人教版八年级数学下册勾股定理折叠问题中应用
人教版八年级下册数学 第17章 勾股定理—— 勾股定理的应用及折叠问题
勾股定理的应用及折叠问题(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.【能力提高篇】【经典例题】1.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4B.4πC.8πD.82.如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形.那么,这四个图形中,其面积S1、S2、S3满足S1+S2=S3的个数是()A.1B.2C.3D.43.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2017=()A.B.C.D.4.现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是6,小正方形的面积是2,求(a+b)2的值.5.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)),图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为3,求S1+S2+S3的值.6.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?7.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的)8.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B 点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.9.如图,△ABC中,∠C=90°,AC=3,AB=5,点D是边BC上一点.若沿AD将△ACD翻折,点C 刚好落在AB边上点E处,则BD=.10.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE的长是()A.3 B.4 C.5 D.611.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是()A.3B.4C.5D.612.如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为()A.B.1C.D.213.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2。
人教版八年级数学下册《勾股定理的应用——折叠问题》教学设计
义务教育课程标准试验教科书数学八年级下册第十七章《勾股定理》习题课勾股定理的应用——折叠问题教学设计一.教学目标:知识与技能1、学习利用方程思想,转化思想,勾股定理解决折叠问题中边长问题。
2、识别三角形,四边形折叠中经典问题。
3、学会运用折叠解决折叠中综合题。
过程与方法1 经历探究勾股定理在折叠问题中的应用过程,进一步体会勾股定理在折叠问题中发挥的作用。
2 通过解决问题的过程,树立类比转化的思想,方程的思想。
情感态度与价值观1 在数学活动中发展学生的探究意识和合作交流的习惯。
2 体会勾股定理的应用价值,增加学生应用数学知识解决问题的经验。
3 学习过程中体会获得成功的喜悦,提高学生学习数学的兴趣和信心。
二重点难点1 重点:运用勾股定理解决折叠问题。
2 难点:利用轴对称找到数量关系,列出方程。
三 教学准备:导学案 课件四 教学设计:(一)复习回顾:填空:1 在Rt ∆ABC 中,∠C=90°,那么三边a,b,c 之间的关系为( )。
2 轴对称的定义:平面内如果把一个图形沿着某一条直线折叠后能够与另一个图形( ),那么这两个图形关于这条直线( ),这条直线叫( ),折叠后重合的点叫 ( )。
设计意图:学生回顾勾股定理的内容和轴对称定义,为本节课利用这些知识点做好铺垫。
二 具体探究过程:(一)折叠三角形探究一(一次折叠)如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 的长 设计意图: 由学生小组合作完成,引导学生主动探究,养成良好的思维习惯,培养与他人合作交流的意识,激发学生强烈的求知欲。
让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。
A CB解:设CD=x,在R t ∆ABC 中,AC=6,BC=8,易求AB=10由折叠可知,DE=CD=x,AE=AC=6, BE=4,DB=8-x,在 R t ∆DEB 中 x ²+4²=(8-x)²,解得x=3, CD=3 探究二:(二次折叠)如图,∆ABC 中,AB=AC=13,BC=10,将AB 向AC折叠到CA 边上,折痕为CE,求∆ACE 的面积分析:这道题是两次折叠,已知条件也较上题复杂,仍让学生小组合作探究,找学生到前面给大家讲解,提高学生分析问题解决问题的能力。
