高中新课程数学(新课标人教A版)选修2-2《1.5定积分的概念》导学案
【原创】人教A版选修2-2:第一章 1.5定积分的概念
第一章导数及其应用
其中 a 与 b 分别叫做_积__分__下__限__与_积__分__上__限__,区间[a,
b] 叫做 __积__分__区__间___ , 函数 f(x) 叫做 __被__积__函__数__ ,x 叫 做
__积__分__变__量___,f(x)dx 叫做_被__积___式___.
讲一讲
2.汽车做变速直线运动,在时刻 t 的速度(单位:km/h) 为 v(t)=t2+2,那么它在 1≤t≤2(单位:h)这段时间行驶的 路程为多少?
[尝试解答] 将区间[1,2]等分成 n 个小区间,第 i 个小区间 为1+i-n 1,1+ni (i=1,2,…,n).
第 i 个时间区间的路程的近似值为 Δξi≈Δξi′=v(t)·n1=v1+i-n 1·n1=n3+2in-2 1+i-n312,
数学 ·人教A版选修2-2
第一章导数及其应用
练一练
2.已知作自由落体运动的物体的运动速度 v=gt,求在 时间区间[0,t]内物体下落的距离.
解:①分割. 将时间区间[0,t]等分成 n 个小区间,其中第 i 个区间 为i-n 1t,int(i=1,2,…,n),每个小区间所表示的时间段 Δt =int-i-n 1t=nt ,在各小区间内物体下落的距离,记作 ΔSi.
b
故 f(ξi)·Δxi<0,从而定积分af(x)dx<0,这时它等于图中 所示曲边梯形面积的相反数,
b
b
即af(x)dx<0=-S 或 S=-af(x)dx<0.
数学 ·人教A版选修2-2
第一章导数及其应用
2
(7)
0
4-x2dx 的几何意义是什么?
提示:是由直线 x=0,x=2,y=0 和曲线 y= 4-x2所
2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)
第一章导数及其应用§1.1变化率与导数§1.1.1变化率问题§1.1.2导数的概念§1.1.3导数的几何意义§1.2导数的计算§1.2.1几个常用函数的导数§1.2.2基本初等函数的导数公式及导数的运算法则(一) §1.2.2基本初等函数的导数公式及导数的运算法则(二) §1.3导数在研究函数中的应用§1.3.1函数的单调性与导数§1.3.2函数的极值与导数§1.3.3函数的最大(小)值与导数§1.4生活中的优化问题举例§1.5定积分的概念§1.5.1曲边梯形的面积§1.5.2汽车行驶的路程§1.5.3定积分的概念§1.6微积分基本定理§1.7定积分的简单应用§1.7.1定积分在几何中的应用§1.7.2定积分在物理中的应用章末整合提升章末达标测试第二章推理与证明§2.1合情推理与演绎推理§2.1.1合情推理§2.1.2演绎推理§2.2直接证明与间接证明§2.2.1综合法和分析法§2.2.2反证法§2.3数学归纳法章末整合提升章末达标测试第三章数系的扩充与复数的引入§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念§3.1.2复数的几何意义§3.2复数代数形式的四则运算§3.2.1复数代数形式的加、减运算及其几何意义§3.2.2复数代数形式的乘除运算章末整合提升章末达标测试模块综合检测§1.1 变化率与导数§1.1.1 变化率问题 §1.1.2 导数的概念[课标要求]1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.(难点) 2.会求函数在某一点附近的平均变化率.(重点)3.会利用导数的定义求函数在某点处的导数.(重点、难点)一、函数平均变化率如果函数关系用y =f (x )表示,那么变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率.习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是平均变化率可以表示为Δy Δx. 二、导数的有关概念 1.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是f (x 0+Δx )-f (x 0)Δx =ΔyΔx. 2.函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作,即f ′(x 0)=ΔyΔx=f (x 0+Δx )-f (x 0)Δx.知识点一 平均变化率 【问题1】 气球的膨胀率 阅读教材,思考下面的问题.吹一只气球,观察一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答案 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )=33V4π, (1)当空气容量V 从0增加到1 L 时,气球半径增加了r (1)-r (0)≈0.62(dm), 气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16(dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 【问题2】 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答案 (1)在0≤t ≤0.5这段时间里,v =h (0.5)-h (0)0.5-0=4.05(m/s);(2)在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢. 【问题3】 结合问题1和问题2说出你对平均变化率的理解.答案 (1)如果上述两个问题中的函数关系用y =f (x )表示,那么问题1中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.问题1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.问题2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率.(2)平均变化率的几何意义就是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))所在直线的斜率. (3)平均变化率的取值①平均变化率可以表现函数的变化趋势,平均变化率为0,并不一定说明函数f (x )没有发生变化.②自变量的改变量Δx 取值越小,越能准确体现函数的变化规律. (4)平均变化率的物理意义平均变化率的物理意义是把位移s 看成时间t 的函数s =s (t ),在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.知识点二 函数在某点处的导数【问题1】 (1)物体的平均速度能否精确反映它的运动状态? (2)什么叫做瞬时速度? (3)它与平均速度有什么关系?答案 (1)物体的平均速度不能精确地反映物体的运动状态,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6546-0=0,而运动员依然是运动状态.(2)设物体运动的路程与时间的关系是s =f (t ),当Δt 趋近于0时,函数f (t )在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.(3)平均速度只能粗略地描述物体的运动状态,并不能反映物体在某一时刻的瞬时速度.当时间间隔|Δt |趋近于0时,平均速度v 就无限趋近于t 0时的瞬时速度.【问题2】 平均变化率与瞬时变化率有什么关系?答案 (1)区别:平均变化率不是瞬时变化率.平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢.(2)联系:当Δx 趋近于0时,平均变化率ΔyΔx 趋近于一个常数,这个常数即为函数在x 0处的瞬时变化率,它是一个固定值.【问题3】 导数与瞬时变化率有什么关系? 答案 导数与瞬时变化率的关系导数是函数在x 0及其附近函数的改变量Δy 与自变量的改变量Δx 之比在Δx 趋近于0时所趋近的数,它是一个局部性的概念,若ΔyΔx存在,则函数y =f (x )在x 0处有导数,否则不存在导数.可以说导数就是函数在某点处的导数,例如,位移s 关于时间t 的导数就是运动物体在某时刻的瞬时速度.题型一 求函数的平均变化率求函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率. 【解析】 函数f (x )=x 2在x 0到x 0+Δx 的平均变化率为 f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=x 20+2x 0Δx +(Δx )2-x 2Δx=2x 0·Δx +(Δx )2Δx =2x 0+Δx .●规律方法求函数y =f (x )平均变化率的步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.[特别提醒](1)求函数平均变化率时注意Δx ,Δy ,两者都可正、可负,但Δx 的值不能为零,Δy 的值可以为零. (2)求点x 0附近的平均变化率,可用f (x 0+Δx )-f (x 0)Δx的形式.1.若本例中,Δx =13,x 0=1,2,3,比较函数f (x )=x 2在哪一点附近的平均变化率最大?解析 x 0=1到x =1+13=43的平均变化率k 1=f ⎝⎛⎭⎫43-f (1)13=⎝⎛⎭⎫432-1213=73, x 0=2到x =73的平均变化率k 2=f ⎝⎛⎭⎫73-f (2)13=⎝⎛⎭⎫732-2213=133,x 0=3到x =103的平均变化率k 3=f ⎝⎛⎭⎫103-f (3)13=⎝⎛⎭⎫1032-3213=193,由于k 1<k 2<k 3,∴函数f (x )=x 2在x 0=3附近的平均变化率最大. 题型二 物体运动的瞬时速度物体自由落体的运动方程是s =12gt 2(g =9.8 m/s 2),求物体在t =3 s 这一时刻的速度.【解析】 平均速度Δs Δt =12g (3+Δt )2-12g ×32Δt=12g (6+Δt ). 当Δt 趋于0时,Δs Δt =12g (6+Δt )趋于3g ,所以v =3g =29.4(m/s),即物体在t =3 s 时的速度为29.4 m/s.●规律方法求运动物体瞬时速度的步骤(1)求时间改变量Δt 和位置改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =ΔsΔt.(3)求瞬时速度:当Δt 无限趋近于0,ΔsΔt 无限趋近于的常数v 即为瞬时速度.提示 求ΔyΔx (当Δx 无限趋近于0时)的极限的方法(1)在极限表达式中,可把Δx 作为一个变量来参与运算.(2)求出ΔyΔx的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.2.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m). 解析 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt)2,ΔsΔt=8+2Δt,ΔsΔt=(8+2Δt)=8.所以,这辆车在t=2时的瞬时速度为8 m/s.题型三求函数在某点处的导数(6分)求函数y=x-1x在x=1处的导数.【规范解答】因为Δy=(1+Δx)-11+Δx-(1-11)=Δx+Δx1+Δx,(2分)所以ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx.(4分)当Δx→0时,f′(1)=ΔyΔx=(1+11+Δx)=2,即函数y=x-1x在x=1处的导数为2.(6分)●规律方法求函数y=f(x)在x=x0处的导数的步骤(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=ΔyΔx.3.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解析由导数的定义知,函数在x=2处的导数f′(2)=f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-(-22+3×2)=-(Δx)2-Δx,于是f′(2)=-(Δx)2-ΔxΔx=(-Δx-1)=-1.易错误区(一) 对导数的概念理解不清致误若函数f (x )在x =a 的导数为m ,那么 f (a +2Δx )-f (a -2Δx )Δx 的值为________.【解析】f (a +2Δx )-f (a -2Δx )Δx=f (a +2Δx )-f (a )+f (a )-f (a -2Δx )Δx=f (a +2Δx )-f (a )Δx +f (a )-f (a -2Δx )Δx ①=2f (a +2Δx )-f (a )2Δx+2f (a -2Δx )-f (a )-2Δx=2m +2m =4m . 【答案】 4m [易错防范]1.误认为①处两极限值均为m ,即运算结果为2m .2.对平均变化率中自变量的增加量“Δx ”理解不当.在平均变化率f (x 0+Δx )-f (x 0)Δx 中,分子中的“Δx ”与分母中的“Δx ”应取相同值,且可正可负.3.熟记瞬时变化率(即导数)的几种变形形式f (x 0+Δx )-f (x 0)Δx=f (x 0-Δx )-f (x 0)-Δx=f (x 0+n Δx )-f (x 0)n Δx=f (x 0+Δx )-f (x 0-Δx )2Δx=f ′(x 0).若f ′(1)=2 016,则f (1+Δx )-f (1)-2Δx=________.解析f (1+Δx )-f (1)-2Δx=-12f (1+Δx )-f (1)Δx=-12f ′(1)=-12×2 016=-1 008.答案 -1 008[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于 A .8+2Δt B .8+2Δt +4ΔtC .4+ΔtD .8+Δt解析 Δs =s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt . ∴Δs Δt =2(Δt )2+8Δt Δt =8+2Δt . 答案 A2.函数y =x 2-2x 在x =2附近的平均变化率是 A .2B .ΔxC .Δx +2D .1解析 Δy =f (2+Δx )-f (2) =(2+Δx )2-2(2+Δx )-(4-4) =(Δx )2+2Δx ,∴Δy Δx =(Δx )2+2Δx Δx=Δx +2.答案 C3.设函数y =f (x )可导,则f (1+3Δx )-f (1)Δx 等于 A .f ′(1)B .3f ′(1) C.13f ′(1) D .以上都不对 解析 f (1+3Δx )-f (1)Δx=3f (1+3Δx )-f (1)3Δx =3f ′(1). 答案 B4.一个物体的运动方程为s =(2t +1)2,其中s 的单位是米,t 的单位是秒,那么该物体在1秒末的瞬时速度是A .10米/秒B .8米/秒C .12米/秒D .6米/秒解析 ∵s =4t 2+4t +1,Δs =[4(1+Δt )2+4(1+Δt )+1]-(4×12+4×1+1)=4(Δt )2+12Δt ,Δs Δt =4(Δt )2+12Δt Δt=4Δt +12, ∴v =Δs Δt =(4Δt +12)=12(米/秒). 答案 C5.如果函数y =f (x )=x 在点x =x 0处的瞬时变化率是33,那么x 0的值是 A.34B.12 C .1D .3解析 函数f (x )=x 在x =x 0处的瞬时变化率,f ′(x 0)=x 0+Δx -x 0Δx =Δx Δx (x 0+Δx +x 0)=12x 0=33,答案 A 6.某物体做直线运动,其运动规律是s =t 2+16t(t 的单位是秒,s 的单位是米),则它的瞬时速度为0米/秒的时刻为A .8秒末B .6秒末C .4秒末D .2秒末解析 设当t =t 0时该物体瞬时速度为0米/秒,∵Δs Δt =(t 0+Δt )2+16t 0+Δt -⎝⎛⎭⎫t 20+16t 0Δt =2t 0+Δt -16(t 0+Δt )t 0, ∴Δs Δt=2t 0-16t 20, 由2t 0-16t 20=0得t 0=2. 答案 D二、填空题(每小题5分,共15分)7.函数y =-3x 2+6在区间[1,1+Δx ]内的平均变化率是________.