2019七年级数学上册第二章有理数及其运算第9课时有理数的加减混合运算(3)(学案本)北师大版
2022秋七年级数学上册 第二章 有理数及其运算 第9课时 有理数的加减混合运算(3)(学案本)课件
巩固提高
8.某摩托车厂本周计划每日生产250辆摩托车.由于 工人实行轮休,每日上班人数不一定相等,实际每日 生产量与计划量相比情况如下表:(增加的辆数记为 正数,减少的数记为负数)
根据记录: 哪几天生产的摩托车比计划量多?星期几
生产的摩托车最多,是多少辆?星期几生产的摩托车
最少,是多少辆?
Page 4
变式练习
(2)由(1)题的表中可知14时病人体温最高. (3)将每个时刻与正常体温差加起来的和再除以 6,结果加上37得38.57 ℃ (4)图略.
Page 5
精典范例
例2.饭店餐桌上的海参、鲍鱼等价格昂贵的海洋 动物,有很大一部分是潜水捕捞员下潜到比较深
的海域中捕获的,某天一潜水捕捞员下海捕捞, 他从水面潜入水下21米,后因海水中的洋流,上 升了8米,在洋流过去后,他下潜到预定水下35米 的位置,则该潜水捕捞员在洋流过后,下潜了
Page 2
精典范例
解:(1)周四水位最高, (+0.38+0.25+0.54+O.13)+150=151.3(米). (2)由已知条件,可求出一周内各天相对于警戒水 位的变化情况,列表如下:
以警戒水位为0点,用折线 统计图表示在不放水的情 况下该水库一周内的水位 变化情况如图所示.
Page 3
变式练习
Page 11
巩固提高
7.“十一”黄金周期间,某风景区在7天假期中 每天旅游的人数变化如下表(正数表示比前一 天多的人数,负数表示比前一天少的人数):
Page 12
巩固提高
(1)若9月30日的游客为3万人,请完成下面7 天游客人数记录表:
5.4 5.8 5.4 4.6 4.8 3.6
七年级数学上册第二章有理数及其运算 有理数的加减混合运算第1课时有理数的加减混合运算课件新版北师大版
课堂小结
有理数的 加减混合
运算
加减混合算式的读 法与写法
(1)将减法转化为加法运算;
有理数的加减混合运 算
练一练: 下列式子可读作“负1、负3、正6、负8的和”
的是( B )
A.-1+(-3)+(+6)-(-8) B.-1-3+6-8 C.-1-(-3)-(-6)-(-8) D.-1-(-3)-6-(-8)
课程讲授
2 有理数的加减混合运算
例1 计算:(-2)+(+30)-(-15)-(+27)
方法一:减法变加法 解:原式=(-2)+(+30)+(+15)+(-27) 减法转化成加法
(2)省略加号和括号;
(3)运用加法交换律和结合律,将同号 两数相加;
(4)按有理数加法法则计算.
随堂练习
2.6,-13,2的和比它们的绝对值的和小( D )
A.-26 B.-4 C.4 D.26
随堂练习
3.武汉市某中学举行秋季运动会,七年级(1)班和七年级(2)班进行拔河比 赛,比赛规定标志物红绸向某班方向移动2 m或2 m以上,该班就获胜.比赛 中红绸先向七年级(2)班移动0.2 m,又向七年级(1)班移动0.5 m,相持几秒 后,红绸向七年级(2)班移动0.8 m,随后又向七年级(1)班移动1.4 m,在一片 欢呼声中,红绸再向七年级(1)班移动1.3 m,裁判员一声哨响,比赛结束.请 你用计算的方法说明最终获胜的是哪个班.
北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)
第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。
七年级上册数学有理数加减混合运算
七年级上册数学有理数加减混合运算有理数加减混合运算学习资料。
一、有理数的加减法法则。
1. 加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
- 例如:3 + 5=8(两个正数相加,结果为正数,绝对值相加);-3+(-5)=-(3 + 5)=-8(两个负数相加,结果为负数,绝对值相加)。
- 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
- 例如:3+(-5)=-(5 - 3)=-2(| - 5|>|3|,结果为负,用5的绝对值减去3的绝对值);-3 + 5=+(5 - 3)=2(|5|>| - 3|,结果为正,用5的绝对值减去3的绝对值)。
- 一个数同0相加,仍得这个数。
例如:0+3 = 3,-5+0=-5。
2. 减法法则。
- 减去一个数,等于加上这个数的相反数。
- 例如:5-3 = 5+(-3)=2;3-5=3+(-5)=-2;-3-(-5)=-3 + 5 = 2。
二、有理数加减混合运算的步骤。
1. 统一成加法运算。
- 有理数的加减混合运算,可以通过减法法则将减法转化为加法。
- 例如:3 - 5+2可以转化为3+(-5)+2。
2. 运用加法交换律和结合律进行简便运算。
- 加法交换律:a + b=b + a。
- 加法结合律:(a + b)+c=a+(b + c)。
- 例如:计算3+(-5)+2,可以根据加法交换律和结合律进行计算。
- 先将3+2结合起来,得到(3 + 2)+(-5)=5+(-5)=0。
- 再如:计算-2+3 - 1+(-4),转化为加法后为-2+3+(-1)+(-4)。
- 可以将-2+(-4)结合,3+(-1)结合,即[-2+(-4)]+[3+(-1)]=-6 + 2=-4。
三、有理数加减混合运算的易错点。