人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)
人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)类型一 利用勾股定理解决三角形的折叠问题1.如图 △ABC 中 ∠ACB =90° AC =8 BC =6 将△ADE 沿DE 翻折使点A 与点B 重合 则CE 的长为 .思路引领:设CE =x 则AE =BE =8﹣x 在Rt △BCE 中 由勾股定理可得62+x 2=(8﹣x )2 即可解得答案.解:设CE =x 则AE =BE =8﹣x在Rt △BCE 中 BC 2+CE 2=BE 2∴62+x 2=(8﹣x )2解得x =74故答案为:74. 总结提升:本题考查直角三角形中的折叠问题 解题的关键是掌握折叠的性质 熟练应用勾股定理列方程解决问题.2.(2021秋•介休市期中)如图所示 有一块直角三角形纸片 ∠C =90° AC =8cm BC =6cm 将斜边AB 翻折 使点B 落在直角边AC 的延长线上的点E 处 折痕为AD 则CE 的长为 cm .思路引领:根据勾股定理可将斜边AB 的长求出 根据折叠的性质知 AE =AB 已知AC 的长 可将CE 的长求出.解:在Rt △ABC 中∵∠C=90°AC=8cm BC=6cm∴AB=√AC2+BC2=10cm根据折叠的性质可知:AE=AB=10cm∵AC=8cm∴CE=AE﹣AC=2cm即CE的长为2cm故答案为:2.总结提升:此题考查翻折问题将图形进行折叠后两个图形全等是解决折叠问题的突破口.3.(2020秋•金台区校级期末)如图在△ABC中∠ACB=90°点E F在边AB上将边AC沿CE翻折使点A落在AB上的点D处再将边BC沿CF翻折使点B落在CD的延长线上的点B′处(1)求∠ECF的度数;(2)若CE=4 B′F=1 求线段BC的长和△ABC的面积.思路引领:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB' 再根据∠ACB=90°即可得出∠ECF=45°;(2)在Rt△BCE中根据勾股定理可得BC=√41设AE=x则AB=x+5 根据勾股定理可得AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41 求得x=165得出AE的长和AB的长再由三角形面积公式即可得出S△ABC.解:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB'又∵∠ACB=90°∴∠ACD+∠BCB'=90°∴∠ECD+∠FCD=12×90°=45°即∠ECF=45°;(2)由折叠可得:∠DEC=∠AEC=90°BF=B'F=1 ∴∠EFC=45°=∠ECF∴CE=EF=4∴BE=4+1=5在Rt△BCE中由勾股定理得:BC=√BE2+CE2=√52+42=√41设AE=x则AB=x+5∵Rt△ACE中AC2=AE2+CE2Rt△ABC中AC2=AB2﹣BC2∴AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41解得:x=16 5∴AE=165AB=AE+BE=165+5=415∴S△ABC=12AB×CE=12×415×4=825.总结提升:本题主要考查了折叠变换的性质、勾股定理、三角形面积等知识;熟练掌握折叠变换的性质由勾股定理得出方程是解题的关键.4.(2022秋•安岳县期末)如图在△ABC中∠C=90°把△ABC沿直线DE折叠使△ADE与△BDE 重合.(1)若∠A=34°则∠CBD的度数为;(2)当AB=m(m>0)△ABC的面积为2m+4时△BCD的周长为(用含m的代数式表示);(3)若AC=8 BC=6 求AD的长.思路引领:(1)根据折叠可得∠1=∠A=34°根据三角形内角和定理可以计算出∠ABC=56°进而得到∠CBD=22°;(2)根据三角形ACB的面积可得12AC•BC=2m+4 进而得到AC•BC=4m+8 再在Rt△CAB中CA2+CB2=BA2再把左边配成完全平方可得CA+CB的长进而得到△BCD的周长;(3)根据折叠可得AD=DB设CD=x则AD=BD=8﹣x再在Rt△CDB中利用勾股定理可得x2+62=(8﹣x)2再解方程可得x的值进而得到AD的长.解:(1)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴∠ABD =∠A =34°∵∠C =90°∴∠ABC =180°﹣90°﹣34°=56°∴∠CBD =56°﹣34°=22°故答案为:22°;(2)∵△ABC 的面积为2m +4∴12AC •BC =2m +4 ∴AC •BC =4m +8∵在Rt △CAB 中 CA 2+CB 2=BA 2 AB =m∴CA 2+CB 2+2AC •BC =BA 2+2AC •BC∴(CA +BC )2=m 2+8m +16=(m +4)2∴CA +CB =m +4∵AD =DB∴CD +DB +BC =m +4.