解析 Δy Δx =[-3(1+Δx )2+6]-(-3×12+6)Δx=-6Δx -3(Δx )2Δx=-6-3Δx . 答案 -6-3Δx8.一质点的运动方程为s =1t,则t =3时的瞬时速度为________. 解析 由导数定义及导数的物理意义知s ′=1t +Δt -1t Δt=-Δt (t +Δt )·t ·Δt =-1t 2+t ·Δt =-1t 2, ∴s ′ |t =3=-19,即t =3时的瞬时速度为-19.9.已知曲线y =1x -1上两点A ⎝⎛⎭⎫2,-12、B ⎝⎛⎭⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________. 解析 Δy =⎝ ⎛⎭⎪⎫12+Δx -1-⎝⎛⎭⎫12-1 =12+Δx -12=2-(2+Δx )2(2+Δx )=-Δx 2(2+Δx ). ∴Δy Δx =-Δx2(2+Δx )Δx =-12(2+Δx ), 即k =Δy Δx =-12(2+Δx ). ∴当Δx =1时,k =-12×(2+1)=-16. 答案 -16三、解答题(本大题共3小题,共35分)10.(10分)一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度;(3)求t =0到t =2的平均速度.解析 (1)v 0=s (Δt )-s (0)Δt=3Δt -(Δt )2Δt=(3-Δt )=3. (2)v 2=s (2+Δt )-s (2)Δt =(-Δt -1)=-1.(3)v -=s (2)-s (0)2=6-4-02=1. 11.(12分)已知f (x )=x 2,g (x )=x 3,求适合f ′(x 0)+2=g ′(x 0)的x 0值.解析 由导数的定义知,f ′(x 0)=Δf Δx =(x 0+Δx )2-x 20Δx =2x 0,g ′(x 0)=Δg Δx =(x 0+Δx )3-x 30Δx=3x 20. 因为f ′(x 0)+2=g ′(x 0),所以2x 0+2=3x 20,即3x 20-2x 0-2=0,解得x 0=1-73或x 0=1+73.12.(13分)节日期间燃放烟花是中国的传统习惯之一,制造时通常希望它在达到最高点时爆裂.如果烟花距地面的高度h (m)与时间t (s)之间的关系式为h (t )=-4.9t 2+14.7t +18,求烟花在t =2 s 时的瞬时速度,并解释烟花升空后的运动状况.解析 因为Δh Δt =h (t +Δt )-h (t )Δt=-9.8t -4.9Δt +14.7, 所以h ′(t )=Δh Δt =(-9.8t -4.9Δt +14.7)=-9.8t +14.7,所以h ′(2)=-4.9,即在t =2 s 时烟花正以4.9 m/s 的速度下降.由h ′(t )=0得t =1.5,所以在t =1.5 s 附近,烟花运动的瞬时速度几乎为0,此时达到最高点并爆裂,在1.5 s 之前,导数大于0且递减,所以烟花以越来越小的速度上升,在1.5 s 之后,导数小于0且绝对值越来越大,所以烟花以越来越大的速度下降,直至落地.§1.1.3 导数的几何意义[课标要求]1.了解导函数的概念;理解导数的几何意义.(难点)2.会求导函数.(重点)3.根据导数的几何意义,会求曲线上某点处的切线方程.(重点、易错点)一、导数的几何意义1.切线:如图,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.显然割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0,当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率.2.几何意义:函数y =f (x )在x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率k =f (x 0+Δx )-f (x 0)Δx=f ′(x 0).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二、函数y =f (x )的导函数从求函数f (x )在x =x 0处导数的过程可以看到,当x =x 0时,f ′(x 0)是一个确定的数.这样,当x 变化时, f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=f (x +Δx )-f (x )Δx.知识点一 导数的几何意义【问题1】 曲线的切线是不是一定和曲线只有一个公共点?答案 不一定.曲线的切线和曲线不一定只有一个公共点,和曲线只有一个公共点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.【问题2】 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同?答案 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.知识点二 导数与函数的单调性【问题1】 观察下面两个图形,在曲线的切点附近(Δx →0时)曲线与那一小段线段有何关系?答案 能在曲线的切点附近,曲线与切线贴合在一起,可用切线近似代替曲线.【问题2】 按照切线近似代替曲线的思想,切线的单调性能否表示曲线的变化趋势?如上左图,若在某一区间上曲线上各点的切线斜率均为负,则可判定在该区间上曲线的单调性如何?答案 在连续区间上切线斜率的正负,对应了曲线的单调性.【问题3】 如问题1中右图,当t 在(t 0,t 2)上变化时,其对应各点的导数值变化吗?会怎样变化? 答案 会.当t 变化时h ′(t )便是t 的一个函数,我们称它为h (t )的导函数.知识点三 函数y =f (x )的导函数【问题】 函数在某点处的导数与导函数有什么关系?答案 区别:(1)f ′(x )是函数f (x )的导函数,简称导数,是对一个区间而言的,它是一个确定的函数,依赖于函数本身,而与x 0,Δx 无关;(2)f ′(x 0)表示的是函数f (x )在x =x 0处的导数,是对一个点而言的,它是一个确定的值,与给定的函数及x 0的位置有关,而与Δx 无关.联系:在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值.题型一 求曲线的切线方程已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,如图,求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.【解析】 (1)∵y =13x 3, ∴y ′=Δy Δx =13(x +Δx )3-13x 3Δx =133x 2Δx +3x (Δx )2+(Δx )3Δx =13[3x 2+3x Δx +(Δx )2]=x 2, y ′|x =2=22=4.∴点P 处的切线的斜率等于4.(2)在点P 处的切线方程是y -83=4(x -2), 即12x -3y -16=0.●规律方法求曲线上某点处的切线方程的步骤(1)求出该点的坐标.(2)求出函数在该点处的导数,即曲线在该点处的切线的斜率.(3)利用点斜式写出切线方程.1.例1中的P 点换为坐标原点(0,0),其他不变,如何解答?解析 由例1知y =13x 3的导函数为y ′=x 2. (1)点P 处的切线斜率k =0.(2)在点P 处的切线方程是y -0=0×(x -0)即y =0.(注意:原点处的切线即x 轴,结合图象理解切线的定义)题型二 求切点坐标过曲线y =x 2上哪一点的切线满足下列条件?(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.【解析】 f ′(x )=f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝⎛⎭⎫-12,14是满足条件的点. ●规律方法求切点坐标的一般步骤(1)先设切点坐标(x 0,y 0).(2)求导函数f ′(x ).(3)求切线的斜率f ′(x 0).(4)由已知条件求出切线的斜率k .由此得到方程f ′(x 0)=k ,解此方程求出x 0.(5)由于点(x 0,y 0)在曲线y =f (x )上,故将x 0代入曲线方程可得y 0,即可写出切点坐标.2.(1)曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.(2)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 解析 (1)根据题意可设切点为P (x 0,y 0),因为Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x Δx +(Δx )2-3Δx , Δy Δx =2x +Δx -3, 所以f ′(x )=Δy Δx =(2x +Δx -3)=2x -3.由f ′(x 0)=0,即2x 0-3=0,得x 0=32, 代入曲线方程得y 0=-94, 所以P ⎝⎛⎭⎫32,-94. (2)由导数的几何意义得f ′(1)=12, 由切线方程得f (1)=12×1+2=52, 所以f (1)+f ′(1)=3.答案 (1)⎝⎛⎭⎫32,-94 (2)3 题型三 导数几何意义的综合应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.【解析】 (1)f ′(1)=Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+(1+Δx )-2]-(1+1-2)Δx=(Δx +3)=3, 所以直线l 1的方程为y =3x -3.设直线l 2与曲线y =x 2+x -2相切于点B (b ,b 2+b -2),则可求得切线l 2的斜率为2b +1.因为l 1⊥l 2,则有2b +1=-13,b =-23. 所以直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1、l 2与x 轴交点的坐标分别为(1,0)、⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×⎪⎪⎪⎪-52=12512. ●规律方法与导数几何意义相关题目的解题策略(1)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.(2)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线间的位置关系等,因此要综合应用所学知识解题.3.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值. 解析 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2.当Δx 无限趋近于零时,Δy Δx 无限趋近于3x 20+2ax 0-9,即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.规范解答(一) 求曲线过点P (x 1,y 1)的切线方程(12分)已知函数y =f (x )=x 3-3x 及y =f (x )上一点P (1,-2),求过点P 与曲线y =f (x )相切的直线l的方程.[审题指导]【规范解答】 (1)y ′=(x +Δx )3-3(x +Δx )-x 3+3xΔx=3x 2-3.(2分)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k =f ′(x 0)=3x 20-3,所以直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又因为直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0), 所以2x 30-3x 20+1=0,即(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.(6分)故所求直线斜率为k =3x 20-3=0或k =3x 20-3=-94, 于是y -(-2)=0·(x -1)或y -(-2)=-94(x -1),即y =-2或y =-94x +14.(10分)故过点P (1,-2)的切线方程为 y =-2或y =-94x +14.(12分)[题后悟道]1.求过点P (x 1,y 1)的切线方程的步骤: (1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =Δy Δx. (3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率(或利用切点和斜率写出切线方程).(4)根据斜率相等求得x 0,然后求得斜率k (或利用已写出的切线过点P (x ,y ),求出x 0,然后求得斜率k ). (5)根据点斜式写出切线方程. 2.注意事项:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线,点P 不一定是切点,也不一定在曲线上;在点P 处的切线,点P 必为切点,且在曲线上.(2)若曲线y =f (x )在点x 0处的导数f ′(x 0)不存在,则切线与y 轴平行或不存在;若f ′(x 0)=0,则切线与x 轴平行.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 解析 y ′=Δy Δx=[2(x +Δx )2-7]-(2x 2-7)Δx=(4x +2Δx )=4x .由于2×32-7=11≠9,故点P (3,9)不在曲线上.设切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得 9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小, 结合导数的几何意义知f ′(x A )<f ′(x B ),选B. 答案 B2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处的切线的倾斜角为 A .1 B.π4 C.5π4D .-π4解析 f ′(1)=12(1+Δx )2-2+32Δx=12+Δx +12(Δx )2-2+32Δx=(1+12Δx )=1,即切线的斜率为1,故切线的倾斜角为π4.答案 B3.若曲线y =2x 2-4x +a 与直线y =1相切,则a 等于 A .1 B .2 C .3D .4解析 设切点坐标为(x 0,1), 则f ′(x 0)=[2(x 0+Δx )2-4(x 0+Δx )+a ]-(2x 20-4x 0+a )Δx=(4x 0+2Δx -4)=4x 0-4=0,∴x 0=1,即切点坐标为(1,1). ∴2-4+a =1,即a =3. 答案 C4.设曲线y =x 2+x -2在点M 处的切线斜率为3,则点M 的坐标为 A .(0,-2) B .(1,0) C .(0,0)D .(1,1)解析 设点M (x 0,y 0), ∴k =(x 0+Δx )2+(x 0+Δx )-2-(x 20+x 0-2)Δx=2x 0+1, 令2x 0+1=3,∴x 0=1,则y 0=0.故选B. 答案 B5.曲线y =x 2在点(1,1)处的切线与坐标轴所围三角形的面积为 A.14B.12 C .1D .2 解析 f ′(1)=Δy Δx=(1+Δx )2-1Δx=(2+Δx )=2.则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.则三角形的面积为S =12×1×12=14.答案 A6.已知点P 在曲线F :y =x 3-x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为 A .(1,1)B .(-1,0)C .(-1,0)或(1,0)D .(1,0)或(1,1)解析 设点P (x 0,y 0),则f ′(x 0)=ΔyΔx=[(x 0+Δx )3-(x 0+Δx )]-(x 30-x 0)Δx=3x 20-1=2⇒x 0=±1. 答案 C二、填空题(每小题5分,共15分)7.如果函数f (x )在x =x 0处的切线的倾斜角是钝角,那么函数f (x )在x =x 0附近的变化情况是________(填“逐渐上升”或“逐渐下降”).解析 由题意知f ′(x 0)<0,根据导数的几何意义知,f (x )在x =x 0附近的变化情况是“逐渐下降”. 