2019-2020九年级数学上册第二十一章一元二次方程速解方程选对方法是关键同步辅导素材新人教版

合集下载

人教版九年级数学上册第二十一章《一元二次方程》复习参考课件

人教版九年级数学上册第二十一章《一元二次方程》复习参考课件
2024/9/13
公式法是这样产生的——
你能用配方法解方程 ax2+bx+c=0(a≠0) 吗?
2024/9/13
1.化1:把二次项系数化为1;
2.移项:把常数项移到方程的右边 ; 3.配方:方程两边都加上一次项 系数绝对值一半的平方;
4.变形:方程左分解因式, 右边合并同类; 5.开方:根据平方根意义, 方程两边开平方; 6.求解:解一元一次方程 ;7.定解:写出原方程的解 .
2.配方法
我们通过配成完全平方式的方法,得到了一元程的步骤: 1.化1:把二次项系数化为1(方程两边都除以二次项系数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
2024/9/13
小结 拓展
回味无穷
• 列方程解应用题的一般步骤是: • 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系? • 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; • 3.列:列代数式,列方程; • 4.解:解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系. • 关于两次平均增长(降低)率问题的一般关系:
2024/9/13
几何与方程
例3. 将一条长为56cm的铁丝剪成两段,并把每一段围成 一个正方形.
(1).要使这两个正方形的面积之和等于100cm2,该怎样剪 ?
(2).要使这两个正方形的面积之和等于196cm2,该怎样剪 ?

人教版初中九年级数学上册第二十一章《一元二次方程》知识点(含答案解析)

人教版初中九年级数学上册第二十一章《一元二次方程》知识点(含答案解析)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .4B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++=C 解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.3.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D 解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0C 解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.故选:C .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 5.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x = D .10x =,2x = 解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键.6.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2B 解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.7.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A 解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.8.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).9.下列方程中是关于x 的一元二次方程的是( )A .210x x +=B .ax 2+bx +c =0C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)2C 解析:C【分析】根据一元二次方程的定义解答:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A 、是分式方程.错误;B 、当a =0时不是一元二次方程,错误;C 、是,一元二次方程,正确;D 、3x 2+2=x 2+2(x ﹣1)2整理后为x=0,是一元一次方程,错误;故选:C .【点睛】考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.10.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5D解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题11.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x 个,小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91,故答案为:1+x+x 2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.12.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.13.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.14.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 15.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.16.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.17.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 18.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______.2【分析】先将方程整理为x2-2x-3=0再根据根与系数的关系可得出x1+x2即可【详解】解:一元二次方程整理为∵x1x2是一元二次方程x2-2x-3=0的两个根∴x1+x2=2故答案为:2【点睛】解析:2【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可.【详解】解:一元二次方程()23112x -=整理为2230x x --=,∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1+x 2=2.故答案为:2.【点睛】 本题考查了根与系数的关系,牢记两根之和等于b a-是解题的关键. 19.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.20.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.三、解答题21.用配方法解方程:22510x x -+=解析:154x =+,254x = 【分析】依据配方法的基本步骤解方程即可.【详解】解:22510x x -+=,系数化为1得:251022x x -+=,配方得:2255251()024162x x -+--+=, 即:2517()416x -=,两边同时开平方得:54x -=,即154x =254x =-. 【点睛】本题考查配方法解一元二次方程.配方法的关键步骤在于配完全平方公式,此步需熟练掌握完全平方公式及各部分之间的关系.22.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.解析:(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.23.解方程:2410y y --=.解析:12y =22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 24.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.解析:(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.25.如图,利用22米长的墙为一边,用篱笆围成一个长方形仓库ABCD ,中间用篱笆分割出两个小长方形,在与墙平行的一边要开两扇1米宽的门,总共用去篱笆34米,为了使这个长方形ABCD 的面积为96平方米,求AB 和BC 的长.解析:AB=8米,BC=12米.【分析】设AB 为x 米,然后表示出BC 的长为(36-3x )米,利用矩形的面积计算方法列出方程求解即可.【详解】解:设AB 为x 米,则BC 为(36-3x )米,x (36-3x )=96,解得:x 1=4,x 2=8,当x=4时,36-3x=24>22(不合题意,舍去),当x=8时,36-3x=12.答:AB=8米,BC=12米.【点睛】本题考查了一元二次方程的应用,解题的关键是设出一边的长,并用未知数表示出另一边的长.26.解下列方程:(1)2810x x --=;(2)2(2)6(2)80x x ---+=.参考答案解析:(1)1417x =,2417x =;(2)16x =,24x =.【分析】(1)先对原方程配方,然后再运用直接开平方法解答即可;(2)先对原方程配方,然后再运用直接开平方法解答即可.【详解】解:(1)2810x x --=281x x -=281617x x -+=()2417x -=417x -=±1417x =,2417x =(2)2(2)6(2)80x x ---+=[]2(2)31x --=51x =±,16x =,24x =.【点睛】本题考查了运用配方法解一元二次方程,正确的对原方程配方成为解答本题的关键. 27.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?解析:30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x 名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x 1=45,x 2=30.当x 1=45时,2000-40(x-25)=1200<1700,故舍去;当x 2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x 的值. 28.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.解析:(1)6;(2)4;(3)25.【分析】(1)将原式变形为99x x x x+≥⋅ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】 解:(1)∵0x >,∴99x x x x+≥⋅又∵296=,∴96x x+≥ ∴9x x +的最小值为6;(2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD 面积364913x x =+++≥, ∵13=25,当且仅当x=6时,取等号, ∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。

九年级数学人教版第二十一章一元二次方程21.2.3公式法解方程(同步课本图文结合详解)

九年级数学人教版第二十一章一元二次方程21.2.3公式法解方程(同步课本图文结合详解)

x-6.8
九年级数学上册第21章一元二次方程
通过本课时的学习,需要我们掌握: 1.由配方法解一般形式的一元二次方程 ax2+bx+c=0 (a≠0),若 b2-4ac≥0得求根公式:
x b b2 4ac 2a
2.会熟练应用公式法解一元二次方程.
x b b2 4ac (a≠0, b2-4ac≥0) 2a
否则原方程无解. 4、写出方程的解: x1=?, x2=?
九年级数学上册第21章一元二次方程
1.(无锡·中考)关于x的方程(a -5)x2-4x-1=0有实数 根,则a满足( ) A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 【解析】选A.当a-5=0时,有实数解x= 1 ,此时a=5;当
x2 2 3x 3 0
这里 a=1, b= 2 3 , c= 3.
∵b2 - 4ac=( 2 3 )2 - 4×1×3=0,x 2来自3 210
23 2

3,
即:x1= x2= 3
九年级数学上册第21章一元二次方程
2、解方程:(x-2)(1-3x)=6. 【解析】去括号:x-2-3x2+6x=6
4
a 5 0 时,应满足 b2 4ac 16 4(a 5) 0 ,解得a≥1,综上所
述a≥1.
九年级数学上册第21章一元二次方程
2.(烟台·中考)方程x2-2x-1=0的两个实数根分别为x1,x2, 则 (x1-1)(x2-1)=______. 【解析】由求根公式可得方程x2-2x-1=0的两个实数根 为 x1 1 2 ,x2 1 2 ,所以
2
2
(4)配方、用直接开平方法解方程.
(x+ p )2= p2 -q 24

人教版九年级数学上册第二十一章一元二次方程复习课件(共18张PPT)

人教版九年级数学上册第二十一章一元二次方程复习课件(共18张PPT)

第二十一章 一元二次方程
重点归类提升练
一、有理数的解法
1.已知:关于 x 的一元二次方程 x -2(2m-3)x+4m -14m+8=0. 3 (1)当 m= 时,用____________法解方程较为简单; 2 (2)当 m=0 时,用配方法解方程; (3)当 m=1 时,用公式法解方程;
2
2
第二十一章 一元二次方程
2
图21-Z-1
第二十一章 一元二次方程
(2)如果在(1)中正方体打孔后, 再在正面中心位置(如图 21-Z -1②所示)从前到后打一个边长为 1 cm 的正方形通孔,那么打孔 后的橡皮泥块的表面积为________. (3)如果把(1)(2)中的边长为 1 cm 的正方形通孔均改为边长为
a cm(a≠1)的正方形通孔,能否使打了两个通孔后的橡皮泥块的表 2 面积为 118 cm ?如果能,求出 a 的值;如果不能,请说明理由.
第二十一< 40 , ∴ 8m + 4 > 0 , ∴ 由 求 根 公 式 , 得 x = 2(2m-3)± 8m+4 =(2m-3)± 2m+1. 2 ∵方程有两个整数根,∴必须使 2m+1为整数且 m 为整数. ∵2m+1 必是奇数,∴ 2m+1是奇数. 又∵12<m<40,∴25<2m+1<81, ∴5< 2m+1<9,∴ 2m+1=7,∴m=24.
第二十一章 一元二次方程
二、一元二次方程的应用
2.实验与操作:小明是一名动手能力很强的同学,他用橡皮 泥做了一个棱长为 4 cm 的正方体. (1)如图 21-Z-1①所示,在正方体顶面中心位置处从上到下 打一个边长为 1 cm 的正方形通孔,打孔后的橡皮泥块的表面积为 ________ cm .
第二十一章 一元二次方程