即△BCD 的周长为m +4故答案为:m +4;(3)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴AD =DB设CD =x 则AD =BD =8﹣x在Rt △CDB 中 CD 2+CB 2=BD 2x 2+62=(8﹣x )2解得:x =74AD =8−74=254.总结提升:此题主要考查了图形的翻折变换 以及勾股定理 完全平方公式 关键是掌握勾股定理 以及折叠后哪些是对应角和对应线段.5.(2021秋•章丘区期中)(1)如图① Rt △ABC 的斜边AC 比直角边AB 长2cm 另一直角边BC 长为6cm 求AC 的长.(2)拓展:如图②在图①的△ABC的边AB上取一点D连接CD将△ABC沿CD翻折使点B的对称点E落在边AC上.①AE的长.②求DE的长.思路引领:(1)在Rt△ABC中由勾股定理可求AB的长即可求解;(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm于是得到答案;②在Rt△ADE中由勾股定理可求DE的长.解:(1)设AB=xcm则AC=(x+2)cm∵AC2=AB2+BC2∴(x+2)2=x2+62解得x=8∴AB=8cm∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm∴∠AED=90°AE=AC﹣EC=4(cm);②设DE=DB=ycm则AD=AB﹣BD=(8﹣y)cm在Rt△ADE中AD2=AE2+DE2∴(8﹣y)2=42+y2解得:y=3∴DE=3(cm).总结提升:本题考查了翻折变换折叠的性质勾股定理利用勾股定理列出方程是本题的关键.类型二利用勾股定理解决长方形的折叠问题6.(2022•纳溪区模拟)如图在矩形ABCD中AB=5 AD=3 点E为BC上一点把△CDE沿DE翻折 点C 恰好落在AB 边上的F 处 则CE 的长为 .思路引领:利用勾股定理得出AF 的长度 再利用折叠的性质 在△BEF 中求解BE 的长 即可得出CE 的长度.解:在矩形ABCD 中 AB =5 AD =3 由折叠的性质可得:DF =DC =AB =5∴AF =√DF 2−AD 2=√52−32=4∴BF =AB ﹣AF =5﹣4=1设CE =x 则:EF =CE =x BE =BC ﹣CE =3﹣x在Rt △BEF 中 由勾股定理可得:12+(3﹣x )2=x 2解得:x =53∴CE =53故答案为:53. 总结提升:本题考查了折叠的性质、矩形的性质和勾股定理等知识点 解题的关键是利用AF 求出BF 的长度.7.(2021•郯城县校级模拟)如图 在长方形ABCD 中 AB =3cm AD =9cm 将此长方形折叠 使点D 与点B 重合 折痕为EF 则△ABE 的面积为( )cm 2.A .12B .10C .6D .15思路引领:由长方形的性质得BAE =90° 再由折叠的性质得BE =ED 然后在Rt △ABE 中 由勾股定理得32+AE2=(9﹣AE)2解得AE=4(cm)即可求解.解:∵四边形ABCD是长方形∴∠BAE=90°∵将此长方形折叠使点B与点D重合∴BE=ED∵AD=9=AE+DE=AE+BE∴BE=9﹣AE在Rt△ABE中由勾股定理得:AB2+AE2=BE2∴32+AE2=(9﹣AE)2解得:AE=4(cm)∴S△ABE=12AB•AE=12×3×4=6(cm2)故选:C.总结提升:本题考查了翻折变换的性质、矩形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.8.(2020春•余干县校级期末)如图把长方形纸片ABCD沿EF折叠使点B落在边AD上的点B'处点A落在点A'处.(1)试说明B'E=BF;(2)设AE=a AB=b BF=c试猜想a b c之间的关系并说明理由.思路引领:(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形△A'B'E中由勾股定理可得a b c之间的关系.(1)证明:由折叠的性质得:B'F=BF∠B'FE=∠BFE在长方形纸片ABCD中AD∥BC∴∠B'EF=∠BFE∴∠B'FE=∠B'EF∴B'F=B'E∴B'E=BF.(2)解:a b c之间的关系是a2+b2=c2.理由如下:由(1)知B'E=BF=c由折叠的性质得:∠A'=∠A=90°A'E=AE=a A'B'=AB=b.在△A'B'E中∵∠A'=90°∴A'E2+A'B'2=B'E2∴a2+b2=c2.总结提升:本题考查了翻折变换的性质、矩形的性质、等腰三角形的判定、勾股定理等知识;灵活利用折叠的性质进行线段间的转化是解题的关键.9.(2020秋•罗湖区校级期末)如图把一张长方形纸片ABCD折叠起来使其对角顶点A与C重合D 与G重合若长方形的长BC为8 宽AB为4 求:(1)DE的长;(2)求阴影部分△GED的面积.