答案 逐渐下降8.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ab =________.解析a (1+Δx )2+b -(a +b )Δx=(a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2, 即a b =12. 答案 129.已知曲线y =x 24的一条切线的斜率为12,则切点的坐标为________.解析 设切点的坐标为(x 0,y 0), 因为Δy Δx =(x 0+Δx )24-x 204Δx =12x 0+14Δx ,当Δx →0时,Δy Δx →12x 0,而切线的斜率为12,所以12x 0=12,所以x 0=1,y 0=14.故切点坐标为⎝⎛⎭⎫1,14. 答案 ⎝⎛⎭⎫1,14 三、解答题(本大题共3小题,共35分) 10.(10分)已知曲线C :y =x 3.求:(1)曲线C 上横坐标为1的点处的切线的方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点? 解析 (1)将x =1代入曲线C 的方程得y =1, ∴切点为P (1,1). ∵y ′=ΔyΔx=(x +Δx )3-x 3Δx=3x 2Δx +3x (Δx )2+(Δx )3Δx=[3x 2+3x Δx +(Δx )2]=3x 2,∴y ′|x =1=3.∴点P 处的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)(x 2+x -2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8). 故第(1)小题中的切线与曲线C 还有其他的公共点.11.(12分)已知一物体的运动方程是s =⎩⎪⎨⎪⎧3t 2+2,0≤t <3,29+3(t -3)2,t ≥3.求此物体在t =1和t =4时的瞬时速度. 解析 当t =1时,Δs Δt =3(1+Δt )2+2-(3×12+2)Δt =6+3Δt , 所以s ′(1)=ΔsΔt=(6+3Δt )=6.故当t =1时的瞬时速度为6. 当t =4时,Δs Δt =29+3(4+Δt -3)2-[29+3×(4-3)2]Δt =6+3Δt , 所以s ′(4)=ΔsΔt=(6+3Δt )=6,故当t =4时的瞬时速度为6.12.(13分)已知曲线f (x )=x 2的一条在点P (x 0,y 0)处的切线,求: (1)切线平行于直线y =-x +2时切点P 的坐标及切线方程; (2)切线垂直于直线12x -4y +5=0时切点P 的坐标及切线方程;(3)切线的倾斜角为60°时切点P 的坐标及切线方程. 解析 f ′(x 0)=(x 0+Δx )2-x 20Δx=2x 0.(1)因为切线与直线y =-x +2平行, 所以2x 0=-1,x 0=-12,即P ⎝⎛⎭⎫-12,14, 所以切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.(2)因为切线与直线12x -4y +5=0垂直,所以2x 0·18=-1,x 0=-4,即P (-4,16).所以切线方程为y -16=-8(x +4), 即8x +y +16=0.(3)因为切线的倾斜角为60°,所以切线的斜率为3,即2x 0=3,x 0=32, 所以P ⎝⎛⎭⎫32,34,所以切线方程为y -34=3⎝⎛⎭⎫x -32, 即43x -4y -3=0.§1.2 导数的计算§1.2.1 几个常用函数的导数§1.2.2 基本初等函数的导数公式及导数的运算法则(一)[课标要求]1.能根据导数的定义求函数y =c ,y =x ,y =x 2,y =x ,y =1x 的导数.(难点)2.掌握基本初等函数的导数公式并能进行简单的应用.(重点、难点)一、常用函数的导数原函数导函数f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x二、基本初等函数的导数公式原函数导函数①f (x )=c f ′(x )=0 ②f (x )=x n (n ∈Q *) f ′(x )=nx n -1 ③f (x )=sin x f ′(x )=cos_x ④f (x )=cos x f ′(x )=-sin_x ⑤f (x )=a x (a >0) f ′(x )=a x ln_a ⑥f (x )=e xf ′(x )=e x ⑦f (x )=log a x (a >0且a ≠1) f ′(x )=1x ln a⑧f (x )=ln xf ′(x )=1x知识点一 几个常用函数的导数【问题1】 用定义求下列常用函数的导数: ①y =c ;②y =x ;③y =x 2;④y =1x ;⑤y =x .答案 ①y ′=0;②y ′=1;③y ′=2x ;④y ′=Δy Δx=1x +Δx -1xΔx=-1x (x +Δx )=-1x 2(其他类似);⑤y ′=12x.【问题2】 导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度. (1)函数y =f (x )=c (常数)的导数的物理意义是什么? (2)函数y =f (x )=x 的导数的物理意义呢?答案 (1)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.(2)若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做瞬时速度为1的匀速运动. 【问题3】 由正比例函数y =kx (k ≠0)的图象及导数可知;|k |越大函数增加(k >0)或减少(k <0)的速度越 快.画出函数y =x 2的图象,结合图象及导数说明函数y =x 2的变化情况.答案 图象如图从导数作为函数在一点的瞬时变化率来看,y ′=2x 表明:当x <0时,随着x 的增加,y =x 2减少得越来越慢;当x >0时,随着x 的增加,y =x 2增加得越来越快.若y =x 2表示路程关于时间的函数,则y ′=2x 可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .知识点二 基本初等函数的导数公式【问题】 你能说出基本初等函数的导数公式的特点吗? 答案 (1)常数函数的导数为零.(2)有理数幂函数f (x )=x α的导数依然为幂函数,且系数为原函数的次数,幂指数是原函数的幂指数减去1. (3)正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数. (4)指数函数的导数依然为指数函数,且系数为原函数底数的自然对数. (5)公式⑥是公式⑤的特例,公式⑧是公式⑦的特例.题型一 利用公式求导数求下列函数的导数:(1)y =x 7;(2)y =1x 2;(3)y =3x ;(4)y =2sin x 2cos x2;(5)y =log 12x 2-log 12x .【解析】 (1)y ′=7x 7-1=7x 6. (2)∵y =x -2,∴y ′=-2x -2-1=-2x -3. (3)∵y =x 13,∴y ′=13x -23.(4)∵y =2sin x 2cos x2=sin x ,∴y ′=cos x .(5)∵y =log 12x 2-log 12x =log 12x ,∴y ′=(log 12x )′=1x ln 12.●规律方法用公式求函数导数的方法(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是将其合理转化为可以直接应用公式的基本函数的模式,如y =1x 2可以写成y =x -2,y = 3x =x 13等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.求下列函数的导数:(1)y =lg 4;(2)y =2x;(3)y =x 2x ;(4)y =2cos 2x 2-1. 解析 (1)y ′=(lg 4)′=0;(2)y ′=(2x )′=2x ln 2;(3)∵y =x 2x=x 2-12=x 32,∴y ′=(x 32)′=32x 12; (4)∵y =2cos 2x 2-1=cos x , ∴y ′=(cos x )′=-sin x .题型二 导数公式在解决切线问题中的应用(6分)已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.【规范解答】 y ′=(x 2)′=2x ,设切点为M (x 0,y 0),则y ′0|x x ==2x 0.(2分)∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝⎛⎭⎫12,14.(4分) ∴所求的切线方程为y -14=x -12,(5分) 即4x -4y -1=0.(6分)●规律方法利用导数解决求曲线的切线方程问题的策略求曲线的切线方程主要有两种类型.(1)已知切点型,其步骤为: 求导函数―→求切点处导数,即切线斜率―→写出切线方程 (2)未知切点型,其步骤为:设切点―→求导函数―→求切线斜率k =f ′(x 0) 写出切线的点斜式方程―→列出关于x 0的方程(组)―→求切点―→写出切线方程2.求曲线y =x 过点(3,2)的切线方程.解析 ∵点(3,2)不在曲线y =x 上,∴设过(3,2)与曲线y =x 相切的直线在曲线的切点为(x 0,y 0),则y 0=x 0. ∵y =x ,∴y ′=(x 12)′=12x 12-1=12x. ∴根据导数的几何意义,曲线在点(x 0,y 0)处的切线斜率k =12x 0. ∵切线过点(3,2),∴2-y 03-x 0=12x 0,2-x 03-x 0=12x 0, 整理得(x 0)2-4x 0+3=0,解得x 0=1,x 0=9,∴切点坐标为(1,1)或(9,3).(1)当切点坐标为(1,1)时,切线斜率k =12, ∴切线方程为y -2=12(x -3),即x -2y +1=0. (2)当切点坐标为(9,3)时,切线斜率k =16,∴切线方程为y -2=16(x -3),即x -6y +9=0. 综上可知:曲线y =x 过点(3,2)的切线方程为:x -2y +1=0或x -6y +9=0.易错误区(二) 正确使用求导公式已知直线y =kx 是曲线f (x )=e x 的切线,则k 的值等于________.【解析】 设切点的坐标为(x 0,y 0),由f (x )=e x ,可得y ′=f ′(x )=e x ,又k =y 0x 0,f ′(x 0)=0e x , 所以0e x =y 0x 0且y 0=0e x ①. 解得x 0=1,y 0=e.k =y 0x 0=e. 【答案】 e[易错防范]1.①处一要注意导数0e x ,即切线斜率y 0x 0,二要注意切点在曲线上,即y 0=0e x . 2.导数几何意义的应用本例实质是求过点(0,0)且与曲线y =e x 相切的直线方程的斜率.要把切线的斜率与导数联系起来,要注意切点的坐标既满足切线方程又满足曲线方程.3.牢记导数公式导数公式是函数导数计算的关键,解题时要注意使用.例如,在本例中,要正确应用公式(e x )′=e x .已知曲线y =1x3在点P (-1,-1)处的切线与直线m 平行且距离等于10,求直线m 的方程.解析 因为y ′=-3x 4, 所以曲线在点P (-1,-1)处的切线斜率为k =-3,则切线方程为y +1=-3(x +1),即3x +y +4=0.由题意设直线m 的方程为3x +y +b =0(b ≠4),所以|b -4|32+12=10,所以|b -4|=10, 所以b =14或b =-6,所以直线m 的方程为3x +y +14=0或3x +y -6=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.下列结论不正确的是A .若y =3,则y ′=0B .若y =1x ,则y ′=-x 2C .若y =x ,则y ′=12x D .若y =x ,则y ′=1解析 对于A ,常数的导数为零,故A 正确;对于B ,y ′=(x -12)′=-12x -32=-12x 3,故B 错误; 对于C ,y ′=(x 12)′=12x -12=12x,故C 正确; 对于D ,y ′=x ′=1,故D 正确.答案 B2.已知曲线f (x )=x 3的切线的斜率等于3,则切线有A .1条B .2条C .3条D .不确定 解析 ∵f ′(x )=3x 2=3,解得x =±1,切点有两个,即可得切线有两条.。
选修2-2 1.5定积分的概念-讲
n
n
n
y
N个小曲边梯形的面 积分别记作:
S1 , S2 , , Sn .
y x2
O
1 n
2 n
k n
n n
x
S Si
i 1
n
(2)用矩形来近似代替
i 1 i ' 在区间 , 上,用小矩形的面积 Si n n 2 i 1 i 1 ' 近似地代替Si 则有Si Si f ( )x x
矩形面积和与曲边梯形面积的关系.
观察下列演示过程,注意当分割加细时,
矩形面积和与曲边梯形面积的关系.
观察下列演示过程,注意当分割加细时,
矩形面积和与曲边梯形面积的关系.
观察下列演示过程,注意当分割加细时,
矩形面积和与曲边梯形面积的关系.
观察下列演示过程,注意当分割加细时,
矩形面积和与曲边梯形面积的关系.
a a
三:
定积分的基本性质
性质3.
定积分关于积分区间具有可加性
b
a
f ( x )dx f ( x )dx f ( x )dx
a c
c
b
y
yf ( x)
O
a
c1 c2 a c1
C
b x
b c2
b
a
f ( x )dx f ( x )dx f ( x )dx f ( x )dx
性质 3 不论a,b,c的相对位置如何都有
a f (x)dx a f (x)dx c
y
b
c
人教版高中选修2-21.5定积分的概念课程设计
人教版高中选修2-21.5定积分的概念课程设计
一、课程概述
本课程是人教版高中选修2数学课程中的第21.5章,主要介绍定积分的概念及相关性质。
二、教学目标
1.掌握定积分的概念及其物理意义。
2.掌握定积分的基本性质及计算方法。
3.理解定积分与求导函数之间的关系。
4.能够应用定积分解决实际问题。
三、教学内容
1. 定积分的概念
•定积分的引入
•定积分的定义
•定积分的几何意义
•定积分的物理意义
2. 定积分的基本性质
•定积分的线性性质
•定积分的区间可加性
•定积分的估值定理
•定积分的中值定理
3. 定积分的计算方法
•利用定积分计算面积和体积
1。
新课标人教A版高中数学选修2-2课程纲要
高中数学选修2-2课程纲要课程名称:高中数学选修2-2 课程类型:理科选修教学材料:人民教育出版社高中数学选修2-2授课时间:30—40课时授课教师:高二理科数学组授课对象:郑州市第二中学高二(1)~(10)班课程目标:1.导数及其应用(1)主要内容:导数的概念、导数的几何意义、几种常见函数的导数;两个函数的和、差、积、商的导数、复合函数的导数及基本导数公式。
利用导数研究函数的单调性和极值。
函数的最大值和最小值。
微积分建立的时代背景和历史意义。
(2)教学目标○1了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
○2熟记基本导数公式(c,x a(a为有理数),sinx, cosx……lnx,的导数);掌握两个函数和、差、积、商的求导法则;了解复合函数的求导法则,会求某些简单函数的导数。
○3会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
○4通过介绍微积分建立的时代背景和过程,了解微积分的科学价值、文化价值和基本思想。
2.推理和证明⑴合情推理与演绎推理①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用。
②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
③通过具体实例,了解合情推理和演绎推理之间的联系和差异。
⑵直接证明与间接证明①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
②结合已经学过的数学实例,了解间接证明的一种基本方法:反证法;了解反证法的思考过程、特点。
数学文化①通过介绍“四色问题”和吴文俊在计算机自动推理领域作出的贡献,体会计算机在数学证明中的作用。
高中数学 教案定积分及其应用学案 新人教A版选修2-2 学案