1. 符号问题。
- 在进行有理数加减混合运算时,符号的处理是关键。
- 例如:计算-3-(-5),如果错误地理解为-3 - 5=-8就错了,正确的应该是-3+5 = 2。
七年级数学上册第2章《有理数的加减混合运算》知识点解读(北师大版)
《有理数的加减混合运算》知识点解读知识点1 将有理数的加减混合运算统一为加法运算(重点)★在进行有理数的加减混合运算时,可以通过有理数的减法法则,把减法转化为加法,也就是将有理数的加减混合运算统一为单一的加法运算.如(-8)-7+(-6)-(-5)=(-8)+(-7)+(-6)+(+5).★在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.如(-8)+(-7)+(-6)+(+5)=-8-7-6+5.★和式的读法:如上面的例子,一是按这个式子表示的意义读作“负8,负7,负6,正5的和”;二是按运算意义读作“负8减7减6加5”.★省略括号的和的形式,可看作是有理数的加法运算.因此,可运用加法运算律来使计算简化,但要注意运算的合理性.①在交换加数位置时,要连同前面的符号一起交换.②在运用加法结合律时,有时也把减号看作负号.例1把(-6)-(-3)+(-2)-(+6)-(-7)写出省略括号的和的形式是读作或.分析:首先应把这个式子中的减法转化为加法,再写成省略号的和的形式.解:(-6)-(-3)+(-2)-(+6)-(-7)=(-6)+(+3)+(-2)+(-6)+(+7)=-6+3-2-6+7.读作:负6,正3,负2,负6,正7的和,或读作:负6加3减2减6加7.答案:-6+3-2-6+7;负6,正3,负2,负6,正7的和;负6加3减2减6加7.点拨:(1)在省略括号的代数和中,性质符号和运算符号是统一的.(2)省略括号的方法:①若括号前是“+”,则省略括号及括号前的“+”后,原括号内的各项不变号;②若括号前是“-”则省略括号及括号前的“-”后,原括号内各项的符号变为原来相反的符号.知识点2 有理数加减混合运算的步骤(难点)第一步:运用减法法则将有理数混合运算中的减法转化为加法.第二步:写出省略加号、括号的各数和的形式.第三步:运用加法法则、加法交换律、加法结合律进行简便运算.例2 计算:11(0.5)(3) 3.75(8).42---+-+ 分析:按有理数减法法则,把减法统一成加法,运用运算律进行简便运算.解:原式=11311113338(8)(33)97224422244-++-=--++=-+=-. 点拨:进行有理数加减混合运算时一定要注意符号.同时在运算过程中,通常把同分母的分数或者易于通分的分数归类进行计算.知识点3 有理数加减混合运算的注意事项①运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉,因为一个数包括两个方面,一方面是符号,另一方面是绝对值.例如8-5+7应变成8+7-5,而不能变成8-7+5;②应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便;③当分数、小数混在一块运算时,可以把它们统一成分数或小数再运算; ④如果有大括号和小括号应当先转化小括号里的运算,再转化大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.【例3】 计算:⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312; 分析:异分母分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)⎝ ⎛⎭⎪⎫-837+(-7.5)+⎝⎛⎭⎪⎫-2147+⎝ ⎛⎭⎪⎫+312 =-837-7.5-2147+312=-837-2147-7.5+312=-30-4=-34.知识点4 既含小数又含分数的有理数加减混合运算解题时先将减法转化为加法,再按照以下的四条思路进行转化:一是将小数统一化成分数,二是将分数统一化成小数,三是将小数与小数,分数与分数分别结合,四是将各数的整数部分和分数(小数)部分分别结合.析规律 有理数加减混合运算的运算顺序 注意运算的顺序,如果是同一级的运算,可以同时完成化简绝对值符号和减法变加法的运算过程.有括号的要先计算括号里面的,有绝对值符号的也要先根据数或式的取值范围化去绝对值符号再进行运算.【例4】 计算:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8);(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13. 分析:有多重括号的,先计算小括号里面的,再计算大括号里面的,有绝对值符号的要先把绝对值符号化简.解:(1)-4.2-[(-0.2)-(-7.5+0.4)]+(-3.8)=-4.2-[(-0.2)-(-7.1)]+(-3.8)=-4.2-[(-0.2)+(+7.1)]+(-3.8)=-4.2+(-6.9)+(-3.8)=-14.9.(2)(-1)-⎣⎢⎡⎦⎥⎤-2-(-4)+⎪⎪⎪⎪⎪⎪-12+⎝ ⎛⎭⎪⎫-13 =(-1)-⎣⎢⎡⎦⎥⎤-2+(+4)+12+⎝ ⎛⎭⎪⎫-13 =(-1)-216=-316. 知识点5 利用有理数加减法运算解决实际问题(重点)“水位的变化”问题是典型的利用有理数的加减混合运算的实际问题,首先要理解在水位的变化图表下面标明的“注”或者“注意”的含义:正号表示水位比前一天上升,负号表示水位比前一天下降,参考对象是前一天的水位.