最新人教版九年级数学上册全册导学案

最新人教版九年级数学上册全册导学案

第二十一章一元二次方程21.1一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.(2)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的平方的长方形?解:设长方形的长为x m,则宽为(0.5-x)m.根据题意,得x(0.5-x)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2-4=0.解得x=±2.即方程的另一个根为-2.21.2解一元二次方程21.2.1配方法第1课时直接开平方法一、导学1.导入课题:情景:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,求盒子的棱长.问题1:本题的等量关系是什么?问题2:设正方体的棱长为x dm,请列出方程并化简.问题3:根据平方根的意义解方程x2=25.由此导入并板书课题直接开平方法.2.学习目标:(1)能根据平方根的意义解形如x2=p及a x2+c=0的一元二次方程.(2)能运用开平方法解形如(m x+n)2=p(p≥0)的方程.(3)体会“降次”的数学思想.3.学习重、难点:重点:运用开平方法解形如(m x+n)2=p(p≥0)的方程.难点:降次的数学思想.4.自学指导:(1)自学内容:教材第5页到第6页“练习”之前的内容.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①根据平方根的意义,解方程:x2=36;2x2-4=0;3x2-4=8.x=±6,x2=2,x2=4,x1=6,x2= -6. x=±2,x2=±2,x1=,x2= -. x1=2,x2= -2.②当p>0时,方程x2=p有两个不等的实数根x1= -x2=.当p=0时,方程x2=p有两个相等的实数根x1=x2=0.当p<0时,方程x2=p无实数根.③探究方程(x+3)2=5的根:因为(x+3)2=5,所以x+3是5的平方根,所以x+3等于5或-5.即x+3=,或x+3= -.解x+3=,得x1=-3;解x+3=-,得x2= --3.于是,方程(x+3)2=5的根为x1=-3, x2= --3.解方程(x+3)2=5的过程实质上是把一个一元二次方程降次,转化为两个一元一次方程,再解两个一元一次方程即得原方程的解.二、自学学生可参考自学指导进行自学.三、助学1.师助生:(1)明了学情:看学生能否顺利解决所给问题,注意书写格式方面存在的问题.(2)差异指导:注意帮助学困生复习平方根等知识,紧扣平方根讨论p的符号与方程的解的个数的关系.2.生助生:同桌之间互相批改,相互讨论改正错误.四、强化1.教师示范:解方程x2+4x+4=1.分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1或x+2=-1所以,方程的两根为x1= -1,x2= -3.2.练习:解下列方程:3.上面的方程都能化成x2=p或(m x+n)2=p(p≥0)的形式,那么可由“降次”得到x=±或m x+n=±p≥0)求解.4.以师生对话的形式讨论(m x+n)2=p的解的个数问题.五、评价1.学生的自我评价(围绕三维目标):你会解哪些形式的一元二次方程?怎样解?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、积极性及存在的不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时通过创设问题情景,激发学生探究新知的欲望.(2)本课时还通过回忆旧知识为新知学习作好铺垫.(3)教师引导学生自主、合作、探究、验证,培养学生分析问题、解决问题的能力.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)A. x-6= -4B. x-6=4C. x+6=4D. x+6= -42.(10分)方程3x2+9=0的根为(D)A. 3B. -3C. ±3D. 无实数根3.(10分)若8x2-16=0,则x的值是±2.4.(10分)已知方程2(x-3)2=72,那么这个一元二次方程的两根是x1=9,x2= -3.5.(40分)解下列方程:(1) 4x2=81;(2) (x+6)2-9=0;解:由已知,得:x2=,解:由已知,得:(x+6)2=9,直接开平方,得x=±,直接开平方,得x+6=±3,所以方程的两根为x1=,x2= -. 所以方程的两根为x1= -3, x2= -9.(3) x2+2x+1=4;(4) 9x2+6x+1=4.解:由已知,得:(x+1)2=4,解:由已知,得:(3x+1)2=4,直接开平方,得x+1=±2,直接开平方,得3x+1=±2,所以方程的两根为x1=1, x2= -3. 所以方程的两根为x1= -1, x2=.二、综合应用(10分)6.(10分)如果x=3是一元二次方程a x2=c的一个根,则方程的另一根是(B)A. 3B. -3C. 0D. 1三、拓展延伸(10分)7.(10分)解关于x的方程(x+m)2=n.解:①当n>0时,此时方程两边直接开方.得x+m=±,方程的两根为x1=-m,x2= --m.②当n=0时,此时(x+m)2=0,直接开方得x+m=0,方程的两根为x1=x2= -m.③当n<0时,因为对任意实数x,都有(x+m)2≥0,所以方程无实数根.21.2.1配方法第2课时配方法一、新课导入1.导入课题:情景:请把方程(x+3)2=5化成一般形式,并由一名学生口答.问题:(追问)那么你能将方程x2+6x+4=0转化为(x+3)2=5的形式吗?由此导入课题.(板书课题)2.学习目标:(1)知道用配方法解一元二次方程的一般步骤,会用配方法解一元二次方程.(2)通过配方进一步体会“降次”的转化思想.3.学习重、难点:重点:用配方法解一元二次方程.难点:配方的方法.二、分层学习1.自学指导:(1)自学内容:教材第6页“探究”到第7页例1上面的部分.(2)自学时间:6分钟.(3)自学方法:完成下面的探究提纲,如果觉得有困难就先完成②,③,再完成①.(4)探究提纲:①解方程x2+6x+4=0.移项:把常数项移到方程的右边,得x2+6x= -4;配方:两边都加9,使得左边配成x2+2b x+b2的形式,得x2+6x+9=;变形:把左边写成完全平方形式,得(x+3)2=5;降次:运用平方根的定义把方程转化为两个一元一次方程,得x+3=±;求解:解两个一元一次方程,得x1=-3, x2= --3.②回忆完全平方公式填空:a2+2ab+b2=(a+b )2,x2+6x+9=(x+3)2.③为什么要在x2+6x=-4两边加9而不是其他数?因为两边加9,式子左边可以恰好凑成完全平方式.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方时的难点和易错点.②差异指导:根据具体情况指导学生配方.(2)生助生:小组内相互交流研讨,订正错误.4.强化:(1)配方的依据和步骤.(2)试一试:对下列各式进行配方:1.自学指导:(1)自学内容:教材第7页到第9页的例1.(2)自学时间:10分钟.(3)自学方法:认真阅读分析和解答过程,注意把方程转化为你能解的形式.(4)自学参考提纲:①仿照方程x2+6x+4=0的解法解方程(1),然后对照课本纠错.②方程(2)、(3)中是怎样化二次项系数为1的?方程两边同除以原二次项的系数③方程(3)没有实数根的依据是什么?实数的平方是非负数.④用配方法解一元二次方程时,移项时要注意些什么?移项时需注意改变符号.⑤请小结用配方法解一元二次方程的一般步骤.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.⑥解方程(x+n)2=p.①当p>0时,则x+n=±,方程的两个根为x1=-n, x2= --n.②当p=0时,则(x+n)2=0,开平方得x+n=0,方程的两个根为x1=x2= -n.③当p<0时,则方程(x+n)2= p无实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:主要了解学生解方程配方时是否存在困难,计算是否错误,书写格式是否规范.②差异指导:针对学生在学习中出现的问题予以指导.(2)生助生:生生互动,交流研讨.4.强化:(1)用配方法解一元二次方程的一般步骤.(2)用配方法解方程:三、评价1.学生的自我评价(围绕三维目标):你会用配方法解一元二次方程吗?本节课你学习了哪些知识?2教师对学生的评价:(1)表现性评价:点评学生的学习参与情况、小组交流协作状况、学习效果及不足等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课,重在让学生自主参与,进而获得成功的体验,在数学方法上,仍突出数学研究中转化的思想,激发学生产生合理的认知冲突,激发兴趣,建立自信心.(2)在练习内容上,有所改进,加强了核心知识的理解与巩固,提高了自己解决问题的能力,感受数学创造的乐趣,提高教学效果.(3)用配方法解一元二次方程是学习解一元二次方程的基本方法,后面的求根公式是在配方法的基础上推出的,配方法在使用时又与原来学习的完全平方式联系密切,用配方法解一元二次方程既是对原来知识的巩固,又是对后面学习内容的铺垫.在二次函数顶点坐标的求解中也同样使用的是配方法,因此配方法是一种基本的数学解题方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)用配方法解方程-x2+6x+7=0时,配方后得的方程为(B)A. (x+3)2=16B. (x-3)2=16C. (x+3)2=2D. (x-3)2=22.(20分)填空.(1) 4x2+4x+1=(2x+1)2(2) x2-x+=(x-)23.(40分)用配方法解下列方程.(1)x2+10x+9=0;(2)4x2-12x-7=0;解:移项,x2+10x=-9, 解:移项,4x2-12x=7,配方,x2+10x+25=16, 系数化为1,x2-3x=,(x+5)2=16, 配方,x2-3x+=4,x+5=±4, ( x-2=4,方程的两个根为x1=-1,x2= -9. x-=±2,方程的两个根为x1=72,x2= -12.(3) x2+4x-9=2x-11; (4) x(x+4)=8x+12解:移项,x2+2x= -2, 解:化简移项,x2-4x=12,配方,x2+2x+1= -1, 配方,x2-4x+4=16,(x+1)2= -1, (x-2)2=16,方程没有实数根. x-2=±4,方程的两个根为x1=6,x2= -2.二、综合应用(10分)4.(10分)用配方法解方程4x2-x-9=0.三、拓展延伸(20分)5.(20分) 当a为何值时,多项式a2+2a+18有最小值?并求出这个最小值. 解:对原式进行配方,则原式=(a+1)2+17∵(a+1)2≥0,∴当a= -1时,原式有最小值为17.21.2.2公式法——根的判别式及求根公式一、新课导入1.导入课题:(1)用配方法解一元二次方程的步骤是什么?(2)你能用配方法解一般形式的一元二次方程a x2+b x+c=0(a≠0)吗?我们继续学习另一种解一元二次方程的方法——公式法.2.学习目标:(1)知道一元二次方程根的判别式,能运用根的判别式直接判断一元二次方程的根的情况.(2)会用公式法解一元二次方程.3.学习重、难点:重点:用求根公式解一元二次方程.难点:计算时的符号处理.二、分层学习1.自学指导:(1)自学内容:教材第9页到11页例2之前的内容.(2)自学时间:15分钟.(3)自学方法:认真阅读书上的内容,并动手推导出求根公式.(4)自学参考提纲:②Δ=b2-4ac叫做一元二次方程a x2+b x+c=0(a≠0)的根的判别式.当b2-4ac>0时,方程a x2+b x+c=0(a≠0)有两个不等的实数根;当b2-4ac=0时,方程a x2+b x+c=0(a≠0)有两个相等的实数根;当b2-4ac<0时,方程a x2+b x+c=0(a≠0)无实数根.注意:上述的叙述,反过来也成立.③当Δ≥0时,一元二次方程a x2+b x+c=0(a≠0)的实数根可写为的形式,这个式子叫做一元二次方程a x2+b x+c=0(a≠0)的求根公式.④不解方程,利用判别式判断下列方程的根的情况.x2+5x+6=0;9x2+12x+4=0;Δ=b2-4ac=52-4×1×6=1>0 Δ=b2-4ac=122-4×9×4=0方程有两个不等的实数根. 方程有两个相等的实数根.2x2+4x-3=2x-4;x(x+4)=8x+12.方程化为2x2+2x+1=0 方程化为x2-4x-12=0Δ=b2-4ac=22-4×2×1=-4<0 Δ=b2-4ac=(-4)2-4×(-12)=64>0方程无实数根. 方程有两个不等的实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方的过程以及配方后是否讨论.②差异指导:指导学生配方变形;指导学生对b2-4ac的符号进行讨论.(2)生助生:小组内相互交流、研讨.4.强化:(1)公式的推导,判别式定义解读;(2)练习:不解方程,利用判别式判断下列方程的根的情况.1.自学指导:(1)自学内容:教材第11页到第12页的例2.(2)自学时间:8分钟.(3)自学方法:阅读解答过程,注意解题步骤和格式.(4)自学参考提纲:①先独立运用公式法解所给方程,然后对照课本找错误、分析错因.x2-4x-7=0;2x2-22x+1=0;5x2-3x=x+1;x2+17=8x.x1=2+x1=x2=x1=1 无实数根x2=2-x2= -②说说运用公式法解一元二次方程的一般步骤,有哪些易错点?先将方程化为一般形式,确定a,b,c的值;计算判别式Δ=b2-4ac的值,判断方程是否有解;若Δ≥0,利用求根公式计算方程的根,若Δ<0,方程无实数根.计算Δ时,注意a,b,c符号的问题.③解答本章引言中的问题.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否从例2的学习中总结出用公式法解方程的一般步骤及注意事项.②差异指导:注意强调运用公式法解方程的前提条件.(2)生助生:同桌之间互相找错,分析错因.4.强化:(1)用公式法解一元二次方程的一般解题步骤及注意事项.(2)解下列方程:三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何收获或不足?你知道一元二次方程a x2+b x+c=0(a≠0)的根的判别式与其根的个数有什么关系吗?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、积极性、学习效果、方法及不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时容量较大,难度较大,计算的要求较高,因此教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计、课堂学习有利于学生强化运算能力、掌握基本技能,也有利于教师发现教学中存在的问题.(2)在教学设计中,引导学生自主探究一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式法解一元二次方程.(3)整个课堂都以学生动手训练为主,让学生积极介入探究活动,体验到成功的喜悦.(4)公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程a x2+b x+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是(B)A. b2-4ac=0B. b2-4ac>0C. b2-4ac<0D. b2-4ac≥02.(10分)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是(B)A. ①②都有实数解B. ①无实数解,②有实数解C. ①有实数解,②无实数解D. ①②都无实数解3.(10分)利用求根公式求5x2+=6x的根时,a,b,c的值分别是(C)A. 5,,6B. 5,6,C. 5,-6,D. 5,-6,-4.(20分)不解方程,利用判别式判断下列方程的根的情况:(1)x2-3x-32=0;(2) 16x2-24x+9=0;方程有两个不等的实数根. 方程有两个相等的实数根.(3)x2-42x+9=0;(4)3x2+10=2x2+8x.解:Δ=b2-4ac=(-4)2-4×1×9= -4<0, 解:方程化为x2-8x+10=0方程无实数根. Δ=b2-4ac=(-8)2-4×1×10=24>0方程有两个不等的实数根.5.(30分)用公式法解下列方程:二、综合应用(10分)6.(10分)解方程x2=3x+2时,有一位同学解答如下:请你分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.解:有错误,方程化为标准形式x2-3x-2=0, ∴a=1,b= -3,c= -2, b2-4ac=17.三、拓展延伸(10分)7.(10分)无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出你的答案并说明理由.解:方程化简为x2-5x+6-p2=0.∴b2-4ac=(-5)2-4×1×(6-p2)=4p2+1≥1,∴Δ>0.∴无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根.21.2.3 因式分解法一、新课导入1.导入课题:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s后物体离地面的高度(单位:m)为:10x-4.9x2.问题1:你能根据上述规律求出物体经过多少秒落回地面吗?问题2:设物体经过x s落回地面,请说说你列出的方程.问题3:你能用配方法或公式法解这个方程吗?是否还有更简单的方法呢?(板书课题)2.学习目标:(1)会用因式分解法解一元二次方程.(2)能选用合适的方法解一元二次方程.3.学习重、难点:重点:用因式分解法解一元二次方程.难点:选择合适的方法解一元二次方程.二、分层学习1.自学指导:(1)自学内容:教材第12页到第13页的内容.(2)自学时间:5分钟.(3)自学方法:可先解答②,再解答①.(4)自学参考提纲:①解方程10x-4.9x2=0.分解因式:左边提公因式,得x(10-4.9x)=0,降次:把方程化为两个一次方程,得x=0或10-4.9x=0,求解:解这两个一次方程,得x1=0, x2=.②将一个多项式进行因式分解,通常有哪几种方法?提公因式法,公式法,十字相乘法用因式分解法解一元二次方程的依据是:如果ab=0,则a=0或u.③请小结因式分解法解一元二次方程的步骤:移项,合并同类项,因式分解,写出一元二次方程的根.④解下列方程:(x-2)·(x-3)=0;4x2-11x=0.x1=2, x2=3 x1=0, x2=2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:是否理解用因式分解法解一元二次方程的依据,是否掌握用因式分解法解方程的步骤.②差异指导:根据学情进行个别或分类指导.(2)生助生:小组内互相交流、研讨.4.强化:(1)用因式分解法解方程的一般步骤:第一步,把方程变形为x2+p x+q=0的形式;第二步,把方程变形为(x-x1)(x-x2)=0的形式;第三步,把方程降次为两个一次方程x-x1=0或x-x2=0的形式;第四步,解两个一次方程,求出方程的根.(2)点两名学生板演第④题,并点评.1.自学指导:(1)自学内容:教材第14页例3及“归纳”.(2)自学时间:5分钟.(3)自学方法:先独立作业,然后小组互相改正.(4)自学参考提纲:①方程x(x-2)+x-2=0左边可用提公因式法进行因式分解,分解为(x+1)(x-2).②方程5x2-2x-=x2-2x+左右两边都有含未知数的项,无法因式分解,因此,可先将其化为一般形式4x2-1=0,再用平方差公式法对左边进行因式分解.③说说运用因式分解法解一元二次方程要注意哪些问题.④解下列方程:2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生对运用因式分解法解一元二次方程的方法是否掌握.②差异指导:指导学生观察题目特点,选用适当的方法分解因式.(2)生助生:同桌之间互相改错、分析错因.4.强化:(1)点6名学生板演自学参考提纲第④题,并点评.(2)说说运用因式分解法解一元二次方程要注意的问题.1.自学指导:(1)自学内容:选择合适的方法解一元二次方程.(2)自学时间:15分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①直接开平方法适用于哪种形式的方程?x2=p;配方法适用于哪种形式的方程?(m x+n)2=p;公式法适用于哪种形式的方程?a x2+b x+c=0(a≠0);因式分解法适用于哪种形式的方程?x2-(m+n)x+mn=0.②前面这些解法各有什么优缺点?③解一元二次方程的基本思想是什么?④选择适当的方法解下列方程:。