某某省某某市肥城市第三中学高中数学教案定积分及其应用学案新人教A版选修2-2yy记作f(x)dx 。
即f(x)dx =)(1lim i ni n f n ab ξ∑=∞→-。
其中)(x f 称为被积函数,dx x f )(称为被积式,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为 积分上限和积分下限。
2定积分的几何意义:①若0)(≥x f ,则积分⎰badxx f )(表示如图所示的曲边梯形的面积,即S dx x f ba=⎰)(②若0)(≤x f ,则积分⎰ba dx x f )(表示如图所示的曲边梯形面积的负值,即S dx x f ba-=⎰)(③一般情况下,定积分⎰b adxx f )(表示介于x 轴、曲线()f x及b x a x ==,之间的曲边梯形面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴上方的面积等于该区间上的积分值的相反数, 3定积分的性质。
(1)⎰badx x kf )(=k ⎰ba dxx f )(。
(2)[]dx x fx f ba)()(21±⎰=。
(3)dx x f ba⎰)(= 。
4微积分基本定理:一般地,若f(x)为在][b a ,上的连续函数,且有)()(x f x F =',那么⎰=badx x f )(,这个结论叫做微积分基本定理,又叫牛顿—莱布尼兹公式,可记作⎰=badx x f )(= 。
常见求定积分的公式新知得到知识1n B.1n C.1n D.3lim n n →∞由落体的速,则落体从到0t t =所走路程为B.gtC.2012gtD.2014gt答案: 234-125+2l 4n四.精讲点拨: 例1:计算下列定积分:(1)dx x ⎰402sin π(2)。
dx x e x⎰⎪⎭⎫ ⎝⎛+2121(3)dx x ⎰-2123答案:(1)418-π(2)21e 4+ln2-21e 2 (3)21例2利用定积分求图形的面积:求由抛物线,12-=x y 直线x=2,y=0围成的图形的面积。
高中数学 第一章《1.5定积分的概念》教案 新人教A版选修2-2
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
2017-2018学年高中数学人教A版选修2-2学案:第一章 1.5 1.5.3 定积分的概念
1.5.3 定积分的概念预习课本P45~47,思考并完成下列问题 (1)定积分的概念是什么?几何意义又是什么?(2)定积分的计算有哪些性质?[新知初探]1.定积分的概念与几何意义(1)定积分的概念:一般地,设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξ i )Δx =∑i =1nb -an f (ξ i ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a bf (x )d x ,即⎠⎛a bf (x )d x =li m n →∞∑i =1n b -anf (ξ i ), 这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义:如果在区间[a ,b ]上函数连续且恒有f (x )≥0,那么定积分⎠⎛a bf (x )d x 表示由直线x =a ,x =b (a <b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(如图中的阴影部分的面积).[点睛] 利用定积分的几何意义求定积分的关注点(1)当f (x )≥0时,⎠⎛a bf (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义.(2)计算⎠⎛a bf (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值:当f (x )≥0时,⎠⎛a bf (x )d x =S ;当f (x )<0时,⎠⎛a bf (x )d x =-S .2.定积分的性质(1)⎠⎛a bkf (x )d x =k ⎠⎛a bf (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛a bf 2(x )d x .(3)⎠⎛a bf (x )d x =⎠⎛a cf (x )d x +⎠⎛c bf (x )d x (其中a <c <b ).[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)⎠⎛02x 2d x =1.( )(2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛a b(x 2+2x )d x =⎠⎛a bx 2d x +⎠⎛a b2x d x . ( ) 答案:(1)√ (2)× (3)√ 2.⎠⎛02x d x 的值为( )A .1 B.12 C .2 D .-2答案:C3.已知⎠⎛02f (x )d x =8,则( ) A.⎠⎛01f (x )d x =4 B.⎠⎛02f (x )d x =4C.⎠⎛01f (x )d x +⎠⎛12f (x )d x =8 D .以上答案都不对 答案:C4.已知⎠⎛0tx d x =2,则⎠⎛-t 0x d x =________. 答案:-2[典例] 利用定义求定积分⎠⎛03x 2d x . [解] 令f (x )=x 2,(1)分割:在区间[0,3]上等间隔地插入n -1个点,把区间[0,3]分成n 等份,其分点为x i=3i n (i =1,2,…,n -1),这样每个小区间[x i -1,x i ]的长度Δx =3n(i =1,2,…,n ). (2)近似代替、求和:令ξi =x i =3in (i =1,2,…,n ),于是有和式:∑i =1n f (ξi )Δx =∑i =1n ⎝⎛⎭⎫3i n 2·3n =27n 3∑i =1n i 2=27n 3·16n (n +1)(2n +1)=92⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n . (3)取极限:根据定积分的定义,有⎠⎛03x 2d x =∑i =1nf (ξi )Δx=⎣⎡⎦⎤92⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n =9.用定义求定积分的一般步骤(1)分割:n 等分区间[a ,b ];(2)近似代替:取点ξi ∈[x i -1,x i ],可取ξi =x i -1或ξi =x i ;(3)求和:∑i =1n f (ξi )·b -an;(4)取极限:⎠⎛a bf (x )=li m n →∞∑i =1nf (ξi )·b -an . [活学活用]利用定积分的定义计算⎠⎛12(-x 2+2x )d x 的值. 解:令f (x )=-x 2+2x . (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分为n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n (i =1,2,…,n ),每个小区间的长度为Δx =1n .(2)近似代替、求和取ξi =1+in (i =1,2,…,n ),则 S n =∑i =1n f ⎝⎛⎭⎫1+in ·Δx =∑i =1n ⎣⎡⎦⎤-⎝⎛⎭⎫1+i n 2+2⎝⎛⎭⎫1+i n ·1n =-1n 3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n 2[(n +1)+(n +2)+(n +3)+…+2n ]=-1n 3⎣⎢⎡⎦⎥⎤2n (2n +1)(4n +1)6-n (n +1)(2n +1)6+2n 2·n (n +1+2n )2 =-13⎝⎛⎭⎫2+1n ⎝⎛⎭⎫4+1n +16⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n +3+1n . (3)取极限⎠⎛12(-x 2+2x )d x =S n =-13⎝⎛⎭⎫2+1n ⎝⎛⎭⎫4+1n +16⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n +3+1n =23.[典例] (1)f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x 2,1≤x ≤2.则⎠⎛02f (x )d x =( )A.⎠⎛02(x +1)d x B.⎠⎛022x 2d xC.⎠⎛01(x +1)d x +⎠⎛122x 2d x D.⎠⎛012x d x +⎠⎛12(x +1)d x(2)已知⎠⎛0ex d x =e 22,⎠⎛0ex 2d x =e33,求下列定积分的值: ①⎠⎛0e(2x +x 2)d x ; ②⎠⎛0e (2x 2-x +1)d x .[解析] (1)由定积分的几何性质得:⎠⎛02f (x )d x =⎠⎛01(x +1)d x +⎠⎛122x 2d x .答案:C(2)解:①⎠⎛0e(2x +x 2)d x =2⎠⎛0ex d x +⎠⎛0ex 2d x =2×e 22+e 33=e 2+e 33.②⎠⎛0e(2x 2-x +1)d x =⎠⎛0e2x 2d x -⎠⎛0ex d x +⎠⎛0e1d x , 因为已知⎠⎛0ex d x =e 22,⎠⎛0ex 2d x =e 33, 又由定积分的几何意义知:⎠⎛0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以⎠⎛0e1d x =1×e =e ,故⎠⎛0e(2x 2-x +1)d x =2×e 33-e 22+e =23e 3-12e 2+e.利用定积分的性质计算定积分的步骤(1)如果被积函数是几个简单函数的和的形式,利用定积分的线性性质进行计算,可以简化计算.(2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连续可加性计算.[活学活用]若f (x )=⎩⎪⎨⎪⎧2x -1,-1≤x <0,e -x ,0≤x ≤1.且⎠⎛0-1(2x -1)d x =-2,⎠⎛01e -x d x =1-e -1,求⎠⎛1-1f (x )d x .解:对于分段函数的定积分,通常利用积分区间可加性来计算,即⎠⎛1-1f (x )d x =⎠⎛0-1f (x )d x +⎠⎛01f (x )d x=⎠⎛0-1(2x -1)d x +⎠⎛01e -x d x =-2+1-e -1=-(e -1+1).[典例] 求定积分:⎠⎛02(4-(x -2)2-x )d x .[解] ⎠⎛024-(x -2)2d x 表示圆心在(2,0),半径等于2的圆的面积的14,即⎠⎛024-(x -2)2d x =14×π×22=π.⎠⎛02x d x 表示底和高都为2的直角三角形的面积,即⎠⎛02x d x =12×22=2.∴原式=⎠⎛024-(x -2)2d x -⎠⎛02x d x =π-2.当被积函数的几何意义明显时,可利用定积分的几何意义求定积分,但要注意定积分的符号.[活学活用]计算⎠⎛3-3(9-x 2-x 3)d x 的值. 解:如图所示,由定积分的几何意义得⎠⎛3-39-x 2d x =π×322=9π2,⎠⎛3-3x 3d x =0,由定积分性质得 ⎠⎛3-3(9-x 2-x 3)d x =⎠⎛3-39-x 2d x -⎠⎛3-3x 3d x =9π2.层级一 学业水平达标1.定积分⎠⎛2-2f (x )d x (f (x )>0)的积分区间是( ) A .[-2,2] B .[0,2] C .[-2,0]D .不确定解析:选A 由定积分的概念得定积分⎠⎛2-2f (x )d x 的积分区间是[-2,2].2.定积分⎠⎛13(-3)d x 等于( ) A .-6 B .6 C .-3D .3解析:选A 由定积分的几何意义知,⎠⎛13(-3)d x 表示由x =1,x =3,y =0及y =-3所围成的矩形面积的相反数,故⎠⎛13(-3)d x =-6.3.下列命题不正确的是( )A .若f (x )是连续的奇函数,则⎠⎛a -a f (x )d x =0 B .若f (x )是连续的偶函数,则⎠⎛a -af (x )d x =2⎠⎛0af (x )d xC .若f (x )在[a ,b ]上连续且恒正,则⎠⎛a bf (x )d x >0D .若f (x )在[a ,b ]上连续且⎠⎛a bf (x )d x >0,则f (x )在[a ,b ]上恒正解析:选D A 项,因为f (x )是奇函数,图象关于原点对称,所以x 轴上方的面积和x 轴下方的面积相等,故积分是0,所以A 项正确;B 项,因为f (x )是偶函数,图象关于y 轴对称,故y 轴两侧的图象都在x 轴上方或下方且面积相等,故B 项正确;由定积分的几何意义知,C 项显然正确;D 项,f (x )也可以小于0,但必须有大于0的部分,且f (x )>0的曲线围成的面积比f (x )<0的曲线围成的面积大.4.设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛1-1f (x )d x 的值是( ) A.⎠⎛1-1 x 2d x B.⎠⎛1-12xd x C.⎠⎛1-1x 2d x +⎠⎛1-12xd x D.⎠⎛0-12xd x +⎠⎛10x 2d x 解析:选D 由定积分性质(3)求f (x )在区间[-1,1]上的定积分,可以通过求f (x )在区间[-1,0]与[0,1]上的定积分来实现,显然D 正确,故应选D.5.下列各阴影部分的面积S 不可以用S =⎠⎛a b[f (x )-g (x )]d x 求出的是( )解析:选D 定积分S =⎠⎛a b[f (x )-g (x )]d x 的几何意义是求函数f (x )与g (x )之间的阴影部分的面积,必须注意f (x )的图象要在g (x )的图象上方.对照各选项可知,D 项中f (x )的图象不全在g (x )的图象上方.故选D.6.若⎠⎛a b f (x )d x =3,⎠⎛a b g (x )d x =2,则⎠⎛a b[f (x )+g (x )]d x =__________. 解析:⎠⎛a b [f (x )+g (x )]d x =⎠⎛a b f (x )d x +⎠⎛a bg (x )d x =3+2=5. 答案:57.若⎠⎛a b f (x )d x =1,⎠⎛a b g (x )d x =-3,则⎠⎛a b[2f (x )+g (x )]d x =_______. 解析:⎠⎛a b [2f (x )+g (x )]d x =2⎠⎛a b f (x )d x +⎠⎛a bg (x )d x =2×1-3=-1. 答案:-18.计算:⎠⎛0416-x 2d x =____________.解析:⎠⎛0416-x 2d x 表示以原点为圆心,半径为4的14圆的面积,∴⎠⎛0416-x 2d x =14π·42=4π.答案:4π9.化简下列各式,并画出各题所表示的图形的面积. (1)⎠⎛-3-2x 2d x +⎠⎛1-2x 2d x ; (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x .解:(1)原式=⎠⎛1-3x 2d x ,如图(1)所示. (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x =⎠⎛02|1-x |d x ,如图(2)所示.10.已知函数f (x )=⎩⎪⎨⎪⎧x 5,x ∈[-1,1],x ,x ∈[1,π),sin x ,x ∈[π,3π],求f (x )在区间[-1,3π]上的定积分. 解:由定积分的几何意义知:∵f (x )=x 5是奇函数,故⎠⎛1-1x 5d x =0; ⎠⎛π3πsin x d x =0(如图(1)所示);⎠⎛1πx d x =12(1+π)(π-1)=12(π2-1)(如图(2)所示).∴⎠⎛-13πf (x )d x =⎠⎛-11x 5d x +⎠⎛1πx d x +⎠⎛-π3πsin x d x =⎠⎛1πx d x =12(π2-1).层级二 应试能力达标1.设f (x )是[a ,b ]上的连续函数,则⎠⎛a bf (x )d x -⎠⎛a bf (t )d t 的值( ) A .小于零 B .等于零 C .大于零D .不能确定解析:选B ⎠⎛a bf (x )d x 和⎠⎛a bf (t )d t 都表示曲线y =f (x )与x =a ,x =b 及y =0围成的曲边梯形面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.2.