人教A版数学必修二教案:§4.2.1直线与圆的位置关系(2)

合集下载

高中数学必修二教案:4.2.1+直线与圆的位置关系

高中数学必修二教案:4.2.1+直线与圆的位置关系

格一课堂教学方案章节:4.2.1 1 课时:备课人:二次备课人:精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

人教A版高中数学必修2 4.2.1直线与圆的位置关系教学设计

人教A版高中数学必修2  4.2.1直线与圆的位置关系教学设计

《普通高中课程标准实验教科书·数学(A版)》必修2第四章教学设计《4.2.1 直线与圆的位置关系》教学设计【教学目标】知识与技能(1)理解直线与圆的三种位置关系;(2)会用代数法和几何法来判定直线与圆的三种位置关系;(3)能解决与弦有关的一些问题;过程与方法(1)经历知识的建构过程,培养学生独立思考,自主探究,动手实践,合作交流的学习方式;(2)强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力;情感态度与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想;【重点难点】1、重点:直线与圆的位置关系及其判断方法、解决与弦有关的一些问题;2、难点:体会和理解代数法解决几何问题的数学思想;【教学方法】合作交流,自主探究【教学用具】多媒体【教学过程】一、实例引入一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的范围是半径长为30km的圆形区域.已知港口位于台风中心正北40km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?(1)以台风中心为原点O,东西方向为x轴,建立直角坐标系,其中取10km为单位长度,你能写出其中的直线方程与圆的方程吗?(2)如何用直线方程与圆的方程判断它们的位置关系,请谈谈你的想法?【解析】(1)直线方程:174x y+=,即47280x y +-=;圆的方程:229x y +=;(2)根据学生已有经验,判断直线与圆的位置关系,一种方法,利用点到直线的距离公式求出圆心到直线的距离,然后比较这个距离与半径的大小作出位置关系的判断;另一种方法,就是看由它们组成的方程组有无实数解;学生交流,讨论,归纳总结; 二、探究新知探究1:直线与圆的位置关系的判定方法问题1:想一想,平面几何中,直线与圆的位置关系有哪些?在初中,我们怎样判断直线与圆的位置关系?现在,如何用直线和圆的方程判断它们之间的位置关系?【典例剖析】例1、如图,已知直线:360l x y +-=和圆心为C 的圆22240x y y +--=, 判断直线l 与圆的位置关系;如果相交,求它们交点的坐标. 分析:方法一:判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系; 【解析】解法一:联立方程22360(1)240(2)x y x y y +-=⎧⎨+--=⎩消去y 得:2320x x -+=, 因为10∆=>,所以直线l 与圆相交,有两个公共点.解法二:圆22240x y y +--=可化为22(1)5x y +-=,圆心(0,1)C ,半径r =(0,1)C 到直线l 的距离d ==<所以直线l 与圆相交,有两个公共点.由2320x x -+=,解得12x =,21x =,把12x =代入方程(1),得10y =;把21x =代入方程(1),得23y =; 所以,直线l 与圆有两个交点,它们的坐标分别是:(2,0),(1,3)A B . 归纳总结:判断直线与圆的位置关系有两种方法:方法一:判断直线圆C 与圆C 的方程组成的方程组是否有解.如果有解,直线l 与圆C 有公共点.有两组实数解时,直线l 与圆C 相交;有一组实数解时,直线l 与圆C 相切;无实数解时,直线l 与圆C 相离.方法二:判断圆C 的圆心到直线l 的距离d 与圆的半径r 的关系.如果d <r ,直线l 与圆C 相交;如果r d =,直线l 与圆C 相切;如果d >r ,直线l 与圆C 相离.三、巩固练习练习1:直线02=--y x 与圆1)1()1(22=-+-y x 的位置关系是 ; 练习2:直线012=-+y x 与圆01222=+-+-y y x x 的位置关系是 ; 练习3:设直线过点),0(a ,其斜率为1,且与圆222=+y x 相切,则=a 。

人教A版高中数学必修2 4.2.1直线与圆的位置关系(教学设计)

人教A版高中数学必修2  4.2.1直线与圆的位置关系(教学设计)

人教A版高中数学必修2课题:4.2.1直线与圆的位置关系【教材分析】《直线、圆的位置关系》是圆与方程这一章的重要内容。

它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用解析法进一步研究直线与圆的位置关系,它既是对圆的方程的应用和拓展,又是研究圆和圆的位置关系的基础,并且为后续研究直线和圆锥曲线的位置关系奠定思想基础,具有承上启下的作用。

【学生学情分析】在初中,学生已经直观的讨论过直线与圆的位置关系,前阶段又学习了直线方程和圆的方程。

本节课主要以问题为载体,帮助学生复习、整理已有的知识结构,让学生利用已有的知识,探究直线与圆的位置关系的判断方法。

通过学生参与问题的解决,让学生体验有关的数学思想,培养“数形结合”的意识。

【教学目标】(一)知识与技能:理解直线与圆三种位置关系;能根据直线、圆的方程,用代数法和几何法判断直线与圆位置关系;掌握直线和圆的位置关系判定的应用,会求弦长.(二)方法与过程:通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、合作交流的学习方式;强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.(三)情感态度与价值观:让学生亲生经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,感受“方程思想”、“数形结合”等数学思想的内涵,养成良好的思维习惯.【教学重点与难点】重点:直线与圆的位置关系的判断方法.难点:灵活的运用“数形结合”解决直线和圆相关的问题.【课型】新课【课时安排】1节课【教法、学法指导、教学手段】教法“引导-探究”教学法、“命名”教学法、“题组”教学法;学法:观察发现、自主探究、合作交流、变式学习、归纳总结、应用提高;教学手段:多媒体教学【教学准备】学生学情,课件、教学设计,学生课堂练习题;彩色粉笔,翻页笔。

间的位置关系呢?方法一:可以依据圆心到直线的距离与半径长的关系,判断直线与圆的方法二,由直线l(–问题6过点M【板书设计】有两个公共点直线和圆相交有惟一公共点直线和圆相切直线和圆相离。

人教A版高中数学必修2第四章 圆与方程4.2 直线、圆的位置关系教案(2)

人教A版高中数学必修2第四章 圆与方程4.2 直线、圆的位置关系教案(2)