例3 一名潜水员在水下80米处发现一条鲨鱼在离他不远处的上方25米的位置往下游追逐猎物,当它向下游42米后追上猎物,此时猎物做垂死挣扎立刻反向上游,鲨鱼紧紧尾随,又游了10米后被鲨鱼一口吞吃.(1)求鲨鱼吃掉猎物时所在的位置;(2)与刚开始潜水员发现鲨鱼的位置相比,鲨鱼的位置有什么变化?解析:本题主要考查应用有理数的加减混合运算解释实际问题,向上游与向下游是一对具有相反意义的量,可以用正数、负数来表示.若设向上游的高度为正数,则向下游的高度为负数.求出几个有理数的和,就可以判断鲨鱼吃掉猎物时所在的位置.答案:(1)设鲨鱼向上游的高度为正,潜水员在水下80米记为-80米,依据题意可得,鲨鱼吃掉猎物时所在的位置是-80+25-42+10=(-80-42)+(25+10)=-122+35=-87(米).(2)鲨鱼原来的位置是-80+25=-55(米).所以鲨鱼原来在水下55米处.所以与刚开始潜水员发现鲨鱼的位置相比,它向下游了32米.点拨:题目中已知条件给出一对具有相反意义的量,但没规定正负,解题时应先规定正、负才能解决问题.【类型突破】某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下:(增加的车辆数为正数,减少的车辆数为负号)根据记录回答下列问题:(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加了还是减少了?(3)产量最多的一天比产量最少的一天多生产了多少辆?解析:首先必须弄清表中每个数据的意义,它是表示实际每日与计划量的差额,列出准确算式是关键.答案:(1)300+(-3)=297辆,即本周三生产了297辆.(2)因为表数据中是每日与计划量300的差值,故先求出这些差值的和:(-5)+7+(-3)+4+10+(-9)+(-25)=[(-5)+(-3)+(-9)+(-25)]+7+4+10=-42+21=-21.所以本周总生产量与计划生产量相比,是减少了21辆;(3)产值最多的一天是周五,而产量最少的一天是周日,其差是:(+10)-(-25)=10+25=35辆.即产量最多的一天比产量最少的一天多生产了35辆.点拨:弄清表格中数据表示的意义是解题的首要条件.知识点6 折线统计图(难点)根据相关数据,在图中标出能反映这些数据特征的点,然后再按照事物发展的一种趋势,将标出的点连成折线,这样就得到了折线统计图.★画折线统计图的步骤:(1)首先确定题目中折线统计图的标题,即应弄清楚要画的是说明什么问题的折线统计图.(2)确定一个量或一个数值为0点,有的题目直接给出0点.(3)标出横线和竖线的单位,使看图的人能够看懂,并能正确使用.(4)恰当选择单位长度,使画出的折线统计图既不太靠上,又不太靠下,有明显的上升和下降的幅度,能清楚地看出变化的情况.(5)竖线上选取的最高点最好比实际最高值略高一些,最低点比实际最低值略低些,这样能突出最大值和最小值的变化幅度.例4下表为某个雨季某水库管理员记录的水库一周内的水位变化情况,警戒水位为150m(上周末的水位达到警戒水位).注:正数表示比前一天水位上升,负数表示比前一天水位下降.(1)本周哪一天水位最高?有多少米?(2)根据给出的数据,请利用折线统计图分析一下本周内该水库的水位变化情况.(在不放水的情况下)分析:本周星期一到星期四,水位一直上升,星期五下降,星期六的上升值又低于星期五的下降值,故最高水位出现在周四.解:星期四水位最高,(+0.38+0.25+0.54+0.13)+150=151.3(m)(2)由已知条件,可求出一周内各天相对于警戒水位的变化情况,列表如下:星期一二三四五六日水位变化/m +0.38 +0.63 +1.17 +1.30 +0.85 +1.21 +1.02 以警戒水位为0点,用折线统计图表示在不放水的情况下该水库一周内的水位变化情况如图所示.。
七年级数学 第二章 有理数及其运算6 有理数的加减法混合运算第3课时 有理数加减混合运算的实际应用
12/8/2021
第十九页,共十九页。
小山(xiǎo shān)最高,小亮最矮,相差11cm.
第十二页,共十九页。
第十三页,共十九页。
问题(wèntí)解 决
一位病人(bìngrén)每天下午需要测量一次血压,下表是该 病人(bìngrén)星期一至星期五收缩压的变化情况.该病人(bìngrén) 上个星期日的收缩压为 160 单位.
+0.20+0.81+(-0.35)+0.03+0.28+(-0.36)+(-0.01)=0.6(m) 与上周末相比,本周末河流(héliú)水位上升了 0.6 m.
第八页,共十九页。
星期
一二三四五六日
水位变化/m +0.20 +0.81 -0.35 +0.03 +0.28 -0.36 -0.01
第十四页,共十九页。
(1)请算出星期五该病人的收缩压;
(2)请用折线统计图表示(biǎoshì)该病人这 5 天的收缩压情况.
第十五页,共十九页。
解:(1) 30 – 20 + 17 + 18 – 20 = 30 + 17 + 18 – 20 – 20
= 25 (单位(dānwèi)) 160 + 25 = 185(单位 答:星期五该病人的收缩压为(dān1w8èi5))单位.
水位 最高水位 警戒水位 平均水位 最低水位
高度/m 35.3 33.4 22.6 11.5
第四页,共十九页。
记作 +1.9
0
- 10.8
- 21.9
下表是今年雨季流花(liú huā)河一周内的水位变化情况(上 周末的水位达到警戒水位).