(必考题)初中九年级数学上册第二十一章《一元二次方程》知识点复习(答案解析)

(必考题)初中九年级数学上册第二十一章《一元二次方程》知识点复习(答案解析)

一、选择题1.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.2.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116 D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=109B 解析:B【分析】 将常数项移到方程的右边,然后将二次项系数化为1,继而两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:A 、由x 2﹣2x ﹣99=0得x 2﹣2x=99,则x 2﹣2x+1=100,即(x ﹣1)2=100,故本选项正确,不符合题意;B 、由x 2+8x+9=0得x 2+8x=-9,则x 2+8x+16=-9+16即(x+4)2=7此选项错误,符合题意;C 、由2x 2﹣7x ﹣4=0得2x 2﹣7x=4,则x 2﹣72x =2,∴x 2﹣72x+4916=2+4916,即274x ⎛⎫- ⎪⎝⎭=8116,故本选项正确,不符合题意;D 、由3x 2﹣4x ﹣2=0,得3x 2﹣4x=2,则x 2﹣43x =23,∴故x 2﹣43x+49=23+49,即(x ﹣23)2=109,故本选项正确,不符合题意; 故选:B .【点睛】本题主要考查解一元二次方程−配方法,用配方法解一元二次方程的步骤:①把原方程化为a 2x +bx +c =0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.3.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A .512B .512C 53+D 21B 解析:B【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论.【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b ,则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0,∴2)10a a b b +-=(, 解得:15a b -±=, ∵a b >0, ∴15a b -+=,∴当a=1时,b ==, 故选:B .【点睛】 本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.4.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠B解析:B【分析】 由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.5.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18B解析:B【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B .【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.6.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( ) A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >-B解析:B【分析】 方程有两个不相等的实数根,显然原方程应该是关于x 的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x 的方程()32a x 4x 10---=有两个不相等的实数根 ∴a-3≠0,且2=(4)4(3)(1)440a a ∆--⨯-⨯-=+>解得:1a ≥-且a≠3故选B .【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a 的不等式,是解题的关键.7.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14-B 解析:B 【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0, m 1-4≥, 关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m 的取值范围是m 1-4≥且m≠2. 故选:B .【点睛】本题考查关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x 的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-=D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误;C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.9.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−2B 解析:B【分析】设方程的另一个根为x 1,根据根与系数的关系可得出关于x 1的一元一次方程,解之即可得出结论.【详解】设方程的另一个根为x 1,根据题意得:2+x 1=3,∴x 1=1.故选:B .【点睛】本题考查了根与系数的关系,牢记两根之和与系数的关系是解题的关键.二、填空题11.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x 个,小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91,故答案为:1+x+x 2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.12.已知12,x x 是一元二次方程21402x mx m -+-=的两个实数根且12111x x +=,则m 的值为______.-8【分析】先利用根与系数的关系得到再把变形为从而代入得到方程解之即可【详解】解:∵是一元二次方程的两个实数根∴∵∴即解得:m=-8故答案为:-8【点睛】本题考查了根与系数的关系根据根与系数的关系找 解析:-8【分析】先利用根与系数的关系得到12x x m +=,12142x x m ⋅=-,再把12111x x +=变形为1212x x x x +=,从而代入得到方程,解之即可.解:∵12,x x 是一元二次方程21402x mx m -+-=的两个实数根, ∴12x x m +=,12142x x m ⋅=-, ∵12111x x +=, ∴1212x x x x +=,即142m m =-, 解得:m=-8,故答案为:-8.【点睛】 本题考查了根与系数的关系,根据根与系数的关系,找出12x x m +=,12142x x m ⋅=-是解题的关键. 13.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.15.一元二次方程-+=(5)(2)0x x 的解是______________.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方 解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 16.某商贸公司2017年盈利100万元,2019年盈利144万元,且2017年到2019年每年盈利的增长率相同,则该公司2018年盈利_____万元.120【分析】设平均年增长率为x 列式求出年平均增长率即可算出结果【详解】解:设平均年增长率为x 根据题意得:整理得:开方得:解得:(舍去)则平均年增长率为20∴该公司2018年盈利100(1+20)=解析:120【分析】设平均年增长率为x ,列式()21001144x +=,求出年平均增长率,即可算出结果.【详解】解:设平均年增长率为x ,根据题意得:()21001144x +=,整理得:()21 1.44x +=,开方得:1 1.2x +=±,解得:10.2x =,2 2.2x =-(舍去),则平均年增长率为20%,∴该公司2018年盈利100(1+20%)=120(万元).故答案为:120.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的求解方法.17.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x ﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣12 【分析】由根与系数的关系,即可求出答案.【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.18.一元二次方程22(1)210a x x a +++-=,有一个根为零,则a 的值为________.1【分析】根据一元二次方程的解的定义把x=0代入(a+1)x2+2x+a2-1=0再解关于a 的方程然后利用一元二次方程的定义确定a 的值【详解】解:把x=0代入(a+1)x2+2x+a2-1=0得a2解析:1【分析】根据一元二次方程的解的定义,把x=0代入(a+1)x 2+2x+a 2-1=0,再解关于a 的方程,然后利用一元二次方程的定义确定a 的值.【详解】解:把x=0代入(a+1)x 2+2x+a 2-1=0得a 2-1=0,解得a=1或a=-1,而a+1≠0,所以a 的值为1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)1(答案不唯一)【分析】根据非负数的性质可得于是只要使c 的值非负即可【详解】解:若关于的一元二次方程有实根则所以的值可以是1(答案不唯一)故答案为:1(答案不唯一)【点睛】本题考查了一元二次方程的解解析:1(答案不唯一)【分析】根据非负数的性质可得0c ≥,于是只要使c 的值非负即可.【详解】解:若关于x 的一元二次方程()23x c -=有实根,则0c ≥,所以c 的值可以是1(答案不唯一).故答案为:1(答案不唯一).【点睛】本题考查了一元二次方程的解法,正确理解题意、掌握非负数的性质是关键. 20.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1, ∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.三、解答题21.商店销售某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么该商品每件售价多少元?解析:每件售价为45元【分析】设该商品的单价为x 元,根据题意得到方程,解方程即可求解.【详解】解:设该商品的单价为x 元.根据题意,得()()3020010402250---=⎡⎤⎣⎦x x .解这个方程,得1245x x ==.答:每件售价为45元.【点睛】本题考查一元一次方程的应用,解题的关键是根据利润得到相应的等量关系是解题的关键.22.如图,有一道长为10m 的墙,计划用总长为54m 的篱笆,靠墙围成由六个小长方形组成的矩形花圃ABCD .若花圃ABCD 面积为272m ,求AB 的长.解析:AB 的长是12m【分析】设AB 的长是x m ,则BC 的长是(18-x )m ,根据题意得方程,解方程即可得到结论.【详解】解:设AB 的长是x m ,则BC 的长是()18x -m .根据题意,得()1872-=x x .解这个方程,得16x =,212x =.当6x =时,181210-=>x (不合题意,舍去).当12x =时,186-=x 符合题意.答:AB 的长是12m .【点睛】本题考查了一元二次方程的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.23.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.解析:(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.24.新冠疫情蔓延全球,口罩成了人们的生活必须品.某商店销售一款口罩,每袋进价为12元,计划每袋售价大于12元但不超过20元,通过市场调查发现,这种口罩每袋售价为18元时,日均销售量为50袋,而当每袋售价提高1元时,日均销售量就减少5袋. (1)在每袋售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是_________袋;(用含x 的代数式表示)(2)经综合考察,要想使这种口罩每天赢利315元,该商场每袋口罩的销售价应定为多少元?解析:(1)505x -;(2)19元.【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)设这种口罩的售价每袋提高x 元,根据销售量×每袋利润=总利润列出方程求解即可.【详解】(1)∵每袋售价提高1元时,日均销售量就减少5袋,∴每天销量减少5x 袋,∵售价为18元时,日均销售量为50袋,∴将这种口罩的售价每袋提高x 元,则日均销售量是:505x -.故答案为:505x -(2)设这种口罩的售价每袋提高x 元,根据题意得:(1812)(505)315x x +--=,化简得:2430x x -+=,解得:121,3x x ==,当11x =时,每袋售价是:18119+=(元);当23x =时,每袋售价是:18321+=(元);∵计划每袋售价大于12元但不超过20元,∴23x =舍去.∴当1x =时,每袋售价是19元.答:该商场每袋口罩的售价应定为19元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.25.解方程.(1)2560x x -+=.(2)23(21)(21)x x -=-.(3)23139x x x -=--. 解析:(1)12x =,23x =;(2)112x =,22x =;(3)2x =- 【分析】 (1)利用因式分解法解方程,即可得到答案;(2)先移项,然后利用因式分解法解方程,即可得到答案;(3)先把分式方程化为整式方程,然后解方程即可得到答案.【详解】解:(1)2560x x -+=,(2)(3)0x x --=,∴12x =,23x =,∴原方程的解为:12x =,23x =.(2)23(21)(21)x x -=-,∴2(21)3(21)0x x ---=,∴(21)(213)0x x ---=,∴(21)(24)0x x --=,∴112x =,22x =. ∴原方程的解为:112x =,22x =. (3)23139x x x -=--, ∴2(3)39x x x +-=-,∴22339x x x +-=-,∴36x =-,∴2x =-,经检验:2x =-为原方程的解,∴原方程的解为2x =-.【点睛】本题考查了解一元二次方程,解分式方程,解题的关键是熟练掌握解方程的方法,注意解分式方程时组要检验.26.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.解析:(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.27.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值.解析:m=5.【分析】先根据根与系数的关系求得x1+x2=6、x1x2=m+1,再对x12+x22=24变形,然后将x1+x2=6、x1x2=m+1代入得到关于m的方程,最后求解即可.【详解】解:∵x1,x2是关于x的一元二次方程x2-6x+m+1=0的两根,∴x1+x2=6,x1x2=m+1,∴x12+x22=(x1+x2)2-2x1x2=24,∴62-2(m+1)=24,解得:m=5.【点睛】本题主要考查了一元二次方程根与系数的关系和完全平方公式的应用,正确应用完全平方公式成为解答本题的关键.28.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表:解析:(1)25%;(2)35元【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x);三月份的销售量为:256(1+x)(1+x),又知三月份的销售量为:400元,由此等量关系列出方程求出x的值,即求出平均增长率;(2)利用销量×每件商品的利润=4250求出即可.【详解】解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=14=25%,x2=94(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)由表可知:该商品每降价1元,销售量增加5件,设当商品降价m元时,商品获利4250元,根据题意可得:(40-25-m)(400+5m)=4250,解得:m1=5,m2=-70(不合题意舍去),40-5=35元.答:销售单价应定为35元,商品获利4250元.【点睛】此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.。

