC 1217.8OQ ==而构成直角时交轴于, y 0⎛ ⎝20.217.8=>所以,从而的点也有1个.90OCQ <∠90OPQ =∠P 所以当点沿这两边运动时,的点有2个. ∙∙∙∙∙∙∙∙∙∙∙14分 P 90OPQ =∠P第29题图①。
江苏省泰州市2001-2012年中考数学试题分类解析 专题2 代数式和因式分解
2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题2:代数式和因式分解一、选择题1.(2001江苏泰州3分)下列计算正确的是【 】。
A. ()2n2naa =aa 0÷≠ B.32xx=xyy()b a b -≥【答案】B 。
【考点】同底幂除法,分式化简, 根式化简。
【分析】根据同底幂除法,分式化简, 根式化简运算法则逐一计算作出判断:A. 2n22n 2aa =a-÷ ,计算错误; B.32xx=xyy,计算正确;a - ,计算错误;ab -不等,计算错误, 故选B 。
2.(江苏省泰州市2002年4分)下列运算正确的是【 】 A 、a 3·a 4=a 12B 、a 5-a 3=a 2C 、(a 2)m =a 2mD 、(a+1)0=1【答案】C 。
【考点】同底数幂的乘法,合并同类项,幂的乘方,零指数幂。
【分析】根据同底数幂的乘法的性质,合并同类项的法则,幂的乘方的性质,零指数幂的意义,对各选项分析判断后利用排除法求解:A 、a 3•a 4=a 7,此选项错误;B 、a 5和a 3不是同类项,不可以合并,此选项错误; C 、(a 2)m =a 2m ,此选项正确;D 、(a+1)0=1必须a≠-1,此选项错误。
故选C 。
3.(江苏省泰州市2003年4分)下列运算正确的是【 】 A .4222x x x =+ B .532a a a =⋅C .64216)2(x x =- D .223)3)(3(y x y x y x -=-+ 【答案】B 。
【考点】合并同类项,同底数幂的乘法,幂的乘方与积的乘方,平方差公式。
【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;平方差公式,对各选项分析判断后利用排除法求解:A 、应为2222x x x +=,故本选项错误;B 、235a a a ⋅=,故本选项正确;C 、应为248(2)16x x -=,故本选项错误;D 、应为22(3)(3)9x y x y x y +-=-,故本选项错误。
【中考12年】江苏省泰州市2002-中考数学试题分类解析 专题06 函数的图像与性质
泰州市2002-2013年中考数学试题分类解析 专题06 函数的图像与性质一、选择题1.(江苏省泰州市2004年4分)用某种金属材料制成的高度为h 的圆柱形物体甲如右图放在桌面上,它对桌面的压强为1000帕,将物体甲锻造成高度为21h 的圆柱形的物体乙(重量保持不变),则乙对桌面的压强为【 】A .500帕B .1000帕C .2000帕D .250帕2.(江苏省泰州市2006年3分)反比例函数1k y x-=的图象在每个象限内,y 随x 的增大而减小,则k 的值可为【 】 A .1- B .0 C .1 D .23.(江苏省泰州市2007年3分)下列函数中,y 随x 的增大而减小的是【 】A .1y x =-B .2y x =C .3y x =-(0x >)D .4y x=(0x <)4.(江苏省泰州市2007年3分)已知:二次函数24y x x a =--,下列说法错误..的是【 】 A .当1x <时,y 随x 的增大而减小B .若图象与x 轴有交点,则4a ≤C .当3a =时,不等式240x x a <-+的解集是13x <<D .若将图象向上平移1个单位,再向左平移3个单位后过点(12)-,,则3a =-5.(江苏省泰州市2010年3分)下列函数中,y 随x 增大而增大的是【 】 A.3y x =- B. y x 5=-+ C. 1y x 2= D. 21y x (x 0)2=<6.(江苏省泰州市2011年3分)某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S (m 2)与其深度h (m )之间的函数关系式为)0(≠=h hV S ,这个函数的图象大致是【 】二、填空题1. (江苏省泰州市2004年3分)在距离地面2米高的某处把一物体以初速度0v (米/秒)竖直向上抛出,在不计空气阻力的情况下,其上升高度s (米)与抛出时间t (秒)满足:2021gt t v s -= (其中g 是常数,通常取10米/秒2),若100=v 米/秒,则该物体在运动过程中最高点距离地面 ▲ 米.2.(江苏省泰州市2005年3分)写出一个图象分布在二、四象限内的反比例函数解析式 ▲ _.3.(江苏省泰州市2007年3分)直线y x =-,直线2y x =+与x 轴围成图形的周长是 ▲ (结果保留根号).4.(江苏省2009年3分)反比例函数1y x=-的图象在第 ▲ 象限.5.(江苏省泰州市2010年3分)一次函数b kx y +=(k 为常数且0≠k )的图象如图所示,则使0>y成立的x 的取值范围为 ▲ .三、解答题1.(江苏省泰州市2002年8分)某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为首次打进世界杯决赛圈的国家足球队加油助威。
2007年全国100多个地区中考数学试题分类汇编 格点
2007年中考数学试题分类-格点问题(2007年滨州)如图3所示,每个小方格都是边长为1的正方形,点A B ,是方格纸的两个格点(即正方形的顶点),在这个66 的方格纸中,找出格点C ,使ABC △的面积为1个平方单位的直角三角形的个数是.(2007年某某某某)如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD 的边长为2,E 是AD 的中点,按CE 将菱形ABCD 剪成①、②两部分,用这两部分可以分别拼成直角三角形,要求所拼成图形的顶点均落在格点上. (1)在下面的菱形斜网格中画出示意图;(2)判断所拼成的三种图形的面积(s )、周长(l )的大小关系(用“=”、“>”或“<”(直角三角形)(等腰梯形)(矩形)图3AB连接): 面积关系是;周长关系是.(2007年眉山市)在如图所示的56⨯方格中(每个方格的边长为1)画一圆,要求所画的圆经过四个格点,并求出你画的圆的半径.(2007年某某课改)如图,横、纵相邻格点间的距离均为1个单位.(1)在格点中画出图形ABCD 先向右平移6个单位,再向上平移2个单位后的图形; (2)请写出平移前后两图形应对点之间的距离.(2007年某某市)如图,在22⨯的正方形格纸中,有一个以格点为顶点的ABC △,请你找出格纸中所有与ABC △成轴对称且也以格点为顶点的三角形,这样的三角形共有个.(2007年某某市)正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( )(第20题图) ABC AA.55B.55C.12D.2(2007年清流县)如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的正方形的顶点上.(1)填空:∠ABC =_______°;BC =________; (2)判断△ABC 与△DEF 是否相似,并说明理由.FEDCBA( 2007年某某)如图是5×5的正方形网络,以点D 、E 为两个顶点作位 置不同的格点三角形,使所作的格点三角形与△ABC 全等, 这样的格点三角形最多可以画出 ( ) A 、2个 B 、4个 C 、6个 D 、8个EDCBABO( 2007年某某)如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形。
2007年江苏省高考数学试卷及答案
绝密★启用前2007年普通高等学校招生全国统一考试数学(江苏卷)1的是B.sin2y x=C.cos4xy=D.cos4y x=221,0,1,2},{|}B x x x-==,则UA C B为B.{1,0}-C.{0,1}D.{1,2}3.在平面直角坐标系中,双曲线中心在坐标原点,焦点在y轴上,一条渐近线方程为20x y-=,则它的离心率为A B.C D.24.已知两条直线,m n,两个平面,αβ,给出下面四个命题:①//,m n m nαα⊥⇒⊥②//,,//m n m nαβαβ⊂⊂⇒③//,////m n m nαα⇒④//,//,m n m nαβαβ⊥⇒⊥其中正确命题的序号是A .①③B .②④C .①④D .②③ 5.函数()sin ([,0])f x x x x π=∈-的单调递增区间是 A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π-6.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31xf x =-,则有A .132()()()323f f f << B .231()()()323f f f << C .213()()()332f f f << D .321()()()233f f f << 7.若对于任意实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为A .3B .6C .9D .128.设2()lg()1f x a x =+-A .(1,0)- D .(,0)(1,)-∞+∞9.已知二次函数2()f x ax =x 都有()0f x ≥,则(1)'(0)f f 的最小值为A .3 D .3210.在平面直角坐标系xOy 0,0}y ≥≥,则平面区域{(,)|(,)B x y x y x y =+-∈A .2 .145分,共30分。