4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系整体设计教学分析学生在初中的学习中已了解直线与圆的位置关系,并知道可以利用直线与圆的交点的个数以及圆心与直线的距离d 与半径r 的关系判断直线与圆的位置关系,但是,在初中学习时,利用圆心与直线的距离d 与半径r 的关系判断直线与圆的位置关系的方法却以结论性的形式呈现.在高一学习了解析几何以后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法.解决问题的方法主要是几何法和代数法.其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d 后,比较与半径r 的关系从而作出判断.适可而止地引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”.含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度地引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度.虽然学生学习解析几何了,但把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质. 三维目标1.理解直线与圆的位置关系,明确直线与圆的三种位置关系的判定方法,培养学生数形结合的数学思想.2.会用点到直线的距离来判断直线与圆的位置关系及会利用直线与圆的位置关系解决相关的问题,让学生通过观察图形,明确数与形的统一性和联系性. 重点难点教学重点:直线与圆的位置关系的几何图形及其判断方法. 教学难点:用坐标法判断直线与圆的位置关系. 课时安排 2课时教学过程第1课时 导入新课思路1.平面解析几何是高考的重点和热点内容,每年的高考试题中有选择题、填空题和解答题,考查的知识点有直线方程和圆的方程的建立、直线与圆的位置关系等,本节主要学习直线与圆的关系.思路2.(复习导入)(1)直线方程Ax+By+C=0(A,B 不同时为零).(2)圆的标准方程(x-a)2+(y-b)2=r 2,圆心为(a,b),半径为r.(3)圆的一般方程x 2+y 2+Dx+Ey+F=0(其中D 2+E 2-4F >0),圆心为(-2D ,-2E ),半径为21F E D 422-+.推进新课 新知探究 提出问题①初中学过的平面几何中,直线与圆的位置关系有几类? ②在初中,我们怎样判断直线与圆的位置关系呢?③如何用直线与圆的方程判断它们之间的位置关系呢?④判断直线与圆的位置关系有几种方法?它们的特点是什么?讨论结果:①初中学过的平面几何中,直线与圆的位置关系有直线与圆相离、直线与圆相切、直线与圆相交三种.直线与圆的位置关系公共点个数圆心到直线的距离d 与半径r 的关系图形相交 两个 d <r 相切 只有一个 d=r相离没有d >r二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系. ④直线与圆的位置关系的判断方法: 几何方法步骤: 1°把直线方程化为一般式,求出圆心和半径. 2°利用点到直线的距离公式求圆心到直线的距离. 3°作判断:当d >r 时,直线与圆相离;当d=r 时,直线与圆相切;当d <r 时,直线与圆相交. 代数方法步骤: 1°将直线方程与圆的方程联立成方程组. 2°利用消元法,得到关于另一个元的一元二次方程. 3°求出其判别式Δ的值. 4°比较Δ与0的大小关系,若Δ>0,则直线与圆相离;若Δ=0,则直线与圆相切;若Δ<0,则直线与圆相交.反之也成立. 应用示例思路1例1 已知直线l :3x+y-6=0和圆心为C 的圆x 2+y 2-2y-4=0,判断直线l 与圆的位置关系.如果相交,求出它们的交点坐标.活动:学生思考或交流,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系. 解法一:由直线l 与圆的方程,得⎪⎩⎪⎨⎧=--+=-+)2(.042)1(,06322y y x y x消去y,得x 2-3x+2=0,因为Δ=(-3)2-4×1×2=1>0,所以直线l 与圆相交,有两个公共点.解法二:圆x 2+y 2-2y-4=0可化为x 2+(y-1)2=5,其圆心C 的坐标为(0,1),半径长为5,圆心C 到直线l 的距离d=2213|1603|+-+⨯=105<5.所以直线l 与圆相交,有两个公共点.由x 2-3x+2=0,得x 1=2,x 2=1.把x 1=2代入方程①,得y 1=0;把x 2=1代入方程①,得y 2=3.所以直线l 与圆相交有两个公共点,它们的坐标分别是(2,0)和(1,3).点评:比较两种解法,我们可以看出,几何法判断要比代数法判断快得多,但是若要求交点,仍需联立方程组求解.例2 已知圆的方程是x 2+y 2=2,直线y=x+b,当b 为何值时,圆与直线有两个公共点,只有一个公共点没有公共点.活动:学生思考或交流,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价.我们知道,判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解,或依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.反过来,当已知圆与直线的位置关系时,也可求字母的取值范围,所求曲线公共点问题可转化为b 为何值时,方程组⎪⎩⎪⎨⎧+==+bx y y x ,222有两组不同实数根、有两组相同实根、无实根的问题.圆与直线有两个公共点、只有一个公共点、没有公共点的问题,可转化为b 为何值时圆心到直线的距离小于半径、等于半径、大于半径的问题.解法一:若直线l :y=x+b 和圆x 2+y 2=2有两个公共点、只有一个公共点、没有公共点,则方程组⎪⎩⎪⎨⎧+==+bx y y x ,222有两个不同解、有两个相同解、没有实数解,消去y,得2x 2+2bx+b 2-2=0,所以Δ=(2b)2-4×2(b 2-2)=16-4b 2.所以,当Δ=16-4b 2>0,即-2<b <2时,圆与直线有两个公共点;当Δ=16-4b 2=0,即b=±2时,圆与直线只有一个公共点;当Δ=16-4b 2<0,即b >2或b <-2时,圆与直线没有公共点.解法二:圆x 2+y 2=2的圆心C 的坐标为(0,0),半径长为2,圆心C 到直线l:y=x+b 的距离d=2||11|0101|22b b =+-⨯+⨯-.当d >r 时,即2||b >2,即|b|>2,即b >2或b <-2时,圆与直线没有公共点;当d=r 时,即2||b =2,即|b|=2,即b=±2时,圆与直线只有一个公共点;当d <r 时,即2||b <2,即|b|<2,即-2<b <2时,圆与直线有两个公共点.点评:由于圆的特殊性,判断圆与直线的位置关系,多采用圆心到直线的距离与半径的大小进行比较的方法,而以后我们将要学习的圆锥曲线与直线位置关系的判断,则需要利用方程组解的个数来判断. 变式训练已知直线l 过点P(4,0),且与圆O :x 2+y 2=8相交,求直线l 的倾斜角α的取值范围. 解法一:设直线l 的方程为y=k(x-4),即kx-y-4k=0,因为直线l 与圆O 相交,所以圆心O 到直线l 的距离小于半径, 即1|4|2+-k k <22,化简得k 2<1,所以-1<k <1,即-1<tanα<1.当0≤tanα<1时,0≤α<4π;当-1<tanα<0时,43π<α<π.所以α的取值范围是[0,4π)∪(43π,π).解法二:设直线l 的方程为y=k(x-4),由⎪⎩⎪⎨⎧=+-=,8),4(22y x x k y ,消去y 得(k 2+1)x 2-8k 2x+16k 2-8=0. 因为直线l 与圆O 相交,所以Δ=(-8k 2)2-4(k 2+1)(16k 2-8)>0,化简得k 2<1.(以下同解法一) 点评:涉及直线与圆的位置关系的问题,常可运用以上两种方法.本题若改为选择题或填空题,也可利用图形直接得到答案.思路2例1 已知圆的方程是x 2+y 2=r 2,求经过圆上一点M(x 0,y 0)的切线方程.活动:学生思考讨论,教师提示学生解题的思路,引导学生回顾直线方程的求法,既考虑通法又考虑图形的几何性质.此切线过点(x 0,y 0),要确定其方程,只需求出其斜率k,可利用待定系数法(或直接求解).直线与圆相切的几何特征是圆心到切线的距离等于圆的半径,切线与法线垂直. 解法一:当点M 不在坐标轴上时,设切线的斜率为k,半径OM 的斜率为k 1, 因为圆的切线垂直于过切点的半径,所以k=-11k . 因为k 1=00x y 所以k=-00y x .所以经过点M 的切线方程是y-y 0=-00y x(x-x 0). 整理得x 0x+y 0y=x 02+y 02.又因为点M(x 0,y 0)在圆上,所以x 02+y 02=r 2.所以所求的切线方程是x 0x+y 0y=r 2.当点M 在坐标轴上时,可以验证上面的方程同样适用.解法二:设P(x,y)为所求切线上的任意一点,当P 与M 不重合时,△OPM 为直角三角形,OP 为斜边,所以OP 2=OM 2+MP 2,即x 2+y 2=x 02+y 02+(x-x 0)2+(y-y 0)2.整理得x 0x+y 0y=r 2.可以验证,当P 与M 重合时同样适合上式,故所求的切线方程是x 0x+y 0y=r 2. 解法三:设P(x,y)为所求切线上的任意一点,当点M 不在坐标轴上时,由OM ⊥MP 得k OM ·k MP =-1,即00x y ·xx yy --00=-1,整理得x 0x+y 0y=r 2.可以验证,当点M 在坐标轴上时,P 与M 重合,同样适合上式,故所求的切线方程是x 0x+y 0y=r 2.点评:如果已知圆上一点的坐标,我们可直接利用上述方程写出过这一点的切线方程. 变式训练求过圆C:(x-a)2+(y-b)2=r 2上一点M(x 0,y 0)的圆的切线方程.解:设x 0≠a,y 0≠b,所求切线斜率为k,则由圆的切线垂直于过切点的半径,得k=by a x k CM---=-001,所以所求方程为y-y 0=by a x ---00(x-x 0),即(y-b)(y 0-b)+(x-a)(x 0-a)=(x 0-a)2+ (y 0-b)2.又点M(x 0,y 0)在圆上,则有(x 0-a)2+(y 0-b)2=r 2.代入上式,得(y-b)(y 0-b)+(x-a)(x 0-a)=r 2.当x 0=a,y 0=b 时仍然成立,所以过圆C:(x-a)2+(y-b)2=r 2上一点M(x 0,y 0)的圆的切线方程为(y-b)(y 0-b)+(x-a)(x 0-a)=r 2.例2 从点P(4,5)向圆(x -2)2+y 2=4引切线,求切线方程.活动:学生思考交流,提出解题的方法,回想直线方程的求法,先验证点与圆的位置关系,再利用几何性质解题.解:把点P(4,5)代入(x -2)2+y 2=4,得(4-2)2+52=29>4,所以点P 在圆(x -2)2+y 2=4外.设切线斜率为k,则切线方程为y -5=k(x -4),即kx -y +5-4k=0.又圆心坐标为(2,0),r=2.因为圆心到切线的距离等于半径,即1|4502|2+-+-k k k =2,k=2021. 所以切线方程为21x -20y +16=0.当直线的斜率不存在时还有一条切线是x=4.点评:过圆外已知点P(x,y)的圆的切线必有两条,一般可设切线斜率为k,写出点斜式方程,再利用圆心到切线的距离等于半径,写出有关k 的方程.求出k,因为有两条,所以应有两个不同的k 值,当求得的k 值只有一个时,说明有一条切线斜率不存在,即为垂直于x 轴的直线,所以补上一条切线x=x 1. 变式训练求过点M(3,1),且与圆(x-1)2+y 2=4相切的直线l 的方程. 解:设切线方程为y-1=k(x-3),即kx-y-3k+1=0, 因为圆心(1,0)到切线l 的距离等于半径2, 所以22)1(|13|-++-k k k =2,解得k=-43. 所以切线方程为y-1=-43(x-3),即3x+4y-13=0. 当过点M 的直线的斜率不存在时,其方程为x=3,圆心(1,0)到此直线的距离等于半径2,故直线x=3也符合题意.所以直线l 的方程是3x+4y-12=0或x=3.例3 (1)已知直线l :y=x+b 与曲线C :y=21x -有两个不同的公共点,求实数b 的取值范围;(2)若关于x 的不等式21x ->x+b 解集为R ,求实数b 的取值范围.图1解:(1)如图1(数形结合),方程y=x+b 表示斜率为1,在y 轴上截距为b 的直线l ; 方程y=21x -表示单位圆在x 轴上及其上方的半圆, 当直线过B 点时,它与半圆交于两点,此时b=1,直线记为l 1; 当直线与半圆相切时,b=2,直线记为l 2.直线l 要与半圆有两个不同的公共点,必须满足l 在l 1与l 2之间(包括l 1但不包括l 2), 所以1≤b <2,即所求的b 的取值范围是[1,2).(2)不等式21x ->x+b 恒成立,即半圆y=21x -在直线y=x+b 上方, 当直线l 过点(1,0)时,b=-1,所以所求的b 的取值范围是(-∞,-1). 点评:利用数形结合解题,有时非常方便直观. 知能训练本节练习2、3、4. 拓展提升圆x 2+y 2=8内有一点P 0(-1,2),AB 为过点P 0且倾斜角为α的弦. (1)当α=43π时,求AB 的长; (2)当AB 的长最短时,求直线AB 的方程. 解:(1)当α=43π时,直线AB 的斜率为k=tan 43π=-1,所以直线AB 的方程为y-2=-(x+1),即y=-x+1.解法一:(用弦长公式)由⎪⎩⎪⎨⎧=++-=,8,122y x x y 消去y,得2x 2-2x-7=0, 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=1,x 1x 2=-27, 所以|AB|=2)1(1-+|x 1-x 2|=2·212214)(x x x x -+=2·)27(41-⨯-=30.解法二:(几何法)弦心距d=21,半径r=22,弦长|AB|=230218222=-=-dr . (2)当AB 的长最短时,OP 0⊥AB,因为k OP0=-2,k AB =21,直线AB 的方程为y-2=21(x+1), 即x-2y+5=0.课堂小结(1)判断直线与圆的位置关系的方法:几何法和代数法. (2)求切线方程. 作业习题4.2 A 组1、2、3.设计感想本节课是在学习了点和圆的位置关系的基础上进行的,是为后面的圆与圆的位置关系作铺垫的一节课.本节的主题是直线和圆,在解析几何中,直线与圆的关系是一个非常重要的知识点,可以对学生的思维有一个很好的锻炼,将几种重要的数学思想灌输给学生.首先,一开始的复习提问全面又突出重点,特别是“初中学习的如何判断直线和圆的位置关系?”这个问题,为学生思考提供了很好的引导.其次对于例题的选择有很高的要求,好的例题是一个好教案的重要保证.在例题的设计方面,本教案共分为三个层次来一步步的推进,让学生由浅入深,从思维容量上层层递进,对学生的思考和分析都有很好的引导作用,通过思路1的例题1、2对直线与圆的几种位置关系作了巩固,是每个学生都必须也能够掌握的.但这几题虽是基础题也并不是平淡无奇的题,它印证了判定的条件和结论在一定条件下是可以转化的.通过思路2的例题1、2,对圆的切线方程的求法进行了说明和总结.这个知识点与“直线与圆”联系起来,而且同时又渗透了数形结合的思想.让学生通过具体的练习,通过自主地思考、研究,来体会数学思想对我们解题和研究的作用.例题3的设计给学生留下了讨论的空间,不仅将与直线与圆有关的各知识点联系了起来,而且还通过各知识点之间的联系、综合应用,组织学生一起思考起来,对应用的加强更是体现了“分类活动,激发潜能”的基本要求.。