新版北师大初中数学教材目录
新版北师大初中数学教材目录七年级上册第一章丰富的图形世界1.生活中的立体图形 2.展开与折叠3.截一个几何体 4.从三个不同方向看物体的形状第二章有理数及其运算1.有理数 2.数轴 3.绝对值4.有理数的加法 5.有理数的减法6.有理数的加减混合运算 7.有理数的乘法8.有理数的除法 9.有理数的乘方 10.科学计数法11.有理数的混合运算 12.用计算器进行运算第三章整式及其加减1.字母表示数 2.代数式 3.整式4.整式的加减 5.探索与表达规律第四章基本平面图形1.线段、射线、直线 2.比较线段的长短3.角 4.角的比较 5.多边形和圆的初步认识第五章一元一次方程1.认识一元一次方程 2.求解一元一次方程3.应用一元一次方程——水箱变高了4.应用一元一次方程——打折销售5.应用一元一次方程——“希望工程”义演6.应用一元一次方程——追赶小明第六章数据的收集与整理1.数据的收集 2.普查和抽样调查3.数据的表示 4.统计图的选择七年级下册第一章整式的乘除1.同底数幂的乘法 2.幂的乘方与积的乘方3.同底数幂的除法 4.整式的乘法5.平方差公式 6.完全平方公式 7.整式的除法第二章相交线与平行线1.两条直线的位置关系 2.探索直线平行的条件3.平行线的性质 4.用尺规作角第三章三角形1.认识三角形 2.图形的全等 3.探索三角形全等的条件4.用尺规作三角形 5.利用三角形全等测距离第四章变量之间的关系1.用表格表示的变量间关系 2.用关系式表示的变量间关系3.用图像表示的变量间关系第五章生活中的轴对称1.轴对称现象 2.探索轴对称的性质3.简单轴对称图形 4.利用轴对称进行设计第六章频率与概率1.感受可能性 2.频率的稳定性 3.等可能事件的概率八年级上册第一章勾股定理1.探索勾股定理 2.一定是直角三角形吗 3.勾股定理的应用第二章实数1.认识无理数 2.平方根 3.立方根 4.估算5.用计算器开方 6.实数 7.二次根式第三章位置与坐标1.确定位置 2.平面直角坐标系 3.轴对称与坐标变化第四章一次函数1.函数 2.一次函数与正比例函数 3.一次函数的图象4.一次函数的应用第五章二元一次方程组1.认识二元一次方程组 2.求解二元一次方程组3.应用二元一次方程组——鸡兔同笼4.应用二元一次方程组——增收节支5.应用二元一次方程组——里程碑上的数6.二元一次方程与一次函数7.用二元一次方程组确定一次函数表达式8.三元一次方程组第六章数据的分析1.平均数 2.中位数与众数3.从统计图分析数据的集中趋势 4.数据的离散程度第七章平行线的证明1.为什么要证明 2.定义与命题 3.平行线的判定4.平行线的性质 5.三角形内角和定理八年级下册第一章证明(二)1.等腰三角形 2.直角三角形 3.线段的垂直平分线 4.角平分线第二章一元一次不等式和一元一次不等式组1.不等关系 2.不等式的基本性质3.不等式的解集 4.一元一次不等式5.一元一次不等式与一次函数 6.一元一次不等式组第三章图形的平移与旋转1.图形的平移 2.图形的旋转 3.中心对称 4.简单的图案设计第四章因式分解1.因式分解 2.提公因式法 3.运用公式法第五章分式1.认识分式 2.分式的乘除法 3.分式的加减法 4.分式方程第六章平行四边形1.平行四边形的性质 2.平行四边形的判别3.三角形的中位线 4.多边形的内角和与外角和九年级上册第一章特殊的平行四边形1.菱形的性质与判定 2.矩形的性质与判定 3.正方形的的性质与判定第二章一元二次方程1.认识一元二次方程 2.配方法 3.公式法4.因式分解法 5.一元二次方程的应用第三章相似图形1.成比例线段 2.平行线分线段成比例 3.相似多边形4.相似三角形的判定 5.黄金分割 6.测量旗杆的高度7.相似三角形的性质 8.图形的放大与缩小第四章视图与投影1.投影 2.视图第五章反比例函数1.反比例函数 2.反比例函数的图象与性质 3.反比例函数的应用第六章对概率的进一步研究1.游戏公平吗 2.投针试验 3.生日相同的概率九年级下册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起 2.特殊角的三角函数值3.三角函数的有关计算 4.船有触礁的危险吗 5.测量物体的高度第二章二次函数1.二次函数所描述的关系 2.二次函数的图像与性质 3.确定二次函数的表达式4.最大面积是多少 5.何时获得最大利润 6.二次函数与一元二次方程第三章圆1.圆 2.圆的对称性 3.垂径定理 4.圆周角与圆心角的关系5.确定圆的条件 6.直线和圆的位置关系 7.切线长定理8.圆内接正多边形 9.弧长及扇形的面积第四章统计与概率1.视力的变化 2.生活中的概率 3.统计与概率的应用。
北师大版七年级数学上册《有理数的加减混合运算》有理数及其运算PPT(第3课时)
住在江边的小明同学记录了今年梅雨季节下关段一周的水位
变化情况:(上周日的水位达到了警戒水位)
星期
一
二
三
四
五
水位变化 (米)
+0.20 +0.81
示水位比前一天上升,负号表示水位比前一天下降.
六
-0.36
日
-0.01
第七页,共二十页。
星期
一
表格、作折线统计图.
2. 本课典例:利用有理数的加减混合运算解决实际问题
.
3. 我的困惑:
第二十页,共二十页。
星期
如果让大家去研究水位的 变化情况,你该怎么做呢? 说说你的计划?