江苏省泰州市2001-2012年中考数学试题分类解析 专题8 平面几何基础
2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题8:平面几何基础一、选择题2.(2001江苏泰州4分)①若不等式()a 2x 2a <--的解集为x 1>-,则a 2<。
②若α、β,则以α、β为根的一元二次方程为2x +3x+2=0。
③方程(x+3的解为x=3±。
④用反证法证明“三角形中至少有一个内角不小于600”。
第一步应假设三角形中三个内角都小于600。
以上4条解答,正确的条数为【 】。
A.0B. 1C. 2D. 3【答案】C 。
【考点】解不等式,非负数的性质,一元二次方程的根,解无理方程,反证法。
【分析】根据相关知识逐一判断:①当a 2<时,原不等式化为2a x a 2>--,即x 1>-;当a 2>时,原不等式化为2a x a 2<--,即x 1<-。
∴若不等式()a 2x 2a <--的解集为x 1>-,则a 2<。
∴结论正确。
②∵α、β,∴+3=02=0αβαβ-- ,,即+=3=2αβαβ ,。
∴根据一元二次方程根与系数的关系知,以α、β为根的一元二次方程为2x 3x+2=0-。
∴结论错误。
③∵当x=3-时,方程(x+3无意义,∴结论错误。
④结论正确。
∴正确的条数为2条。
故选C 。
3.(江苏省泰州市2002年4分)等腰三角形一边长为4,一边长9,它的周长是【 】A 、17B 、22C 、17或22D 、13【答案】B 。
【考点】等腰三角形的性质,三角形的构成条件。
【分析】分底边是4和底边是两种情况讨论:当底边是4时:三边是4,9,9,则周长是22;当底边是9时:三边是:4,4,9,因为4+4<9不能构成三角形。
∴等腰三角形的周长为22。
故选B 。
4.(江苏省泰州市2002年4分)下列图形中是中心对称图形的是【 】A 、B 、C 、D 、【答案】C 。
【考点】中心对称图形,【分析】根据中心对称图形是图形沿对称中心旋转180度后与原图重合的概念和各图形的特点即可求解:A 、是轴对称图形;B 、有五个角,但有旋转,所以既不是轴对称图形也不是中心对称图形;C 、即是轴对称图形,又是中心对称图形;D 、是轴对称图形。
2007年江苏省高考数学试卷及解析
2007年江苏省高考数学试卷一、选择题(共10小题,每小题5分,满分50分)1.(5分)下列函数中,周期为的是()A. B.y=sin2x C. D.y=cos4x2.(5分)已知全集U=Z,A={﹣1,0,1,2},B={x|x2=x},则A∩∁U B为()A.{﹣1,2}B.{﹣1,0}C.{0,1}D.{1,2}3.(5分)在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x﹣2y=0,则它的离心率为()A.B.C.D.24.(5分)已知两条直线m,n,两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③5.(5分)函数f(x)=sinx﹣cosx(x∈[﹣π,0])的单调递增区间是()A.[﹣π,﹣]B.[﹣,﹣]C.[﹣,0]D.[﹣,0] 6.(5分)设f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),且当x≥1时,f(x)=2x﹣1,则有()A.f()<f()<f()B.f()<f()<f()C.f()<f ()<f()D.f()<f()<f()7.(5分)若对于任意实数x,有x3=a0+a1(x﹣2)+a2(x﹣2)2+a3(x﹣2)3,则a2的值为()A.3 B.6 C.9 D.128.(5分)设f(x)=lg(+a)是奇函数,则使f(x)<0的x的取值范围是()A.(﹣1,0)B.(0,1) C.(﹣∞,0)D.(﹣∞,0)∪(1,+∞)9.(5分)已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B.C.2 D.10.(5分)在平面直角坐标系xOy,已知平面区域A={(x,y)|x+y≤1,且x ≥0,y≥0},则平面区域B={(x+y,x﹣y)|(x,y)∈A}的面积为()A.2 B.1 C.D.二、填空题(共6小题,每小题5分,满分30分)11.(5分)若cos(α+β)=,cos(α﹣β)=,则tanαtanβ=.12.(5分)山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有种不同的选修方案.(用数值作答)13.(5分)已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m=.14.(5分)正三棱锥P﹣ABC高为2,侧棱与底面所成角为45°,则点A到侧面PBC的距离是.15.(5分)在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则=.16.(5分)某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O 旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B两点的距离d (cm)表示成t(s)的函数,则d=,其中t∈[0,60].三、解答题(共5小题,满分70分)17.(12分)某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.18.(12分)如图,已知ABCD﹣A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:EM ⊥面BCC1B1;(3)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求tanθ.19.(14分)如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于AB两点,一条垂直于x轴的直线,分别与线段AB和直线l:y=﹣c交于P,Q,(1)若,求c的值;(2)若P为线段AB的中点,求证:QA为此抛物线的切线;(3)试问(2)的逆命题是否成立?说明理由.20.(16分)已知{a n}是等差数列,{b n}是公比为q的等比数列,a1=b1,a2=b2≠a1,记S n为数列{b n}的前n项和,(1)若b k=a m(m,k是大于2的正整数),求证:S k﹣1=(m﹣1)a1;(2)若b3=a i(i是某一正整数),求证:q是整数,且数列{b n}中每一项都是数列{a n}中的项;(3)是否存在这样的正数q,使等比数列{b n}中有三项成等差数列?若存在,写出一个q的值,并加以说明;若不存在,请说明理由.21.(16分)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f(x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.2007年江苏省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2007•江苏)下列函数中,周期为的是()A. B.y=sin2x C. D.y=cos4x【分析】利用公式对选项进行逐一分析即可得到答案.【解答】解:根据公式,的周期为:T=4π,排除A.y=sin2x的周期为:T=π,排除B.的周期为:T=8π,排除C.故选D2.(5分)(2007•江苏)已知全集U=Z,A={﹣1,0,1,2},B={x|x2=x},则A ∩∁U B为()A.{﹣1,2}B.{﹣1,0}C.{0,1}D.{1,2}【分析】B为二次方程的解集,首先解出,再根据交集、补集意义直接求解.【解答】解:由题设解得B={0,1},C U B={x∈Z|x≠0且x≠1},∴A∩C U B={﹣1,2},故选A3.(5分)(2007•江苏)在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x﹣2y=0,则它的离心率为()A.B.C.D.2【分析】根据双曲线中心在原点,焦点在y轴上,一条渐近线方程为x﹣2y=0能够得到,由此能够推导出双曲线的离心率.【解答】解:由得b=2a,,.故选A.4.