(陕西高考)如图所示,图中曲线方程为y =x 2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.⎠⎛02(x 2-1)d x B.⎠⎛01(x 2-1)d x C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x解析:选C 由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.3.设a =⎠⎛01x 13d x ,b =⎠⎛01x 2d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系是( ) A .c >a >b B .a >b >c C .a =b >cD .a >c >b解析:选B 根据定积分的几何意义,易知⎠⎛01x 3d x <⎠⎛01x 2d x <⎠⎛01x 13d x ,即a >b >c ,故选B.4.已知t >0,若⎠⎛0t(2x -2)d x =8,则t =( ) A .1 B .-2 C .-2或4D .4解析:选D 作出函数f (x )=2x -2的图象与x 轴交于点A (1,0),与y 轴交于点B (0,-2),易求得S △OAB =1,∵⎠⎛0t (2x -2)d x =8,且⎠⎛01(2x -2)d x =-1,∴t >1,∴S △AEF =12|AE ||EF |=12×(t -1)(2t -2)=(t -1)2=9,∴t =4,故选D. 5.定积分⎠⎛01(2+1-x 2)d x =________.解析:原式=⎠⎛012d x +⎠⎛011-x 2d x .因为⎠⎛012d x =2,⎠⎛011-x 2d x =π4,所以⎠⎛01(2+1-x 2)d x =2+π4.答案:2+π46.已知f (x )是一次函数,其图象过点(3,4)且⎠⎛01f (x )d x =1,则f (x )的解析式为______.解析:设f (x )=ax +b (a ≠0),∵f (x )图象过(3,4)点,∴3a +b =4.又⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =a ⎠⎛01x d x +⎠⎛01b d x =12a +b =1. 解方程组⎩⎪⎨⎪⎧ 3a +b =4,12a +b =1,得⎩⎨⎧ a =65,b =25.∴f (x )=65x +25. 答案:f (x )=65x +25 7.一辆汽车的速度—时间曲线如图所示,用定积分法求汽车在这一分钟内行驶的路程. 解:依题意,汽车的速度v 与时间t 的函数关系式为v (t )=⎩⎪⎨⎪⎧ 32t ,0≤t <20,50-t ,20≤t <40,10,40≤t ≤60.所以该汽车在这一分钟内所行驶的路程为 s =∫600v (t )d t =∫20032t d t +⎠⎛2040(50-t )d t +⎠⎛406010d t =300+400+200=900(米).8.求证:12<⎠⎛01x d x <1.证明:如图,⎠⎛01x d x 表示阴影部分面积,△OAB 的面积是12,正方形OABC 的面积是1,显然,△OAB 的面积<阴影部分面积<正方形OABC 的面积,即12<⎠⎛01x d x <1.。
人教课标版高中数学选修2-2《定积分的概念》教案-新版
1.5.3 定积分的概念一、教学目标 1.核心素养通过定积分的概念的学习,提升分析问题、解决问题的能力、抽象概括能力和逻辑思维能力. 2.学习目标(1)借助几何直观体会定积分的基本思想; (2)初步了解定积分的概念. 3.学习重点定积分的概念与定积分的几何意义 4.学习难点 定积分的概念 二、教学设计 (一)课前设计 1.预习任务任务:预习教材P 45—P 48,完成相应练习题 2.预习自测 1.设f (x )=⎩⎪⎨⎪⎧x 2(x ≥0),2x(x <0),则⎠⎛-11f (x )dx 等于( )A .⎠⎛-11x 2dxB .⎠⎛-112x dC .⎠⎛-10x 2dx +⎠⎛012x dxD .⎠⎛-102x dx +⎠⎛01x 2dx 答案:D2.定积分⎰13(-3)dx 等( )A .-6B .6C .-3D .3 答案:A3.已知t >0,若⎠⎛0t (2x -2)dx =8,则t =( )A .1B .-2C .-2或4D .4 答案:D (二)课堂设计 1.知识回顾求曲边梯形面积的步骤①分割:把区间[a ,b ]等分成n 个小区间;②近似代替:对每个小曲边梯形“以直代曲”,用小矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值;③求和:计算出n 个小矩形的面积之和n S ,n S 即为曲边梯形面积的近似值; ④取极限:求lim n n S S →+∞=(S 即为曲边梯形的面积)2.问题探究问题探究一 什么是定积分?学生活动:阅读课本相应内容,找到定积分的定义,并概括出求定积分的基本步骤:如果函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b-=<<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点()12i i ,,...,n ξ=,作和式11()()nni i i i b af x f nξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分,记做()ba f x dx ⎰.即1()lim ()nbi a n i b af x dx f nξ→∞=-=∑⎰.这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式.问题探究二 定积分的几何意义. 学生活动:定积分的定义和我们上节课所讲的曲边梯形的面积的求法有没有相同之处?你能说明定积分的几何意义吗?定积分的定义与曲边梯形面积的求法本质是相同的.如果在区间[,]a b 上()f x 连续且恒有()0f x ≥,则定积分()baf x dx ⎰的几何意义是由,,0x a x b y ===与()y f x =所围成的曲边梯形的面积.问题探究三 学生活动:根据定积分的几何意义,论证定积分的性质 定积分的性质:(1)()()bba akf x dx k f x dx =⎰⎰(k 为常数)(2)1212[()()]()()bbba a af x f x dx f x dx f x dx ±=±⎰⎰⎰; (3)()()()bcba a cf x dx f x dx f x dx =±⎰⎰⎰(其中a c b <<). 性质(1)(2)称为定积分的线性性质,性质(3)称为定积分对积分区间的可加性.例1.计算定积分21(1)x dx+⎰详解:所求定积分即为如图阴影部分面积,面积为52.即:215(1)2x dx +=⎰点拨:从定积分的几何意义出发解题3.课堂总结 【知识梳理】1.定积分的定义:如果函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点i ξ(1,2,,)i n =,作和式11()()nni i i i b af x f nξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分,记做()baf x dx ⎰.即1()lim ()nbi a n i b af x dx f nξ→∞=-=∑⎰. 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式2.定积分的几何意义:如果在区间[,]a b 上()f x 连续且恒有()0f x ≥,则定积分()baf x dx ⎰的几何意义是由,,0x a x b y ===与()y f x =所围成的曲边梯形的面积3.定积分的性质:(1)()()b ba a kf x dx k f x dx =⎰⎰ (k 为 常 数 )(2)1212[()()]()()b b ba a af x f x dx f x dx f x dx ±=±⎰⎰⎰; (3)()()()bcba a cf x dx f x dx f x dx =±⎰⎰⎰(其中a c b <<). 性质(1)(2)称为定积分的线性性质,性质(3)称为定积分对积分区间的可加性.【重难点突破】(1)计算定积分过程中的两个常用结论 ①211(1)(21)6ni i n n n ==++∑;②231(1)2ni n n i =+⎡⎤=⎢⎥⎣⎦∑; ③11101110lim k k k k kk k n k k k a n a n a n a a b b n b n b n b ---→∞-⋅++++=⋅++++(其中i a ,i b 为常数,0,1,,i k =).(2)定积分的概念①定积分()ba f x dx ⎰就是和式1()ni i b af n ξ=-∑的极限,即()b a f x dx ⎰表示当n →∞时,和式1()ni i b af n ξ=-∑所趋向的定值. ②在计算定积分的过程中,为了计算的方便,我们常常将定义中的i ξ取为第i (1,2,,i n =)个小区间的左端点或右端点.③定积分()ba f x dx ⎰的值只取决于被积函数()f x 与积分上、下限,而与积分变量用什么字母表示无关,即()()()b b ba a a f x dx f u du f t dt ===⎰⎰⎰.(3)定积分的几何意义①当()f x 对应的曲线位于x 轴上方时,定积分的值为正值,且等于曲边图形的面积;当()f x 对应的曲线位于x 轴下方时,定积分的值为负值,且等于曲边图形面积的相反数;当()f x 对应的曲线x 轴上、下方都有时,定积分等于曲边图形面积的代数和,即等于x 轴上方曲边图形的面积减去x 轴下方曲边图形的面积.②定积分有很多实际意义,如:变速运动路程21()t t s v t dt =⎰;变力做功()baW F r dr =⎰.(4)根据定积分的几何意义,易得以下性质: ①在区间[,]a b 上,若()0f x ≥,则()0baf x dx ≥⎰;②在区间[,]a b 上,若()()f x g x ≤,则()()bba a f x dx g x dx ≤⎰⎰;③()()b baaf x dx f x dx ≤⎰⎰.(5)定积分的性质的推广 ①11221122[()()()]()()()bb bbn n n n a aaak f x k f x k f x dx k f x dx k f x dx k f x dx +++=+++⎰⎰⎰⎰;②121()()()()nbc c ba a c c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰(其中12n a c c c b <<<<<).4.随堂检测1.定积分⎠⎛ab f (x )dx 的大小( )A .与y =f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与y =f (x )有关,与积分区间[a ,b ]和ξi 的取法无关C .与y =f (x )和ξi 的取法有关,与积分区间[a ,b ]无关D .与y =f (x )、积分区间[a ,b ]、ξi 的取法均无关 答案:A解析:【知识点:定积分】定积分的大小仅与被积函数和积分的上、下限有关. 2.下列结论中成立的个数是( ) ①⎠⎛01x 3dx =∑i =1ni 3n 3·1n ;②⎠⎛01x 3dx =(i -1)3n 3·1n ; ③⎠⎛01x 3dx =i 3n 3·1nA .0B .1C .2D .3 答案:C解析:【知识点:定积分】积分是一个极限的形式,根据积分的定义可知②③正确. 3.定积分⎠⎛13(-3)dx 等于( ) A .-6 B .6 C .-3 D .3 答案:A解析:【知识点:定积分】⎠⎛133dx 表示图中阴影部分的面积S =3×2=6,⎠⎛13(-3)dx =-⎠⎛133dx =-6. 4.已知函数f (x )=sin 5x +1,根据函数的性质、积分的性质和积分的几何意义,探求f (x )dx 的值,结果是( )A.16+π2 B .π C .1 D .0 答案:B解析:【知识点:定积分】(sin 5x +1)dx =sin 5xdx +1dx ,∵y =sin 5x 在[-π2,π2]上是奇函数,∴sin 5xdx =0.而1dx ==π,故f (x )dx =π,故选B.5.设a =⎠⎛01x 13dx ,b =⎠⎛01x 2dx ,c =⎠⎛01x 3dx ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b 答案:B.解析:【知识点:定积分】根据定积分的几何意义,易知⎠⎛01x 3dx <⎠⎛01x 2dx <⎠⎛01x 13dx ,即a >b >c ,故选B.(三)课后作业 基础型 自主突破1.定积分⎠⎛01(2+1-x 2)dx =________.答案:24π+解析:【知识点:定积分】原式=⎠⎛012dx +⎠⎛011-x 2dx .∵⎠⎛012dx =2,⎠⎛011-x 2dx =π4,∴⎠⎛01(2+1-x 2)dx =π4+2.2.直线x =1,x =-1,y =0及曲线y =x 3+sin x 围成的平面图形的面积可用定积分表示为________. 答案:S =2⎠⎛01(x 3+sin x )dx .解析:【知识点:定积分】因y =x 3+sin x 为奇函数,故⎠⎛0-1(x 3+sin x )dx =-⎠⎛01(x 3+sin x )dx <0,所以S =2⎠⎛01(x 3+sin x )dx .3.若y =f (x )的图象如图所示,定义F (x )=⎠⎛0x f (t )dt ,x ∈[0,1],则下列对F (x )的性质描述正确的有________.(1)F (x )是[0,1]上的增函数; (2)F ′(1)=0;(3)F (x )是[0,1]上的减函数; (4)∃x 0∈[0,1]使得F (1)=f (x 0). 答案:(1),(2),(4) 解析:【知识点:定积分】由定积分的几何意义可知,F (x )表示图中阴影部分的面积,且F (1)=⎠⎛01f (t )dt 为一个常数,当x 逐渐增大时,阴影部分的面积也逐渐增大,所以F (x )为增函数,故(1),(2)正确,(3)错误.由定积分的几何意义可知,必然∃x 0∈[0,1],使S 1=S 2,此时矩形ABCO 的面积与函数f (x )的图象与坐标轴围成的区域的面积相等,即F (1)=⎠⎛01f (t )dt =f (x 0),故(4)正确.所以对F (x )的性质描述正确的有(1),(2),(4). 4.用定积分表示下列阴影部分的面积(不要求计算):答案:见解析解析:【知识点:定积分】(1)sin xdx .(2) ⎠⎛-42⎠⎛2-412x 2dx .(3)-⎠⎛49-x 12dx =⎠⎛49x 12dx .5.已知⎠⎛01x 3dx =14,⎠⎛12x 3dx =154,⎠⎛12x 2dx =73,⎠⎛24x 2dx =563,求:(1)⎠⎛023x 3dx ;(2)⎠⎛146x 2dx ;(3)⎠⎛12(3x 2-2x 3)dx . 答案:见解析解析:【知识点:定积分】(1)⎠⎛023x 3dx =3⎠⎛02x 3dx =3(⎠⎛01x 3dx +⎠⎛12x 3dx )=3⎝ ⎛⎭⎪⎫14+154=12.(2)⎠⎛146x 2dx =6(⎠⎛12x 2dx +⎠⎛24x 2dx )=6⎝ ⎛⎭⎪⎫73+563=126.(3)⎠⎛12(3x 2-2x 3)dx =3⎠⎛12x 2dx -2⎠⎛12x 3dx =3×73-2×154=-12.能力型 师生共研6.将和式的极限 1p +2p +3p +…+n p n p +1(p >0)表示成定积分为( )A.⎠⎛011x dxB.⎠⎛01x p dxC.⎠⎛01⎝ ⎛⎭⎪⎫1x pd D.⎠⎛01⎝ ⎛⎭⎪⎫x n p dx 答案:B解析:【知识点:定积分】 令ξi =in ,f (x )=x p ,则1p +2p +3p +…+n pn p +1=∑i =1n1n f (ξi )=⎠⎛01x p dx .7.将(1n +1+1n +2+…+12n )表示为定积分为________. 答案:⎠⎛0111+x dx解析:【知识点:定积分】 由定积分的定义(1n +1+1n +2+…+12n )=∑i =1n(1in +1)·1n =∑i =1n(n n +i )·1n=⎠⎛0111+x dx . 8.