【教案】高中数学必修2人教A教案《4.2.1直线与圆的位置关系》

【教案】高中数学必修2人教A教案《4.2.1直线与圆的位置关系》

4.2.1 直线与圆的位置关系(一)教学目标 1.知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系. (二)过程与方法设直线l :ax + by + c = 0,圆C :x 2 + y 2 + Dx + Ey + F = 0,圆的半径为r ,圆心(,)22D E --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当d >r 时,直线l 与圆C 相离; (2)当d =r 时,直线l 与圆C 相切; (3)当d <r 时,直线l 与圆C 相交; 3.情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.(二)教学重点、难点重点:直线与圆的位置关系的几何图形及其判断方法. 难点:用坐标法判定直线与圆的位置关系. (三)教学过程设想 教学环节 教学内容师生互动设计意图复习引1.初中学过的师;让学生之间进行启入平面几何中,直线与圆的位置关系有几类?讨论、交流,引导学生观察图形,导入新课.生:看图,并说出自己的看法.发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.概念形成2.直线与圆的位置关系有哪几种呢?三种(1)直线与圆相交,有两个公共点.(2)直线与圆相切,只有一个公共点.(3)直线与圆相离,没有公共点.师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.生:观察图形,利用类比的方法,归纳直线与圆的位置关系.得出直线与圆的位置关系的几何特征与种类.概念深化3.在初中,我们怎样判断直线与师:引导学生回忆初中判断直线与圆的位置使学生回圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?关系的思想过程.生:回忆直线与圆的位置关系的判断过程.忆初中的数学知识,培养抽象概括能力.4.你能说出判断直线与圆的位置关系的两种方法吗?方法一:利用圆心到直线的距离d.方法二:利用直线与圆的交点个数.师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.生:利用图形,寻找两种方法的数学思想.抽象判断直线与圆的位置关系的思路与方法.应用举例5.你能用两种判断直线与圆的位置关系的数学思想解决例1的问题吗?例 1 如图,师:指导学生阅读教科书上的例1.生:仔细阅读教科书上的例1,并完成教科书第140页的练习题2.例 1 解法一:由直线l与圆的方程,得体会判断直线与圆的位置关系的思想方法,关①②已知直线l:3x +y– 6 = 0和圆心为C的圆x2 + y2–2y– 4 = 0,判断直线l与圆的位置关系;如果相交,求它们交点的坐标.分析:方法一:由直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系.22360240x yx y y+-=⎧⎨+--=⎩消去y,得x2– 3x+ 2 = 0,因为△= (–3)2–4×1×2= 1>0所以,直线l与圆相交,有两个公共点.解法二:圆x2 + y2–2y–4 = 0可化为x2+(y– 1)2 =5,其圆心C的坐标为(0,1),半径长为5,点C (0,1)到直线l的距离d =22|3016|51031⨯+-=+<5.所以,直线l与圆相交,有两个公共点.由x2–3x + 2 = 0,解得x1 =2,x2 = 1.把x1=2代入方程①,得y1= 0;把x2=1代入方程①,注量与量之间的关系.使学生熟悉判断直线与圆的位置关系的基本步骤.6.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?例 2 已知过点M (–3,–3)的直线l被圆x2+ y2 + 4y–21 = 0所截得的弦长为45,求直线l的方程. 得y2= 0;所以,直线l与圆有两个交点,它们的坐标分别是A(2,0),B(1,3).生:阅读例1.师:分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.生:交流自己总结的步骤.师:展示解题步骤.例2 解:将圆的方程写成标准形式,得x2 + (y2 + 2)2 =25,所以,圆心的坐标是(0,–2),半径长r =5. 如图,因为直线l的距离为45,所以弦心距为22455()52-=,即圆心到所求直线l 的距离为5.因为直线l 过点M (–3,–3),所以可设所求直线l 的方程为y + 3 = k (x + 3),即k x – y + 3k –3 = 0.根据点到直线的距离公式,得到圆心到直线l 的距离d =2|233|1k k +-+.因此,2|233|51k k +-=+, 即|3k –1|=255k +,两边平方,并整理得到2k 2 –3k –2 = 0, 解得k =12,或k =2.所以,所求直线l 有两条,它们的方程分别为y + 3 =12(x + 3),或y+ 3 = 2(x+ 3).即x +2y = 0,或2x –y + 3 = 0.7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?8.通过例2的学习,你发现了什么?半弦、弦心距、半径构成勾股弦关系.师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.生:阅读教科书上的例2,并完成137页的练习题.师:引导并启发学生探索直线与圆的相交弦的求法.生:通过分析、抽象、归纳,得出相交弦长的运算方法.进一步深化“数形结合”的数学思想.明确弦长的运算方法.9.完成教科书第136页的练习题1、2、3、4.师:引导学生完成练习题.生:互相讨论、交流,完成练习题.巩固所学过的知识,进一步理解和掌握直线与圆的位置关系.归纳总结10.课堂小结:教师提出下列问题让学生思考:(1)通过直线与圆的位置关系的判断,你学到了什么?(2)判断直线与圆的位置关系有几种方法?它们的特点是什么?(3)如何求出直线与圆的相交弦长?师生共同回顾回顾、反思、总结形成知识体系课外作业布置作业:见习题4.2 第一课时学生独立完成巩固所学知识备选例题例1 已知圆的方程x2 + y2 = 2,直线y = x + b,当b为何值时,(1)圆与直线有两个公共点; (2)圆与直线只有一个公共点; (3)圆与直线没有公共点.解法1:圆心O (,0)到直线y = x + b 的距离为||2b d =,圆的半径2r =.(1)当d <r ,即–2<b <2时,直线与圆相交,有两个公共点;(2)当d = r ,即b = 2±时,直线与圆相切,有一个公共点;(3)当d >r ,即b >2或b <–2时,直线与圆相离, 无公共点. 解法2:联立两个方程得方程组222x y y x b ⎧+=⎨=+⎩.消去y 2得2x 2 + 2bx + b 2 – 2 = 0,∆=16 – 4b 2.(1)当∆>0,即–2 <b <2时,直线与圆有两个公共点; (2)当∆=0,即2b =±时,直线与圆有一个公共点; (3)当∆<0即b >2或b <–2时,直线与圆无公共点.例2 直线m 经过点P (5,5)且和圆C :x 2 + y 2 = 25相交,截得弦长l 为45,求m 的方程.【解析】设圆心到直线m 的距离为 d ,由于圆的半径r = 5,弦长的一半252l=, 所以由勾股定理,得:225(25)5d =-=,所以设直线方程为y – 5 = k (x – 5) 即kx – y + 5 – 5k = 0. 由2|55|51k k-=+ ,得12k =或k = 2.所以直线m 的方程为x – 2y + 5 = 0或2x – y – 5 = 0.例3 已知圆C :x 2 + y 2 – 2x + 4y – 4 = 0. 问是否存在斜率为1的直线l , 使l 被圆C 截得弦AB 满足:以AB 为直径的圆经过原点.【解析】假设存在且设l 为:y = x + m ,圆C 化为(x – 1)2 – (y + 2)2 = 9,圆心C (1,–2).解方程组2(1)y x m y x =+⎧⎨+=--⎩得AB 的中点N 的坐标11(,)22m m N +--,由于以AB 为直径的圆过原点,所以|AN | = |ON |. 又22(3)||||||92m AN CA CN +=-=-,2211||()()22m m ON +-=-+所以22(3)(1)19()222m m m ++--=+解得m = 1或m = –4.所以存在直线l ,方程为x – y + 1 = 0和x – y – 4 = 0, 并可以检验,这时l 与圆是相交于两点的.。

