立体几何知识点总结(全)

合集下载

立体几何复习知识点汇总(全)

立体几何复习知识点汇总(全)

立体几何知识点汇总(全)1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。

(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段)⑦ba,是夹在两平行平面间的线段,若a,的位置关系为相交或平行或异面.a=,则bb⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

立体几何知识点梳理

立体几何知识点梳理

考点梳理一 、空间几何体(一) 空间几何体的类型1.多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2. 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二)空间几何体的表面积与体积1. 空间几何体的表面积圆柱的表面积 :222Srl r ππ=+ 圆锥的表面积:2Srl r ππ=+ 圆台的表面积:22Srl r Rl R ππππ=+++ 球的表面积:24S R π=2. 空间几何体的体积柱体的体积 :VS h =⨯底 锥体的体积 :13V S h =⨯底 台体的体积:1)3V S S h =+⨯下上( 球体的体积:343V R π= (三)空间几何体的三视图和直观图1. 三视图: 正视图, 侧视图, 俯视图.2. 直观图:斜二测画法二 、直线与平面的位置关系(一)线面平行1.判定定理:////a b b a a ααα⎫⎪⊂⇒⎬⎪⊄⎭2.性质定理:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭(二)线面垂直1. 判定定理:,a b a b O l a l a l b ααα⊂⎫⎪=⎪⎪⊄⇒⊥⎬⎪⊥⎪⊥⎪⎭2.性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:,l a l a αα⊥⊂⇒⊥(2)垂直于同一平面的两直线平行.即:,//ab a b αα⊥⊥⇒(三)面面平行1.判定定理:一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.2.性质定理:垂直于同一条直线的两个平面平行.(四)面面垂直 1.判定定理:a a ααββ⊂⎫⇒⊥⎬⊥⎭2.性质定理:AB l l l ABαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

如果两个平行平面同时和第三个平面相交,则交线平行。

8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

立体几何知识点总结(全)

立体几何知识点总结(全)

立体几何知识点总结(全)重合直线:完全重合,有无数个公共点。

三.点与平面的位置关系点与平面的位置关系有以下三种情况:点在平面上;点在平面外;点在平面内。

四.直线与平面的位置关系直线与平面的位置关系有以下三种情况:直线与平面相交,相交点为一点;直线在平面内;直线与平面平行,没有交点。

五.平面与平面的位置关系平面与平面的位置关系有以下三种情况:平面相交,相交线为一条直线;平面平行,没有交点;平面重合,完全重合。

1)定义:两个平面相交于一条直线,且这条直线与两个平面的法线垂直,则这两个平面垂直;2)判定定理:如果一个平面内的一条直线与另一个平面的法线垂直,则这两个平面垂直。

符号:a,b简记为:线面垂直,则面面垂直.符号:aba b4.平面与平面垂直的性质定理:如果两个平面垂直,则它们的交线垂直于这两个平面。

符号:a b。

a简记为:面面垂直,则线线垂直.符号:abb定义:当两个平面所成的二面角为直角时,这两个平面互相垂直。

判定定理:如果一个平面通过另一个平面的垂线,则这两个平面垂直。

可以简记为:线面面垂直,则面面垂直。

符号表示为l,推论是如果一个平面与另一个平面的垂线平行,则这两个平面垂直。

平面与平面垂直的性质定理:如果两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

可以简记为面面垂直,则线面垂直。

证明线线平行的方法包括三角形中位线、平行四边形、线面平行的性质、平行线的传递性和面面平行的性质。

证明线线垂直的方法包括定义中的两条直线所成的角为90°,线面垂直的性质,利用勾股定理证明两相交直线垂直,以及利用等腰三角形三线合一证明两相交直线垂直。

(完整版)立体几何初步知识点(很详细的)

(完整版)立体几何初步知识点(很详细的)

立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =++台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