(5分)(2007•江苏)已知两条直线m,n,两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③【分析】由题意用线面垂直和面面平行的定理,判断线面和面面平行和垂直的关系.【解答】解:用线面垂直和面面平行的定理可判断①④正确;②中,由面面平行的定义,m,n可以平行或异面;③中,用线面平行的判定定理知,n可以在α内;故选C.5.(5分)(2007•江苏)函数f(x)=sinx﹣cosx(x∈[﹣π,0])的单调递增区间是()A.[﹣π,﹣]B.[﹣,﹣]C.[﹣,0]D.[﹣,0]【分析】先利用两角和公式对函数解析式化简整理,进而根据正弦函数的单调性求得答案.【解答】解:f(x)=sin x﹣cos x=2sin(x﹣),因x﹣∈[﹣π,﹣],故x﹣∈[﹣π,﹣],得x∈[﹣,0],故选D6.(5分)(2007•江苏)设f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),且当x≥1时,f(x)=2x﹣1,则有()A.f()<f()<f()B.f()<f()<f()C.f()<f ()<f()D.f()<f()<f()【分析】本题是关于函数图象对称性的一个题,方法一:由f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),知对称轴是x=1,故有f()=f(),f()=f(),又x≥1时,f(x)=2x﹣1,函数在(1,+∞)上是增函数,>>,由此可选出正确选项;方法二:由f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),知对称轴是x=1,由对称性知其在(﹣∞,1)上是减函数,其图象的特征是自变量离1的距离越远,其函数值越大,由此特征判断函数值的大小即可.【解答】解:方法一:由条件f(x)=f(2﹣x)可得函数图象关于直线x=1对称,则f()=f(),f()=f(),由于当x≥1时,f(x)=2x﹣1,即函数在[1,+∞)上为增函数,由于>>,故有f()=f()>f()>f()=f ()故应选B.方法二:由f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),知对称轴是x=1,由对称性知其在(﹣∞,1)上是减函数,其图象的特征是自变量离1的距离越远,其函数值越大,∵1﹣<﹣1<1﹣∴f()<f()<f()故应选B.7.(5分)(2007•江苏)若对于任意实数x,有x3=a0+a1(x﹣2)+a2(x﹣2)2+a3(x﹣2)3,则a2的值为()A.3 B.6 C.9 D.12【分析】由等式右边可以看出是按照x﹣2的升幂排列,故可将x写为2+x﹣2,利用二项式定理的通项公式可求出a2的值.【解答】解:x3=(2+x﹣2)3,故a2=C322=6故选B8.(5分)(2007•江苏)设f(x)=lg(+a)是奇函数,则使f(x)<0的x 的取值范围是()A.(﹣1,0)B.(0,1) C.(﹣∞,0)D.(﹣∞,0)∪(1,+∞)【分析】首先由奇函数定义,得到f(x)的解析式的关系式(本题可利用特殊值f(0)=0),求出a,然后由对数函数的单调性解之.【解答】解:由f(﹣x)=﹣f(x),,,即=,1﹣x2=(2+a)2﹣a2x2此式恒成立,可得a2=1且(a+2)2=1,所以a=﹣1则即解得﹣1<x<0故选A9.(5分)(2007•江苏)已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B.C.2 D.【分析】先求导,由f′(0)>0可得b>0,因为对于任意实数x都有f(x)≥0,所以结合二次函数的图象可得a>0且b2﹣4ac≤0,又因为,利用均值不等式即可求解.【解答】解:∵f'(x)=2ax+b,∴f'(0)=b>0;∵对于任意实数x都有f(x)≥0,∴a>0且b2﹣4ac≤0,∴b2≤4ac,∴c>0;∴,当a=c时取等号.故选C.10.(5分)(2007•江苏)在平面直角坐标系xOy,已知平面区域A={(x,y)|x+y ≤1,且x≥0,y≥0},则平面区域B={(x+y,x﹣y)|(x,y)∈A}的面积为()A.2 B.1 C.D.【分析】将x+y和x﹣y看成整体,设,根据题意列出关于u,v的约束条件,画出区域求面积即可.【解答】解析:令,∴,作出区域是等腰直角三角形,可求出面积选B二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2007•江苏)若cos(α+β)=,cos(α﹣β)=,则tanαtanβ=.【分析】先由两角和与差的公式展开,得到α,β的正余弦的方程组,两者联立解出两角正弦的积与两角余弦的积,再由商数关系求出两角正切的乘积.【解答】解:由已知,,∴cosαcosβ=,sinαsinβ=∴故应填12.(5分)(2007•江苏)山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有75种不同的选修方案.(用数值作答)【分析】由题意知本题需要分类来解,可以从A、B、C三门选一门有C31•C63,也可以从其他六门中选4门有C64,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门有C31•C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:7513.(5分)(2007•江苏)已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m=32.【分析】先对函数f (x)进行求导,令导函数等于0求出x,然后根据导函数的正负判断函数f(x)的单调性,列出在区间[﹣3,3]上f(x)的单调性、导函数f'(x)的正负的表格,从而可确定最值得到答案.【解答】解:令f′(x)=3x2﹣12=0,得x=﹣2或x=2,列表得:x﹣3(﹣3,﹣2)﹣2(﹣2,2)2(2,3)3f′(x)+0﹣0+极值﹣8﹣1f(x)17极值24可知M=24,m=﹣8,∴M﹣m=32.故答案为:3214.(5分)(2007•江苏)正三棱锥P﹣ABC高为2,侧棱与底面所成角为45°,则点A到侧面PBC的距离是.【分析】在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.本题采用的是“找垂面法”:即找(作)出一个过该点的平面与已知平面垂直,然后过该点作其交线的垂线,则得点到平面的垂线段.设P在底面ABC上的射影为O,则PO=2,且O是三角形ABC的中心,设底面边长为a,设侧棱为b,则斜高.由面积法求A到侧面PBC的距离.【解答】解:如图所示:设P在底面ABC上的射影为O,则PO⊥平面ABC,PO=2,且O是三角形ABC的中心,∴BC⊥AM,BC⊥PO,PO∩AM=0∴BC⊥平面APM又∵BC⊂平面ABC,∴平面ABC⊥平面APM,又∵平面ABC∩平面APM=PM,∴A到侧面PBC的距离即为△APM的高设底面边长为a,则设侧棱为b,则斜高.由面积法求A到侧面PBC的距离故答案为:15.(5分)(2007•江苏)在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则=.【分析】先利用椭圆的定义求得a+c,进而由正弦定理把原式转换成边的问题,进而求得答案.【解答】解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为16.(5分)(2007•江苏)某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B 两点的距离d(cm)表示成t(s)的函数,则d=,其中t∈[0,60].【分析】由题意知可以先写出秒针转过的角度,整个圆周对应的圆心角是360°,可以算出一秒转过的角度,再乘以时间,连接AB,过圆心向它做垂线,把要求的线段分成两部分,用直角三角形得到结果.【解答】解:∵∴根据直角三角形的边长求法得到d=2×5×sin=10sin,故答案为:10sin.三、解答题(共5小题,满分70分)17.(12分)(2007•江苏)某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.【分析】(1)本题是一个独立重复试验,事件发生的概率是0.8,有5次恰好发生2次,根据独立重复试验概率公式写出结果.(2)本题是一个独立重复试验,事件发生的概率是0.8,5次预报中至少有2次准确的对立事件是5次预报中只有1次准确,根据对立事件的概率和独立重复试验的概率公式得到概率.(3)本题是一个独立重复试验,事件发生的概率是0.8,5次预报中恰有2次准确,且其中第3次预报准确,表示除第三次外另外四次恰有一次正确,根据独立重复试验的概率公式得到概率.【解答】解:(1)由题意知,本题是一个独立重复试验,事件发生的概率是0.8,5次预报中恰有2次准确的概率是(2)由题意知,本题是一个独立重复试验,事件发生的概率是0.8,5次预报中至少有2次准确的对立事件是5次预报中只有1次准确和都不准确,根据对立事件的概率和独立重复试验的概率公式得到(3)由题意知,本题是一个独立重复试验,事件发生的概率是0.85次预报中恰有2次准确,且其中第3次预报准确,根据独立重复试验的概率公式得到18.