人教版初三数学上册第二十一章一元二次方程小结-构建知识体系教学设计

人教版初三数学上册第二十一章一元二次方程小结-构建知识体系教学设计

人教2011课标版九年级数学上册第二十一章一元二次方程小结——构建知识体系广东广州从化区从化中学杜慧诗教学设计一、教材分析一元二次方程的解法,是本章书的重点内容之一。

在本章之前,已学习过整式方程(一元一次方程、二元一次方程),并且学习了可以化为一元一次方程的分式方程。

对于解方程的基本思路(使方程逐步化为x=a的形式)已经比较熟悉,按照这种思路可以继续考虑一元二次方程的解法。

一元二次方程与前面的方程相比,特点在于二次。

新的问题是如何将一元二次方程转化为已经会解的方程。

从这个新问题入手,可以自然地引出解一元二次方程的基本策略和关键步骤。

教材注意了在这里体现出“降次”是很自然、很合理地产生的。

这是在原来已经认识了的解方程的基本思路基础上,结合一元二次方程的特点而得到的解决问题的策略。

这样处理既突出了一元二次方程解法上的特点及其算理,又反映了一元二次方程与一元一次方程在解法上的内在联系。

各种解法中能够创造条件实现降次的步骤就是这种解法的关键步骤,它们是落实降次的具体措施。

如果能抓住一元二次方程的特殊性,那么就能感悟到解一元二次方程的基本策略的合理性。

二、学情分析本班学生基础参差不齐,两极分化十分严重,有个别学生没有养成良好的学习习惯、行为习惯。

班上大部分学生对问题的分析能力、计算能力、概括能力较差,尤其是所涉及的知识拓展和知识的综合能力方面不够好,部分学生有畏难情绪,缺乏学习的斗志。

学生已经学完一元二次方程的四种解法,但在教学和作业中发现,学生不懂得根据不同的方程选择适当的方法,做题较为死板。

针对学生的情况,本节课一方面构建知识体系,另一方面对学生情感态度与价值观进行渗透。

三、教学目标1、知识与技能(1)会用直接开平方法、配方法、公式法、因式分解法解简单的一元二次方程。

(2)归纳一元二次方程的各种解法,明确它们各自适用的题型和用法;提高学生选择适当的方法来解一元二次方程的能力。

(3)会找出一元二次方程问题常见错误,并能加以分析纠正其错误。

九年级数学上册第二十一章一元二次方程基础知识点归纳总结(带答案)

九年级数学上册第二十一章一元二次方程基础知识点归纳总结(带答案)

九年级数学上册第二十一章一元二次方程基础知识点归纳总结单选题1、方程3x2+10=2x2+6根的情况是()A.有两个不相等的实数根B.有两个相等的实数根名C.没有实数根D.无法判断答案:C分析:根据一元二次方程根的判别式判断即可.原方程变形为,3x2+10−2x2−6=0,即x2+4=0,则a=1,b=0,c=4,∴Δ=b2−4ac=0−4=−4即Δ<0;故原方程没有实数根.故选C.小提示:本题考查一元二次方程根的判别式,解决本题的关键是找准方程的各系数.2、若关于x的一元二次方程ax2+2x−1=0有两个不相等的实数根,则a的取值范围是()A.a≠0B.a>−1且a≠0C.a≥−1且a≠0D.a>−1答案:B分析:根据一元二次方程的定义和根的判别式得出a≠0,Δ=22-4a×(-1)=4+4a>0,再求出即可.解:∵关于x的一元二次方程ax2+2x-1=0有两个不相等的实数根,∴a≠0,Δ=22-4a×(-1)=4+4a>0,解得:a>-1且a≠0,故选:B.小提示:本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根.3、若关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为2022,则方程a(x+1)2+b(x+1)=−5必有根为()A.2022B.2020C.2019D.2021答案:D分析:设t=x+1,即a(x+1)2+b(x+1)=−5可改写为at2+bt+5=0,由题意关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,即at2+bt+5=0有一个根为t=2022,所以x+1=2022,x=2021.由a(x+1)2+b(x+1)=−5得到a(x+1)2+b(x+1)+5=0,对于一元二次方程a(x+1)2+b(x+1)=−5,设t=x+1,所以at2+bt+5=0,而关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,所以at2+bt+5=0有一个根为t=2022,则x+1=2022,解得x=2021,所以一元二次方程a(x+1)2+b(x+1)=−5有一根为x=2021.故选:D.小提示:本题考查一元二次方程的解.掌握换元法解题是解答本题的关键.4、用配方法解一元二次方程x210x+11=0,此方程可化为()A.(x-5)2=14B.(x+5)2=14C.(x-5)2=36D.(x+5)2=36答案:A分析:移项后两边都加上一次项系数一半的平方,写成完全平方式即可.x210x+11=0,x2-10x=-11,x2-10x+25=-11+25,即(x-4)2=14,故选:A.小提示:本题考查了运用配方法解一元二次方程,熟练掌握配方法是解题的关键.5、南宋数学家杨辉所著《田亩比类乘除算法》中记载:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步.”意思是:一块矩形田地的面积是864平方步,它的宽和长共60步,问它的宽和长各多少步?设它的宽为x步,则可列方程为()A.x⋅(60+x)=864B.x⋅(60−2x)=864C.x⋅(30−x)=864D.x⋅(60−x)=864答案:D分析:设它的宽为x步,则长为(60-x)步,根据面积列出方程即可得出结果.解:设它的宽为x步,则长为(60-x)步,∴x(60-x)=864,故选:D.小提示:题目主要考查一元二次方程的应用,理解题意是解题关键.6、已知x=a是一元二次方程x2−2x−3=0的解,则代数式2a2−4a的值为()A.3B.6C.﹣3D.﹣6答案:B分析:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,再变形,得a2-2a=3,然后方程两边同乘以2,即可求解.解:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,∴a2-2a=3,∴2a2-4a=6,故选:B.小提示:本题考查一元二次方程的解,代数式求值,熟练掌握方程的解是使方程左右两边相等的未知数值是解题的关键.7、已知关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,则代数式(m +n )2022的值为( ) A .1B .0C .32022D .72022答案:A分析:直接利用根与系数的关系得出两根之和,进而得出答案.解:∵关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,∴1+n =-m ,解得:m +n =-1,故(m +n )2022=1.故选:A .小提示:此题主要考查了根与系数的关系,正确得出m +n 的值是解题关键.8、设方程x 2−3x +2=0的两根分别是x 1,x 2,则x 1+x 2的值为( )A .3B .−32C .32D .−2答案:A分析:本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可. 由x 2−3x +2=0可知,其二次项系数a =1,一次项系数b =−3,由韦达定理:x 1+x 2 =−b a =−(−3)1=3,故选:A .小提示:本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率.9、有一块矩形铁皮,长50cm ,宽30cm ,在它的四个角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,要制作的无盖方盒的底面积为800cm 2.设切去的正方形的边长为x cm ,可列方程为( )A.4x2=800B.50×30−4x2=800C.(50−x)(30−x)=800D.(50−2x)(30−2x)=800答案:D分析:根据题意求得底面的长为(50−2x),宽为(30−2x),即可求解.设切去的正方形的边长为x cm,则底面的长为(50−2x),宽为(30−2x),则(50−2x)(30−2x)=800故选:D小提示:本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.10、关于x的方程x2−3kx−2=0实数根的情况,下列判断正确的是()A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根答案:B分析:根据根的判别式直接判断即可得出答案.解:对于关于x的方程x2−3kx−2=0,∵Δ=(−3k)2−4×1×(−2)=9k2+8>0,∴此方程有两个不相等的实数根.故选B.小提示:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.填空题11、某海洋养殖场每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖场第一年的可变成本为2.6万元,第三年的养殖成本为7.146万元,设可变成本平均每年增长的百分率为x,则可列方程为_____.答案:2.6(1+x)2=7.146−4分析:根据题意可求出第三年的可变成本为(7.146-4)万元,再用x表示出第三年的可变成本,即可列出等式,即得出答案.设可变成本平均每年增长的百分率为x,则可列方程为:2.6(1+x)2=7.146−4.所以答案是:2.6(1+x)2=7.146−4.小提示:本题考查由实际问题抽象出一元二次方程.理解题意,找出等量关系,列出等式是解题关键.12、设x1,x2是关于x的方程x2−6x+k=0的两个根,且x1=2x2,则k=______.答案:8分析:根据根与系数的关系得出x1+x2=6、x1⋅x2=k,再根据x1=2x2求得x2=2,代入k的表达式,求解即可.解:x1,x2是关于x的方程x2−6x+k=0的两个根,∴x1+x2=6,x1⋅x2=k,∵x1=2x2,∴2x2+x2=3x2=6,即x2=2,则k=x1⋅x2=2(x2)2=2×4=8,所以答案是:8.小提示:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.13、如图1,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD 向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图2所示,则AD边的长为________.答案:5分析:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为5,得到AB与BC的积为20;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为9,得到AB与BC的和为9,构造关于AB的一元二方程可求解.解:由图象与题意知可知,当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为5,∴12AB⋅12BC=5,即AB⋅BC=20.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为9,∴AB+BC=9.则BC=9−AB,代入AB·BC=20,得AB2−9AB+20=0,解得AB=4或AB=5,∵AB<AD,即AB<BC,∴AB=4,BC=5,∴AD=BC=5.所以答案是:5.小提示:本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.14、一元二次方程(x−2)(x+7)=0的根是_________.答案:x1=2,x2=−7分析:由两式相乘等于0,则这两个式子均有可能为0即可求解.解:由题意可知:x −2=0或x +7=0,∴x 1=2或x 2=−7,所以答案是:x 1=2或x 2=−7.小提示:本题考查一元二次方程的解法,属于基础题,计算细心即可.15、对于实数m ,n ,先定义一种断运算“⊗”如下:m ⊗n ={m 2+m +n ,当m ≥n 时n 2+m +n ,当m <n 时,若x ⊗(−2)=10,则实数x 的值为___.答案:3分析:根据定义,分x ≥-2和x <-2两种情况进行解方程,得出x 的值.解:当x ≥-2时,x 2+x -2=10,解得:x 1=3,x 2=-4(不合题意,舍去);当x <-2时,(-2)2+x -2=10,解得:x =8(不合题意,舍去);∴x =3.所以答案是:3.小提示:本题考查了解一元二次方程,体现了分类讨论的数学思想,分x ≥-2和x <-2两种情况进行解方程是解题的关键.解答题16、已知长方形硬纸板ABCD 的长BC 为40cm ,宽CD 为30cm ,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm (纸板的厚度忽略不计)(1)EF= cm,GH= cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长.答案:(1)(30-2x);(20-x)(2)5cm分析:(1)根据所给出的图形可直接得出EF与GH即可;(2)根据(1)得到EF与GH,结合M的面积列出方程(30-2x)(20-x)=300,求出x的值即可.(1)解:由图示可得:EF=(30-2x)cm,GH=(40÷2-x)cm=(20-x)cm.故答案为(30-2x),(20-x).(2)解:设剪掉的小正方形边长为x cm,x<30由题意可得(30-2x)(20-x)=300解得:x=5或x=30(舍去).答:剪掉的小正方形的边长5cm.小提示:本题主要考查了列代数式、一元二次方程的应用等知识点,根据图示列出一元二次方程是解答本题的关键.17、解方程:(1)x2﹣4x+2=0:(2)(x﹣1)2﹣x+1=0.答案:(1)x1=2+√2,x2=2−√2(2)x1=1,x2=2分析:(1)方程利用配方法求出解即可;(2)方程利分解因式法求出解即可.(1)x2﹣4x+2=0方程整理得:x2-4x=-2,配方得:x2-4x+4=2,即(x-2)2=2,开方得:x-2=±√2解得,x1=2+√2,x2=2−√2;(2)(x﹣1)2﹣x+1=0(x﹣1)2﹣(x-1)=0(x−1)(x−2)=0x−1=0,x−2=0∴x1=1,x2=2小提示:此题考查了解一元二次方程-公式法,以及配方法,熟练掌握各自的解法是解本题的关键.18、解方程:(1)(x−1)2−9=0.(2)x2−2x−5=0.答案:(1)x1=4,x2=−2;(2)x1=1+√6,x2=1−√6.分析:(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可.(1)解:(x−1)2−9=0,∴x−1=±3,解得:x1=4,x2=−2;(2)解:x2−2x−5=0,x2−2x=5,x2−2x+1=5+1,(x−1)2=6,∴x−1=±√6,∴x1=1+√6,x2=1−√6.小提示:本题考查了直接开平方法和配方法解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.。