实地考察
记录数据
分析数据
写出考察报告
第十四页,共二十页。
【反思小结】①画折线统计图时,要先确定哪一个量或 哪一个数值为0,即基准;②要标出横线和竖线的单位;
③选择单位长度时要考虑使统计图有明显的上升和下降的 幅度,能看出变化情况.
11厘米
第十六页,共二十页。
小亮 小颖
154 163
-6 +3
小山 165
+5
2、某水库上周日的水位是30米,下表是该水库本周 内水位高低的变化情况(用正数记水位比前一日上升 数,用负数记水位比前一日下降数),那么本周水位 最低的是( D )
A.星期日 B.星期四 C.星期五 D.星期六
第十七页,共二十页。
星期 一 二 三 四 五 六 日
水位变化 +0.20 +0.81 -0.35 +0.03 +0.28 -0.36 -0.01 (米)
注:正号表示水位比前一天上升,负号表示水位比前一天下降.
方法三: 根据变化数据画折线图
北师大版七年级数学上册第二章《有理数及其运算》2.6有理数的加减混合运算 课件
2.6有理数的加减混合运算
例题精讲 3 3 例2.计算( 32 ) 10
4
4
例3下列变形中,正确的是
( 1) ( 2) ( 3) ( 4) ( 5) 1-4+5-4=1-4+4-5; 1-2+3-4=2-1+4-3; 2-3-4+5=2-3+5-4; 2-3-4+5=2-(3-4)+5; 2-3-4+5=2-3-(4+5)
19 -3
20 +5
11
例题精讲 例6电子跳蚤落在数轴上表示2003这个数的 点上。它第一步往左跳一个单位,第二步 往右跳2个单位,第三步往左跳 3个单位, 第四步往右跳4个单位,依次类推,当跳了 一百步时,电子跳蚤恰好落在了 K 点。你 能求出点K所表示的数吗?
2.6有理数的加减混合运算
12
2.6有理数的加减混合运算
ቤተ መጻሕፍቲ ባይዱ
15
2.6有理数的加减混合运算
课堂检测
完成《创新导学》P26-24 T1-6;
分层作业:
必做题:(1)课本P44知识技能 选做题:(2)完成《一课一练》2.6
16
2.6有理数的加减混合运算
这节课你有什么收获?
2.6有理数的加减混合运算
14
2.6有理数的加减混合运算
课堂小结
1.有理数的加减法可以利用有理数减法法则统一成加法。] 2.根据有理数的减法法则,把减法都可以转化为加法,在这样 的式子里,通常有的加号可以省略,每个数的括号也可以省略.所 以,在进行有理数的加减混合运算,一般先要化成省略加号及括号 的和的形式。 目的:鼓励学生结合本节课的学习,谈谈自己的收获和感想,学 会及时的反思和总结。
北师大版七年级数学上册 第二章《有理数及其运算》
1
七年级数学上册第二章有理数的运算讲义(含解析)
七年级数学上册第二章有理数的运算考试要求:重难点:1.理解并掌握加减法法则且能熟练运用法则计算2.理解并掌握乘除法法则且能熟练运用法则计算3.能利用有理数的运算法则简化运算4.能借助数轴比较有理数的大小例题精讲:模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;①求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)①三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.a b c a b c++=++(加法结合律)()()有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.①带分数可分为整数与分数两部分参与运算.①多个加数相加时,若有互为相反数的两个数,可先结合相加得零.①若有可以凑整的数,即相加得整数时,可先结合相加.①若有同分母的分数或易通分的分数,应先结合在一起.①符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。
有理数的加减混合运算的实际应用
票的涨跌情况(单位:元).
星期 一 二 三 四 五 六
每股 变化
+4
+4.5
-1
-2.5
-6
+2
情况
(1)星期三收盘时,每股是多少元? (2)本周内最高收盘价是每股多少元?最 低收盘价是每股多少元? (3)已知小明父亲买进股票时付了交易
额1.5‰的手续费,卖出时需付成交额 1.5‰的手续费和1‰的交易税,如果他
(3)完成下面的本周水位记录表:
星期 一 二 三 四 五 六 日 水位
记录 33.60 /m
解: 表格填写如下:
星期 一 二 三 四 五 六 日 水位 记录 33.60 34.41 34.06 34.09 34.37 34.01 34.00
/m
(4)以警戒水位为0点,用折线统计图表示本 周的水位变化情况.
注:正号表示水位比前一天上升,负号表示 水位比前一天下降.
对正、负数意义的标注.
(1)本周哪一天河流的水位最高?哪一天河 流的水位最低?它们位于警戒水位之上还 是之下?与警戒水位的距离分别是多少米?
解: 本周每天的水位记录为: 周一:33.4+0.20=33.60(m), 周二:33.4+0.20+0.81=34.41(m), 周三:33.4+0.20+0.81-0.35=34.06(m), 周四:33.4+0.20+0.81-0.35+0.03 =34.09(m), 周五:33.4+0.20+0.81-0.35+0.03+0.28 =34.37(m), 周六:33.4+0.20+0.81-0.35+0.03+0.280.36=34.01(m), 周日:33.4+0.20+0.81-0.35+0.03+0.280.36-0.01=34.00(m).