立体几何知识点归纳

立体几何知识点归纳

一、空间几何体(一)空间几何体的结构:1、几何体:2、多面体:3、旋转体:4、棱柱:5、棱锥:6、棱台:7、圆柱:8、圆锥:9、圆台:10、球:(二)简单几何体的构成:1、2、(三)三视图:1、投影:2、投影类型:3、三视图:(1)正视图(2)侧视图:(3)俯视图:(三)直观图:(1)直观图:(2)斜二测画法规则:(四)体积面积公式:1、柱体体积:2、锥体体积:3、台体体积:4、球体体积:球体表面积:5、祖暅原理:二、平面的性质与直线的位置关系1、平面意义:(1)空间图形是由点、线、面组成的(2)平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形(3)平面的两个特征:①无限延展 ②平的(没有厚度) 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性一个平面把空间分成两部分,一条直线把平面分成两部分 2 平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 应用:①判定直线在平面内;②判定点在平面内模式:a A A aαα⊂⎧⇒∈⎨∈⎩.公理2如果两个不重合平面有一个公共点,那么它们有且只有一条过该点的公共直线。

推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭ 如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈ 应用:①确定两相交平面的交线位置;②判定点在直线上公理3 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈.应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.推论1:推论2:推论3:3、 空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不同在任何..一个平面内,没有公共点; 4、平线直线:(1)公理4 :平行于同一条直线的两条直线互相平行(空间平行线的传递性)推理模式://,////a b b c a c ⇒.(2)空间四边形:顺次连结不共面的四点A,B,C,D 所组成的四边形叫空间四边形,相对顶点的连线AC,BD 叫空间四边形的对角线(3)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(4)等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.指出:等角定理及其推论,说明了空间角通过任意平行移动具有保值性,因而成为异面直线所成角的基础.5、异面直线:不同在任何..一个平面内,没有公共点 (1).空间两条异面直线的画法a b1A CA(2)异面直线判定定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:,,,A B l B l ααα∉∈⊂∉⇒AB 与l 是异面直线(3)异面直线判定方法:判定定理、反证法。

立体几何的全部知识点

立体几何的全部知识点

第二讲 空间图形的基本关系与公理一、知识梳理1.平面概述(1)平面的两个特征:①无限延展 ②平的(没有厚度) (2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母α、β、γ等表示,如平面α、平面β;用表示平行四边形的两个相对顶点的字母表示,如平面AC 。

2.三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内:A l ∈,B l ∈,A α∈,B α∈⇒α⊂l公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

公理3:经过不在同一直线上的三点,有且只有一个平面。

推论一:经过一条直线和这条直线外的一点,有且只有一个平面。

推论二:经过两条相交直线,有且只有一个平面。

推论三:经过两条平行直线,有且只有一个平面。

3、直线与直线的位置关系 (1)位置关系的分类⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线平行直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b 是两条异面直线,经过空间中任一点O 作直线a ’∥a,b ’∥b,把a ’与b ’所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)②范围:02π⎛⎤ ⎥⎝⎦,6、平行公理平行于同一条直线的两条直线互相平行。

(但垂直于同一条直线的两直线的位置关系可能平行,可能相交,也可能异面)7、定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

二、直线、平面平行的判定及其性质1、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;2、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(完整版)高中数学必修二立体几何知识点总结

(完整版)高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

立体几何的知识点整理归纳

立体几何的知识点整理归纳

一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2 )柱,锥,台,球的结构特征1.棱柱1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列 (棱柱、斜棱柱、直棱柱、正棱柱)的关系:斜棱柱①棱柱棱垂直于底j 直棱柱底面是正多—正棱柱*夂[其他棱柱川② 四棱柱I 底面为平行四边形|平行六面体|侧棱垂直于底面|直平行六面体底面为矩形长方体底面为正方形■正四棱柱I 侧棱与底面边长相等.1.3棱柱的性质:① 侧棱都相等,侧面是平行四边形;② 两个底面与平行于底面的截面是全等的多边形; ③ 过不相邻的两条侧棱的截面是平行四边形; ④ 直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:① 长方体一条对角线长的平方等于一个顶点上三条棱的 平方和;【如图】AC i 2二AB 2 • AD 2 • AA 2② (了解)长方体的一条对角线 AC 1与过顶点A 的三条 棱所成的角分别是:\, 那么cos 2 二 ' cos 2 : cos 2=1, sin 2 二 ' sin 2 “ - sin 2=2 ;③ (了解)长方体的一条对角线AC 1与过顶点A 的相邻三个面所成的角分别是 :-,则 cos 2 二'cos 2 : cos 2= 2, sin 2 口 " sin 2 : sin 2 = 1.1.5侧面展开图:正n 棱柱的侧面展开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻 边的矩形.绻棱柱侧一C h卄亠土宀KW1.6面积、体积公式:‘(其中c 为底面周长,hS直棱柱全=ch +2S 底,《柱二S 底h为棱柱的高)2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴, 其 余各边旋转而形成的曲面所围成的几何体叫圆柱•2.2圆柱的性质:上、下底及平行于底面的截面都是 等圆;过轴的截面(轴截面)是全等的矩形2.3侧面展开图:圆柱的侧面展开图是以底面周长和 母线长为邻边的矩形•正方体底面B2.4面积、体积公式2 2 、 、,S 圆柱侧= 2- rh ; S 圆柱全=2irrh +2irr , V 圆柱=S 底h=ir r h (其中r 为底面半径,h 为圆柱高)3.棱锥离与顶点到底面的距离之比;② 正棱锥各侧棱相等,各侧面是全等的等腰三角形;③ 正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面 边长一半,构成四个直角三角形。