(12分)(2007•江苏)如图,已知ABCD﹣A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:EM ⊥面BCC1B1;(3)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求tanθ.【分析】(1)四点共面问题通常我们将它们变成两条直线,然后证明这两条直线平行或相交,根据公理3的推论2、3可知,它们共面.(2)在正方体中,易知AB⊥面BCC1B1,所以欲证EM⊥面BCC1B1,可以先证AB ∥EM;或者也可以从平面ABB1A1⊥平面BCC1B1入手去证明,那么我们一开始就需要算出BM的长度.(3)由第二问的证明可知,利用三垂线定理,∠MHE就是截面EBFD1和面BCC1B1所成锐二面角的平面角.【解答】解:(1)证明:在DD1上取一点N使得DN=1,连接CN,EN,显然四边形CFD1N是平行四边形,所以D1F∥CN,同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,所以四边形CNEB是平行四边形,所以CN∥BE,所以D1F∥BE,所以E,B,F,D1四点共面;(2)因为GM⊥BF所以△BCF∽△MBG,所以,即,所以MB=1,因为AE=1,所以四边形ABME是矩形,所以EM⊥BB1又平面ABB1A1⊥平面BCC1B1,且EM在平面ABB1A1内,所以EM⊥面BCC1B1;(3)EM⊥面BCC1B1,所以EM⊥BF,EM⊥MH,GM⊥BF,所以∠MHE就是截面EBFD1和面BCC1B1所成锐二面角的平面角,∠EMH=90°,所以,ME=AB=3,△BCF∽△MHB,所以3:MH=BF:1,BF=,所以MH=,所以=.19.(14分)(2007•江苏)如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于AB两点,一条垂直于x轴的直线,分别与线段AB和直线l:y=﹣c交于P,Q,(1)若,求c的值;(2)若P为线段AB的中点,求证:QA为此抛物线的切线;(3)试问(2)的逆命题是否成立?说明理由.(1)设过C点的直线的方程,与抛物线方程联立设出A,B的坐标则【分析】可分别表示出来,根据求得﹣c﹣k2c+kc•k+c2=2,求得c.(2)设过Q的切线方程,通过对抛物线方程求导求得切线的斜率,进而可表示出切线方程求得与y=﹣c的交点为M的坐标进而根据P为线段AB的中点,求求得Q点的坐标,根据x1x2=﹣c,进而可表示出M的坐标,判断出以点M和点Q 重合,也就是QA为此抛物线的切线.(3)根据(2)可知点Q的坐标,根据PQ⊥x轴,推断出点P的坐标,进而求得,判断出P为AB的中点.【解答】解:(1)设过C点的直线为y=kx+c,所以x2=kx+c(c>0),即x2﹣kx﹣c=0,设A(x1,y1),B(x2,y2),=(x1,y1),,因为,所以x1x2+y1y2=2,即x1x2+(kx1+c)(kx2+c)=2,x1x2+k2x1x2﹣kc (x1+x2)+c2=2所以﹣c﹣k2c+kc•k+c2=2,即c2﹣c﹣2=0,所以c=2(舍去c=﹣1)(2)设过Q的切线为y﹣y1=k1(x﹣x1),y′=2x,所以k1=2x1,即y=2x1x﹣2x12+y1=2x1x ﹣x12,它与y=﹣c的交点为M,又,所以Q,因为x1x2=﹣c,所以,所以M,所以点M和点Q重合,也就是QA为此抛物线的切线.(3)(2)的逆命题是成立,由(2)可知Q,因为PQ⊥x轴,所以因为,所以P为AB的中点.20.(16分)(2007•江苏)已知{a n}是等差数列,{b n}是公比为q的等比数列,a1=b1,a2=b2≠a1,记S n为数列{b n}的前n项和,(1)若b k=a m(m,k是大于2的正整数),求证:S k﹣1=(m﹣1)a1;(2)若b3=a i(i是某一正整数),求证:q是整数,且数列{b n}中每一项都是数列{a n}中的项;(3)是否存在这样的正数q,使等比数列{b n}中有三项成等差数列?若存在,写出一个q的值,并加以说明;若不存在,请说明理由.【分析】(1)设{a n}的公差为d,由a1=b1,把b k=a m代入a1q k﹣1=a1,进而可表示,题设得证.出S k﹣1(2)利用)b3=a1q2,a i=a1+(i﹣1)a1(q﹣1),进而可得q2=1+(i﹣1)(q﹣1),q2﹣(i﹣1)q+(i﹣2)=0,整理即可求得q=i﹣2,进而可判定i﹣2是整数,即q是整数,设数列{b n}中任意一项为b n=a1q n﹣1(n∈N+),设数列{a n}中的某一项a m(m∈N+)=a1+(m﹣1)a1(q﹣1)只要证明存在正整数m,使得b n=a m,即在方程a1q n﹣1=a1+(m﹣1)a1(q﹣1)中m有正整数解即可.(3)设数列{b n}中有三项b m,b n,b p(m<n<p,m,n,p∈N+)成等差数列,利用等差中项的性质建立等式,设n﹣m=x,p﹣n=y,进而可得以2=,令x=1,y=2,求得q.【解答】解:设{a n}的公差为d,由a1=b1,a2=b2≠a1,知d≠0,q≠1,d=a1(q ﹣1)(a1≠0)(1)因为b k=a m,所以a1q k﹣1=a1+(m﹣1)a1(q﹣1),q k﹣1=1+(m﹣1)(q﹣1)=2﹣m+(m﹣1)q,所以(2)b3=a1q2,a i=a1+(i﹣1)a1(q﹣1),由b3=a i,所以q2=1+(i﹣1)(q﹣1),q2﹣(i﹣1)q+(i﹣2)=0,解得,q=1或q=i﹣2,但q≠1,所以q=i﹣2,因为i是正整数,所以i﹣2是整数,即q是整数,设数列{b n}中任意一项为b n=a1q n﹣1(n∈N+),设数列{a n}中的某一项a m(m∈N+)=a1+(m﹣1)a1(q﹣1)现在只要证明存在正整数m,使得b n=a m,即在方程a1q n﹣1=a1+(m﹣1)a1(q ﹣1)中m有正整数解即可,m﹣1==1+q+q2+…+q n﹣2,所以m=2+q+q2+q n ﹣2,若i=1,则q=﹣1,那么b2n=b1=a1,b2n=b2=a2,当i≥3时,因为a1=b1,a2=b2,﹣1只要考虑n≥3的情况,因为b3=a i,所以i≥3,因此q是正整数,所以m是正整数,因此数列{b n}中任意一项为b n=a1q n﹣1(n∈N+)与数列{a n}的第2+q+q2+q n﹣2项相等,从而结论成立.(3)设数列{b n}中有三项b m,b n,b p(m<n<p,m,n,p∈N+)成等差数列,则有2a1q n﹣1=a1q m﹣1+a1q p﹣1,设n﹣m=x,p﹣n=y,(x,y∈N+),所以2=,令x=1,y=2,则q3﹣2q+1=0,(q﹣1)(q2+q﹣1)=0,因为q≠1,所以q2+q﹣1=0,所以,即存在使得{b n}中有三项b m,b m+1,b m+3(m∈N+)成等差数列.21.(16分)(2007•江苏)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f (x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.【分析】(1)不妨设r为方程的一个根,即f(r)=0,则由题设得g(f(r))=0.进而有g(0)=g(f(r))=0,再由g(0)=d求解.(2)由(1)知f(x)=bx2+cx,g(x)=ax3+bx2+cx.所以有g(f(x))=x(bx+c)[bx(bx+c)+c]=x(bx+c)(b2x2+bcx+c).而方程f(x)=0即为x(bx+c)=0.①方程g(f(x))=0即为x(bx+c)(b2x2+bcx+c)=0.②最后按方程的类型,分(ⅰ)当c=0时,b≠0,(ⅱ)当c≠0,b=0(ⅲ)当c≠0,b≠0讨论.(3)由a=1,f(1)=0得b=﹣c,将函数的系数都用c表示:f(x)=bx2+cx=cx (﹣x+1),g(f(x))=f(x)[f2(x)﹣cf(x)+c].由f(x)=0可以推得g(f (x))=0,知方程f(x)=0的根一定是方程g(f(x))=0的根.然后,按照c=0和c≠0两种情况,用判别式判断求解.【解答】解:(1)设r为方程的一个根,即f(r)=0,则由题设得g(f(r))=0.于是,g(0)=g(f(r))=0,即g(0)=d=0.所以,d=0.(2)由题意及(1)知f(x)=bx2+cx,g(x)=ax3+bx2+cx.由a=0得b,c是不全为零的实数,且g(x)=bx2+cx=x(bx+c),则g(f(x))=x(bx+c)[bx(bx+c)+c]=x(bx+c)(b2x2+bcx+c).方程f(x)=0就是x(bx+c)=0.①方程g(f(x))=0就是x(bx+c)(b2x2+bcx+c)=0.②当b=0时,c≠0时,方程①、②的根都为x=0,符合题意.当b≠0,c=0时,方程①、②的根都为x=0,符合题意.当b≠0,c≠0时,方程①的根为x1=0,,它们也都是方程②的根,但它们不是方程b2x2+bcx+c=0的实数根.则方程b2x2+bcx+c=0无实数根时,符合题此时△=(bc)2﹣4b2c<0,得0<c<4,综上所述,b=0时,c≠0时,b≠0时,0≤c<4;(3)由a=1,f(1)=0得b=﹣c,f(x)=bx2+cx=cx(﹣x+1),g(f(x))=f(x)[f2(x)﹣cf(x)+c].③由f(x)=0可以推得g(f(x))=0,知方程f(x)=0的根一定是方程g(f(x))=0的根.当c=0时,符合题意.当c≠0时,b≠0,方程f(x)=0的根不是方程f2(x)﹣cf(x)+c=0④的根,因此,根据题意,方程④应无实数根.那么当(﹣c)2﹣4c<0,即0<c<4时,f2(x)﹣cf(x)+c>0,符合题意.当(﹣c)2﹣4c≥0,即c<0或c≥4时,由方程④得,即,⑤则方程⑤应无实数根,所以有且.当c<0时,只需,解得,矛盾,舍去.当c≥4时,只需,解得.因此,.综上所述,所求c的取值范围为.。