初中数学《北师大版》教材目录
初中数学《北师大版》教材目录七年级上册:第一章丰富的图形世界⑴生活中的立体图形(2)⑵展开与折叠(8)⑶截一个几何体(13)⑷从不同方向看(15)⑸生活中的平面图形(22)回顾与思考(27)复习题(27)第二章有理数及其运算⑴数怎么不够用了(31)⑵数轴(36)⑶绝对值()⑷有理数的加法(41)⑸有理数的减法(44)⑹有理数的加减混合运算(52)⑺水位的变化(62)⑻有理数的乘法(64)⑼有理数的除法(69)⑽有理数的乘方(72)⑾有理数的混合运算(77)⑿计算器的使用(80)回顾与思考(84)复习题(84)第三章字母表示数⑴字母能表示什么(90)⑵代数式(93)⑶代数式的值(98)⑷合并同类项(102)⑸去括号(108)⑹探索规律(111)回顾与思考(114)复习题(115)第四章平面图形及其位置关系⑴线段、射线、直线(120)⑵比较线段的长短(123)⑶角的度量与表示(126)⑷角的比较(131)⑸平行(135)⑹垂直(138)⑺有趣的七巧板(142)⑻图案设计(144)回顾与思考(146)复习题(146)第五章一元一次方程⑴你今年几岁了(149)⑵解方程(154)⑶日历中方程(161)⑷我变胖了(163)⑸打折销售(168)⑹“希望工程”义演(170)⑺能追上小明吗(172)⑻教育储蓄(174)回顾与思考(176)复习题(176)第六章生活中的数据⑴100万有多大(179)⑵科学计数法(181)⑶扇形统计图(185)⑷月球上有水吗(189)⑸统计图的选择(192)回顾与思考(196)复习题(197)课题学习制作一个尽可能大的无盖长方体(212)总复习(214)第七章平面图形的认识⑴整式(2)⑵整式的加减(6)⑶同底数幂的乘法(12)⑷幂的乘方与积的乘方(15)⑸同底数幂的除法(19)⑹整式的乘法(22)⑺平方差公式(29)⑻完全平方公式(33)⑼整式的除法(39)回顾与思考(44)复习题(44)第八章平行线与相交线⑴台球桌面上角(50)⑵探索直线平行的条件(53)⑶平行线的特征(59)⑷用尺规作线段和角(63)回顾与思考(69)复习题(69)第九章生活中的数据⑴认识百万分之一(74)⑵近似数和有效数字(78)⑶世界新生儿图(84)回顾与思考(90)复习题(90)课题学习制作“人口图”(94)第十章概率⑴游戏公平吗(98)⑵摸到红球的概率(105)⑶停留在黑砖上概率(109)回顾与思考(113)复习题(113)第十一章三角形⑴认识三角形(117)⑵图形的全等(128)⑶图案设计(132)⑷全等三角形(135)⑸探索三角形全等的条件(138)⑹作三角形(147)⑺利用三角形全等测距离(150)⑻探索直角三角形全等的条件(153)回顾与思考(157)复习题(157)第十二章变量之间的关系⑴小车下滑的时间(163)⑵变化中的三角形(167)⑶温度的变化(171)⑷速度的变化(176)回顾与思考(180)复习题(180)第十三章生活中的轴对称⑴轴对称现象(186)⑵简单的轴对称图形(191)⑶探索轴对称的性质(197)⑷利用轴对称设计图案(200)⑸镜子改变了什么(203)⑹镶边与剪纸(207)回顾与思考(210)复习题(210)总复习(215)第一章勾股定理⑴探索勾股定理(2)⑵能得到直角三角形吗(9)⑶蚂蚁怎样走最近(13)回顾与思考(16)复习题(16)课题学习拼图与勾股定理(19)第二章实数⑴数怎么不够用了(25)⑵平方根(31)⑶立方根(36)⑷公园有多宽(39)⑸用计算器开方(41)⑹实数(44)回顾与思考(52)复习题(52)第三章图形的平稳与旋转⑴生活中平移(57)⑵简单的平移作图(61)⑶生活中旋转(66)⑷简单的旋转作图(69)⑸它们是怎样变化过来的(71)⑹简单的图案设计(74)回顾与思考(78)复习题(78)第四章四边形性质探索⑴不行四边形的性质(83)⑵不行四边形的判别(88)⑶菱形(92)⑷矩形、正方形(95)⑸梯形(101)⑹探索多边形的内角和与外角和(106)⑺平面图形的密铺(111)⑻中心对称图形(114)回顾与思考(117)复习题(117)第五章位置的确定⑴确定位置(122)⑵平面直角坐标系(130)⑶变化的鱼(138)回顾与思考(145)复习题(145)第六章一次函数⑴函数(150)⑵一次函数(154)⑶一次函数的图象(159)⑷确定一次函数的表达式(163)⑸一次函数图象的应用(166)回顾与思考(175)复习题(175)第七章二元一次方程组⑴谁的包裹多(181)⑵解二元一次方程组(186)⑶鸡兔同笼(194)⑷增收节支(196)⑸里程碑上的数(199)⑹元一次方程组与一次函数(202)回顾与思考(208)复习题(208)第八章数据的代表⑴平均数(213)⑵中位数与众数(220)⑶利用计算器求平均数(224)回顾与思考(227)复习题(227)总复习(230)第一章一元一次不等式和一元一次不等式组⑴不等关系(2)⑵不等式的基本性质(7)⑶不等式的解集(10)⑷一元一次不等式(13)⑸一元一次不等式与一次函数(18)⑹一元一次不等式组(24)回顾与思考(33)复习题(33)第二章分解因式⑴分解因式(38)⑵提公因式法(42)⑶运用公式法(47)回顾与思考(54)复习题(54)第三章分式⑴分式(58)⑵分式的乘除法(66)⑶分式的加减法(70)⑷分式方程(77)回顾与