设f (x )=⎩⎨⎧-2x +4,x >1,x +1,0≤x ≤1,求⎠⎛02f (x )dx .答案:见解析解析:【知识点:定积分】∵f (x )=⎩⎨⎧-2x +4,x >1,x +1,0≤x ≤1,∴⎠⎛02f (x )dx =⎠⎛01(x +1)dx +⎠⎛12(-2x +4)dx .又由定积分的几何意义得 ⎠⎛01(x +1)dx =12(1+2)×1=32, ⎠⎛12(-2x +4)dx =12×1×2=1, ∴⎠⎛02f (x )dx =32+1=52. 9.抛物线y =12x 2将圆面x 2+y 2≤8分成两部分,现在向圆面上均匀投点,这些点落在图中阴影部分的概率为14+16π,求⎠⎛02(8-x 2-12x 2)dx .答案:见解析解析:【知识点:定积分】 解方程组⎩⎪⎨⎪⎧x 2+y 2=8,y =12x 2,得x =±2.∴阴影部分的面积为⎠⎛-22(8-x 2-12x 2)dx .∵圆的面积为8π,∴由几何概型可得阴影部分的面积是8π·(14+16π)=2π+43.由定积分的几何意义得⎠⎛02(8-x 2-12x 2)dx =12⎠⎛-22 (8-x 2-12x 2)dx =π+23.探究型 多维突破10.已知函数f (x )=⎩⎨⎧x 3 x ∈[-2,2],2x x ∈[2,π],cos x x ∈[π,2π].则22()f x dx π-=⎰________.答案:见解析解析:【知识点:定积分】由定积分的几何意义知⎠⎛-22x 3dx =0,⎠⎛2π2xdx =(π-2)(2π+4)2=π2-4,由于cos x 关于32x π=对称,故2cos 0xdx ππ=⎰,由定积分的性质得⎠⎛-22πf (x )dx =⎠⎛-22x 3dx +⎠⎛2π2xdx +2cos xdx ππ⎰=π2-4.11.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分⎠⎛01f (x )dx .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分⎠⎛01f (x )dx 的近似值为________________. 答案:见解析解析:【知识点:定积分】因为0≤f (x )≤1且由积分的定义知:⎠⎛01f (x )dx 是由直线x =0,x =1及曲线y =f (x )与x 轴所围成的面积.又产生的随机数对在如图所示的正方形内,正方形面积为1,且满足y i ≤f (x i )的有N 1个点,即在函数f (x )的图象上及图象下方有N 1个点,所以用几何概型的概率公式得:f (x )在x =0到x =1上与x 轴围成的面积为N 1N×1=N 1N ,即⎠⎛01f (x )dx =N 1N .自助餐1.已知⎠⎛a b f (x )dx =6,则⎠⎛a b 6f (x )dx 等于( )A .6B .6(b -a )C .36D .不确定 答案:C解析:【知识点:定积分】 2.11x dx --⎰等于( )A .11()x dx --⎰B .11xdx -⎰C .0110()x dx xdx --+⎰⎰D .0110()xdx x dx -+-⎰⎰ 答案:C解析:【知识点:定积分】3.设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a b f (x )dx 的符号( )A .一定是正的B .一定是负的C .当0<a <b 时是正的D .以上都不对 答案:A解析:【知识点:定积分】4.若⎠⎛a b f (x )dx =1,⎠⎛a b g (x )dx =-3,则⎠⎛a b [2f (x )+g (x )]dx =( )A .2B .-3C .-1D .4 答案:C解析:【知识点:定积分】5.设a =10⎰x 13dx ,b =10⎰x 2dx ,c =1⎰x 3dx ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b 答案:B解析:【知识点:定积分】根据定积分的几何意义,易知⎰01x 3dx <⎰01x 2dx <⎰01x 13dx ,即a >b >c .6.由曲线y =x 2-1,直线x =0,x =2和x 轴围成的封闭图形的面积(如图)可表示为( )A.220(1)x dx -⎰B.2201x dx -⎰C.220(1)x dx -⎰D.122201(1)(1)x dx x dx -+-⎰⎰ 答案:B解析:【知识点:定积分】由定积分的几何意义知,阴影部分的面积为2121222211(1)(1)(1)(1)x dx x dx x dx x dx ---=-++⎰⎰⎰⎰2201x dx =-⎰7.⎠⎛06(2x -4)dx =____________. 答案:12解析:【知识点:定积分】A (0,-4),B (6,8),M (2,0),S △AOM =12×2×4=4,S △MBC =12×4×8=16,∴⎠⎛06(2x-4)dx =16-4=128.已知f (x )是一次函数,其图象过点(3,4)且⎠⎛01f (x )dx =1,则f (x )的解析式为_________________. 答案:f (x )=65x +25解析:【知识点:定积分】设f (x )=ax +b (a ≠0),∵f (x )图象过(3,4)点,∴3a +b =4.又⎠⎛01f (x )dx =⎠⎛01(ax +b )dx =a ⎠⎛01xdx +⎠⎛01bdx =12a +b =1.解方程组⎩⎪⎨⎪⎧3a +b =4,12a +b =1,得⎩⎪⎨⎪⎧a =65,b =25.∴f (x )=65x +25.9.定积分⎠⎛-33(9-x 2-x 3)dx 的值为________.答案:92π 解析:【知识点:定积分】 如图,由定积分的几何意义,得⎠⎛-339-x 2dx =π×322=9π2,⎠⎛-33x 3dx =0.由定积分的性质,得 ⎠⎛-33(9-x 2-x 3)dx =⎠⎛-339-x 2dx -⎠⎛-33x 3dx =9π2. 10.已知f (x )=错误!未找到引用源。
高中数学新课标人教A版选修2-2《1.5定积分的概念》课件2
点
i
1 n
处的函数值
v
i
1 n
i
1 n
2
2
,从物理意义
上看,即使汽车在时间段
i
n
1
,
i n
(i 1, 2 ,
, n) 上的
速度变化很小,不妨认为它近似地以时刻 i 1 处的速度 n
v
i
1 n
i
1
2
n
2
作匀速直线运动
第十四页,编辑于星期一:点 十八分。
即使汽车在时间段即在局部小范围内“以匀速代变 速”,于是的用小矩形的面积 Si 近似的代替 Si , 则有
曲线,也就是说:在点P附近,曲线可以看作直 线(即在很小范围内以直代曲).
第三页,编辑于星期一:点 十八分。
y = f(x) y
A1
Oa
bx
用一个矩形的面积A1近似代替曲边梯形的面积A, 得 A A1.
第四页,编辑于星期一:点 十八分。
y = f(x) y
A1
A2
Oa
bx
用两个矩形的面积 近似代替曲边梯形
1.5 定积分的概念
第一页,编辑于星期一:点 十八分。
一. 求曲边梯形的面积
1.曲边梯形:在直角坐标系中,由连
续曲线y=f(x),直线x=a、x=b及x轴所围成
的图形叫做曲边梯形。
y
y=f (x)
x=a
Oa
x=b
bx
第二页,编辑于星期一:点 十八分。
P 放大
P
再放大
P
因此,我们可以用这条直线L来代替点P附近的
(3)作和
n
S S1 S2 Sn Si i1
n f(i -1) 1 n (i -1)2 1
人教a版数学【选修2-2】1.5.3《定积分的概念》ppt课件
[答案] C
π π [解析] 由定积分的几何意义知 sinxdx>0, cosxdx=0,
0 0
所以C不成立,故应选C.
3.下列值等于1的是(
1 A. xdx
0
)
1 B. (x+1)dx
0
C. 1dx
1(x)dx± f2(x)dx b a ② f ( x )]d x = __________________ ; [f1(x)± 2 b a
a
b c ③ f ( x )d x =
a
f(x)dx f(x)dx+__________ (其中a<c<b).
典例探究学案
定积分的定义
1 3 求 x dx.
0
[分析] 这里的被积函数f(x)=x3显然是连续函数.现按定
1 3 义中包含的几个步骤来求 x dx.
0
[解析] (1)分割[0,1]: n-1 n 1 2 0<n<n<…< n <n=1. (2)近似代替:作和
1 1 2 1 n 1 3 3 ·+ ·+…+ 3·. n n n n n n i 1 . = n3· n i=1
n
(因为x3连续,所以ξi可随意取而不影响极限,故我们此处 将ξi取为[xi,xi+1]的右端点也无妨)
(3)取极限:
i 1 nn+1 1 n 3 1 2 3 ·= 4 i = 4 n n n n 2 i =1 i=1
1 0
[答案] C [解析] 由积分的几何意义可知选C.
π 4.由正切曲线y=tanx,直线x=0和x= 4 ,x轴所围成的平 面区域的面积用积分表示为________.
2014年人教A版选修2-2教案 1.5定积分的概念
1.5 定积分的概念三维目标:知识与技能:⒈通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;⒉借助于几何直观体会定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分. 3.理解掌握定积分的几何意义和性质;过程与方法:通过问题的探究体会逼近、以直代曲的数学思想方法。
情感态度与价值观:通过分割、逼近的观点体会定积分的来历,使学生从本质上理解定积分的几何意义,从而激发学生学习数学的兴趣。
教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义. 教学过程: 一.创设情景问题:我们在小学、初中就学习过求平面图形面积的问题。
有的是规则的平面图形,但现实生活中更多的是不规则的平面图形。
对于不规则的图形我们该如何求面积?比如浙江省的国土面积。
此问题在学生九年级中已有涉及,在九 年级时学生了解过以下求不规则面积的方法:方法1 将图形放在坐标纸上,也即将图形分割,看它有多少个“单位面积”。
方法2 将图形从内外两个方面用规则图形(或规则图形的组合)逼近。
方法3 将这块图形用一个正方形围住,然后随机地向正方形内扔“点”(如小石子等小颗粒),当点数P 足够大时,统计落入不规则图形中的点 数A ,则图形的面积与正方形面积的比约为。
方法4“称量”面积:在正方形区域内均匀铺满一层细沙,分别称得重量是P(正方形区域内细沙重)、A(所求图形内细沙重),则所求图形的面积与正方形面积的比是重量之比。
二.合作探究问题一 曲边梯形的面积如图,阴影部分类似于一个梯形,但有一边是曲线()y f x =的一段,我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形称为曲边梯形.如何计算这个曲边梯形的面积?探究1:分割,怎样分割?分割成多少个?分成怎样的形状?有几种方案? (分割) 提出自己的看法,同伴之间进行交流。
探究2:采用哪种好?把分割的几何图形变为代数的式子。
人教A版选修2-2 1.5.3 定积分的概念 学案
1.5.3 定积分的概念预习课本P45~47,思考并完成下列问题(1)定积分的概念是什么?几何意义又是什么?(2)定积分的计算有哪些性质?[新知初探]1.定积分的概念与几何意义(1)定积分的概念:一般地,设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<x i-1<x i<…<x n=b将区间[a,b]等分成n个小区间,在每个小区间[x i-1,x i]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =i =1nb -anf (ξi ), 当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛abf (x )d x =lim n →∞i =1n b -a n f (ξi ), 这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义:如果在区间[a ,b ]上函数连续且恒有f (x )≥0,那么定积分⎠⎛abf (x )d x 表示由直线x =a ,x =b (a <b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(如图中的阴影部分的面积).[点睛] 利用定积分的几何意义求定积分的关注点.(1)当f (x )≥0时,⎠⎛abf (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义.(2)计算⎠⎛abf (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值:当f (x )≥0时,⎠⎛abf (x )d x =S ;当f (x )<0时,⎠⎛a bf (x )d x =-S .2.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛abf (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛a bf 2(x )d x .(3)⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛cbf (x )d x (其中a <c <b ).[点睛]性质(1)的等式左边是一个定积分,等式右边是常数与一个定积分的乘积. 性质(2)对于有限个函数(两个以上)也成立.性质(3)对于把区间[a ,b ]分成有限个(两个以上)区间也成立.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)⎠⎛02x2d x =1.( )(2)⎠⎛a bf (x )d x 的值一定是一个正数.( )(3)⎠⎛a b (x 2+2x )d x =⎠⎛a b x 2d x +⎠⎛ab 2xd x .( )答案:(1)√ (2)× (3)√2.已知⎠⎛02f (x )d x =8,则( )A.⎠⎛01f (x )d x =4B.⎠⎛02f (x )d x =4C.⎠⎛01f (x )d x +⎠⎛12f (x )d x =8D .以上答案都不对 答案:C3.直线x =1,x =2,y =0与曲线y =1x围成曲边梯形的面积用定积分表示为( )A.⎠⎛012d xB.⎠⎛120d xC.⎠⎛021xd xD.⎠⎛121xd x答案:D4.已知⎠⎛0t x d x =2,则⎠⎛0-t x d x =________. 答案:-2[典例] 利用定义求定积分⎠⎛03x 2d x .[解] 令f (x )=x 2,(1)分割:在区间[0,3]上等间隔地插入n -1个点,把区间[0,3]分成n 等份,其分点为x i =3i n (i =1,2,…,n -1),这样每个小区间[x i -1,x i ]的长度Δx =3n(i =1,2,…,n ).(2)近似代替、求和:令ξi =x i =3i n(i =1,2,…,n ),于是有和式:∑i =1nf (ξi )Δx =i =1n ⎝ ⎛⎭⎪⎫3i n 2·3n =27n 3∑i =1ni 2=27n 3·16n (n +1)(2n +1)=92⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n .(3)取极限:根据定积分的定义,有⎠⎛03x 2d x =lim n →∞∑i =1nf (ξi )Δx=lim n →∞⎣⎢⎡⎦⎥⎤92⎝⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n =9.用定义求定积分的一般步骤(1)分割:n 等分区间[a ,b ];(2)近似代替:取点ξi ∈[x i -1,x i ],可取ξi =x i -1或ξi =x i ;(3)求和:∑i =1nf (ξi )·b -an; (4)取极限:⎠⎛abf (x )=lim n →∞∑i =1nf (ξi )·b -a n .[活学活用]利用定积分的定义,计算⎠⎛12(3x +2)d x 的值.解:令f (x )=3x +2.(1)分割:在区间[1,2]上等间隔地插入(n -1)个分点,将区间[1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n .