第21章解一元二次方程(一)(直接开平方法)+课件2024-2025学年人教版数学九年级上册

第21章解一元二次方程(一)(直接开平方法)+课件2024-2025学年人教版数学九年级上册

第2课时 解一元二次方程(一)(直接开平方法)
(2)13x2-5=0. 解:整理,得 x2=15. 根据平方根的意义,得 x=± 15, 即 x1= 15,x2=- 15.
第2课时 解一元二次方程(一)(直接开平方法)
训练 2.用直接开平方法解下列方程: (1)2x2-12=0; 解:整理,得 x2=14. 根据平方根的意义,得 x=±12,即 x1=12,x2=-12.
第2课时 解一元二次方程(一)(直接开平方法)
(2)x2-3=0. 解:整理,得x2=3. 根据平方根的意义,得 x=± 3, 即 x1= 3,x2=- 3.
第2课时 解一元二次方程(一)(直接开平方法)
训练 1.用直接开平方法解下列方程: (1)x2=116; 解:根据平方根的意义,得 x=±14, 即 x1=14,x2=-14.
第2课时 解一元二次方程(一)(直接开平方法)
(2)3(x+3)2=27. 解:整理,得(x+3)2=9. 根据平方根的意义,得x+3=±3, 即x+3=3,或x+3=-3. 于是,方程3(x+3)2=27的两个根为x1=0,x2=-6.
第2课时 解一元二次方程(一)(直接开平方法)
训练 3.用直接开平方法解下列方程: (1)(x+1)2=0.81; 解:根据平方根的意义,得x+1=±0.9, 即x+1=0.9,或x+1=-0.9. 于是,方程(x+1)2=0.81的两个根为x1=-0.1,x2=-1.9.
第2课时 解一元二次方程(一)(直接开平方法)
3.如果关于x的方程(x-9)2=m+4有实数根,那么m的取值范围是
A.m>3
B.m≥3
( D)
C.m>-4
D.m≥-4
4.【代几综合】已知三角形的两边长分别是4和6,第三边的长是

第二十一章 一元二次方程-九年级数学上册单元复习(人教版)

第二十一章 一元二次方程-九年级数学上册单元复习(人教版)
长出同样数目的小分支,主干,支干和小分支的总数是91,每
个支干长出多少小分支?
解:设每个支干长出x个小分支,可列方程得
1+x+x2=91
解得x1=9,x2=-10(不合题意,舍去)
答:每个支干长出9个小分支.
课堂检测
考点4
实际问题与一元二次方程—传播问题
电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,
要每天获得150元的销售利润,销售价应当为多少元?
分析:本题为销售中的利润问题,其基本本数量关系用表析分如下:设公司
每天的销售价为x元.
单件利润
正常销售
4
涨价销售
x-20
销售量(件)
32
32-2(x-24)
其等量关系是:总利润=单件利润×销售量.
每星期利润(元)
128
150
课堂检测
考点4
实际问题与一元二次方程—销售利润问题
∴(−2m)2−2(m2+m)=12,
解得m1=−2,m2=3(不合题意,舍去).
故m的值是 −2.
课堂检测
考点2
一元二次方程的根
设x1,x2是方程x2 -2(k-1)x+k2=0的两个实数根,且x12 +x22 =4,
求k的值.
解:由方程有两个实数根,得Δ=4(k-12 -4k2≥0,
1
即 -8k+4≥0. k
一元二次方程
+ + =