2007年全国初中数学联赛试题及答案详解
2007年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,1. 已知z y x ,,满足x z z y x +=-=532,则zy y x 25+-的值为 ( ) (A )1. (B )31. (C )31-. (D )21. 【答】B.解 由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选(B ). 注:本题也可用特殊值法来判断. 2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211x x +-的值,将所得的结果相加,其和等于 ( ) (A )-1. (B )1. (C )0. (D )2007.【答】C.解 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选(C ).3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是 ( ) (A )等腰三角形. (B )锐角三角形. (C )钝角三角形. (D )直角三角形.【答】D.解 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选(D ).4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )(A )30°. (B )45°. (C )60°. (D )75°. 【答】C.解 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选(C ).5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F ,则ABC DEF S S △△:的值为 ( )(A )91. (B )92. (C )94. (D )32. 【答】A.解 分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=. 易证△DEF ∽△MNP ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=. 所以:DEF S △19ABC S =△.故选(A ). 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是 ( )(A )101. (B )51. (C )103. (D )52. 【答】B.解 设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ; 当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y .因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选(B ). 二、填空题(本题满分28分,每小题7分)1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333____1___.解 ∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a ,∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a .2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =.10034016- 解 由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以=--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为____4_____.解 延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是___17____.解 设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得 ))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .第二试 (A )AB CD E F G M N一、 (本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt +.由题意,32mt t n +≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥.由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME . 证明 设MN 与EF 交于点P ,∵NE //BC , ∴△PNE ∽△PBC ,∴PCPE PB PN =, ∴PC PN PE PB ⋅=⋅. 又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅.∴PF PM PC PN ⋅=⋅,故PFPC PN PM = 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED.∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根. AB CD E F M N P解 观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (1)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-.第二试 (B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mtx mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ;一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22. 所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔09)46()4(222≥-+-+-⇔n t n m t m (1)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)题目和解答与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值. 解 联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x56=,即 056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点.因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数的图象还有两个交点)56,1(--和)1,56(--.当12=a 时,方程(2)即056302=++x x ,它的两根分别为2-和28-,此时两个函数的图象还有两个交点)28,2(--和)2,28(--.第二试 (C )一、(本题满分25分)题目和解答与(B )卷第一题相同.二、(本题满分25分)题目和解答与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数xa y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点. 解 联立方程组⎪⎩⎪⎨⎧-=-+++=,311,710)232(22x a y a x a x y 消去y 得a x a x 710)232(22-+++=113a x-,即0113)710()232(223=-+-+++a x a x a x ,分解因式得 []0311)12()12(2=-+++-a x a x x (1)如果两个函数的图象有公共整点,则方程(1)必有整数根,从而关于x 的一元二次方程 0311)12(2=-+++a x a x (2) 必有整数根,所以一元二次方程(2)的判别式∆应该是一个完全平方数,而224)18(10036)311(4)12(222-+=++=--+=∆a a a a a .所以224)18(2-+a 应该是一个完全平方数,设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(2)即0106512=-+x x ,它的两根分别为2和53-,易求得两个函数的图象有公共整点)53,2(-和)2,53(-.当12=a 时,方程(2)即025242=-+x x ,它的两根分别为1和25-,易求得两个函数的图象有公共整点)25,1(-和)1,25(-.。