高考立体几何知识点总结

高考立体几何知识点总结

高考立体几何知识点总结一、基本概念1.点、线、面、立体的定义与性质。

2.点线面的共面与异面判定方法。

3.直线与平面的位置关系。

二、棱柱1.棱柱的定义与性质。

2.平行截面与全等截面。

3.正棱柱的性质:底面形状与面数关系、对角线的长度关系。

4.斜棱柱的性质:母线、准线、侧面积、表面积、体积的计算公式。

三、棱锥1.棱锥的定义与性质。

2.正棱锥的性质:底面形状与面数关系、高线的长度、母线、准线、侧面积、表面积、体积的计算公式。

3.斜棱锥的性质:底面形状与面数关系、高线的长度、母线、准线、侧面积、表面积、体积的计算公式。

四、平面与立体的位置关系1.点到平面的距离。

2.点到直线的距离。

3.线沿直线的平行线、垂线、倾斜线的条件与性质。

4.点到立体的距离。

五、体积与表面积计算1.平面图形的面积计算。

2.立体图形的表面积计算。

3.立体图形的体积计算。

六、球与球内切关系1.球的定义与性质。

2.球内接关系与判定方法。

3.共切、内切球的性质及条件。

七、圆锥与圆台1.圆锥的定义与性质。

2.圆台的定义与性质。

3.正圆锥、正圆台的性质:母线、准线、侧面积、表面积、体积的计算公式。

4.斜圆锥、斜圆台的性质:母线、准线、侧面积、表面积、体积的计算公式。

八、立体几何的应用1.立体几何在建筑设计中的应用。

2.立体几何在工程测量中的应用。

3.立体几何在物体的表面积和体积计算中的应用。

以上是高考立体几何的知识点总结。

掌握这些知识点可以帮助学生在高考中更好地应对立体几何问题,提高解题的能力与准确性。

希望同学们能够认真复习并进行大量的练习,熟练掌握这些知识点,取得优异的成绩!。

(完整版)立体几何知识点总结完整版

(完整版)立体几何知识点总结完整版

立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、 空间两条直线的三种位置关系,并会判定。

3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。

4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。

5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。

【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。

立体几何知识点总结

立体几何知识点总结

立体几何知识点正三棱锥:底面是正三角形,顶点在地面的射影是底面三角形的中心的三棱锥。

正四面体:是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。

正棱锥:底面是正多边形,顶点在底面内的射影是底面的中心的棱锥。

直棱柱:侧棱与底面垂直的棱柱。

正棱柱:底面是正多边形的直棱柱。

平行六面体:底面是平行四边形的四棱柱。

直平行六面体:侧棱垂直于底面的平行六面体。

长方体:底面是矩形的直平行六面体a棱长为a的正方体与球内切时:球半径=23a棱长为a的正方体与球外接时:球半径=2棱长为a 的正方体与球棱切时:球半径=22a 正四面体的外接球与内切球半径之比为:3:1平行问题①线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与该平面平行.符号表示:ααα////,,a b a b a ⇒⊂⊄ 三个条件②面面平行的判定定理:如果一个平面内有两条相交直线都平行于另外一个平面,那么这两个平面平行.符号表示:αβααββ////,//,,,⇒=⋂⊂⊂b a P b a b a 五个条件③面面平行的性质定理:两个平行平面,分别和第三个平面相交,交线平行。