(2)近似代替、作和: 取ξi =n +i -1n(i =1,2,…,n ),则 S n =∑i =1nf ⎝ ⎛⎭⎪⎫n +i -1n Δx =i =1n ⎣⎢⎡⎦⎥⎤3n +i -1n +21n=i =1n ⎣⎢⎡⎦⎥⎤3i -1n2+5n =3n 2[0+1+2+…+(n -1)]+5=32×n 2-n n 2+5=132-32n. (3)取极限:⎠⎛12(3x +2)d x =lim n →∞S n =lim n →∞⎝ ⎛⎭⎪⎫132-32n =132.用定积分的性质求定积分[典例] (1)f (x )=⎩⎨⎧x +1,0≤x <1,2x 2,1≤x ≤2.则⎠⎛02f (x )d x =( )A.⎠⎛02(x +1)d xB.⎠⎛022x 2d xC.⎠⎛01(x +1)d x +⎠⎛122x 2d xD.⎠⎛012x d x +⎠⎛12(x +1)d x(2)已知⎠⎛0ex d x =e 22,⎠⎛0e x 2d x =e 33,求下列定积分的值:①⎠⎛0e(2x +x 2)d x ;②⎠⎛0e (2x 2-x +1)d x .[解析] (1)由定积分的几何性质得:⎠⎛02f (x )d x =⎠⎛01(x +1)d x +⎠⎛122x 2d x .答案:C(2)解:①⎠⎛0e (2x +x 2)d x =2⎠⎛0e x d x +⎠⎛0e x 2d x=2×e 22+e 33=e 2+e 33.②⎠⎛0e (2x 2-x +1)d x =⎠⎛0e 2x 2d x -⎠⎛0e x d x +⎠⎛0e1d x ,因为已知⎠⎛0ex d x =e 22,⎠⎛0e x 2d x =e 33,又由定积分的几何意义知:⎠⎛0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以⎠⎛0e1d x =1×e =e ,故⎠⎛0e (2x 2-x +1)d x =2×e 33-e 22+e =23e 3-12e 2+e.(1)如果被积函数是几个简单函数的和的形式,利用定积分的线性性质进行计算,可以简化计算.(2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连续可加性计算.[活学活用]若f (x )=⎩⎨⎧2x -1,-1≤x <0,e -x ,0≤x ≤1.且⎠⎛0-1(2x -1)d x =-2,⎠⎛01e -x d x =1-e -1,求⎠⎛1-1f (x )d x . 解:对于分段函数的定积分,通常利用积分区间可加性来计算,即⎠⎛1-1f (x )d x =⎠⎛0-1f (x )d x +⎠⎛01f (x )d x =⎠⎛0-1(2x -1)d x +⎠⎛01e -x d x =-2+1-e -1=-(e -1+1).[典例] 根据定积分的几何意义,求下列定积分的值.(1)⎠⎛-R R R 2-x 2d x ;(2)⎠⎛-11|x |d x .[解] (1)被积函数的图象是一个以原点为圆心,以R 为半径的半圆,如图①所示, 所以⎠⎛-RR R 2-x 2d x =12·πR 2=πR 22.(2)被积函数的图象如图②所示,由定积分的几何意义知其值为两部分阴影面积之和,所以⎠⎛-11|x |d x =2×12×1×1=1.当定积分表示的面积容易求时,则利用定积分的几何意义求积分. [活学活用]利用定积分的几何意义说明下列等式成立. (1)∫π2-π2cos x d x =2∫π20cos x d x ;(2)⎠⎛-ππsin x d x =0.解:(1)函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,故曲线y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2,0与坐标轴围成图形的面积S 1等于曲线y =cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2与坐标轴围成图形的面积S 2,于是由定积分的几何意义, 有∫π2-π2cos x d x =S 1+S 2=2S 2=2∫π20cos x d x .(2)函数y =sin x ,x ∈[-π,π]是奇函数,设曲线y =sin x ,x ∈[-π,0]与x 轴围成图形的面积为S 1,设曲线y =sin x ,x ∈[0,π]与x 轴围成图形的面积为S 2,易知S 1=S 2,从而由定积分的几何意义,有⎠⎛-ππsin x d x =-S 1+S 2=0.层级一 学业水平达标1.定积分⎠⎛-22f (x )d x (f (x )>0)的积分区间是( )A .[-2,2]B .[0,2]C .[-2,0]D .不确定解析:选A 由定积分的概念得定积分⎠⎛2-2f (x )d x 的积分区间是[-2,2]. 2.定积分⎠⎛13(-3)d x 等于( )A .-6B .6C .-3D .3解析:选A 由定积分的几何意义知,⎠⎛13(-3)d x 表示由x =1,x =3,y =0及y=-3所围成的矩形面积的相反数,故⎠⎛13(-3)d x =-6.3.下列命题不正确的是( )A .若f (x )是连续的奇函数,则⎠⎛-aaf (x )d x =0B .若f (x )是连续的偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0af (x )d xC .若f (x )在[a ,b ]上连续且恒正,则⎠⎛abf (x )d x >0D .若f (x )在[a ,b ]上连续且⎠⎛abf (x )d x >0,则f (x )在[a ,b ]上恒正解析:选D A 项,因为f (x )是奇函数,图象关于原点对称,所以x 轴上方的面积和x 轴下方的面积相等,故积分是0,所以A 项正确;B 项,因为f (x )是偶函数,图象关于y 轴对称,故y 轴两侧的图象都在x 轴上方或下方且面积相等,故B 项正确;由定积分的几何意义知,C 项显然正确;D 项,f (x )也可以小于0,但必须有大于0的部分,且f (x )>0的曲线围成的面积比f (x )<0的曲线围成的面积大.4.设f (x )=⎩⎨⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A.⎠⎛-11x 2d xB.⎠⎛-112xd xC.⎠⎛-11x 2d x +⎠⎛-112x d xD.⎠⎛-102x d x +⎠⎛01x 2d x解析:选D 由定积分性质(3)求f (x )在区间[-1,1]上的定积分,可以通过求f (x )在区间[-1,0]与[0,1]上的定积分来实现,显然D 正确,故应选D.5.下列各阴影部分的面积S 不可以用S =⎠⎛ab[f (x )-g (x )]d x 求出的是( )解析:选D 定积分S =⎠⎛ab[f (x )-g (x )]d x 的几何意义是求函数f (x )与g (x )之间的阴影部分的面积,必须注意f (x )的图象要在g (x )的图象上方.对照各选项可知,D 项中f (x )的图象不全在g (x )的图象上方.故选D.6.若⎠⎛a b f (x )d x =3,⎠⎛a b g (x )d x =2,则⎠⎛a b[f (x )+g (x )]d x =__________.解析:⎠⎛a b [f (x )+g (x )]d x =⎠⎛a b f (x )d x +⎠⎛abg (x )d x =3+2=5.答案:57.若⎠⎛a b f (x )d x =1,⎠⎛a b g (x )d x =-3,则⎠⎛a b[2f (x )+g (x )]d x =_______.解析:⎠⎛a b [2f (x )+g (x )]d x =2⎠⎛a b f (x )d x +⎠⎛abg (x )d x =2×1-3=-1.答案:-18.计算:⎠⎛0416-x 2d x =____________.解析:⎠⎛0416-x 2d x 表示以原点为圆心,半径为4的14圆的面积,∴⎠⎛0416-x 2d x =14π·42=4π. 答案:4π9.化简下列各式,并画出各题所表示的图形的面积.(1)⎠⎛-3-2 x 2d x +⎠⎛1-2x 2d x ; (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x .解:(1)原式=⎠⎛1-3x 2d x ,如图(1)所示. (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x =⎠⎛02|1-x |d x ,如图(2)所示.10.已知函数f (x )=⎩⎨⎧x 5,x ∈[-1,1],x ,x ∈[1,π,sin x ,x ∈[π,3π],求f (x )在区间[-1,3π]上的定积分.解:由定积分的几何意义知:∵f (x )=x 5是奇函数,故⎠⎛-11x 5d x =0;⎠⎛π3πsin x d x =0(如图(1)所示);⎠⎛1πx d x =12(1+π)(π-1)=12(π2-1)(如图(2)所示).∴⎠⎛-13πf (x )d x =⎠⎛-11x 5d x +⎠⎛1πx d x +⎠⎛π3πsin x d x=⎠⎛1πx d x =12(π2-1).层级二 应试能力达标1.设f (x )是[a ,b ]上的连续函数,则⎠⎛a b f (x )d x -⎠⎛abf (t )d t 的值( )A .小于零B .等于零C .大于零D .不能确定解析:选B ⎠⎛a b f (x )d x 和⎠⎛abf (t )d t 都表示曲线y =f (x )与x =a ,x =b 及y =0围成的曲边梯形面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.2.如图所示,图中曲线方程为y =x 2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.⎠⎛02(x 2-1)d xB.⎠⎛01(x 2-1)d xC.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x解析:选C 由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.3.设a =⎠⎛01x 13d x ,b =⎠⎛01x 2d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b解析:选B 根据定积分的几何意义,易知⎠⎛01x 3d x <⎠⎛01x 2d x <⎠⎛01x 13d x ,即a >b>c ,故选B.4.已知t >0,若⎠⎛0t(2x -2)d x =8,则t =( )A .1B .-2C .-2或4D .4解析:选D 作出函数f (x )=2x -2的图象与x 轴交于点A (1,0),与y 轴交于点B (0,-2),易求得S △OAB =1,∵⎠⎛0t (2x -2)d x =8,且⎠⎛01(2x -2)d x =-1,∴t >1,∴S △AEF =12|AE ||EF |=12×(t -1)(2t -2)=(t -1)2=9,∴t =4,故选D.5.定积分⎠⎛01(2+1-x 2)d x =________.解析:原式=⎠⎛012d x +⎠⎛011-x 2d x .因为⎠⎛012d x =2,⎠⎛011-x 2d x =π4,所以⎠⎛01(2+1-x 2)d x =2+π4.答案:2+π46.已知f (x )是一次函数,其图象过点(3,4)且⎠⎛01f (x )d x =1,则f (x )的解析式为______.解析:设f (x )=ax +b (a ≠0), ∵f (x )图象过(3,4)点, ∴3a +b =4.又⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =a ⎠⎛01x d x +⎠⎛01b d x =12a +b =1.解方程组⎩⎨⎧3a +b =4,12a +b =1,得⎩⎪⎨⎪⎧a =65,b =25.∴f (x )=65x +25.答案:f (x )=65x +257.一辆汽车的速度—时间曲线如图所示,用定积分法求汽车在这一分钟内行驶的路程.解:依题意,汽车的速度v 与时间t 的函数关系式为v (t )=⎩⎨⎧32t ,0≤t <20,50-t ,20≤t <40,10,40≤t ≤60.所以该汽车在这一分钟内所行驶的路程为s =∫600v (t )d t =∫20032t d t +⎠⎛2040(50-t )d t +⎠⎛406010d t=300+400+200=900(米).8.如图所示,抛物线y =12x 2将圆面x 2+y 2≤8分成两部分,现在向圆面上均匀投点,这些点落在图中阴影部分的概率为14+16π,求⎠⎛02⎝⎛⎭⎪⎫8-x 2-12x 2d x 的值.解:解方程组⎩⎨⎧x 2+y 2=8,y =12x 2,得x =±2.∴阴影部分的面积为⎠⎛2-2⎝⎛⎭⎪⎫8-x 2-12x 2d x . ∵圆的面积为8π,∴由几何概型可得阴影部分的面积是 8π·⎝ ⎛⎭⎪⎫14+16π=2π+43.由定积分的几何意义得 ⎠⎛02⎝ ⎛⎭⎪⎫8-x 2-12x 2d x =12⎠⎛2-2⎝ ⎛⎭⎪⎫8-x 2-12x 2d x =π+23.。
人教课标版高中数学选修2-2《1.5—1.7定积分》复习导学案
1.5―1.7定积分的复习学习目标:进一步理解定积分的概念,熟练运用微积分基本定理计算函数的定积分,会运用定积分解决简单的几何问题和物理问题。
一、知识梳理:1.直线0),(,=≠==y b a b x a x 和直线y=f(x)所围成的图形称为 梯形。
2.求曲边梯形的面积以及求变速直线运动的物体在某段时间内运动的路程的步骤为:(1) ;(2) ;(3) ;(4) 。
3.概念:设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上取任一点ξi (i =1,2,…,n )作和式∑=∆=ni i n x f I 1)(ξ(其中△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函数f (x )在区间[a ,b ]上的 ,记作: ,即 。
这里,a 与b 分别叫做 与 ,区间[a ,b ]叫做 ,函数f (x )叫做 ,x 叫做 ,f (x )dx 叫做 。
4.定积分的性质:(1) ;(2) ;(3) 。
5.一般地,如果f (x )是区间[a,b ]上的连续函数,并且)('x F = f (x )那么=⎰b a dx x f )( 。
这个结论叫做微积分基本定理。
又叫 公式。
6.为了方便,我们常常把F (b )-F (a )记成 ,=⎰b a dx x f )( = 。
7.如果变速直线运动的速度v =v (t)(v ≥0),那么从时刻t =a 到t =b 所经过的路程为 。
8.当对应的曲边梯形位于x 轴上方时,定积分的值取 ;当对应的曲边梯形位于x 轴下方时,定积分的值取 ;当位于x 轴上方的曲边梯形的面积等于位于x 轴下方的曲边梯形的面积时,定积分的值为 。
9.定积分求曲边梯形面积:由三条直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )(f (x )≥0)围成的曲边梯的面积S= 。
新课标人教A版高中数学选修2-2复习学案(考前复习专用,含答案)