江苏省泰州市2001-2012年中考数学试题分类解析 专题5 数量和位置变化
2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题5:数量和位置变化一、选择题1.(江苏省泰州市2002年4分)向高层建筑屋顶的水箱注水,水对水箱底部的压强p 与水深h 的函数关系的图象是【 】(水箱能容纳的水的最大高度为H )。
【答案】D 。
【考点】函数的图象,跨学科问题的应用。
【分析】由压强公式p gh ρ=,ρ是水的密度,g 是重力加速度9.8,h 是水中某点距水面的高度,由此可知,压强p 与水深h 的函数关系是一次函数的关系,且p 随着h 的增加而增加。
故选D 。
2.(江苏省泰州市2003年4分)向一容器内均匀注水,最后把容器注满.在注水过程中,容器的水面高度 与时间的关系如右图所示,图中PQ 为一线段..,则这个容器是【 】【答案】C 。
【考点】函数的图象。
【分析】观察图象,开始上升缓慢,最后匀速上升,再针对每个容器的特点,选择合适的答案:根据图象, 水面高度增加的先逐渐变快,再匀速增加,故容器从下到上,应逐渐变小,最后均匀。
故选C 。
3.(江苏省泰州市2006年3分)在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀 速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的 高度x (单位cm )之间的函数关系的大致图象是【 】A. B. C. D. 【答案】C 。
【考点】函数的图象。
【分析】露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变:因为小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度。
故选C 。
4.(江苏省泰州市2007年3分)已知:如图,(42)E -,,(11)F --,,以O 为位似中心,按比例尺1:2,把EFO △缩小,则点E 的对应点E '的坐标为【 】A .(21)-,或(21)-, B .(84)-,或(84)-, C .(21)-,D .(84)-,【答案】A 。
江苏省泰州市2001-2012年中考数学试题分类解析 专题3 方程(组)和不等式(组)
2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题3:方程(组)和不等式(组)一、选择题1.(江苏省泰州市2002年4分)k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是【 】A 、有两个不相等的实数根B 、有两个相等的实数根C 、没有实数根D 、无法确定【答案】A 。
【考点】一元二次方程根的判别式。
【分析】判断一元二次方程的根的情况,只要看根的判别式△=b 2-4ac 的值的符号即可:∵a=1,b=2k +1,c=k -1,∴△=b 2-4ac=(2k +1)2-4×1×(k -1)=4k 2+4k +1-4k +4=4k 2+5>0。
∴方程有两个不等的实数根。
故选A 。
2.(江苏省泰州市2003年4分)一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是【 】A .2>kB .12≠<k k 且C .2<kD .12≠>k k 且 【答案】B 。
【考点】一元二次方程根的判别式,一元二次方程成立的条件。
【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足240b ac ∆=->。
所以∵=1=2=1a k b c ---,,,一元二次方程有两个不相等的实数根, ∴()()()224=24110b ac k ∆=----->,解得2k <。
∵二次项系数是1k -,不能为0, ∴21k k <≠且。
故选B 。
3.(江苏省泰州市2004年4分)小芳和爸爸、妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端;体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端.这时,爸爸的那一端仍然着地.请你猜一猜小芳的体重应小于【 】A. 49千克B. 50千克C. 24千克D. 25千克【答案】D。
2023年江苏省泰州市中考数学试卷+答案解析
2023年江苏省泰州市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算等于()A. B.2 C.4 D.2.书法是我国特有的优秀传统文化,其中篆书具有象形特征,充满美感.下列“福”字的四种篆书图案中,可以看作轴对称图形的是()A. B. C. D.3.若,下列计算正确的是()A. B. C. D.4.在相同条件下的多次重复试验中,一个随机事件发生的频率为f,该事件的概率为下列说法正确的是()A.试验次数越多,f越大B.f与P都可能发生变化C.试验次数越多,f越接近于PD.当试验次数很大时,f在P附近摆动,并趋于稳定5.函数y与自变量x的部分对应值如表所示,则下列函数表达式中,符合表中对应关系的可能是()x124y421A. B.C. D.6.菱形ABCD的边长为2,,将该菱形绕顶点A在平面内旋转,则旋转后的图形与原图形重叠部分的面积为()A. B. C. D.二、填空题:本题共10小题,每小题3分,共30分。
7.函数中,自变量x的取值范围是__________.8.溶度积是化学中沉淀的溶解平衡常数.常温下的溶度积约为,将数据用科学记数法表示为__________.9.两个相似图形的周长比为3:2,则面积比为__________.10.若,则的值为__________.11.半径为5cm的圆内接正五边形一边所对劣弧的长为__________12.七班40名同学上周家务劳动时间的频数分布直方图如图所示,设这组数据的中位数为m h,则m__________填“>”“=”“<”13.关于x的一元二次方程的两根之和为__________.14.二次函数的图象与x轴有一个交点在y轴右侧,则n的值可以是__________填一个值即可15.小明对《数书九章》中的“遥度圆城”问题进行了改编:如图,一座圆形城堡有正东、正南、正西和正北四个门,出南门向东走一段路程后刚好看到北门外的一棵大树,向树的方向走9里到达城堡边,再往前走6里到达树下.则该城堡的外围直径为__________里.16.如图,中,,,射线CP从射线CA开始绕点C逆时针旋转角,与射线AB相交于点D,将沿射线CP翻折至处,射线与射线AB相交于点若是等腰三角形,则的度数为__________.三、计算题:本大题共1小题,共6分。
2022年江苏省泰州市中考数学真题(解析版)
数学试题(考试时间:120 分钟满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔,并请加黑加粗.第一部分 选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题后所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 下列判断正确的是( )A. 01<<B. 12<<C. 23<<D. 34<<【答案】B【解析】【分析】根据12=即可求解.【详解】解:由题意可知:12=,故选:B .【点睛】本题考查了无理数的估值,属于基础题.2. 如图为一个几何体的表面展开图,则该几何体是( )A. 三棱锥B. 四棱锥C. 四棱柱D. 圆锥【答案】B【解析】【分析】底面为四边形,侧面为三角形可以折叠成四棱锥.【详解】解:由图可知,底面为四边形,侧面为三角形,∴该几何体是四棱锥,故选:B .【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.3. 下列计算正确的是( )A. 325ab ab ab+= B. 22523y y -=C. 277a a a += D. 2222m n mn mn -=-【答案】A【解析】【分析】运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.