统编通用版高考数学全套电子教案.4.2.2直线与圆的位置关系(2)教案新人教A版必修2

统编通用版高考数学全套电子教案.4.2.2直线与圆的位置关系(2)教案新人教A版必修2

统编通用版高考数学全套电子教案.4.2.2直线与圆的位置关系(2)教案新人教A 版必修 2课题:2.4.2.2直线与圆的位置关系(2)课型:习题课教学目标:1、理解直线与圆的位置的种类;2、利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;3、会用点到直线的距离来判断直线与圆的位置关系.教学重点:直线与圆的位置关系的几何图形及其判断方法教学难点:用坐标法判断直线与圆的位置关系.教学过程:一.复习提问:1、判断直线与圆的位置关系有几种方法?它们的特点是什么?2、如何求出直线与圆的相交弦长?二、作业讲评:前阶段的作业。

三.讲练结合:1、求过点M (1,22)且与圆229x y 相切的直线方程。

答案:2290x y 2、已知圆的方程是222x y r ,求经过圆上一点M (00,x y )的切线的方程。

答案:200x x y y r 3、当k 为何值时,直线y=kx+10与圆2225x y (1)相离;(2)相切;(3)相交答案:(1)33k ;(2)3k ;(3)3k 或3k 4、圆222430x y x y 上到直线l :x+y+1=0的距离为2的点有几个?答案:3个5、若直线yx k 与曲线21y x 恰好有一个公共点,则k 的取值范围是答案:11k 或2k6、已知圆C :2224200x y x y 与直线:(21)(1)740l m x m y m 。

证明:不论m 取何值时直线l 与圆C 总有两个交点。

7、已知点A(2,0),B(0,2),圆2220x y x上一点C,则△ABC面积的最小值为答案:32课后作业:课本132p习题4.2A组第4,6题,B组第3题。

课后记:。

高中数学必修2(人教A版)教案—4.2.1直线与圆的位置关系

高中数学必修2(人教A版)教案—4.2.1直线与圆的位置关系

4. 2.1 直线与圆的位置关系【教学目标】1.能根据给定的直线、圆的方程,判断直线与圆的位置关系.2.通过直线与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.【教学重难点】教学重点:直线与圆的位置关系的几何图形及其判断方法. 教学难点:用坐标法判直线与圆的位置关系. 【教学过程】㈠情景导入、展示目标 问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西80km 处,受影响的范围是半径长为30km 的圆形区域.已知港口位于台风中心正北40km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?运用平面几何知识,你能解决这个问题吗?请同学们动手试一下. ㈡检查预习、交流展示1.初中学过的平面几何中,直线与圆的位置关系有几种? 2.怎样判断直线与圆的位置关系呢? ㈢合作探究、精讲精练探究一:用直线的方程和圆的方程怎样判断它们之间的位置关系?教师:利用坐标法,需要建立直角坐标系,为使直线与圆的方程应用起来简便,在这个实际问题中如何建立直角坐标系?学生:以台风中心为原点O ,东西方向为x 轴,建立直角坐标系,其中,取10km 为单位长度.则受台风影响的圆形区域所对应的圆心为O 的圆的方程为922=+y x轮船航线所在直线 l 的方程为082=-+y x .教师:请同学们运用已有的知识,从方程的角度来研究一下直线与圆的位置关系. 让学生自主探究,互相讨论,探究知识之间的内在联系。

教师对学生在知识上进行适当的补遗,思维上的启迪,方法上点拨,鼓励学生积极、主动的探究. 由学生回答并补充,总结出以下两种解决方法: 方法一:代数法由直线与圆的方程,得:⎩⎨⎧=-+=+082922y x y x 消去y ,得0,74x 2x 2=+-因为040724(-4)2<△-=⨯⨯-= 所以,直线与圆相离,航线不受台风影响。

【说课稿】人教A版数学必修2 4.2.1直线与圆位置关系 说课稿

【说课稿】人教A版数学必修2   4.2.1直线与圆位置关系   说课稿

《直线与圆的位置关系》说课稿---人教A版必修2第四章4.2.1一、教材分析1.教材的地位与作用“直线与圆的位置关系”这节课的教材是高中数学2第四章第二节的内容,它是学生在已经掌握“圆的概念性质”和“点和圆的位置关系”的基础上,进一步学习直线与圆的各种不同的位置关系。

它是在学生在已获得一定的探究方法的基础上的进一步深化。

这一节的内容不仅是在“圆与方程”一章中重要的一种位置关系,同时也是培养同学们的空间想象能力和逻辑思维能力的重要内容,为今后的课程学习打下良好基础。

2.教学目标(1)知识目标:掌握直线和圆的几种位置关系,熟练掌握判断位置关系的两种方法。

判断直线到圆心距离与圆半径的大小关系法和求解个数法。

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

(3)情感目标培养学生自主学习的能力,让同学主动去探究问题的本质,唤醒学生的主体意识,使学生获得积极的情感体验。

抓住探究的好奇心理,主动学习的心理素质,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3.教材的重点与难点教学重点:掌握直线和圆的几种位置关系,学会判定直线与圆的位置关系的两种方法:(1)直线到圆心距离与圆半径的大小关系,写出判定直线与圆的位置关系。

(2)通过解直线与圆方程组成的方程,根据解的个数,写出判定直线与圆的位置关系。

教学难点:位置关系《=》大小关系式《=》解的个数4.教材处理教学如何提示知识的发生过程?即它们是如何被提出的、发现的,是如何被抽象、概括的,是如何被猜测、判断的……在这一系列的思维活动中,蕴含了极其丰富的思维因素与价值。

二、教学策略㈠教学手段:如何突出重点,突破难点,从而实现教学目标。

我在教学过程中拟计划进行如下操作:1:“读(看)——议——讲”结合法2:图表分析法3:读图讨论法4:教学过程中坚持启发式教学的原则基于本节课的与实际联系较强特点,着重采用课本与图形实物相结合的教学方法。

人教版高中数学必修二教案:4.2.1+直线与圆的位置关系

人教版高中数学必修二教案:4.2.1+直线与圆的位置关系

4.2.1《直线与圆的位置关系》教学设计一、教学目标:1.知识目标:能根据给定直线、圆的方程判断直线与圆的位置关系,并解决相关的问题;2.能力目标:通过理论联系实际培养学生建模能力,培养学生数形结合思想与方程的思想;3.情感目标:通过学生的自主探究,培养学生学习的主动性和合作交流的学习习惯。

二、教学重点、难点:重点:用坐标法判断直线与圆的位置关系难点:学生对用方程组的解来判断直线与圆的位置关系方法的理解三、教学方法探究式教学法四、教学用具:多媒体、实物投影仪五、学情分析通过初中的学习,直线与圆的位置关系已有感性认识,学生已经知道直线与圆有三种位置关系,并且从直线与圆的直观感受上,学生已经懂得“利用直线与圆的交点的个数及圆心到直线的距离与圆的半径的大小比较”来研究直线与圆的位置关系。

在初中学习时,直线与圆的位置关系是以结论性的形式呈现;高中要求学生能够利用直线与圆的方程,定量来进行判断,解决问题的主要方法是解析法,而解析法的思想方法学生不熟悉。

本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会根据直线与圆的方程表示利用坐标法研究它们的位置关系。

六、教学过程复习提问:1、点与圆有几种位置关系?2、若将点改成直线,那么直线与圆的位置关系又如何呢?.Oab1、直线与圆的位置关系:观察右边的三个图形:直线与圆分别有多少个公共点? 练习:1、如图1,直线与圆_______公共点,那么这条直线与圆_________。

2、如图2,直线与圆有______公共点时,那么直线与圆________。

此时,这条直线叫做圆的_______,这个公共点叫做_______。

3、如图3,直线与圆有_______公共点时,那么直线与圆________。

此时,这条直线叫做________。

二、学生动手画出圆心到直线的距离d 与半径r 比较,得出结论:1、当d>r 时,直线与圆相离;2、当d=r 时,直线与圆相切;3、当d<r 时,直线与圆相交 。

高中数学新人教版必修2教案4.2.1 直线与圆的位置关系.doc

高中数学新人教版必修2教案4.2.1  直线与圆的位置关系.doc

教师课时教案

问题与情境及教师活动
学生活动
2
5.你能两种判断直线与圆的位置关系的数学思想解决例 1 的问题吗?
学 师:指导学生阅读教科书上的例 1.
生:新闻记者教科书上的例 1,并完成教科书第 136 页的练习题 2.

6.通过学习教科书的例 1,你能总结一下判断直线与圆的位置关系的步
程 骤吗?
生:阅读例 1.
及 师:分析例 1,并展示解答过程;启发学生概括判断直线与圆的位置关 方 系的基本步骤,注意给学生留有总结思考的时间.
生:交流自己总结的步骤.
法 师:展示解题步骤.
7.通过学习教科书上的例 2,你能说明例 2 中体现出来的数学思想方法 吗? 师:指导学生阅读并完成教科书上的例 2,启发学生利用“数形结合” 的数学思想解决问题. 生:阅读教科书上的例 2,并完成第 137 页的练习题.
8.通过例 2 的学习,你发现了什么? 师:引导并启发学生探索直线与圆的相交弦的求法. 生:通过分析、抽象、归纳,得出相交弦长的运算方法.
9.完成教科书第 136 页的练习题 1、2、3、4. 师:引导学生完成练习题. 生:互相讨论、交流,完成练习题.
10.教师总结: 设直线 l : ax by c 0 ,圆 C : x 2 y 2 Dx Ey F 0 ,圆的半
教 学 过 程 及 方 法
学生活动
教 学 (1)通过直线与圆的位置关系的判断,你学到了什么? 小 (2)判断直线与圆的位置关系有几种方法?它们的特点是什么? 结 (3)如何求出直线与圆的相交弦长?
课 后 反 思
3
4
5
生:回忆直线与圆的位置关系的判断过程. 点评:由算4多它.个们你平的能面表说图面出形积判围就断成是直的计线几算与何它圆体的的,各位它个置们侧关的面系侧面的面积两展和种开底方图面法还面吗是积?平之面和图.形,计