实际问题
的答案
检验
配方法
公式法
因式分解法


方程 + + = ( ≠ )的根

人教版九年级数学上册第21章《一元二次方程》教案

人教版九年级数学上册第21章《一元二次方程》教案

第二十一章一元二次方程1.了解一元二次方程及方程的解的概念.2.理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.3.会用一元二次方程根的判别式判断方程根的情况.4.了解一元二次方程的根与系数之间的关系.5.能根据具体问题中的数量关系列出一元二次方程,并利用一元二次方程模型解决简单的实际问题.1.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.2.通过对一元二次方程解法的探究,培养学生数学推理的严密性及严谨性,同时培养学生寻求简便方法的探索精神及创新意识.3.通过列一元二次方程解应用题,进一步培养学生化实际问题为数学问题的能力,提高学生分析问题、解决问题的能力.1.在学习一元二次方程的过程中,让学生体验知识之间的联系,激发学生爱数学、学数学的兴趣.2.通过学习直接开平方法、因式分解法解一元二次方程,向学生渗透转化思想在研究数学问题中的应用;通过对求根公式的推导,向学生渗透分类思想.3.体会数学来源于生活,又应用到生活,由可设未知数列方程向学生渗透方程的思想,由此培养学生应用数学的意识.方程是初中数学中的基础内容,在初中数学中占有重要地位,一元二次方程是一元一次方程、二元一次方程(组)的后继学习,本章在初中代数中占着非常重要的地位,起着承前启后的作用,一方面对以前学过的一些内容进行综合地应用,如探究解方程的方法时开平方、一元一次方程、完全平方公式、因式分解等知识都有应用,另一方面,一元二次方程又是前边所学知识的继续和发展,是学好二次函数不可缺少的知识,是学好高中数学的奠基工程.本章主要让学生进一步体会方程的模型思想,会解一元二次方程,解方程的基本思想是化归思想,将“二次”方程转化成两个“一次”方程是解一元二次方程的基本方法.其中配方法是初中数学中的基本方法,通过对配方法的学习,探究出一元二次方程的求根公式,然后让学生体会数学来源于生活,通过学习进一步培养学生化实际问题为数学问题的能力和分析问题、解决问题的能力及应用数学的意识.【重点】1.一元二次方程及其有关的概念.2.用配方法、公式法、因式分解法解一元二次方程.3.建立一元二次方程模型解决实际问题.【难点】1.用配方法解一元二次方程.2.用公式法解一元二次方程.3.一元二次方程根的判别式.4.一元二次方程根与系数之间的关系.5.建立一元二次方程模型解决实际问题的.1.一元二次方程是初中数学最重要的数学模型之一,通过建立一元二次方程模型解决实际问题,可以使学生更深入地体会数学与现实世界的联系,所以可从实际问题抽象出一元二次方程的有关概念及其数学符号表示,让学生用类比思想理解并掌握一元二次方程的概念及其一般形式.2.学生已经具备了解一元二次方程的基本思想——化归,即把方程转化为两个一元一次方程,教材由实际背景引入,建立一元二次方程模型,探究将二次降为一次的方法,转化为一元一次方程求解.配方法是推导一元二次方程的求根公式的工具,引导学生用配方法导出求根公式,在推导求根公式的过程中,方程形式的不断推广,体现了数学中的从特殊到一般的过程.教材探究一元二次方程解法的过程,对于培养学生的推理能力和运算能力有很大帮助.3.一元二次方程根与系数之间的关系的学习,不仅为了一元二次方程理论的完整性,更重要的是初高中的衔接问题,根据求根公式,探究一元二次方程两根和与积分别与系数之间的关系,在教学活动中,可以让学生通过给出的几个一元二次方程的根,探索发现根与系数的关系,最后通过求根公式去验证总结,以此培养学生学习数学的严谨性和数学思维能力.4.数学来源于生活,并应用于生活中,数学与生活息息相关,应用一元二次方程解决实际问题,引导学生分析其中的已知量、未知量及其等量关系,建立一元二次方程模型,得出方程的解,并检验所得的结果是否符合实际,得出合乎实际的结果,让学生经历“问题情境—建立模型—求解验证”的数学活动过程,培养学生的建模思想,逐步形成应用意识..2课方程时21.1一元二次方程1.理解一元二次方程的概念.2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.3.体会一元二次方程是刻画实际问题的重要数学模型.4.理解一元二次方程解的概念.1.通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2.体会数学来源于生活,又回归生活的理念.3.由设未知数、列方程向学生渗透方程的思想,从而进一步培养学生的数学思维能力.1.培养学生主动探究知识、自主学习和合作交流的意识.2.激发学生学数学的兴趣,体会学数学的快乐,培养应用数学的意识.3.体会数学知识与现实世界的联系.【重点】1.一元二次方程的概念及一般形式.2.一元二次方程的解(根).【难点】1.正确识别一般式中的“项”及“系数”.2.由实际问题列出一元二次方程.第课时1.理解一元二次方程的概念.2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.1.通过一元二次方程的引入,培养学生的建模思想,归纳、分析问题及解决问题的能力.2.体会数学来源于生活,又回归生活的理念.1.培养学生主动探究知识、自主学习和合作交流的意识.2.激发学生学数学的兴趣,体会学数学的快乐,培养应用数学的意识.【重点】一元二次方程的概念及其一般形式.【难点】1.由具体问题抽象出一元二次方程.2.正确识别一般式中的“项”及“系数”.【教师准备】多媒体课件1~3.【学生准备】复习一元一次方程和二元一次方程的定义.导入一:请同学们阅读章前问题,并回答问题.要设计一座2 m高的人体雕塑,使雕塑的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕塑的下部应设计为多高?如图所示,雕像的上部高度AC与下部高度BC应有如下等量关系:AC∶BC=BC∶2,即BC2=2AC.设雕塑下部高x m,可得方程x2=2(2-x),整理得x2+2x-4=0.【问题】这个方程是不是我们以前学过的方程?[设计意图]帮助学生初步感知上述方程与以往学过的方程形式的不同,通过学生的好奇心激发本节课的学习欲望.导入二:观察下列方程:(1)3x-5=0;(2)2x2+3x-2=0;(3)x+3y=0;(4)x2+(x+1)(x-1)=0.哪些是我们学过的一元一次方程?其他方程与一元一次方程有什么不同?【师生活动】复习方程、一元一次方程的概念、二元一次方程的概念.【学生活动】小组合作交流:观察新方程,分析元和次,尝试为新方程定义.[设计意图]让学生体会一元二次方程是刻画某些实际问题的模型,通过复习一元一次方程和二元一次方程的概念,让学生用类比的方法从已有的知识体系自然地构建出新知识.导入三:数字中有许多有趣而奇妙的现象,很多秘密等待着我们去探索发现!现在,我们先来做一个数字游戏:大家先计算出10,11,12三个数字的平方和,再计算出13和14的平方和,看看两个平方和相等吗?你还能找到五个连续整数,使前三个数的平方和等于后两个数的平方和吗?试试看!如果设中间的一个数为x,请根据这一问题列出方程.[设计意图]本问题可以使学生体会到数学中的奥秘,激发学生探究新知的欲望.学生通过设未知数,寻找等量关系,初步认识一元二次方程.给出课本问题1、问题2的两个实际问题,设未知数,建立方程.问题1【课件1】如图所示,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?教师引导学生思考并回答:如果设切去的正方形的边长为x cm,那么盒底的长是,宽是,根据方盒的底面积为3600 cm2,得.整理,得.化简,得.解:设切去的正方形的边长为x cm,那么盒底的长是(100-2x)cm,宽是(50-2x)cm.根据题意,得(100-2x)(50-2x)=3600.整理,得4x2-300x+1400=0.化简,得x2-75x+350=0.问题2【课件2】要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?思路一教师引导学生思考并回答:全部比赛共有场.若设应邀请x个队参赛,则每个队要与其他个队各赛一场,全部比赛共有场.由此,我们可以列出方程,化简得.【师生活动】设未知数、根据题意列出方程,老师点评并分析如何建立一元二次方程的数学模型,并整理.解:设应邀请x个队参赛,则每个队要与其他(x-1)个队各赛一场,全部比赛共有x(x-1)场.根据题意,得x(x-1)=4×7.整理,得x2-x=28.化简,得x2-x=56.思路二小组活动,共同探究,思考下列问题.(1)分析题意,题中的已知条件是什么?(2)分析题意,题中的等量关系是什么?(3)如何设未知数?根据题中等量关系怎样列方程?【师生活动】教师在巡视过程中及时解决疑难问题,学生讨论后小组展示讨论结果,教师及时补充.解:设应邀请x个队参赛,则每个队要与其他(x-1)个队各赛一场,全部比赛共有x(x-1)场.根据题意,得x(x-1)=4×7.整理,得x2-x=28.化简,得x2-x=56.[设计意图]通过师生共同探讨,找到实际问题中的等量关系,列出方程,为引出一元二次方程的概念做铺垫,同时可提高学生利用方程思想解决实际问题的能力.(教师板书导入一和课本问题所列的三个方程)请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几?(3)方程两边都是整式吗?【学生活动】小组合作交流,类比一元一次方程定义,尝试给出一元二次方程的定义.老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2;(3)方程两边都是整式.像这样的方程,等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.[设计意图]通过小组活动,学生通过类比一元一次方程的定义得到一元二次方程的定义,从而达到真正理解定义的目的,同时培养学生(1)4x2=81;(2)2(x2-1)=3y.【师生活动】以抢答的形式来完成此题,并让学生找出错误理由.教师应注意对学生给出的答案进行点评和归纳.[设计意图]进一步强化一元二次方程的概念满足的三个条件,采取抢答的形式,提高学生学习数学的兴趣和积极性.[知识拓展]判断一个方程是一元二次方程需同时满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.同时要注意二次项系数不能为0.二、一元二次方程的一般形式【思考】(1)类比一元一次方程的一般形式,你能不能写出一元二次方程的一般形式?一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(2)二次项系数为什么不能为0?学生思考回答.[设计意图]让学生自己概括一般形式是对一元二次方程另一个角度的理解,是对数学符号语言的应用能力的提升,同时通过思考强调不能完成以下问题.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.〔解析〕一元二次方程的一般形式是ax2+bx+c=0(a≠0),因此,对方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项、合并同类项等.解:去括号,得3x2-3x=5x+10.移项、合并同类项,得一元二次方程的一般形式为3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.[设计意图]通过试一试,让学生了解求一元二次方程的项或项的系数时,需先化成一元二次方程一般形式再求解,同时加深对一元二次方程一般形式的理解.[知识拓展]1.一元二次方程的一般形式的特点是方程的右边为0,左边是关于未知数的二次整式.2.一元二次方程的项或系数是针对一元二次方程的一般形式而言的,所以写项或系数时,要先化成一般形式,并且项或系数都包括前边的符号.1.一元二次方程概念需要满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),易错点是忽略强调a≠0.3.确定一元二次方程的项与系数时,一定先化成一般形式,书写时应注意包括前边的符号.1.在下列方程中,一元二次方程有()①3x2+7=0;②ax2+bx+c=0;③(x-2)(x+5)=x2-1;④3x2-=0.A.1个B.2个C.3个D.4个解析:一元二次方程必须满足三个条件:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,同时注意二次项系数不为0.①和④满足这几个条件,②中二次项系数可能为0,③化简后不含有二次项,不符合定义.故选B.2.方程3x2-3=2x+1的二次项系数为,一次项系数为,常数项为.解析:通过移项、合并同类项,化成一元二次方程的一般形式,为3x2-2x-4=0,所以二次项系数为3,一次项系数为-2,常数项为-4.答案:3-2-43.若(m-2)-=-3是关于x的一元二次方程,则m= .解析:根据一元二次方程概念知未知数x的最高次数是2,且二次项系数不为0,所以m2-2=2,m-2≠0,解得m=-2.故填-2.第1课时一、一元二次方程的定义只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.二、一元二次方程的一般形式ax2+bx+c=0(a≠0).其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.一、教材作业【必做题】教材第4页习题21.1的1,2题.【选做题】教材第4页习题21.1的4,5,6题.二、课后作业【基础巩固】1.下列方程为一元二次方程的是 ()A.1-x2=0B.2(x2-1)=3yC.-=0D.(x-3)2=(x+3)22.若ax2-5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A.a>-2B.a<-2C.a>-2且a≠0D.a>3.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x-1)=182C.2x(x+1)=182D.x(x-1)=182×24.方程2x2=3(x+6)化为一般形式后二次项系数、一次项系数和常数项分别为()A.2,3,-6B.2,-3,-18C.2,-3,6D.2,3,65.把一元二次方程(x-2)(x+3)=1化为一般形式是.6.若方程kx2+x=3x2+1是关于x的一元二次方程,则k的取值范围是.7.将下列方程化成一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项.(1)(2x-1)2=6;(2)3x2+5(2x+1)=0.8.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式.(1)有一个面积为54 m2的长方形,将它的一边剪短5 m,另一边剪短2 m,恰好变成一个正方形,这个正方形的边长是多少?(2)三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?9.求方程x2+3=2x-4的二次项系数、一次项系数及常数项的积.【能力提升】10.若关于x的方程(k2-4)x2+-x+5=0是一元二次方程,求k的取值范围.11.若关于x的一元二次方程(m-1)x2+2x+m2-1=0的常数项为0,求m的值.12.当m取何值时,x2m-1+10x+m=0是关于x的一元二次方程?13.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.【拓展探究】14.已知关于x的方程(m2-1)x2-(m+1)x+m=0.(1)x为何值时,此方程是一元一次方程?(2)x为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.【答案与解析】1.A(解析:B中含有两个未知数,C中方程不是整式方程,D中方程化简后不含有x的二次项,只有A符合一元二次方程定义.故选A.)2.C(解析:根据一元二次方程的二次项系数不为0可得a≠0,解不等式得a>-2.故选C.)3.B(解析:每名同学都赠出(x-1)件,所以x名同学共赠出x(x-1)件,根据题意可列方程为x(x-1)=182.故选B.)4.B(解析:化简得2x2-3x-18=0,所以二次项系数、一次项系数和常数项分别为2,-3,-18.故选B.)5.x2+x-7=0(解析:根据多项式乘法法则化简方程左边,然后移项、合并同类项,可得x2+x-7=0.)6.k≠3(解析:根据一元二次方程的定义知一元二次方程的二次项系数不为0,所以k≠3.)7.解:(1)4x2-4x-5=0,二次项系数为4,一次项系数为-4,常数项为-5. (2)3x2+10x+5=0,二次项系数为3,一次项系数为10,常数项为5.8.解:(1)设这个正方形的边长是x m,根据题意得(x+5)(x+2)=54,化简得x2+7x-44=0. (2)设这三个连续整数为x-1,x,x+1,根据题意得x(x-1)+(x-1)(x+1)+x(x+1)=242,化简得3x2-243=0.9.解:将方程化简可得x2-2x+7=0,所以二次项系数、一次项系数及常数项分别为,-2,7,所以 ×(-2)×7=-28.10.解析:一元二次方程满足二次项系数不为0,该题易忽略二次根式的被开方数为非负数.解:依题意得k2-4≠0,且k-1≥0,解得k≥1且k≠2.-11.解:由题意得解得m=-1.-12.解:由题意得2m-1=2,解得m=.13.解析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0,∴不论m取何值,该方程都是一元二次方程.14.解析:本题是含有字母系数的方程问题,根据一元一次方程和一元二次方程的定义,分别进行讨论求解.解:(1)由题意得-即m=1时,关于x的方程(m2-1)x2-(m+1)x+m=0是一元一次方程. (2)由题意得m2-1≠0,即m≠±1时,关于x的方程(m2-1)x2-(m+1)x+m=0是一元二次方程.此方程的二次项系数是m2-1,一次项系数是-(m+1),常数项是m.因为学生已经学习了一元一次方程及相关概念,所以本节课主要采用启发式、类比法教学.教学中力求体现“问题情境—数学模型—概念归纳”的模式.但是由于学生将实际问题转化为数学方程的能力有限,所以通过小组讨论,共同探究,从具体的问题情境中抽象出数学问题,建立数学方程,从而突破难点.让学生在实际生活情境中,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有利于培养学生数学思维的提升.在教学过程中,小组合作交流还存在个别学生参与意识不强的现象,有些问题教师引导不到位,比如根据实际问题建立数学模型,通过题意不能找到等量关系时,没有很好地帮助学生提高分析问题的能力,再如问题2中排球赛问题,学生对寻找题中的等量关系遇到了困难,不能理解为什么除以2,遇到问题时给学生思考时间较短.学生为了解决实际问题进行小组合作交流时,教师应给足够的时间进行探究,让学生更好地体会建模思想在数学中的应用,对于学生的发言,给予充分的肯定,激发学生学习数学的激情,真正让学生在课堂上动起来.同时应该注重学生能力的培养,在引导学生分析问题时设计出更有价值的问题.练习(教材第4页)1.解:(1)5x2-4x-1=0,二次项系数为5,一次项系数为-4,常数项为-1.(2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81.(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25.(4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1.2.解:(1)4x2=25,4x2-25=0. (2)x(x-2)=100,x2-2x-100=0.(3)x·1=(1-x)2,x2-3x+1=0.(1)数学来源于生活,又应用到生活中去,所以以不同的生活情境问题导入新课,通过分析题意,构建方程模型,让学生掌握利用方程解决问题的方法,既突破了本节课的难点,又很自然地引出了本节课的重点.(2)类比方法是数学中重要的方法,所以本节课类比以前学过的一元一次方程的有关概念,让学生通过自主学习,共同探究,很自然地突破了重难点.(3)本节课重难点、易错点的掌握通过不同的形式的练习加以巩固,让学生积极参与,培养竞争意识,激发学习兴趣,同时教师随时注意学生们出现的问题,及时引导和反馈,使学生在快乐中掌握知识.已知关于x的方程(2k+1)x 2-4kx+(k-1)=0.(1)当k为何值时,此方程是一元一次方程?求出这个一元一次方程的根.(2)当k为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数及常数项.〔解析〕(1)一元一次方程中不含有二次项,所以二次项系数为0.(2)一元二次方程中二次项系数不为0.〔答案〕(1)k=-,x=.(2)k≠-;二次项系数为2k+1,一次项系数为-4k,常数项为k-1.第课时1.了解一元二次方程根的概念.2.会判定一个数是否为一个一元二次方程的根,以及利用它们解决一些具体问题.3.理解方程的解在实际问题中的意义.1.通过观察归纳一元二次方程根的概念,培养学生归纳、分析问题及解决问题的能力.2.应用一元二次方程根的定义计算,体会整体思想在数学中的应用,进一步培养学生数学思维能力.1.培养学生主动探究知识、自主学习和合作交流的意识.2.体验数学来源于生活、又应用于生活中,理解知识与现实世界的联系.【重点】判定一个数是否为方程的根.【难点】由实际问题列出的一元二次方程解出根后,检验根是否符合实际问题.【教师准备】多媒体课件1和课件2.【学生准备】复习一元二次方程的定义.导入一:根据下列问题,列出关于x的方程,并将所列方程化成一般形式.一个面积为48 m2的矩形苗圃,它的长比宽多2 m,苗圃的宽为x m.【学生活动】分析等量关系,列出方程x(x+2)=48,化成一般形式为x2+2x-48=0..导入二:把x=1,2,0,分别代入一元二次方程3x2=2x中,哪些数可以使方程左右两边相等?【师生活动】学生思考计算,独立回答问题,老师点评.[设计意图]从实际问题中抽象出一元二次方程数学模型,既复习了上节课内容,又利于对本节课新知识的接受,同时通过计算从已有的旧知识很自然地构建新知识.[过渡语]通过上边的计算,x的值与方程有什么样的关系呢?让我思路一问题:(1)观察导入一所填表格,x取什么值时,代数式x2+2x-48的值为0?(2)通过表格可得方程x2+2x-48=0(x>0)的解是什么?(3)下列数:1,2,0,,哪些是方程3x2=2x的解?〔答案〕(1)x=6时,代数式x2+2x-48的值为0.(2)方程x2+2x-48=0(x>0)的解是x=6.(3)0,.【师生活动】学生独立思考后,教师引导学生回答,并及时补充.使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.思路二【学生活动】思考并回答:什么是一元一次方程的解?教师及时补充.自主学习课本第3页,小组讨论交流,并回答以下问题:(1)什么是一元二次方程的根?【课件1】使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.思考:一元二次方程的根是不是唯一的?【师生活动】学生思考回答,教师点评.[设计意图]通过教师的引导(思路一),或自主学习后小组讨论交流(思路二),让学生经历知识的形成过程,达到真正理解和掌握概念,同时培养学生自主学习能力和分析问题的能力.(2)导入中的两个方程x2+2x-48=0(x>0),3x2=2x的根是什么?〔答案〕x=6;x=0或x=.-4,-3,-2,-1,0,1,2,3,4.【师生活动】学生思考计算后,以抢答形式回答问题,并说明理由.教师及时对学生给出的答案和理由做出评价.解:把这些数分别代入方程,使方程左右两边相等的数是方程的根.-4,3是方程的根.[设计意图]通过该练习,进一步强化一元二次方程的根的概念,采取抢答的形式,提高学生学习的竞争意识.(2)李明在写作业时,一不小心,把方程5x2+■x-3=0的一次项的系数用墨水覆盖住了,但知道方程的一个根是x=-2,请你帮助李明求出覆盖的系数.解:设覆盖的系数为a.把x=-2代入方程可得5×(-2)2+(-2)a-3=0,即20-2a-3=0,解得a=.∴覆盖的系数为.。