【详解】解:A 、325ab ab ab +=,故选项正确,符合题意;B 、222523y y y -=,故选项错误,不符合题意;C 、78a a a +=,故选项错误,不符合题意;D 、222m n mn 和不是同类项,不能合并,故选项错误,不符合题意;故选:A .【点睛】本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.4. 如图,一张圆桌共有3个座位,甲、乙,丙3人随机坐到这3个座位上,则甲和乙相邻的概率为( )A. 13 B. 12 C. 23 D. 1【答案】D【解析】【分析】由图可知,甲乙丙是彼此相邻的,所以甲的旁边是乙是必然事件,从而得出正确的选项.【详解】解:这张圆桌的3个座位是彼此相邻的,甲乙相邻是必然事件,所以甲和乙相邻的概率为1.故选:D .【点睛】此题考查了求概率,解题的关键是判断出该事件是必然事件.5. 已知点()()()1233,,1,,1,y y y --在下列某一函数图像上,且312y y y <<那么这个函数是( )A. 3y x= B. 23y x = C. 3y x = D. 3y x =-【答案】D【解析】【分析】先假设选取各函数,代入自变量求出y 1、y 2、y 3的值,比较大小即可得出答案.【详解】解:A .把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-9,y 2=-3,y 3=3,所以y 1<y 2<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;B .把点()()()1233,,1,,1,y y y --代入y =3x 2,解得y 1=27,y 2=3,y 3=3,所以y 1>y 2=y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;C . 把点()()()1233,,1,,1,y y y --代入y =3x,解得y 1=-1,y 2=-3,y 3=3,所以y 2<y 1<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;D . 把点()()()1233,,1,,1,y y y --代入y =-3x,解得y 1=1,y 2=3,y 3=-3,所以312y y y <<,这与已知条件312y y y <<相符,故选项正确,符合题意;故选:D .【点睛】此题考查了一次函数、反比例函数以及二次函数,解题的关键是掌握函数值的大小变化和函数的性质.6. 如图,正方形ABCD 的边长为2,E 为与点D 不重合的动点,以DE 一边作正方形DEFG .设DE =d 1,点F 、G 与点C 的距离分别为d 2,d 3,则d 1+d 2+d 3的最小值为( )A. B. 2 C. D. 4【答案】C 【解析】【分析】连接CF 、CG 、AE ,证()ADE CDG SAS D @D 可得AE CG =,当A 、E 、F 、C 四点共线时,即得最小值;【详解】解:如图,连接CF 、CG 、AE ,∵90ADC EDG Ð=Ð=°∴ADE CDGÐ=Ð在ADE D 和CDG D 中,∵AD CD ADE CDGDE DG =ìïÐ=Ðíï=î∴()ADE CDG SAS D @D ∴AE CG=∴DE CF CG EF CF AE++=++当EF CF AE AC ++=时,最小,AC ===∴d 1+d 2+d 3的最小值为,故选:C .【点睛】本题主要考查正方形的性质、三角形的全等证明,正确构造全等三角形是解本题的关键.二、填空题(本大题共有十个小题,每小题3分,共30分。
泰兴横垛初中月考数学试题.doc
泰兴市横垛初中月考数学试题(命题 校对 张正军)2007年3月30日(考试时间:120分钟,满分:150分)一、选择题(每题3分,共计33分。
每小题有四个选项,其中只有一个选项是确的,将正确的选项的字母填入下表相应的题号下面。
)1.-18的绝对值是( ) A .-15 B .15C .5D .-52.化简二次根式22aa a +-的结果是( B ) (A )2--a (B)2---a (C)2-a (D)2--a3.接《法制日报》2005年6月8日报道,1996年至2004年8年 全国耕地面积共减少114000000亩,用科学记数法表示为( )A 、1.14×106B 、1.14×107C 、1.14×108D 、0.114×109 4. 赵师傅透过平举的放大镜从正上方看到水平桌面上的菱形图案的一角(如示意图1),那么∠A 与放大镜中的∠C 的大小关系是( A)A .∠A=∠CB .∠A>∠CC .∠A<∠CD .∠A 与∠C 大小无法比较5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC 的中点S 的最短距离是( ) (A )212π+ (B )2412π+(C )214π+ (D )242π+6.横坐标、纵坐标都是整数的点叫做整点,函数1236-+=x x y 的图象上整点的个数( B )A .3个B .4个C .6个D .8个7.在日常生活中,你会注意到有一些含有特殊数学规律的车牌号码,、75(小时)的,给以对称的美的感受,我们不妨把这样的牌照叫做“数字对称”牌照。
如果让你负责制作只以8和9开头且有五个数字的“数字对称”牌照,那么最多可制作 ( ) A.2000个 B.1000个 C.200个 D.100个8. 如图所示的电路的总电阻为10Ω,若R 1=2R 2,则R 1,R 2的值分别是( )A .R 1=30Ω,R 2=15ΩB .R 1=203Ω,R 2=103ΩC .R 1=15Ω,R 2=30ΩD .R 1=103Ω,R 2=203Ω 9.某商店举办有奖销售活动,购物满100元者发对奖券一张。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年江苏省泰州市中考数学试卷2007年江苏省泰州市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)C..(x>0)D.(x<0)4.(3分)(2007•泰州)如图所示的几何体中,俯视图形状相同的是()5.(3分)(2007•泰州)已知,直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E′的坐标为()6.(3分)(2007•泰州)函数y=中,自变量x的取值范围是()8.(3分)(2007•泰州)按右边3×3方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内().CD .9.(3分)(2010•新疆)如图,王大伯家屋后有一块长12m ,宽8m 的矩形空地,他在以长边BC 为直径的半圆内种菜,他家养的一只羊平时拴A 处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )10.(3分)(2007•泰州)2008年奥运会日益临近,某厂经授权生产的奥运纪念品深受人们欢迎,今年1月份以来,该产品原有库存量为m (m >0)的情况下,日销量与产量持平,3月底以来需求量增加,在生产能力不变的情况下,. C D .11.(3分)(2007•泰州)现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中、已知:(1)每所学校至少有他们中的一名学生;(2)在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;(3)乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;(4)丁、戊是同一所学校的三好学生.根据以上叙述可以断定2二、填空题(共8小题,每小题3分,满分24分)13.(3分)(2007•泰州)数据:1,﹣3,4,﹣2的方差S 2= _________ . 14.(3分)(2007•泰州)改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 _________ 人. 15.(3分)(2007•泰州)请写出一个原命题是真命题,逆命题是假命题的命题 _________ .16.(3分)(2007•泰州)直线y=﹣x,直线y=x+2与x轴围成图形的周长是_________.(结果保留根号)17.(3分)(2007•泰州)我国城镇居民2004年人均收入为9 422元,2006年为11 759元,假设这两年内人均收入平均年增长率相同,则年增长率为_________%.(精确到0.1%)18.(3分)(2007•泰州)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连接AE,CE,则△ADE的面积是_________.19.(3分)(2007•泰州)用半径为12cm,圆心角为150°的扇形做成一个圆锥模型的侧面,则此圆锥的高为_________ cm.