符号表示:b a b a //,,//⇒=⋂=⋂βγαγβα 三个条件④面面平行的判定定理:如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。

符号表示:βαββαα////,//,,,,,,⇒=⋂⊂⊂=⋂⊂⊂d b c a B d c d c A b a b a八个条件⑤面面平行的性质定理:两个平面平行,在一个平面内的任意一条直线平行于另外一个平面。

符号表示:βαβα//,//a a ⇒⊂ 两个条件⑥线面平行的性质定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

符号表示:b a b a a //,,//⇒=⋂⊂βαβα 三个条件垂直问题⑦线面垂直的判定定理:如果一条直线与平面内两条相交直线都垂直,那么这条直线与这个平面垂直。

立体几何知识点详细总结

立体几何知识点详细总结

立体几何专题汇编、空间几何体1.柱、锥、台、球的结构特征1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。

圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

棱柱与圆柱统称为柱体;2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。

正四面体:对于棱长为 a 正四面体的问题可将它补成一个边长为孕的正方体问题。

2(=31正方体体对角线)3(=—1正方体体对角线:—1正方体体对角线)6 2乎a (是正方体的外接球'则半径—21正方体体对角线)则半径=丄1正方体体对角线)6圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋 转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底 面;斜边旋转形成的曲面叫做圆锥的侧面。

棱锥与圆锥统称为锥体。

(3)台棱台:用一个平行于底面的平面去截棱锥,底面和截面之对棱间的距离为 的边长)正四面体正四面体的体积为 72 3 ——a 12(V 正方体一4V 小三棱锥=V 正方体)3正四面体的中心到底面与顶点的距离之比为1:3内切球的半径为— a (是正四面体中心到四个面的距离, 12的间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。

圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为矩形1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S =2rh π;S=222rh r ππ+,V=Sh=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