新人教A版必修2高中数学学案教案: 4.2.1直线与圆的位置关系

新人教A版必修2高中数学学案教案: 4.2.1直线与圆的位置关系

数学 4.2.1直线与圆的位置关系教案 新人教A 版必修2一、教学目标1、知识与技能:能根据给定直线、圆的方程,判断直线与圆的位置关系。

2、过程与方法:通过具体事例探究直线与圆的位置关系,经历利用点到直线距离来判断直线与圆位置关系的过程,学会求弦长或圆的切线的方法。

3、情感态度与价值观:通过观察图形,理解并掌握直线与圆的位置关系,培养数形结合的思想。

二、教学重点、难点:重点:直线与圆的位置关系的几何图形及其判断方法。

难点:用坐标法判直线与圆的位置关系。

三、教学过程(一)实例引入例1、已知直线l :3x + y – 6 = 0和圆心为C 的圆04222=--+y y x ,判断直线l 与圆C 的位置关系;如果相交,求直线l 被圆C 所截得的弦长。

问题1:在平面几何中,直线与圆的位置关系有几种?(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点。

问题2:在初中,我们怎样判断直线与圆的位置关系?如何用直线和圆的方程判断它们之间的位置关系?方法一:联立方程组,考察方程组有无实数解; 方法二:依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系。

(二)问题解决解法一:联立方程组:023042063222=+-⇒⎩⎨⎧=--+=-+x x y y x y x , 因为判别式△ > 0,所以直线l 与圆C 相交,有两个公共点。

解法二:圆心C (0,1),半径5=r ,圆心C 到直线l 的距离5210<=d ,所以直线l 与圆C 相交。

结论:判断直线l 与圆C 的位置关系的方法: 1、判断直线l 与圆C 组成的方程组是否有解: (1)有两组实数解,则直线l 与圆C 相交;(2)有一组实数解,则直线l 与圆C 相切;(3)没有实数解,则直线l 与圆C 相离。

2、判断圆C 的圆心C 到直线的距离与圆的半径的关系:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;拓展:如何求直线l 被圆C 所截得的弦AB 的长?解法一:联立方程组,消去一个未知数,得关于的一元二次方程:思路一:求出交点的坐标,由两点间的距离公式求得弦长。