(结果保留根号)20.(3分)(2007•泰州)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有_________个.三、解答题(共9小题,满分90分)21.(8分)(2007•泰州)计算:()﹣1﹣cos45°+3×(2007﹣π)0.22.(9分)(2007•泰州)先化简,再求值:,其中a是方程x2+3x+1=0的根.23.(9分)(2007•泰州)如图,在四边形ABCD中,点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,AB,CD满足什么条件时,四边形EGFH是菱形?请证明你的结论.24.(9分)(2007•泰州)数学课上,年轻的刘老师在讲授“轴对称”时,设计了如下四种教学方法:①教师讲,学生听;②教师让学生自己做;③教师引导学生画图,发现规律;④教师让学生对折纸,观察发现规律,然后画图.数学教研组长将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种,他随机抽取了60名学生的调查问卷,统计如图:(1)请将条形统计图补充完整,并计算扇形统计图中方法③的圆心角.(2)估计全年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?(3)假如抽取的60名学生集中在某两个班,这个调查结果还合理吗?为什么?(4)请你对老师的教学方法提出一条合理化的建议.25.(9分)(2007•泰州)已知:如图,△ABC中,CA=CB,点D为AC的中点,以AD为直径的⊙O切BC于点E,AD=2.(1)求BE的长;(2)过点D作DF∥BC交⊙O于点F,求DF的长.26.(10分)(2009•凉山州)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?27.(10分)(2007•泰州)某学校七年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明;(2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规完:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.(3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?28.(12分)(2007•泰州)通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x (元/千克)z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?29.(14分)(2007•泰州)如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.2007年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)C.×=1的倒数为..(x>0)D.(x<0)4.(3分)(2007•泰州)如图所示的几何体中,俯视图形状相同的是()5.(3分)(2007•泰州)已知,直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E′的坐标为()6.(3分)(2007•泰州)函数y=中,自变量x的取值范围是()解:根据题意得:8.(3分)(2007•泰州)按右边3×3方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内().C D.9.(3分)(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()=1010.(3分)(2007•泰州)2008年奥运会日益临近,某厂经授权生产的奥运纪念品深受人们欢迎,今年1月份以来,该产品原有库存量为m(m>0)的情况下,日销量与产量持平,3月底以来需求量增加,在生产能力不变的情况下,..C D11.(3分)(2007•泰州)现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中、已知:(1)每所学校至少有他们中的一名学生;(2)在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;(3)乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;(4)丁、戊是同一所学校的三好学生.根据以上叙述可以断定2二、填空题(共8小题,每小题3分,满分24分)13.(3分)(2007•泰州)数据:1,﹣3,4,﹣2的方差S2=7.5.=(,则方差=)﹣﹣,其中[x14.(3分)(2007•泰州)改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 5.4×106人.15.(3分)(2007•泰州)请写出一个原命题是真命题,逆命题是假命题的命题对顶角相等.16.(3分)(2007•泰州)直线y=﹣x,直线y=x+2与x轴围成图形的周长是.(结果保留根号)解得,则由三个点所围成三角形得底边的交点为:BA=BO=,+=2+2.17.(3分)(2007•泰州)我国城镇居民2004年人均收入为9 422元,2006年为11 759元,假设这两年内人均收入平均年增长率相同,则年增长率为11.7%.(精确到0.1%)18.(3分)(2007•泰州)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连接AE,CE,则△ADE的面积是1.∵的面积是×19.(3分)(2007•泰州)用半径为12cm,圆心角为150°的扇形做成一个圆锥模型的侧面,则此圆锥的高为cm.(结果保留根号)cm圆锥的高是20.(3分)(2007•泰州)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.三、解答题(共9小题,满分90分)21.(8分)(2007•泰州)计算:()﹣1﹣cos45°+3×(2007﹣π)0.(.任何不等于22.(9分)(2007•泰州)先化简,再求值:,其中a是方程x2+3x+1=0的根.;.23.(9分)(2007•泰州)如图,在四边形ABCD中,点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,AB,CD满足什么条件时,四边形EGFH是菱形?请证明你的结论.EG HFEG=CD24.(9分)(2007•泰州)数学课上,年轻的刘老师在讲授“轴对称”时,设计了如下四种教学方法:①教师讲,学生听;②教师让学生自己做;③教师引导学生画图,发现规律;④教师让学生对折纸,观察发现规律,然后画图.数学教研组长将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种,他随机抽取了60名学生的调查问卷,统计如图:(1)请将条形统计图补充完整,并计算扇形统计图中方法③的圆心角.(2)估计全年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?(3)假如抽取的60名学生集中在某两个班,这个调查结果还合理吗?为什么?(4)请你对老师的教学方法提出一条合理化的建议.××25.(9分)(2007•泰州)已知:如图,△ABC中,CA=CB,点D为AC的中点,以AD为直径的⊙O切BC于点E,AD=2.(1)求BE的长;(2)过点D作DF∥BC交⊙O于点F,求DF的长.DG=∴∴∴∴∴26.(10分)(2009•凉山州)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?HBC=∴x+≈=×27.(10分)(2007•泰州)某学校七年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明;(2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规完:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.(3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?,=,=,,所以不公平.28.(12分)(2007•泰州)通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x (元/千克)z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?29.(14分)(2007•泰州)如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.BAO=,因此∠a a﹣×﹣×t=的坐标为BAO=,,S=OQ OM=).t=,此时,=11.5,。