思考(85)复习题(85)第四章相似图形⑴线段的比(90)⑵黄金分割(97)⑶形状相同的图形(102)⑷相似多边形(107)⑸相似三角形(113)⑹探索三角形相似的条件(117)⑺测量旗杆的高度(124)⑻相似多边形的性质(128)⑼图形的放大与缩小(135)回顾与思考(142)复习题(142)课题学习制作视力表(147)第五章数据的收集与处理⑴每周干家务活的时间(152)⑵数据的收集(155)⑶频数与频率(159)⑷数据的波动(168)回顾与思考(177)复习题(177)课题学习吸烟的危害(181)第六章证明(一)⑴你能肯定吗(184)⑵定义与命题(188)⑶为什么它们平行(198)⑷如果两条直线平行(202)⑸三角形内角和定理的证明(205)⑹关注三角形的外角(210)回顾与思考(214)复习题(214)总复习(218)附:标准对数视力表中的“E”形图(228)第一章证明(二)⑴你能证明它们吗(2)⑵直角三角形(15)⑶线段的垂直平分线(24)⑷角平分线(31)回顾与思考(38)复习题(38)第二章一元二次方程⑴花边有多宽(42)⑵配方法(48)⑶公式法(57)⑷分解因式法(60)⑸为什么是0.618()回顾与思考(69)复习题(69)第三章证明(三)⑴平行四边形(74)⑵特殊的平行四边形(86)回顾与思考(94)复习题(94)第四章视图与投影⑴视图(98)⑵太阳光与影子(109)⑶灯光与影子(115)回顾与思考(125)复习题(125)第五章反比例函数⑴反比例函数(131)⑵反比例函数的图象与性质(134)⑶反比例函数的应用(143)回顾与思考(147)复习题(147)课题学习猜想、证明与拓广(150)第六章频率与概率⑴频率与概率(157)⑵投针试验(169)⑶生日相同的概率(172)⑷池塘里有多少条鱼(176)回顾与思考(180)复习题(180)总复习(183)第一章直角三角形的边角关系⑴从梯子的倾斜程度谈起(2)⑵30o、45o、60o角的三角函数值(10)⑶三角函数的有关计算(14)⑷船有触礁的危险吗(21)⑸测量物体的高度(25)回顾与思考(29)复习题(29)第二章二次函数⑴二次函数所描述的关系(34)⑵结识抛物线(38)⑶刹车距离与二次函数(42)⑷二次函数y=ax2+bx+c的图象(46)⑸用三种方法表示二次函数(56)⑹何时获得最大利润(59)⑺最大面积是多少(62)⑻二次函数与一元二次方程(64)回顾与思考(73)复习题(73)课题学习拱桥设计(79)第三章圆⑴车轮为什么做成圆形(83)⑵圆的对称性(88)⑶圆周角与圆心角的关系(100)⑷确定圆的条件(109)⑸直线和圆的位置关系(113)⑹圆和圆的位置关系(122)⑺弧长及扇形的面积(129)⑻圆锥的侧面积(133)回顾与思考(136)复习题(136)课题学习设计遮阳篷(144)第四章统计与概率⑴50年的变化(149)⑵哪种方式更合算(165)⑶游戏公平吗(170)回顾与思考(175)复习题(175)总复习(182)。
2019版七年级上册初一数学北师大版全套课件学案作业本作业本第2章第9课时有理数的加减混合运算(3)
星期 一 二 三 四 五 每股涨 跌/元 -0.1 +0.4 -0.2 -0.4 +0.5 (注:正号表示股价比前一天上涨,负号表示股价比前一天下 跌)
(1)周四收盘时,每股多少元? (2)本周内哪一天股价最高?最高是多少元? (3)与上周末相比25.20+(-0.1+0.4-0.2-0.4)= 24.9(元). (2)本周星期二股价最高,是 25.5 元. (3)星期五收盘时每股是 25.4 元,与上周末相比,本周末该股 票上涨了.
解:A 处比 B 处高-37.4-(-129.8)=92.4(米), B 处比 C 处高-129.8-(-71.3)=-58.5(米).
6.七(2)班参加一次数学竞赛的平均分数为 65 分.
(1)下表中给出了该班参赛的 10 名同学的分数情况,请完成下
表:
姓名 小远 小君 小琴 小峰 小晶 小炯 小杰 小雯 小燕 小音
的位置,则该潜水捕捞员在洋流过后,下潜了( C )
A.6 米
B.13 米
C.22 米
D.23 米
2.有人用 600 元买了一匹马,又以 700 元的价钱卖了出去;
然后,他再用 800 元把它买回来,最后以 900 元的价钱卖出.在
这桩马的交易中,他( D )
A.收支平衡
B.赚了 100 元
C.赚了 300 元
成绩 63 58 81 65 53 68 58 82 60 62
与平
均成 绩的
-2
-7 +16
0
-12 +3 -7 +17 -5 -3
差值
(2)谁的分数最高? (3)最高分与最低分相差多少?
解:(2)小雯的分数最高. (3)最高分比最低分高 29 分.
7.股市一周内周六、周日两天不开市,股民小王上周五以每 股 25.20 元的价格买进某公司股票 1 000 股,下表为本周内每 天该股票的涨跌情况:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9课时 有理数的加减混合运算(3)
精典范例(变式练习) 巩固提高
精 典 范 例
例1. 如下表为某个雨季某水库管理员记录的水 库一周内的水位变化情况,警戒水位为150米. 注:正数表示比前一天水位上升,负数表示比前 一天水位下降.