人教课标版高中数学必修二《直线与圆的位置关系》教案-新版

人教课标版高中数学必修二《直线与圆的位置关系》教案-新版

人教课标版高中数学必修二《直线与圆的位置关系》教案-新版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN4.2.1 直线与圆的位置关系(一)核心素养通过学习直线与圆的位置关系,掌握解决问题的方法——代数法、几何法.(二)学习目标1.清楚圆与直线的三种位置关系.2.能根据给定直线、圆的方程判断直线与圆的位置关系.3.计算直线被圆截得的弦长的常用方法.4.求过点的圆的切线方程.(三)学习重点1.直线与圆的位置关系的判断方法.2.用直线和圆的方程解决问题.(四)学习难点1.用直线和圆的方程解决问题.2.用坐标法判直线与圆的位置关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材,填空:直线与圆的三种位置关系的几何含义是:直线与圆的位置关系公共点个数圆心到直线的距离d与半径r的关系图形相交2个d<r相切1个d=r相离0个d>r(2)记一记:直线与圆的位置关系的判断方法方法一:代数方法步骤:1.将直线方程与圆的方程联立成方程组.2.利用消元法,得到关于另一个元的一元二次方程.3.求出其判别式Δ的值.4.比较Δ与0的大小关系,若Δ>0,则直线与圆相交;若Δ=0,则直线与圆相切;若Δ<0,则直线与圆相离.反之也成立.方法二:几何法1.利用点到直线距离公式计算圆心到直线的距离d.2.计算出圆的半径为r.3.比较圆心到直线的距离d和圆半径r的大小关系,若d>r,则直线与圆相离;若d<r,则直线与圆相交;若d=r,则直线与圆相切. 反之也成立.2.预习自测(1)直线与圆有一个交点称为_____,有两个交点称为_____,没有交点称为____.【知识点】直线与圆位置关系定义【数学思想】分类与整合【解题过程】根据定义填空【思路点拨】看图理解定义【答案】相切、相交、相离.(2)直线与圆的方程联立方程组,若方程组无解,则直线与圆,若方程组仅有一组解,则直线与圆,若方程组有两组不同的解,则直线与圆_____. 【知识点】直线与圆位置关系定义【数学思想】分类与整合、数形结合【解题过程】根据定义填空【思路点拨】理解方程的解的定义【答案】相离、相切、相交.(3)直线210x y +-=与圆()()()222110x y r r -+-=>相交,求r 的取值范围. 【知识点】直线与圆位置关系 【数学思想】 函数与方程 【解题过程】圆心到直线的距离d =,因为相交,所以r d >= 【思路点拨】圆心到直线的距离与半径的关系 【答案】552r >(4)判定直线34120x y +-=与圆22(3)(2)4x y -+-=位置关系是 . 【知识点】直线与圆位置关系【解题过程】圆心(3,2)到直线的距离1d =,d r <,所以相交 【思路点拨】圆心到直线的距离与半径的关系 【答案】相交. (二)课堂设计 1.知识回顾(1)直线与圆的方程(2)直线与圆的位置关系和等价条件 (3)两点间的距离和点到直线的距离公式 2.问题探究探究一 结合实例,认识圆与直线的平面位置关系★ ●活动① 清楚圆与直线的位置关系我们清楚两个物体在空间位置关系有上下前后左右这几种,那么我们了解在名片上两个图形同样也有上下左右的位置关系.那么圆和直线这两种图形的位置关系我们应该如何称呼呢?首先我们设想自己正在海边观看日出:当看到太阳从海岸线上升起的时候,太阳和地平线之间的位置关系叫什么呢?当看到太阳与海岸线相切的时候呢太阳完全升起来的时候呢根据课本知识和图像我们知道直线与圆的位置关系根据两个图形的交点个数可以分为相交、相切、相离三种.请完成下列空格:直线与圆有一个交点称为_____,有两个交点称为_____,没有交点称为____. 【答案】相切、相交、相离【设计意图】从实际问题中引入圆与直线位置关系,并运用课本中知识来解答实际问题,巩固预习成果,明确直线与圆的位置关系.●活动②辨析概念、学会根据图像判别直线与圆的位置关系请看图判断直线与圆位置的关系.【答案】相离、相切、相交.【设计意图】通过图片显示直线与圆的位置关系并让同学们加以辨析,明确概念理解与专业名词的运用,加深记忆同时检验预习成果. 探究二 探究判断圆与直线位置关系的方法 ●活动① 回顾直线与圆的方程大家能够说出直线解析式的通式吗(抢答) (1)点斜式:11()y y k x x -=- (2)斜截式:y kx b =+ (3)两点式:1121212121(,)y y x x y y x x y y x x --=≠≠-- (4)截距式:1(0,0)x ya b a b+=≠≠ (5)一般式:0Ax By C ++=(A ,B 不同时为0). 大家能够说出圆的三种方程吗(抢答)(1)圆的标准方程:222()()x a y b r -+-=(2)圆的一般方程:220x y Dx Ey F ++++=(D 2+E 2-4F >0).(3)圆的直径式方程:1212()()()()0x x x x y y y y --+--=(圆的直径的两端点是1122(,),(,)A x y B x y .【设计意图】通过回顾直线和圆方程的知识,为后面学习使用代数方法求直线与圆位置关系打下基础.●活动② 做例题初步认识代数和几何方法的解题思路已知直线:360l x y +-=圆心为C 的圆22240x y y +--=,判断直线l 与圆的位置关系.如果相交,求出它们的交点坐标. (书本例题)【设计意图】从课本的例子出发,让同学们初步建立代数方法和几何方法解决此类问题的解题方法和思路.●活动③ 直线与圆位置关系中的参数取值问题例1 已知圆的方程是222x y +=,直线y x b =+,当b 为何值时,(1)圆与直线有两个公共点;(2)只有一个公共点;(3)没有公共点. 【知识点】直线与圆的位置关系、不等式 【数学思想】分类讨论【解题过程】联立方程求判别式或者计算距离【思路点拨】判别式法或者圆心到直线的距离与半径比较 【答案】(1)22-<>b b 或(2)22-==b b 或(3)22<<-b同类训练 设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则的取+m n 值范围( ).A [1- .B (,1[1+3,+)-∞∞.C [2-.D (,2[2+22,+)-∞-∞【知识点】直线与圆的位置关系、不等式 【数学思想】方程不等式【解题过程】利用相切求出,m n 关系,再用重要不等式求出范围 【思路点拨】利用相切找条件 【答案】D探究三 直线被圆截得的弦长的常用方法★ ●活动① 直接求弦长的方法例2 在平面直角坐标系xoy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为5552. 【知识点】垂径定理、弦长公式 【数学思想】数形结合【解题过程】 解法一:因为圆心(2,-1)到直线x +2y -3=0的距离d ==所以直线x +2y -3=0被圆截得的弦长为=解法二:利用韦达定理得到直线与圆的两个交点()11,y x 和()22,y x 有5525;5262121===⋅-=-=+a c x x a b x x 2x -求出弦长. 【思路点拨】垂径定理、韦达定理【答案】5同类训练 求直线0x -+=被圆224x y +=截得的弦长. 【知识点】垂径定理、弦长公式 【数学思想】数形结合【解题过程】法一:求出圆心到直线距离,利用垂径定理; 法二:韦达定理,弦长公式 【思路点拨】垂径定理、韦达定理 【答案】2●活动② 已知弦长,转化为圆心到直线的距离来求参数例3 已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值是( ).A 2- B .4- C .6- D .8- 【知识点】垂径定理 【数学思想】数形结合【解题过程】圆的标准方程为()()a y x -=-++21122,圆心C (-1,1),半径r满足a r -=22,则圆心C 到直线02=++y x 的距离d ==所以2r =4+2=2-a .4a =- 【思路点拨】垂径定理 【答案】B同类训练 已知过点(3,3)M --的直线l 被圆224210x y y ++-=所截得的弦长为45,求直线l 的方程.【知识点】直线的点斜式、弦长公式 【数学思想】分类讨论、转化思想【解题过程】(0,2),5,r -=圆心设直线为3(3),330y k x kx y k +=+-+-=即,l d d ===弦长可得又212-==k k 或, 所以直线方程为290x y ++=,230x y -+=【思路点拨】再利用垂径定理解决问题 【答案】290x y ++=,230x y -+=●活动③ 过圆内一点的最长弦和最短弦方程问题例4 已知圆()()51422=-+-y x ,求过圆内一点()03,P 的最长弦和最短弦所在直线方程【知识点】直线方程、圆的几何性质 【数学思想】数形结合【解题过程】圆心(4,1)A ,最长弦一定为直径,即直线AP ,则最长弦的方程为03=--y x .最短弦和直径垂直,最长弦即直径所在直线的斜率是1,所以最短弦斜率是-1,过因为过点P ,则最短弦的方程为03=-+y x . 【思路点拨】利用几何关系得出结论 【答案】03=--y x ,03=-+y x同类训练 设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______.【知识点】圆的几何性质 【数学思想】数形结合【解题过程】求出圆心到直线的距离1d =再加上半径,则最大距离1d =+ 【思路点拨】利用几何关系得出结论【答案】5212d =+ ●活动② 互动交流、初步实践组织课堂讨论:我们能否根据不同的点与圆的位置关系求出切线方程? 在直线与圆的位置关系中求过定点的圆的切线方程问题是一类很重要的题型.我们都知道有这样的结论.过圆222r y x =+上一点A ()00,y x 的切线方程为200r yy xx =+在运用这个结论的时候要注意些什么呢?我们可以来看一道例题:例5 求过点A ()1,2向圆422=+y x 所引的切线方程. 【知识点】圆的切线 【数学思想】分类讨论 【解题过程】解法一设切点为B ()00,y x ,则过B 点的切线方程为40000=+y y x x ,又点A ()1,2在切线上∴ ⎩⎨⎧=+=+442202000y x y x 联立可以解得切点(2,0)B ,68(,)55B 则最终解得切线方程2x =,01043=-+y x .解法二(1)当斜率不存在的时候,2x =满足;(2)当斜率存在的时候,设切线方程()21-=-x k y ,即012=+--y k kx , ∵圆心(0,0)到切线的距离是2,∴22121k k -+=+解得34k =-∴所求切线方程为01043=-+y x .综上所述:切线方程2x =,01043=-+y x . 【思路点拨】利用结论、求切线的通法 【答案】2x =,01043=-+y x .同类训练 从点(,3),P x x R ∈向圆22(2)(2)1x y +++=作切线,求切线段长度最小的切线方程【知识点】圆的切线【数学思想】数形结合【解题过程】分析可知切线段最小,则点到圆心距离最小的点为所求,即(2,3)P -,求得直线为32)y x -=±+【思路点拨】找出切线段最小的那个点P .【答案】32)y x -=±+.3.课堂总结知识梳理(1)直线与圆的位置关系根据两个图形的交点个数可以分为相交、相切、相离三种.(2)解决直线与圆位置关系的方法:几何法,代数法.(3)与圆相交的直线被圆所截得的弦长的计算.(4)过点求圆的切线方程的方法.重难点归纳(1)解决直线与圆位置关系题目的方法有代数法和几何法(2)使用直线和圆的方程来计算所截弦长、以及圆的切线方程.(三)课后作业基础型 自主突破1.对任意的实数k ,直线1y kx =+与圆222=+y x 的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心【知识点】直线与圆位置判别【数学思想】数形结合【解题过程】直线1y kx =+必过点(0,1)【思路点拨】根据该点与圆心的距离和圆半径大小的比较进行判断.【答案】C2.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B.21+ C.221+ D.221+ 【知识点】点到直线距离公式【数学思想】数形结合【解题过程】22(1)(1)1,(1,1),1x y r -+-==圆心,圆心到直线距离公式求出圆心到直线的距离1d =1,则1d =+【思路点拨】加上半径是关键.【答案】B.3.直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( )A .3[,0]4- B.[ C. [ D.2[,0]3- 【知识点】已知关系求参数的取值范围【数学思想】转化思想【解题过程】(2,3),2,r =圆心直线为30kx y -+=,1,d d k =≥≤=≤≤弦长MN 可得又解得【思路点拨】找到正确的方法对k 进行求【答案】B4.直线32+=x y 被圆08622=--+y x y x 所截得的弦长等于_______.【知识点】弦长公式【数学思想】方程思想【解题过程】22(3)(4)25,x y -+-=圆心(3,4),5,r d l ====54【思路点拨】圆中的弦长公式 【答案】54.5.过点A )1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ).A 053=--y x B .073=-+y x .C 053=-+y x .D 053=+-y x【知识点】最值问题【数学思想】数形结合【解题过程】22(1)(2)5,x y -++=圆心(1,-2),圆心B (1,2)-,则直线为053=--y x【思路点拨】该弦所在直线过圆心【答案】A6.圆222r y x =+上有某点)(00,y x P ,求过此点的切线方程.【知识点】圆的切线【数学思想】数形结合【解题过程】圆心(0,0),半径r ,切线斜率与点)(00,y x P 与圆心直线斜率乘积为1- ,00100,y x k k x y ==-,0000:(),x l y y x x y -=--化简得200r y y x x =+ 【思路点拨】点斜式求直线【答案】200r y y x x =+能力型 师生共研7.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ).A 023=-+y x B .043=-+y x .C 043=+-y x .D 023=+-y x【知识点】圆的切线【数学思想】数形结合【解题过程】22(2)4,x y -+=圆心(2,0),点P 在圆上,圆心与P 的直线斜率1k k =∴=023=+-y x 【思路点拨】抓住点在圆上,该点处的切线的斜率特点.【答案】D8.0y +-=截圆224x y +=得的劣弧的圆心角为__________.【知识点】弦长、圆心角【数学思想】数形结合【解题过程】直线与圆交于AB ,可求得2AB =.又2OA OB ==,所以AOB ∆是等边三角形,AOB ∠=3π. 【思路点拨】求出AB ,解AOB ∆ 【答案】3π 探究型 多维突破9.已知圆C :222430x y x y ++-+=.若圆C 的切线在x 轴和y 轴上的截距的绝对值相等,求此切线的方程.【知识点】求切线方程【数学思想】分类讨论【解题过程】∵切线在两坐标轴上截距的绝对值相等,∴切线的斜率是±1或过原点,故所求切线方程为:x +y -3=0,x +y +1=0,x -y +5=0,x -y +1=0.(2y x =±【思路点拨】利用截距绝对值相等【答案】x +y -3=0,x +y +1=0,x -y +5=0,x -y +1=0.(2y x =±10.已知圆C :x 2+y 2+2x -4y +3=0.从圆C 外一点P (x 1,y 1)向圆引一条切线,切点为M ,O 为原点,且有PM =PO ,求使PM 最小的点P 的坐标.【知识点】圆的切线【数学思想】方程思想【解题过程】∵切线PM 与CM 垂直,∴222PM PC CM =-,又∵PM =PO ,(,)P x y ,坐标代入化简得2430x y -+=.PM 最小时即PO 最小,而PO 最小,即过O 点作直线2430x y -+=的垂线与之交点即为P , 从而解方程组24302x y y x -+=⎧⎨=-⎩得满足条件的点P 坐标为33(,)105P -. 【思路点拨】找出P 满足的条件,找到最小值得位置 【答案】33(,)105P -.自助餐1.直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( ).A 1 .B .C .D 3【知识点】圆的切线【数学思想】转化思想【解题过程】l d =切线段的长度为圆心(3,0)到直线上的点的距离,所以切线段最短,则当d 最短时取得,min d =,min l ==【思路点拨】利用切线长的公式.【答案】C.2.直线x y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于__________.【知识点】弦长【解题过程】根据圆的方程知,圆的圆心坐标为(0,0),半径R =2,弦心距1,d ==,所以弦长AB == 【思路点拨】弦长公式.【答案】3.圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y =7m +4 (m ∈R).(1)证明:不论m 取什么实数,直线l 与圆恒相交于两点;(2)求⊙C 与直线l 相交弦长的最小值.【知识点】直线与圆位置关系、弦长最值问题【数学思想】数形结合,转化思想【解题过程】(1)将方程(2m +1)x +(m +1)y =7m +4,变形为(2x +y -7)m +(x +y -4)=0.直线l 恒过两直线2x +y -7=0和x +y -4=0的交点,交点M (3,1).又∵(3-1)2+(1-2)2=5<25,∴点M (3,1)在圆C 内,∴直线l 与圆C 恒两个交点.(2)由圆的性质可知,当l ⊥CM 时,弦长最短.又||CM ==∴弦长为l ===【思路点拨】.找到几何关系【答案】4 54.已知过点()3,3M --的直线l 与圆224210x y y ++-=相交于,A B 两点,(1)若弦AB 的长为l 的方程;(2)设弦AB 的中点为P ,求动点P 的轨迹方程.【知识点】弦长、直线方程、轨迹问题【数学思想】方程思想【解题过程】(1)若直线l 的斜率不存在,则l 的方程为3x =-,此时有24120y y +-=,弦()||||268A B AB y y =-=--=,所以不合题意.故设直线l 的方程为()33y k x +=+,即330kx y k -+-=.将圆的方程写成标准式得()22225x y ++=,所以圆心()0,2-,半径5r =. 圆心()0,2-到直线l 的距离d =,因为弦心距、半径、弦长的一半构成直角三角形,所以()22231251k k -+=+,即()230k +=,所以3k =-. 所求直线l 的方程为3120x y ++=.(2)设(),P x y ,圆心()10,2O -,连接1O P ,则1O P ⊥AB .当0x ≠且3x ≠-时,11O P AB k k ⋅=-,又(3)(3)AB MP y k k x --==--, 则有()()()23103y y x x ----⋅=----,化简得22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭......(1) 当0x =或3x =-时,P 点的坐标为()()()()0,2,0,3,3,2,3,3------都是方程(1)的解,所以弦AB 中点P 的轨迹方程为22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】.解析法求轨迹【答案】3120x y ++= 22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭.5.过直线x +y -0上点P 作圆x 2+y 2=1的两条切线,若两条切线夹角是60°,则点P 的坐标是__________.【知识点】圆的切线【数学思想】转化思想【解题过程】如图所示,过点P 作圆x 2+y 2=1的两条切线,切点分别为A ,B ,连接OA ,OB ,OP .由已知得,∠APO =30°,所以PO =2.设P 坐标为(,)x y ,则2204x y x y ⎧+-=⎪⎨+=⎪⎩,所求坐标为). 【思路点拨】角度转化为长度【答案】6.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ).A 相离 .B 相切 .C 相交 .D 不确定【知识点】点与圆、直线与圆位置判别【解题过程】M (a ,b )在圆O :x 2+y 2=1外,则122>+b a ,【思路点拨】直接转化条件【答案】C。