高中立体几何知识点总结

高中立体几何知识点总结

高中立体几何知识点总结高中立体几何知识点总结一、基本概念1. 立体图形:具有长度、宽度、高度三个方向的图形。

2. 空间:指有长度、宽度、高度三个方向的范围。

3. 空间几何体:由面与面之间的关系形成的几何体。

4. 立体几何体:在三维空间内有一定形状的几何体。

5. 交角:指两个面之间的夹角。

6. 平面角:指两个不同面的交线之间的夹角。

7. 侧面:多面体的略为平行于底面的面。

8. 正视角:指从正方向看角度。

9. 支干线:连接多边形顶点及其相邻点构成的线段。

10. 垂线(高线):从顶点引垂直于底面的线段。

11. 轴线:对称图形中的对称轴线。

12. 垂线高度定理:三角形内任意一点到三角形三边所引垂线的长度乘积等于该点到三边的距离乘积。

二、立体几何体的相关知识1. 立方体:六个相等的正方形构成的多面体,具有对称性。

2. 正方体:六面均为正方形的立体几何体。

3. 矩形:四边形的内角为直角的平行四边形。

4. 梯形:在同一平面上,两边平行的四边形。

5. 圆锥:底面为圆形,侧面为一条斜面向尖端(顶点)推出去的几何体。

6. 圆柱:底面为圆形,侧面为两个平行圆面及连接它们的矩形面构成的几何体。

7. 球体:由三维空间内的所有离一个固定点的距离小于等于一个固定值的点构成的点集。

三、平面几何图形在立体几何的应用1. 投影:三维物体在平面上的投影。

2. 平面几何图形的面积、周长:将平面几何图形投射到立体几何体上进行计算。

3. 平面几何图形的旋转:平面几何图形在平面上进行旋转。

四、平行四边形的相关知识1. 平行四边形的定义:有两组的对边平行的四边形。

2. 平行四边形的性质:① 对角线互相平分;② 对角线互相垂直;③对角线长相等。

3. 平行四边形的面积计算公式:S=底×高或S=对角线之积的一半。

五、多面体的相关知识1. 多面体的定义:有多个面的立体几何体。

2. 多面体的性质:①多面体的各面之间是通过一些棱连接的。

② 一个多面体的棱数、点数和面数之间有一个简单的关系:棱数加面数等于点数加2。

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

立体几何的知识点总结

立体几何的知识点总结

立体几何的知识点总结1. 三维几何常用的图形在立体几何中,我们经常接触到的几何图形包括:点、直线、平面、三角形、四边形、圆柱、圆锥、圆台、球体等。

下面分别介绍这些几何图形的特点及相关知识点。

1.1 点、直线、平面- 点:点是空间中没有长度、宽度和高度的几何图形,可以用来表示位置。

- 直线:直线是由一系列相邻点组成的几何图形,具有方向和长度。

- 平面:平面是由无数个点组成的, 恰好可以确定一次中画, 无终止点, 无法测量, 无体积的二维图形, 平面分为有界无界两类, 有界平面是指由一定个点所组成的平面, 无界平面是指由无数个点组成的平面。