(1)本周哪一天水位最高?有多少米? (2)根据给出的数据,请利用折线统计图分析一下 本周内该水库的水位变化情况.(在不放水的情况 下)
星期日生产的摩托车最少,是225辆.
巩 固 提 高
9.如下表是小明记录的今年雨季一周河水的 水位变化情况:(上周末的水位达到警戒水位)
(注:正号表示水位比前一天上升,负号表示 水位比前一天下降)
巩 固 提 高
(1)本周哪一天河流的水位最高?哪一天河 流的水位最低?它们位于警戒水位之上还是之 下?与警戒水位的距离分别是多少米? (2)与上周相比,本周末河流水位是上升了 还是下降了?
巩 固 提 高
4.张锋近期几次数学测试成绩如下:第一次85 分,第二次比第一次高9分,第三次比第二次
低12分,第四次又比第三次高10分.那么他第
四次测验的成绩是( C )
A.72分
C.92分
B.82分
D.94分
巩 固 提 高
5. 某运动员在东西走向的公路上练习跑步,跑 步情况记录如下(向东为正,单位:米):
38.8 1.5 2 39.6 1 37.5
(2)在这一天的8时到16时之间,此病人哪个时刻体 温最高? (3)这一天此病人平均体温是多少?(结果保留两位小数) (4)请用折线统计图,表示此病人这几小时的体温情况.
变 式 练 习
(2)由(1)题的表中可知14时病人体温最高. (3)将每个时刻与正常体温差加起来的和再除以 6,结果加上37得38.57 ℃
巩 固 提 高
解:(1)设警戒水位为0,则: 星期一:+0.20米,星期二:+1.01米,星期三:+0.66米,星期
四:+0.69米,星期五:+0.97米,星期六:+0.61米,星期日:
+0.60米. 所以本周星期二河流水位最高,位于警戒水位之上1.01米;星 期一河流的水位最低,位于警戒水位之上0.20米. (2)跟上周相比,本周的水位上升了.
8.某摩托车厂本周计划每日生产250辆摩托车.由于
工人实行轮休,每日上班人数不一定相等,实际每日
生产量与计划量相比情况如下表:(增加的辆数记为
正数,减少的数记为负数)
根据记录: 哪几天生产的摩托车比计划量多?星期几 生产的摩托车最多,是多少辆?星期几生产的摩托车 最少,是多少辆?
巩 固 提 高
解:星期一:250-5=245;星期二:250+7=257; 星期三:250-3=247;星期四:250+4=254; 星期五:250+2=252;星期六:250-9=241; 星期日:250-25=225. 故星期二、星期四、星期五生产的摩托车比计 划量多;星期二生产的摩托车最多,是257辆;
(4)图略.
精 典 范 例
例2.饭店餐桌上的海参、鲍鱼等价格昂贵的海洋 动物,有很大一部分是潜水捕捞员下潜到比较深 的海域中捕获的,某天一潜水捕捞员下海捕捞, 他从水面潜入水下21米,后因海水中的洋流,上 升了8米,在洋流过去后,他下潜到预定水下35米 的位置,则该潜水捕捞员在洋流过后,下潜了 ( C ) A.6米 B.13米 C.22米 D.23米 【解答】解:水面为0,一个潜水员从水面潜入 水下21米,又上升8m,他下潜到预定水下35米的 位置,故应再下潜﹣21+8﹣(﹣35)=22m. 故选C.
谢谢!
精 典 范 例
解:(1)周四水位最高, (+0.38+0.25+0.54+O.13)+150=151.3(米). (2)由已知条件,可求出一周内各天相对于警戒水 位的变化情况,列表如下:
以警戒水位为0点,用折线 统计图表示在不放水的情 况下该水库一周内的水位 变化情况如图所示.
变 式 练 习
1.某医院发热门诊住进一位病人,护士每隔2小时 左右为此病人量一次体温(℃)(正常人体温是37℃). (1)完成下表:
1000,﹣1200,1100,﹣800,1400,该运动
员跑的路程共为( B )
A.1500米
C.4500米
B.5500米
D.3700米
巩 固 提 高
6. 某住宅小区五月份1日至6日每天用水量变化
情况如图,那么这六天的平均用水量
32吨 是___________.
巩 固 提 高
7.“十一”黄金周期间,某风景区在7天假期中
每天旅游的人数变化如下表(正数表示比前一
天多的人数,负数表示比前一天少的人数):
巩 固 提 高
(1)若9月30日的游客为3万人,请完成下面7 天游客人数记录表:
5.4 5.8 5.4 4.6 4.8 3.6
(2)七天内,游客人数最多的一天有 人,游客人数最少的一天是第 7 5.8 万
天.
巩 固 提 高
变 式 练 习
2.去年7月份小明到银行开户,存入1 500元,以后 每月根据收支情况存入一笔钱,下表为该人从8月 份到12月份的存款情况:
则截止到去年12月份,存折上共有( D ) A.9 750元 B.8 050元 C.1 750元 D.9 550元
巩 固 提 高
3.某天上午6:00虹桥水库的水位为30.4米,到 上午11:30分水位上涨了5.3米,到下午6:00水 位下跌了0.9米.到下午6:00水位为 ( B ) A.26米 C.35.8米 B.34.8米 D.36.6米