高中数学新人教版必修2教案4.2.1 直线与圆的位置关系

高中数学新人教版必修2教案4.2.1  直线与圆的位置关系

教师课时教案备课人授课时间课题4.2.1 直线与圆的位置关系课标要求理解直线与圆的位置的种类教学目标知识目标利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离技能目标会用点到直线的距离来判断直线与圆的位置关系情感态度价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想重点直线与圆的位置关系的几何图形及其判断方法.难点用坐标法判直线与圆的位置关系教学过程及方法问题与情境及教师活动学生活动过程与方法:1.初中学过的平面几何中,直线与圆的位置关系有几类?师:让学生之间进行讨论、交流,引导学生观察图形,导入新课.生:看图,并说出自己的看法.2.直线与圆的位置关系有哪几种呢?师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.生:观察图形,利用类比的方法,归纳直线与圆的位置关系.3.在初中,我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?师:引导学生回忆初中判断直线与圆的位置关系的思想过程.生:回忆直线与圆的位置关系的判断过程.4.你能说出判断直线与圆的位置关系的两种方法吗?师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.教师课时教案教学过程及方法问题与情境及教师活动学生活动5.你能两种判断直线与圆的位置关系的数学思想解决例1的问题吗?师:指导学生阅读教科书上的例1.生:新闻记者教科书上的例1,并完成教科书第136页的练习题2.6.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?生:阅读例1.师:分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.生:交流自己总结的步骤.师:展示解题步骤.7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.生:阅读教科书上的例2,并完成第137页的练习题.8.通过例2的学习,你发现了什么?师:引导并启发学生探索直线与圆的相交弦的求法.生:通过分析、抽象、归纳,得出相交弦长的运算方法.9.完成教科书第136页的练习题1、2、3、4.师:引导学生完成练习题.生:互相讨论、交流,完成练习题.10.教师总结:设直线l:0=++cbyax,圆C:022=++++FEyDxyx,圆的半径为r,圆心)2,2(ED--到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点:(1)当rd>时,直线l与圆C相离;(2)当rd=时,直线l与圆C相切;(3)当rd<时,直线l与圆C相交;教师课时教案教学过程及方法问题与情境及教师活动学生活动教学小结(1)通过直线与圆的位置关系的判断,你学到了什么?(2)判断直线与圆的位置关系有几种方法?它们的特点是什么?(3)如何求出直线与圆的相交弦长?课后反思3。

高中数学新人教A版必修二教案4.2.1直线与圆的位置关系

高中数学新人教A版必修二教案4.2.1直线与圆的位置关系

高中数学新人教A版必修二教案:4.2.1直线与圆的位置关系4.2.1 直线与圆的位置关系(一)教学目标1.知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系. (二)过程与方法[来源:]设直线l:ax + by + c = 0,圆C:x2 + y2 + Dx + Ey + F = 0,圆的半径为r,圆心到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点:(1)当d>r时,直线l与圆C相离;(2)当d=r时,直线l与圆C相切;(3)当d<r时,直线l与圆C相交;[来源:] 3.情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.(二)教学重点、难点重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判定直线与圆的位置关系.(三)教学过程设想教学环节教学内容师生互动设计意图复习引入1.初中学过的平面几何中,直线与圆的位置关系有几类?师;让学生之间进行讨论、交流,引导学生观察图形,导入新课.生:看图,并说出自己的看法.启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.概念形成2.直线与圆的位置关系有哪几种呢?三种(1)直线与圆相交,有两个公共点.(2)直线与圆相切,只有一个公共点.(3)直线与圆相离,没有公共点.师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化"数形结合"的数学思想.生:观察图形,利用类比的方法,归纳直线与圆的位置关系. 得出直线与圆的位置关系的几何特征与种类.概念深化[来源:ZXXK][来源:学#科#网Z#X#X#K][来源:Z在初中,我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?[来源:Z。

xx。

] 师:引导学生回忆初中判断直线与圆的位置关系的思想过程. 生:回忆直线与圆的位置关系的判断过程.[来源:] 使学生回忆初中的数学知识,培养抽象概括能力.[来源:学§科§网Z§X§X§K]4.你能说出判断直线与圆的位置关系的两种方法吗?方法一:利用圆心到直线的距离d.方法二:利用直线与圆的交点个数.师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.生:利用图形,寻找两种方法的数学思想.抽象判断直线与圆的位置关系的思路与方法.应用举例5.你能用两种判断直线与圆的位置关系的数学思想解决例1的问题吗?例1 如图,已知直线l :3x + y - 6 = 0和圆心为C的圆x2 + y2 -2y - 4 = 0,判断直线l 与圆的位置关系;如果相交,求它们交点的坐标.分析:方法一:由直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系. 6.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?例2 已知过点M (-3,-3)的直线l 被圆x2 + y2 + 4y -21 = 0所截得的弦长为,求直线l 的方程.师:指导学生阅读教科书上的例1.生:仔细阅读教科书上的例1,并完成教科书第140页的练习题2.例1 解法一:由直线l 与圆的方程,得消去y,得x2 - 3x + 2 = 0,因为△= (-3)2 - 4×1×2= 1>0所以,直线l与圆相交,有两个公共点.解法二:圆x2 + y2 -2y - 4 = 0可化为x2 + (y - 1)2 =5,其圆心C的坐标为(0,1),半径长为,点C (0,1)到直线l 的距离d =<.所以,直线l 与圆相交,有两个公共点.由x2 -3x + 2 = 0,解得x1 =2,x2 = 1.把x1=2代入方程①,得y1= 0;把x2=1代入方程①,得y2= 0;所以,直线l 与圆有两个交点,它们的坐标分别是A (2,0),B (1,3).生:阅读例1.师:分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间. 生:交流自己总结的步骤.师:展示解题步骤.例2 解:将圆的方程写成标准形式,得x2 + (y2 + 2)2 =25,所以,圆心的坐标是(0,-2),半径长r =5.如图,因为直线l 的距离为,所以弦心距为,即圆心到所求直线l的距离为.因为直线l 过点M (-3,-3),所以可设所求直线l的方程为y + 3 = k (x + 3),即k x - y + 3k -3 = 0.根据点到直线的距离公式,得到圆心到直线l 的距离d =.因此,,即|3k - 1| =,两边平方,并整理得到2k2 -3k -2 = 0,解得k =,或k =2.所以,所求直线l 有两条,它们的方程分别为y + 3 =(x + 3),或y + 3 = 2(x + 3).即x +2y = 0,或2x - y + 3 = 0.体会判断直线与圆的位置关系的思想方法,关注量与量之间的关系.使学生熟悉判断直线与圆的位置关系的基本步骤.7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?8.通过例2的学习,你发现了什么?半弦、弦心距、半径构成勾股弦关系.师:指导学生阅读并完成教科书上的例2,启发学生利用"数形结合"的数学思想解决问题.生:阅读教科书上的例2,并完成137页的练习题.师:引导并启发学生探索直线与圆的相交弦的求法.生:通过分析、抽象、归纳,得出相交弦长的运算方法.进一步深化"数形结合"的数学思想.明确弦长的运算方法.9.完成教科书第136页的练习题1、2、3、4.师:引导学生完成练习题.生:互相讨论、交流,完成练习题.巩固所学过的知识,进一步理解和掌握直线与圆的位置关系. 归纳总结10.课堂小结:教师提出下列问题让学生思考:(1)通过直线与圆的位置关系的判断,你学到了什么?(2)判断直线与圆的位置关系有几种方法?它们的特点是什么?(3)如何求出直线与圆的相交弦长?师生共同回顾回顾、反思、总结形成知识体系课外作业布置作业:见习题4.2 第一课时学生独立完成巩固所学知识备选例题例1 已知圆的方程x2 + y2 = 2,直线y = x + b,当b为何值时,(1)圆与直线有两个公共点;(2)圆与直线只有一个公共点;(3)圆与直线没有公共点.解法1:圆心O (,0)到直线y = x + b的距离为,圆的半径. (1)当d<r,即-2<b<2时,直线与圆相交,有两个公共点;(2)当d = r,即b= 时,直线与圆相切,有一个公共点;(3)当d>r,即b>2或b<-2时,直线与圆相离,无公共点.解法2:联立两个方程得方程组.消去y2得2x2 + 2bx + b2 - 2 = 0,=16 - 4b2.(1)当>0,即-2 <b<2时,直线与圆有两个公共点;(2)当=0,即时,直线与圆有一个公共点;(3)当<0即b>2或b<-2时,直线与圆无公共点.例2 直线m经过点P (5,5)且和圆C:x2 + y2 = 25相交,截得弦长l为,求m的方程.【解析】设圆心到直线m的距离为 d,由于圆的半径r = 5,弦长的一半,所以由勾股定理,得:,所以设直线方程为y - 5 = k (x - 5) 即kx - y + 5 - 5k = 0.由,得或k = 2.所以直线m的方程为x - 2y + 5 = 0或2x - y - 5 = 0. 例3 已知圆C:x2 + y2 - 2x + 4y - 4 = 0. 问是否存在斜率为1的直线l,使l被圆C截得弦AB满足:以AB为直径的圆经过原点.【解析】假设存在且设l为:y = x + m,圆C化为(x - 1)2 - (y + 2)2 = 9,圆心C (1,-2).解方程组得AB的中点N的坐标,由于以AB为直径的圆过原点,所以|AN| = |ON|.又,所以解得m = 1或m = -4.所以存在直线l,方程为x - y + 1 = 0和x - y - 4 = 0,并可以检验,这时l与圆是相交于两点的.:()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)应用示例 思路 1
例 1 过点 P(-2,0)向圆 x2+y2=1 引切线,求切线的方程.
图3 解:如图 3,方法一:设所求切线的斜率为 k,则切线方程为 y=k(x+2),因此由方程组
y x
k( 2y
x
2
2), 1,