九年级数学人教版第二十一章一元二次方程21.2.4因式分解法解方程(同步课本图文结合详解)

九年级数学人教版第二十一章一元二次方程21.2.4因式分解法解方程(同步课本图文结合详解)

即ax2+bx+c=a(x-x1)(x-x2)
九年级数学上册第21章一元二次方程
4.(惠安·中考)解方程:x2-25=0 【解析】(x+5)(x-5)=0 ∴x+5=0或x-5=0 ∴x1= -5,x2=5.
九年级数学上册第21章一元二次方程
通过本课时的学习,需要我们掌握: 1.因式分解法解一元二次方程的步骤是: (1)化方程为一般形式; (2)将方程左边因式分解; (3)根据“至少有一个因式为零”,得到两个一元一次方程; (4)两个一元一次方程的根就是原方程的根. 2.因式分解的方法,突出了转化的思想方法——“降次”, 鲜明地显示了“二次”转化为“一次”的过程.
九年级数学上册第21章一元二次方程
跟踪训练
1.你能用分解因式法解下列方程吗?
(1)x2-4=0;
(2)(x+1)2-25=0.
【解析】(x+2)(x-2)=0, 【解析】[(x+1)+5][(x+1)-5]=0,
∴x+2=0或x-2=0.
∴x+6=0或x-4=0.
∴x1=-2, x2=2.
∴x1=-6, x2=4.
4. (4x 2)2 x(2x 1)
5. 3x(x 2) 5(x 2)
3.x1 3; x2 2.
4.x11 2;x2
4. 7
5
5.x1

2; x2

. 3
九年级数学上册第21章一元二次方程
3.观察下列各式,也许你能发现些什么?
解方程 : x2 7x 6 0得x1 1, x2 6; 而x2 7x 6 (x 1)(x 6);
那么a 0或b 0

第21章 一元二次方程知识点总结 2023—2024学年人教版数学九年级上册

第21章  一元二次方程知识点总结 2023—2024学年人教版数学九年级上册

第二十一章一元二次方程21.1 一元二次方程知识点一 一元二次方程的定义1. 定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程2. 一元二次方程必须同时满足以下三个条件:①是整式方程 ; ②只含有一个未知数 ; ③未知数的最高次数是2. 注意:分母位置不能有未知数 例:判断下了哪些是一元二次方程051)1(2=-+xx 073)2(2=+-xy x 41)3(2=-+x x 032)4(3=+-m m 0522)5(2=-x 4)6(2=-bx ax 知识点二 一元二次方程的一般形式一元二次方程的一般形式是 )0(02≠=++a c bx ax .其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项知识点三 一元二次方程的解(根)使一元二次方程左右两边相等的未知数的值,就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。

例如=x -3和x=2都是一元二次方程0652=+-x x 的解(根). 温馨提示:(1)一元二次方程可以无解,但是有解就一定有两个;(2)在一元二次方程)0(02≠=++a c bx ax 中,若0=++c b a ,则1=x 是一元二次方程)0(02≠=++a c bx ax 的一个根;若0=+-c b a ,则1-=x 是一元二次方程)0(02≠=++a c bx ax 的一个根注意:判断一个数值是不是一元二次方程解的方法:将此数值代入一元二次方程,若能使等式成立,则这个数值是一元二次方程的解;反之,它就不是一元二次方程的解.21.2 解一元二次方程21.1.2 配方法知识点一 直接开平方法解一元二次方程利用平方根的定义直接开平方来求一元二次方程的解的方法就做直接开平方法 一般地,对于方程为常数)p p x (2=为常数)p p x (2=根据平方根的意义,方程根的情况当时0>p 两个不相等的实数根p x p x =-=21,当时0=p 两个相等的实数根 021==x x 当时0<p方程无实数根可以利用直接开平方法解一元二次方程的类型 (1))0(2≥=p p x p x p x =-=21,(2))0(2≥=p p ax 先系数化为1 ,ap x a p x -==21, (3)())0(2≥=+p p a x 整体开平方后将a 移项,a p x a p x --=-=21,(4)())0(2≥=+p p b ax 整体开平方,再将b 移项,最后系数化为 1abp x a b p x --=-=21, 温馨提示:(1)采用直接开平方法解一元二次方程的理论依据是平方根的定义,直接开平方法只适用于部分一元二次方程,它适用的方程是能转化为以上类型的方程,(2)利用直接开平方法解一元二次方程时,只有当0≥p 时,方程才有解,并且要注意开方的结果取“正、负”两种情况。

最新人教版九年级上册数学第二十一章《用一元二次方程解决传播问题、增长率问题》优质PPT课件

最新人教版九年级上册数学第二十一章《用一元二次方程解决传播问题、增长率问题》优质PPT课件

解:设每个支干长出x 个小分支,
则1+x+x●x=91,
即 x²·∣ x·90∶0
解得 x1=9,x2=-10(不合题意,舍去)
答:每个支干长出9 个小分支.
探究新知 【2】要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛 一场,计划安排15场比赛,应邀请多少个球队参加比赛?
解:设应邀请x个球队参加比赛.
设 2002年,2003年两年绿地面积的年平均增长率为x.
60 (1+x)2=72.6 (1+x)2=1.21. 答: 2002年,2003年两年绿地 ∴1+x=±1.1. 面积的年平均增长率为10%. x2 =-2.1(不合题意,舍去)
算一算:乙种药品成本的年 平均下降率是多少?
则一年后甲种药品成本为5 000(1-x)元,
22.5%
两年后甲种药品成本为 5 000(1-x)2 元,
依题意得 5000(1 x)2 3000
比较: 两种药品成本的年平均下降率.
(相同)
x x 解方程,得
0.225, 1.775(不合题意,舍去)
则1+x+x●x=91,
小 分
即 x2 x 90 0
ቤተ መጻሕፍቲ ባይዱ

解得
x1=9,x2=-10(不合题意,舍去) 答:每个支干长出9 个小分支.
…… ……
小 分
……
小 分


x
支干 ……
主 干
小 分 支
x
支干
x
1
探究新知
【1】某种植物的主干长出 若干数目的支干,每个支干又 长出同样数目的小分支、主 干、支干和小分支的总数是 91,每个支干长出多少小分支?

2019九年级数学上册 第二十一章 一元二次方程 速解方程 选对方法是关键同步辅导素材新人教版

2019九年级数学上册 第二十一章 一元二次方程 速解方程 选对方法是关键同步辅导素材新人教版

速解方程选对方法是关键课本介绍了解一元二次方程的诸多方法,面对一道一元二次方程题,究竟采用哪种解法呢?这就要求同学们仔细观察、捕捉方程的系数特点和结构特征,灵活选择适当的方法,力求解题过程简捷明快,也能提高准确率.一、直接开平方法例1解方程:8x2-16=0.解:移项,得8x2=16,化简,得x2=2.所以x1=-,x2.点评:用直接开方法求一元二次方程的解的情况:①方程缺少一次项;②方程的一边是平方的形式,另一边是非负数.中考同期声:1.(2016·鄂州)方程x2-3=0的根是 .2.(2016·深圳)给出一种运算:对于函数y=x n,规定y′=n x n-1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是()A.x1=4,x2=-4 B.x1=2,x2=-2 C.x1=x2=0 D.x1=x2=-二、因式分解法例2方程3(x-5)2=2(x-5)的根是.分析:先移项得到3(x-5)2-2(x-5)=0,注意到整理后的方程左边都有因式x-5,且方程右边为0,宜用因式分解法.解:移项,得3(x-5)2-2(x-5)=0.因式分解得:(x-5)[3(x-5)-2]=0,即(x-5)(3x-17)=0.所以x-5=0,或3x-17=0.解得x1=5,x2=173.点评:因式分解法适用的情况:①一般方程ax2+bx+c=0(a≠0),其中c=0;②方程ax2+bx+c=0(a≠0)的左边正好是完全平方式或平方差公式;③方程两边有公因式可以提取时.中考同期声:3.(2016·山西)解方程:2(x-3)2=x2-9.三、配方法例3解方程:x2-2x-3=0.分析:注意到题中的结构x2-2x,考虑运用配方法比较简洁.解:移项,得x2-2x=3.配方,得x2-2x+1=3+1,即(x-1)2=4.所以x-1=±2.所以x1=-1,x2=3.点评:配方法适用的情况是各项系数比较小,尤其是二次项系数为1,二次项系数为偶数或一次项系数是二次项系数的偶数倍时.中考同期声:4.(2016·沈阳)一元二次方程x2-4x=12的根是()A.x1=2,x2=-6 B.x1=-2,x2=6 C.x1=-2,x2=-6 D.x1=2,x2=6四、公式法例4解方程:x2-3x+2=0.分析:显然本题较适宜于用公式法求解,该方程已经是一般形式,故只需对号入座地写出a,b,c,再求出b2-4ac的值,最后代入求根公式即可.解:这里a=1,b=-3,c=2,∆=b2-4ac=(-3)2-4×1×2=1>0.方程有两个不等的实数根.所以x=31 2±.所以x1=2,x2=1.点评:公式法是解一元二次方程的通法,在用公式时应注意:①将一元二次方程化为一般形式,即先确定a,b,c的值;②牢记使用公式的前提是b2-4ac≥0.中考同期声:5.(2016·黔西南州)关于x的两个方程x2-x-6=0与2x m+=13x-有一个解相同,则m=.实际上,选择哪种方法来解一元二次方程要看方程的特点.对于复杂的一元二次方程不要着急把方程化为一般形式,应观察其特点,看是否能用直接开平方法或因式分解法.若不能运用上述两法求解,再化方程为一般形式,选择配方法或公式法求解,但如果没有特别说明,一般不用配方法.中考同期声参考答案:1.x1,x22. B3.x1=3,x2=94.B5.-8。