选修2-2 复习学案一、导数及其应用1、求曲线的切线例1 (1)已知函数3()2f x x x =+- ①在0p 处的切线平行于直线41y x =-,则0p 点的坐标 ; ②函数)(x f 在点..(1,0)处的切线方程为 ; (2)曲线2y x =过点..P(3,5)的切线方程 .变式1:若函数21()ln 2f x x ax x =-+存在垂直于y 轴的切线,则实数a 的取值范围2、利用导数研究函数的性质例2.已知时都取得极值与在132)(23=-=+++=x x c bx ax x x f(1) 求a、b的值及函数)(x f 的单调区间.(2) 若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. (3) 若对[1,2],()=0x f x ∈-方程有三个零点,求c的取值范围.变式2 已知函数1,13)(23=-=-+=x x x bx ax x f 在处取得极值(1)求函数)(x f 的解析式.(2)若过点)2)(,1(-≠m m A 可作曲线y=)(x f 的三条切线,求实数m 的取值范围.例3若函数32()23(1)68()f x x a x ax a R =-+++∈在(,0)-∞单增,求a 的取值范围变式3 (1)已知函数233)(x x x f +=在区间[2m-1,m+1]上递增,则m 的取值范围 . (2)已知函数233)(x x x f +=的单减区间为(a ,b ),则a+b= . 例4 已知函数()ln a f x x x=-(1)若()f x 存在最小值且最小值为2,求a 的值;(2)设()ln g x x a =-,若2()g x x <在(0,]e 恒成立,求a 的取值范围3、定积分的计算例5计算下列定积分(1)⎰+5321dx xx =_______; (2)⎰--1121dx x =_______.;(3)22|2|x x dx +-⎰= ;(4)21(23)t dx +=⎰ ;(5)已知()f x 为偶函数且⎰6)(dx x f =8则⎰-66)(dx x f =________________;(6)由曲线12,3y y x y x ==-=-所围成的图形的面积为二、推理与证明与复数1.下面几种推理是合情推理的是:①由圆的性质类比推出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是1800,归纳出所有三角形的内角和都是1800;③某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是1800,四边形内角和是3600,五边形的内角和是5400,得出凸n 边形内角和是(n-2)·1800.( ) A.①②B.①③④C.①②④D.②④2.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在( ) A.大前提B.小前提C.推理过程D.其他3.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误4. 用反证法证明命题“若a 2+b 2+c 2≠0,则a,b ,c 不全为零”反设正确的是( )A. a ,b ,c 全不为零B.a ,b ,c 全为零C.a ,b ,c 恰有一个为零D.a ,b ,c 至少有一个为零 5.用反证法证明“关于x 的方程ax=b (a ≠0)有且只有一个根”时,应该假设方程( ) A.无解 B.两解 C.至少两解 D.无解或至少两解6.(2012江西)观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+= 则1010a b += ( ) A .28 B .76 C .123 D .1997. 观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为( ) A .3125 B .5625 C .0625 D .8125 8.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4 9.(2012全国卷理)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p (C ),p p 24()D ,p p 3410.(2011重庆理)复数2341i i ii++=-( )(A )1122i -- (B) 1122i -+ (C)1122i - (D) 1122i +11.212.[2011·陕西卷] 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为_______________________________. 13.若数列{a n },(n ∈N *)是等差数列,则有数列b n =na a a n +⋯++21(n ∈N *)也是等差数列,类比上述性质,相应地:若数列{c n }是等比数列,且c n >0(n ∈N *),则有d n =___ ___ __(n ∈N *)也是等比数列.14.由“三角形的两边之和大于第三边”可以类比推出三棱锥的类似属性是 . 15.下列两个方程:x 2+(a -1)x +a 2=0,x 2+2ax -2a=0中至少有一个方程有实根,求实数a 的取值范围.16.在数列{a n }中,)(22,111++∈+==N n a a a a nn n ,试猜想这个数列的通项公式,并用数学归纳法证明.选修2-2 复习学案参考答案一、导数及其应用例1 (1)① (1,0)或(1,4)-- ② 440x y --= (2)210x y --=或10250x y --= 变式1 2a ≥例2略解:(1)2,21-=-=b a'22222223(2).()32,3201(),(1)332721(1),(2)2,()[1,2](2)22212f x x x x x x x f c f cf c f c f x f c c c c c =----==-=-=+=-+-=+=+-=+>+<->由得或且所以在上的最大值为从而解得或(3)由(2)知,结合图像应满足(1)02212272()03f c f -≤⎧⎪-<≤-⎨->⎪⎩得 变式2略解(1)求得x x x f 3)(3-=(2)设切点为33)(),3,(2'0300-=-x x f x x x M 因为200'20300020300200302066)(332)(,0332)1)(33(3),1)(33(x x x g m x x x g x A m x x x x m x x M x x m y -=++-=**=++---=----=-则设有三个不同的实数根的方程所以关于可作曲线的三条切线因为过点即所以又切线过点所以切线方程为'00000000()001()(,0),(1,),(0,1),()0,1(0)032(1)0(3,2)g x x x g x g x x x x g m g m ===-∞+∞==*>⎧-<<-⎨<⎩--由得或所以在上单调递增在上单调递减故函数的极值点为所以关于的方程有三个不同实根的充要条件是 解得所求的实数的取值范围是例3 解: 方法1:)1)((66)1(66)(2'--=++-=x a x a x a x x f方法2: 方法3.变式3 (1)1(,3][,2)2-∞-(2)2-例4 (1)a e =(2)1(ln,)22-+∞(详解见导学案《阶段质量检测一》18题) 例5 (1)58ln3+ (2)2π (3)3 (4)23t + (5)16 (6)136 21,()(,1),(,),.1,()6(1)0,()(,).1,()(,),(1,),()(,0),01.0,()(,0).a f x a a f x x f x a f x a f x a a f x >-∞+∞==-≥-∞+∞<-∞+∞-∞≤<≥-∞当时在上递增符合条件当时恒成立在上递增当时在上递增要保证在上递增则综上所述时在上递增'()(,0)()0(,0)(1)(1)(,0)0,10f x f x x x x a x x x x x aa -∞≥∈-∞-≥-∈-∞<∴-<∴≤≥因为在上递增所以在上恒成立即在上恒成立从而'2'()66(1)6(,0]1100220(0)00f x x a x a a a f a =-++-∞++⎧⎧≥<⎪⎪⎨⎨⎪⎪∆≤≥⎩⎩≥保证在上最小值大于或等于零故有或可解得二、推理与证明与复数 1-5 CACBD 6-10 CDDCC 11.<12.n +(n +1)+(n +2)+…+(3n -2)=(2n -1)213.n n c c c c (321)14.三棱锥任意三个面的面积和大于第四个面的面积15.若两个方程都没有实根,则⎩⎨⎧<∆<∆0021,解得-2<a <-1,所以a ≥1,或a ≤ 216解:在数列{a n }中,∵)(22,111++∈+==N n a a a a nnn,15222,14222,13222,12222,2214453342231121+=+=+=+=+=+=+=+===a a a a a a a a a a a a a ∴可以猜想,这个数列的通项公式是12+=n a n 。
高中数学 1.5.3定积分的概念导学案新人教版选修2-2 (2)
1.5.3 定积分的概念【学习目标】理解定积分的概念,掌握三种求定积分的方法 【重点难点】求定积分的方法 一、自主学习要点1 定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n个小区间,在每个小区间[x i -1,x i ]上任取一点ξ1(i =1,2,…,n ),作和式∑i =1nf (ξ1)Δx =∑i =1nb -anf (ξ1),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的 ,记作⎠⎛a bf(x)d x ,即⎠⎛abf(x)d x =lim n→∞∑i =1nb -anf(ξi ).这里,a 与b 分别叫做积分 与积分 ,区间[a ,b ]叫做积分 ,函数f(x)叫做 ,x 叫做 ,f(x)d x 叫做 要点2 定积分的几何意义如果在区间[a ,b]上函数f(x)连续且恒有 ,那么定积分⎠⎛ab f(x)d x 表示由所围成的曲边梯形的面积. 要点3 定积分的性质(1)⎠⎛a b kf(x)d x = (k 为常数);(2)⎠⎛a b [f 1(x)±f 2(x)]d x = ; (3)⎠⎛ab f(x)d x = (a<c<b). 二、合作,探究,展示,点评 题型一 定义法求定积分例1 用定义计算⎠⎛12(1+x)d x.题型二 定积分的几何意义 例2 求定积分⎠⎛011-x 2d x.思考题1 不用计算,根据图形,用不等号连接下列各式:(1)⎠⎛01x d x________⎠⎛01x 2d x(如右图);(2)⎠⎛01x d x________⎠⎛12x d x(如下图);(3)⎠⎛024-x 2d x________⎠⎛022d x(如下图).题型三 利用性质求定积分例3 (1)计算⎠⎛-33 (9-x 2-x 3)d x 的值;(2)已知f(x)=⎩⎪⎨⎪⎧x x∈[0,,4-x x∈[2,,52-x 2 x∈[3,5],求f(x)在区间[0,5]上的定积分.思考题2 (1)已知函数f(x)=⎩⎪⎨⎪⎧x 3,x∈[-2,,2x ,x∈[2,π,cos x ,x∈[π,2π],求f(x)在区间[-2,2π]上的积分;(2)计算⎠⎜⎜⎛π232 π(2-5sin x)d x 的值.题型四 利用定积分表示平面图形的面积例4 利用定积分的性质和定义表示下列曲线围成的平面区域的面积.(1)y =0,y =x ,x =2; (2)y =x -2,x =y 2.思考题3 用定积分表示抛物线y =x 2-2x +3与直线y =x +3所围成的平面图形的面积.三、知识小结1. 若f(x)在[-a ,a]上连续,则:(1)当f(x)是偶函数时,⎠⎛-a a f(x)d x =2⎠⎛0a f(x)d x.(2)当f(x)是奇函数时,⎠⎛-aa f(x)d x =0.2.定积分的性质拓展:拓展一:若在区间[a ,b]上,f(x)≥0,则⎠⎛ab f(x)d x≥0.拓展二:若在区间[a ,b]上,f(x)≤g(x),则⎠⎛a b f(x)d x≤⎠⎛ab g(x)d x.拓展三:⎪⎪⎪⎪⎠⎛abd x ≤⎠⎛ab |f(x)|d x.拓展四(估值定理):设函数f(x)在区间[a ,b]上的最小值与最大值分别为m 与M ,则m(b -a)≤⎠⎛ab f(x)d x≤M(b -a).利用这个性质,由被积函数的在积分区间上的最小值及最大值,可以估计出积分值的大致范围.。
2014-2015学年高中数学人教A版选修2-2第一章 1.5(二)定积分的概念
1.4.1(二)
解
令f(x)=x3.
(1)分割
本 课 时 栏 目 开 关
在区间[0,1] 上等间隔地插入n-1个分点,把区间 i-1 i [0,1] 等分成n个小区间[ n ,n](i=1,2,„,n),每 i i-1 1 个小区间的长度为Δx= - = . n n n (2)近似代替、作和 i 取 ξi=n(i=1,2,„,n),则 n i 1 3 ʃ f( )·Δx 0x dx≈Sn=∑ i=1 n
i=0 n-1
当 λ→0 时,如果和式的极限存在,我们把和式 In 的极限叫 b ʃ 做函数 f(x)在区间[a,b]上的定积分,记作 af(x)dx ,即
lim f(ξi)Δxi b →0 λ ʃ i=0 af(x)dx=____________.
n-1
填一填· 知识要点、记下疑难点
1.4.1(二)
1.4.1(二)
1.4.1
【学习要求】
本 课 时 栏 目 开 关
曲边梯形面积与定积分(二)
1.了解定积分的概念,会用定义求定积分. 2.理解定积分的几何意义. 3.掌握定积分的基本性质. 【学法指导】 通过求曲边梯形的面积、变力做功这两个背景和实际意 义截然不同的问题,进一步体会定积分的作用及意义.
1.4.1(二)
本 课 时 栏 目 开 关
(3)取极限:S=nlim →+∞
n-1 1 5 2+ 2n =2+2=2.
5 2 因此ʃ 1(1+x)dx= . 2
研一研· 问题探究、课堂更高效
1.4.1(二)
探究点二 问题 1
定积分的几何意义
从几何上看,如果在区间[a,b]上函数 f(x)连续
填一填· 知识要点、记下疑难点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.5定积分的概念
学习目标
1.理解曲边梯形面积的求解思想,掌握其方法步骤;
2.了解定积分的定义、性质及函数在上可积的充分条件;
3.明确定积分的几何意义和物理意义;
4.无限细分和无穷累积的思维方法.
复习1:函数23(sin )y x =的导数是
复习2:若函数2log (23)a y x x =--的增区间是(,1)-∞-,则a 的取值范围是
二、新课导学
学习探究
探究任务一:曲边梯形的面积
问题:下图的阴影部分类似于一个梯形,但有一边是曲线()y f x =的一段,我们把直线x a =,x b =()a b ≠,0y =和曲线()y f x =
所围成的图形称为曲边梯形. 如何计算这个曲边梯形的面积呢?
研究特例:对于 1x =,0y =,2y x =围成的图形(曲边三角形)的面积如何来求呢?
新知:1.用流程图表示求曲边三角形面积的过程
分割⇒近似代替⇒求和⇒取极限
2.定积分的定义:1
()lim ()n b i a n i b a f x dx f n ξ→∞=-=∑⎰ 3.定积分的几何意义:
4.定积分的性质:
(1)()()b b
a a kf x dx k f x dx =⎰⎰ (k 为常数) (2)1212[()()]()()
b b b
a a a f x f x dx f x dx f x dx ±=±⎰⎰⎰ (3)()()()
b
c b
a a c f x dx f x dx f x dx =+⎰⎰⎰(其中a c
b <<) 试试:求直线0,2,0x x y ===与曲线2y x =所围成的曲边梯形的面积.
反思:在求曲边梯形面积过程中,你认为最让你感到困难的是什么?(如何分割,求和逼近是两大难点)
典型例题
例1 利用定积分的定义,计算1
30x dx ⎰的值
变式:计算2
30x dx ⎰的值,并从几何上解释这个值表示什么?
例2 计算定积分12
0(2)x x dx -⎰
变式:计算定积分2
1(1)x dx +⎰
动手试试
练1. 计算1
30x dx ⎰,并从几何上解释这些值分别表示什么.
练2. 计算0
31x dx -⎰,并从几何上解释这些值分别表示什么.
三、总结提升
学习小结
1. 求曲边梯形的面积;
2. 会计算定积分.
知识拓展
定积分把曲边梯形的面积、变速直线运动的路程这两个背景和实际意义截然不同的问题的结
果,表示成了同样的形成.这显示这定积分的强大威力,也再一次表明了数学的威力. 学习评价
当堂检测(时量:5分钟 满分:10分)计分:
1. 设()f x 在[,]a b 上连续,且(())()F x C f x '+=,(C 为常数),则0()()lim x F x x F x x
∆→+∆-=∆( )
A .()F x
B .()f x
C .0
D .()f x '
2. 设()f x 在[,]a b 上连续,则()f x 在[,]a b 上的平均值为( )
A .()()2
f a f b + B .()b a f x dx ⎰ C .1()2b a f x dx ⎰ D .1()b a
f x dx b a -⎰ 3. 设()f x 是连续函数,且为偶函数,在对称区间[,]a a -上的定积分()a
a f x dx -⎰,由定积分的几何意义和性质()a a
f x dx -⎰=( ) A .0 B .0
2()a f x dx -⎰ C .0()a f x dx -⎰ D .0()a
f x dx ⎰ 4.
10x e dx ⎰与210x e dx ⎰的大小关系为 5.
3
531(sin )2x dx -+⎰=
课后作业。