x2+k2(x+2)2=1.
上述一元二次方程有一个实根,
3
Δ=16k4-4(k2+1)(4k2-1)=12k2-4=0,k=± ,
= 5 ,两边平
k2 1
1
方整理得 2k2-3k-2=0,解得 k= ,k=2.
2 1
所以所求的直线 l 的方程为 y+3= (x+3)或 y+3=2(x+3),即 x+2y+9=0 或 2x-y+3=0.
2
解法二:设直线 l 和已知圆 x2+y2+4y-21=0 的交点为 A(x1,y1),B(x2,y2),直线 l 的斜率为 k, 由于直线过点 M(-3,-3),所以可设直线 l 的方程为 y+3=k(x+3),即 y=kx+3k-3.代入圆的方程 x2+y2+4y-21=0,并整理得(1+k2)x2+2k(3k-1)x+(3k-1)2-25=0.结合一元二次方程根与系数的关系
|5b|
所以

5 .所以 0≤b≤10,即 b 的最大值是 10.
5
解法二:(代数解法):设 x-2y=b,代入方程 x2+y2-2x+4y=0,得(2y+b)2+y2-2(2y+b)+4y=0,即 5y2+4by+b2-2b=0.由于这个一元二次方程有解,所以其判别式 Δ=16b2-20(b2-2b)=40b-4b2≥0,即 b2-10b≤0,0≤b≤10.所以求出 b 的最大值是 10.

x1+x2=
2k(3k 1) 1 k2
,x1·x2=
(3k
1)2 1 k
2
25
.

|AB|=
(x1 x2 )2 ( y1 y2 )2 (x1 x2 )2 k 2 (x1 x2 )2 (1 k 2 )(x1 x2 )2
(1 k 2 )[(x1 x2 )2 4x1 x2 ]
第 2 课时
(一)导入新课 思路 1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船
正西 70 km 处,受影响的范围是半径长为 30 km 的圆形区域.已知港口位于台风中心正北 40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?
图2 分析:如图 2,以台风中心为原点 O,以东西方向为 x 轴,建立直角坐标系,其中,取 10 km 为单位长度. 则台风影响的圆形区域所对应的圆心为 O 的圆的方程为 x2+y2=9; 轮船航线所在的直线 l 的方程为 4x+7y-28=0. 问题归结为圆心为 O 的圆与直线 l 有无公共点.因此我们继续研究直线与圆的位置关系.
1
然后利用点(-2,0)在切线上得到-2x0=1,从中解得 x0=- .
2
1
3
再由点(x0,y0)在圆上,所以满足 x02+y02=1,既 4 +y02=1,解出 y0=± 2 .
这样就可求得切线的方程为 y 0
3 0 2,
x2 12
2
3
整理得 y=± (x+2).
3
点评:过圆外一点向圆可作两条切线;可用三种方法求出切线方程,其中以几何法“d=r” 比较好(简便).
变式训练 已知直线 l 的斜率为 k,且与圆 x2+y2=r2 只有一个公共点,求直线 l 的方程. 活动:学生思考,观察题目的特点,见题想法,教师引导学生考虑问题的思路,必要时给予
提示,直线与圆只有一个公共点,说明直线与圆相切.可利用圆的几何性质求解.
图4 解:如图 4,方法一:设所求的直线方程为 y=kx+b,由圆心到直线的距离等于圆的半径,得
活动:学生审题,再思考讨论,教师提示学生欲求△ABO 的面积,应先求出直线被圆截得 的弦长|AB|,将|AB|表示成 k 的函数.
图5
解:①如图 5 所示,直线的方程为 kx-y+2 2 k=0(k≠0),
2 2|k|
点 O 到 l 之间的距离为|OC|=
,
k2 1
弦长|AB|=2 | OA |2 | OC |2 2 4 8k 2
(4)设
A(x1,y1),B(x2,y2),由
AP PB
=
1 2
,得
x2 2x1 1 2
=1.
① 又由直线方程和圆的方程联立消去 y,得(1+m2)x2-2m2x+m2-5=0,
(*)
2m 2 故 x1+x2= 1 m2 ,

3 m2 由①②,得 x1= 1 m2 ,代入(*),解得 m=±1.
内.
2 (2)利用弦心距、半径、弦构成的直角三角形求弦长,得 m=± 3 ,所以 α= 或 .
33
(3)设 M 的坐标为(x,y),连结 CM、CP,因为 C(0,1),P(1,1),|CM|2+|PM|2=|CP|2, 所以 x2+(y-1)2+(x-1)2+(y-1)2=1,整理得轨迹方程为 x2+y2-x-2y+1=0(x≠1).
2
∴当∠AOB=90°时,Smax=2,
此时|OC|=
2 ,|OA|=2,即 2
2|k|
=
2,
k2 1
3
∴k=± .
3
点评:在涉及到直线被圆截得的弦长时,要巧妙利用圆的有关几何性质,如本题中的 Rt△ BOC,其中|OB|为圆半径,|BC|为弦长的一半.
变式训练 已知 x,y 满足 x2+y2-2x+4y=0,求 x-2y 的最大值. 活动:学生审题,再思考讨论,从表面上看,此问题是一个代数,可用代数方法来解决.但细 想后会发现比较复杂,它需把二次降为一次.教师提示学生利用数形结合或判别式法. 解法一:(几何解法):设 x-2y=b,则点(x,y)既在直线 x-2y=b 上,又在圆 x2+y2-2x+4y=0 上, 即直线 x-2y=b 和圆 x2+y2-2x+4y=0 有交点,故圆心(1,-2)到直线的距离小于或等于半径,
③过圆内一点不能作圆的切线. ④求圆切线方程,一般有三种方法,一是设切点,利用①②中的切线公式法;二是设切线 的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆 的半径(d=r),求出 k 的值. ⑤把直线与圆的方程联立得方程组,方程组的解即是交点的坐标. ⑥把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、 弦长、半径之间的关系来求.
l 被圆 x2+y2+4y-21=0 所截得的弦长为 4 5 ,所以弦心距为 52 (2 5)2 = 5 ,圆心到直线
的距离为 5 ,由于直线过点 M(-3,-3),所以可设直线 l 的方程为 y+3=k(x+3),即 kx-y+3k-3=0.
| 2 3k 3 |
根据点到直线的距离公式,圆心到直线的距离为 5 ,因此 d=
x0x+y0y=r2; 过圆(x-a)2+(y-b)2=r2 上一点(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2. ②过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线
与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方 程有一个实根的充要条件——Δ=0 去求出 k 的值,从而求出切线的方程.用几何方法去求解, 要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出 k 的值.
23
23
解得- <a< ,a∈R.
3
3
23
23
所以- <a< .
3
3
2323
故 a 的取值范围是(- , ).
33
点评:过圆外一点可作圆的两条切线,反之经过一点可作圆的两条切线,则该点在圆外.同 时注意圆的一般方程的条件.
思路 2 例 1 已知过点 M(-3,-3)的直线 l 被圆 x2+y2+4y-21=0 所截得的弦长为 45,求直线 l 的方程.
d= | b | =r,∴b=±r 1 k 2 ,求得切线方程是 y=kx±r 1 k 2 . 1 k2
方法二:设所求的直线方程为 y=kx+b,直线 l 与圆 x2+y2=r2 只有一个公共点,所以它们组
y kx b, 成的方程组只有一组实数解,由 x 2 y 2 r 2 ,得 x2+k2(x+b)2=1,即 x2(k2+1)
因为|AB|=45,所以有(1+k2)[(x1+x2)2-4x1·x2]=80. ②
把①式代入②式,得(1+k2){[
2k(3k 1) 1 k2
]2-4
(3k
1)2 1 k2
25
}=80.经过整理,得
2k2-
1
1
3k-2=0,解得 k= ,k=2.所以所求的直线 l 的方程为 y+3= (x+3)或 y+3=2(x+3),即 x+2y+9=0
所以直线 l 的方程为 x-y=0 或 x+y-2=0.
例 2 已知直线 l:y=k(x+2 2 )与圆 O:x2+y2=4 相交于 A、B 两点,O 为坐标原点,△ABO 的面
相关文档
最新文档