1.2 三角形、四边形- 三角形:三角形是一个有三条边的多边形,具有三个顶点和三条边。

- 四边形:四边形是一个有四条边的多边形,具有四个顶点和四条边。

1.3 圆柱、圆锥、圆台、球体- 圆柱:圆柱是由两个平行圆面包围的几何图形,具有一个侧面和两个底面。

- 圆锥:圆锥是由一个圆锥面和一个顶点组成的几何图形。

- 圆台:圆台是由一个圆台面和一个底面组成的几何图形。

- 球体:球体是由无数个点组成的三维图形,所有点到球心的距离相等。

2. 立体的表面积和体积在立体几何中,我们经常需要计算物体的表面积和体积。

下面分别介绍立体的表面积和体积的计算公式及相关知识点。

2.1 立体的表面积- 点、直线、平面:这些几何图形没有表面积。

- 三角形:三角形的表面积可以通过计算三条边的长度和三个内角的大小来求得。

- 四边形:四边形的表面积可以通过计算四条边的长度和四个内角的大小来求得。

- 圆柱:圆柱的表面积等于两个底面的面积和侧面的面积之和,即S=2πr^2+2πrh。

- 圆锥:圆锥的表面积等于底面的面积加上一个生成圆的面积,即S=πr^2+πrl,其中l为斜高。

- 圆台:圆台的表面积等于底面的面积加上一个上面的面积和侧面的面积之和,即S=πr1^2+πr2^2+πr1l,其中r1和r2为上下底面的半径,l为斜高。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修 2 第一章 空间几何体知识点总结
一 . 空间几何体的三视图 正视图 :光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度 侧视图 :光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度 俯视图 :光线从几何体的上面向下面正投影得到的投影图。反映了物体的长度和宽度 三视图中反应的长、宽、高的特点: “长对正”,“高平齐” ,“宽相等”
五:三种成角
简记为: 线面平行,则面面平行 .
a ,b 符号: a b A
a ,b
2.平面与平面平行的性质定理 :如果两个平行的平面同时与第三个平面 相交 ,那么它们的 交线 平行。
简记为: 面面平行,则线线平行 .
符号:
a ab
b
补充: 平行于同一平面的两平面平行;
夹在两平行平面间的平行线段相等;
二.直线与直线的位置关系
共面 直线: 相交 直线:同一平面内,有且只有一个公共点;
平行 直线:同一平面内,没有公共点;
异面 直线:不同在任何一个平面内,没有公共点。(既不平行,也不相交)
三.直线与平面的位置关系有三种情况:
在平面内——有无数个公共点 . 符号 a α
相交——有且只有一个公共点
符号 a ∩ α = A
a
符号: b
a //
a // b
2.直线和平面平行的性质定理: 一条直线与一个平面平行,则 过 这条直线的任一平面与此平面的交线与该直线平行。
简记为: 线面平行,则线线平行 .
a
符号 : a
ab
b
3.直线与平面垂直 ⑴定义:如果一条直线垂直于一个平面内的 任意 一条直线,那么就说这条直线和这个平面垂直。 ⑵判定定理:一条直线与一个平面内的 两条相交直线 都垂直,则该直线与此平面垂直。
简记为: 线线垂直,则线面垂直 .
4. 直线与平面垂直 性质Ⅰ: 垂直于同一个平面的两条直线平行。
符号: a b
符号: m, n
mnA
l
l m,l n
ab
简记为: 线面面垂直,则面面垂直 .
l 符号:
l
推论: 如果一个平面平行于另一个平面的一条垂线,则这个平面与另一个平面垂直。 4. 平面与平面垂直的性质定理: 两个平面互相垂直,则一个平面内 垂直于交线的直线 垂直于另一个平 面。
简记为: 面面垂直,则线面垂直 .
性质Ⅱ: 垂直于同一直线的两平面平行
符号:
l
l
推论: 如果两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.
符号语言: a∥ b, a ⊥ α ,? b⊥ α
四.平面与平面的位置关系:
平行——没有公共点:
符号 α ∥β
相交——有一条公共直线 : 符号 α ∩ β=a
符号
A l,B l
l
语言
A ,B
作用 判断线在面内
公理 2
过不在一条直线上的三点,有 且只有一个平面 .
A, B,C不共线 A, B,C确定平面 确定一个平面
公理 3
如果两个不重合的平面有一个公 共点,那么它们有且只有一条过该 点的公共直线 .
P ,P
l Pl
证明多点共线
公理 2 的三条推论: 推论 1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论 2 经过两条相交直线,有且只有一个平面; 推论 3 经过两条平行直线,有且只有一个平面 .
球的表面积和体积
S球
4 R2,V球
4 R3 . 3
正三棱锥 是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正四面体 是每个面都是全等的等边三角形的三棱锥。
第二章 点、直线、平面之间的位置关系知识点总结
一 . 平面基本性质即三条公理 公理 1
图形 语言
文字 语言
如果一条直线上的两点在 一个平面内, 那么这条直线 在此平面内 .
1.平面与平面平行的判定
(1) 定义:两个平面没有公共点,称这两个平面平行;
(2) 判定定理:一个平面内的 两条相交直线 与另一个平面平行,则这两个平面平行。
证明线线平行的方法
①三角形中位线
②平行四边形 ③线面平行的性质
⑤面面平行的性质 ⑥垂直于同一平面的两直线平行;
④平行线的传递性
证明线线垂直的方法 ①定义:两条直线所成的角为 90°; (特别是证明异面直线垂直) ; ②线面垂直的性质 ③利用勾股定理证明两相交直线垂直; ④利用等腰三角形三线合一证明两相交直线垂直;
平行——没有公共点
符号 a ∥α
说明: 直线与平面相交或平行的情况统称为直线在平面外,可用
a α 来表示
1.直线和平面平行的判定
(1) 定义:直线和平面没有公共点,则称直线平行于平面;
(2) 判定定理:平面 外 一条直线与此平面 内 的一条直线 平行 ,则该直线与此平面平行。
简记为: 线线平行,则线面平行。
二 . 空间几何体的直观图
斜二测画法的基本步骤: ① 建立适当直角坐标系 xOy (尽可能使更多的点在坐标轴上)
② 建立斜坐标系
x'O' y' ,使
x'O
'
y'
0
=45 (或
0
135 )
③ 画对应图形 在已知图形平行于 在已知图形平行于
X 轴的线段,在直观图中画成平行于 Y 轴的线段,在直观图中画成平行于
两平面平行,一平面上的任一判定 ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
⑵判定定理:一个平面 经过 另一个平面的一条 垂线 ,则这两个平面垂直。
1. 异面直线成角
步骤: 1、平移,转化为相交直线所成角; 2、找锐角(或直角)作为夹角; 3、求解
X‘轴,且长度保持不变; Y‘轴,且长度变为原来的一半;
直观图与原图形的面积关系:
S直观图 S原图形
2 4
三 . 空间几何体的表面积与体积
⑴圆柱侧面积 ; S侧面 2 r l
⑵圆锥侧面积: S侧面
rl
⑶圆台侧面积: S侧面 V柱体 S h
r l Rl
V锥体
1 Sh
3
1
V台体
h S上
3
S上 S下 S下
且 OA l, OB l , 则 AOB为二面角 - l - 的平面角。
注意: 取值范围: ( 0。 ,90 。]. 2. 线面成角: 斜线与它在平面上的射影成的角,取值范围:
( 0。 ,90 。 ].
如图: PA 是平面 的一条斜线, A 为斜足, O 为垂足, OA叫斜线 PA 在平面
影, PAO 为线面角。
3 . 二面角: 从一条直线出发的两个半平面形成的图形
如图:在二面角 - l - 中, O棱上一点, OA , OB ,
相关文档
最新文档