遂平县第八中学九年级数学上册 第二十一章 一元二次方程 21.2 解一元二次方程 21.2.2 公式

遂平县第八中学九年级数学上册 第二十一章 一元二次方程 21.2 解一元二次方程 21.2.2 公式

第二十一章 一元二次方程21.2 解一元二次方程 21.2.2 公式法学习目标:1.经历求根公式的推导过程.2.会用公式法解一元二次方程.3.理解并会计算一元二次方程根的判别式.4.会用判别式判断一元二次方程的根的情况.重点:运用公式法解一元二次方程. 难点:一元二次方程求根公式的推导.一、知识链接如何用配方法解方程2x 2+4x -1=0?二、要点探究探究点1:求根公式的推导合作探究 任何一个一元二次方程都可以写成一般形式ax 2+bx +c =0(a ≠0),能否也用配方法得出它的解呢?问题1 用配方法解一元二次方程ax 2+bx +c =0(a ≠0).解:移项,得ax 2+bx =-c ,二次项系数化为1,得x 2+ x =c a配方,得x 2+ x +( )2=( )2c a即(x +2b a )2=2244b aca ①问题2 对于方程①接下来能直接开平方解吗?要点归纳:∵a ≠0,∴4a 2>0.要注意式子b 2-4ac 的值有大于0、小于0和等于0三种情况. 探究点2:一元二次方程根的判别式22= b 2-4ac.练一练 按要求完成下列表格.4403x21103x x 10的值x 2+x =1,下列判断正确的是( ) A.该方程有两个相等的实数根 B.该方程有两个不相等的实数根 C.该方程无实数根D.该方程根的情况不确定例2 不解方程,判断下列方程的根的情况.(1) 3x 2+4x -3=0; (2) 4x 2=12x -9; (3) 7y =5(y 2+1).方法总结:现将方程变形为一般形式ax 2+bx +c =0,再根据根的判别式求解即可.例3 若关于x 的一元二次方程x 2+8x +q =0有两个不相等的实数根,则q 的取值范围是( ) A. q ≤4 B. q ≥4C. q <16D. q >16【变式题】二次项系数含字母若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( ) A. k >-1 B. k >-1且k ≠0C. k <1D. k <1且k ≠0方法总结:当一元二次方程二次项系数为字母时,一定要注意二次项系数不为0,再根据根的判别式求字母的取值范围.【变式题】删除限制条件“二次”若关于x 的方程kx 2-2x -1=0有实数根,则k 的取值范围是( ) A. k ≥-1 B.k ≥-1且k ≠0C.k <1D.k <1且k ≠0探究点3:用公式法解方程由上可知,当≥0时,方程ax 2+bx +c =0 (a ≠0)的实数根可写为242bb acxa的形式,这个式子叫做一元二次方程ax 2+bx +c =0的求根公式.用求根公式解一元二次方程的方法叫做公式法.p11例2)用公式法解下列方程:(1) x 2-4x -7=0; (2) 2x 2-+1=0;(2) 5x 2-3x =x +1; (4) x 2+17=8x .要点归纳:公式法解方程的步骤: 1.变形:化已知方程为一般形式; 2.确定系数:用a ,b ,c 写出各项系数;3.计算:b 2-4ac 的值;4.判断:若b 2-4ac ≥0,则利用求根公式求出;若b 2-4ac <0,则方程没有实数根.1.不解方程,判断下列方程的根的情况.(1) 2x 2+3x -4=0; (2) x 2-x +14=0; (3) x 2-x +1=0.2.解方程:x 2+7x –18 = 0.3.解方程:(x -2) (1-3x ) = 6.4.解方程:2x 2- + 3 = 0.5.(1)关于x的一元二次方程220x x m有两个实根,则m的取值范围是;(2)若关于x的一元二次方程(m-1)x2-2mx+m=2有实数根.求m的取值范围.6.不解方程,判别关于x的方程22x kx k的根的情况.220能力提升:在等腰△ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.参考答案自主学习一、知识链接解:方程整理得212.2x x 配方,得23+12x .直接开平方,得6+12x ,∴12661122x x ,.课堂探究 二、要点探究探究点1:求根公式的推导问题1 b a b a 2b a 2ba问题2 不能,需要注意右边式子有大于0,等于0,小于0三种情况.探究点2:一元二次方程根的判别式两个不相等实数根 两个相等实数根 没有实数根 两个实数根练一练 从上往下,从左到右依次为0,13,4,有两个相等实数根,没有实数根,有两个不相等的实解析:原方程变形为x 2+x -1=0.∵b 2-4ac =1-4×1×(-1)=5>0,∴该方程有两个不相等的实数根,故选B.例2 解:(1)3x 2+4x -3=0,a =3,b =4,c =-3,∴b 2-4ac =42-4×3×(-3)=52>0.∴方程有两个不相等的实数根.(2)方程化为:4x 2-12x +9=0,∴b 2-4ac =(-12)2-4×4×9=0.∴方程有两个相等的实数根. (3)方程化为:5y 2-7y +5=0,∴b 2-4ac =(-7)2-4×5×5=-51<0.∴方程无实数根.例3 C 解析:由根的判别式知,方程有两个不相等的实数根,则b 2-4ac >0,即82-4q >0.解得q <16,故选C.【变式题】B 解析:方程有两个不相等的实数根,则b 2-4ac >0,即(-2)2+4k >0.又二次项系数不为0,可得k >-1且k ≠0,故选B.【变式题】A 思路分析:分k =0或k ≠0两种情况进行分类讨论. 探究点3:用公式法解方程例4 解:(1)a =1,b =-4,c =-7,b 2-4ac =(-4)2-4×1×(-7)=44>0.方程有两个不相等的实数根24(4)44211.221bb ac xa即12211211x x ,.(2)a =2,b =22,c =1,b 2-4ac =(22)2-4×1×2=0.方程有两个相等的实数根,即212422022222bb ac x x a. (3)方程化为5x 2-4x -1=0,a =5,b =-4,c =-1,b 2-4ac =(-4)2-4×5×(-1)=36>0.方程有两个不相等的实数根24(4)3646.22510bb ac xa 即12115x x ,. (4)方程化为x 2-8x +17=0,a =1,b =-8,c =17,b 2-4ac =(-8)2-4×1×17=-4<0.方程无实数根. 当堂检测1.解:(1)a =2,b =3,c =-4,b 2-4ac =32-4×2×(-4)=41>0.方程有两个不相等的实数根.(2)a =1,b =-1,c =14,b 2-4ac =(-1)2-4×1×14=0.方程有两个相等的实数根.(3)a =1,b =-1,c =1,b 2-4ac =(-1)2-4×1×1=-3<0.方程无实数根.2.解:这里a =1,b =7,c =-18,b 2-4ac =72-4×1×(-18)=121>0.∴247121711.2212bb ac xa1292x x ,.3. 解:去括号,得x -2-3x 2+ 6x = 6,化为一般式为3x 2-7x + 8 = 0,这里a =3,b =-7,c =8,b 2-4ac =(-7)2–4×3×8 =49-96=-47<0.∴原方程无实数根. 4.这里a =2,b =33,c =3,b 2-4ac =(33)2-4×2×3=3>0. ∴24333.24bb acxa12332x x ,. 5.(1)m ≤1(2)解:化为一般式(m -1)x 2-2mx +m -2=0.Δ=4m 2−4(m −1)(m −2)≥0,且m -1≠0,解得23m且m ≠1. 6.解:222222241844kk k k k ,∵20k ,∴240k ,∴0.∴方程有两个实数根.能力提升解:关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,所以Δ=b 2-4ac =(b -2)2-4(6-b )=b 2+8b -20=0.所以b =-10或b =2.将b =-10代入原方程得x 2-8x +16=0,x 1=x 2=4;将b =2代入原方程得x 2+4x +4=0,x 1=x 2=-2(舍去); 所以△ABC 的三边长为4,4,5,其周长为4+4+5=13.24.1.1 圆学习目标:(2)了解圆的定义,理解弧、弦、半圆、直径等有关圆的概念.(3)从感受圆在生活中大量存在到圆形及圆的形成过程,探索圆的有关概念.重点、难点E.重点:圆的相关概念F.难点:理解圆的相关概念导学过程:阅读教材P78 — 80 , 完成课前预习【课前预习】1:知识准备Array(1)举出生活中的圆的例子.(2)圆既是对称图形,又是对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——教学资料参考参考范本——
2019-
2020九年级数学上册第二十一章一元二次方程速解方程选对方法是关键同步辅导素材新人教版
______年______月______日
____________________部门
课本介绍了解一元二次方程的诸多方法,面对一道一元二次方程题,究竟采用哪种解法呢?这就要求同学们仔细观察、捕捉方程的系数特点和结构特征,灵活选择适当的方法,力求解题过程简捷明快,也能提高准确率.
一、直接开平方法
例1 解方程:8x2-16=0.
解:移项,得8x2=16,化简,得x2=2.
所以x1=-,x2=.22
点评:用直接开方法求一元二次方程的解的情况:①方程缺少一次项;②方程的一边是平方的形式,另一边是非负数.
中考同期声:1.(20xx·鄂州)方程x2-3=0的根是 . 2.(20xx·深圳)给出一种运算:对于函数y=xn,规定y′=nxn-1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是()
A.x1=4,x2=-4 B.x1=2,x2=-2 C.x1=x2=0 D.x1=2,x2=-233
二、因式分解法
例2 方程3(x-5)2=2(x-5)的根是.
分析:先移项得到3(x-5)2-2(x-5)=0,注意到整理后的方程左边都有因式x-5,且方程右边为0,宜用因式分解法.
解:移项,得3(x-5)2-2(x-5)=0.
因式分解得:(x-5)[3(x-5)-2]=0,即(x-5)(3x-17)=0.
所以x-5=0,或3x-17=0.
解得x1=5,x2=.17 3
点评:因式分解法适用的情况:①一般方程ax2+bx+c=0(a≠0),
其中c=0;②方程ax2+bx+c=0(a≠0)的左边正好是完全平方式或平
方差公式;③方程两边有公因式可以提取时.
中考同期声:3.(2016·山西)解方程:2(x-3)2=x2-9.
三、配方法
例3 解方程:x2-2x-3=0.
分析:注意到题中的结构x2-2x,考虑运用配方法比较简洁.
解:移项,得x2-2x=3.
配方,得x2-2x+1=3+1,即(x-1)2=4.
所以x-1=±2.
所以x1=-1,x2=3.
点评:配方法适用的情况是各项系数比较小,尤其是二次项系数为1,二次项系数为偶数或一次项系数是二次项系数的偶数倍时.
中考同期声:4.(20xx·沈阳)一元二次方程x2-4x=12的根是()
A.x1=2,x2=-6 B.x1=-2,x2=6 C.x1=-2,x2=-6 D.x1=2,x2=6
四、公式法
例4 解方程:x2-3x+2=0.
分析:显然本题较适宜于用公式法求解,该方程已经是一般形式,故只需对号入座地写出a,b,c,再求出b2-4ac的值,最后代入求根公式即可.
解:这里a=1,b=-3,c=2,
∆=b2-4ac=(-3)2-4×1×2=1>0.
方程有两个不等的实数根.
所以x==.
(3)1
21
--±

31
2
±
所以x1=2,x2=1.
点评:公式法是解一元二次方程的通法,在用公式时应注意:①将一元二次方程化为一般形式,即先确定a,b,c的值;②牢记使用公式的前提是b2-4ac≥0.
中考同期声:5.(20xx·黔西南州)关于x的两个方程x2-x
-6=0与=有一个解相同,则m=.
2
x m
+
1
3
x-
实际上,选择哪种方法来解一元二次方程要看方程的特点.对于复杂的一元二次方程不要着急把方程化为一般形式,应观察其特点,看是否能用直接开平方法或因式分解法.若不能运用上述两法求解,再化方程为一般形式,选择配方法或公式法求解,但如果没有特别说明,一般不用配方法.
中考同期声参考答案:
1.x1=,x2=-33
2. B
3.x1=3,x2=9 4.B
5.-8。

相关文档
最新文档