思路引领:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中根据AG2+EG2=AE2构建方程即可解决问题;(2)过G点作GM⊥AD于M根据三角形面积不变性AG×GE=AE×GM求出GM的长根据三角形面积公式计算即可.解:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中AG2+EG2=AE2∴16+x2=(8﹣x)2解得x=3∴DE=3.(2)过G 点作GM ⊥AD 于M则12•AG ×GE =12•AE ×GM AG =AB =4 AE =CF =5 GE =DE =3 ∴GM =125∴S △GED =12GM ×DE =185.总结提升:本题主要考查了折叠的性质、勾股定理以及三角形面积不变性 灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.类型三 利用勾股定理解决正方形的折叠问题10.(2019•黔东南州一模)如图 将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处 点C 落在点Q 处 折痕为FH 则线段AF 的长为( )A .32B .3C .94D .154思路引领:由正方形的性质和折叠的性质可得EF =DE AB =AD =6cm ∠A =90° 由勾股定理可求AF 的长.解:∵将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处∴EF =DE AB =AD =6cm ∠A =90°∵点E 是AB 的中点∴AE =BE =3cm在Rt △AEF 中 EF 2=AF 2+AE 2∴(6﹣AF )2=AF 2+9∴AF=9 4故选:C.总结提升:本题考查了翻折变换正方形的性质勾股定理利用勾股定理求线段的长度是本题的关键.11.如图将边长为8cm的正方形纸片ABCD折叠使点D落在BC边的中点E处点A落在点F处折痕为MN则线段CN的长是()A.3cm B.4cm C.5cm D.6cm思路引领:由折叠的性质可得DN=NE由中点的性质可得EC=4cm结合正方形的性质可得∠BCD=90°;设CN的长度为xcm则EN=DN=(8﹣x)cm接下来在直角△CEN中运用勾股定理就可以求出CN的长度.解:∵四边形MNEF是由四边形ADMN折叠而成的∴DN=NE.∵E是BC的中点且BC=8cm∴EC=4cm.∵四边形ABCD是正方形∴∠BCD=90°.设CN的长度为xcm则EN=DN=(8﹣x)cm由勾股定理NC2+EC2=NE2得x2+42=(8﹣x)2解得x=3.故选:A.总结提升:本题考查翻折变换的问题折叠问题其实质是轴对称对应线段相等对应角相等找到相应的直角三角形利用勾股定理求解是解决本题的关键.第二部分专题提优训练1.(2022秋•慈溪市校级期中)在Rt△ABC中∠B=90°AB=4 BC=8 D、E分别是边AC、BC上的点将△ABC沿着DE进行翻折点A和点C重合则EC=.思路引领:设EC =x 在Rt △ABE 中 由勾股定理得42+(8﹣x )2=x 2 即可解得答案.解:设EC =x 则BE =8﹣x∵将△ABC 沿着DE 进行翻折 点A 和点C 重合∴AE =EC =x在Rt △ABE 中 AB 2+BE 2=AE 242+(8﹣x )2=x 2解得x =5∴EC =5故答案为:5.总结提升:本题考查直角三角形中的翻折问题 解题的关键是掌握翻折的性质 能应用勾股定理列方程解决问题.2.(2021秋•靖江市期中)如图 在Rt △ABC 中 ∠C =90° D 是AB 的中点 AD =5 BC =8 E 是直线BC 上一动点 把△BDE 沿直线ED 翻折后 点B 落在点F 处 当FD ⊥BC 时 线段BE 的长为 .思路引领:分点F 在BC 下方 点F 在BC 上方两种情况讨论 由勾股定理可BC =4 由平行线分线段成比例可得BD AD =BP BC =DP AC =12 求出FP 由勾股定理可求BE 的长. 解:若点F 在BC 下方时 DF 与BC 交于点P 如图1所示:∵D 是AB 的中点∴BD =AD =5∴AB =2AD =10∵∠C =90° BC =8∴AC =√AB 2−BC 2=√102−82=6∵点D 是AB 的中点∵FD ⊥BC ∠C =90°∴FD ∥AC∴BD AD =BP BC =DP AC =12 ∴BP =PC =12BC =4 DP =12AC =3∵△BDE 沿直线ED 翻折∴FD =BD =5 FE =BE∴FP =FD ﹣DP =5﹣3=2在Rt △FPE 中 EF 2=FP 2+PE 2∴BE 2=22+(4﹣BE )2解得:BE =52;若点F 在BC 上方时 FD 的延长线交BC 于点P 如图2所示:FP =DP +FD =3+5=8在Rt △EFP 中 EF 2=FP 2+EP 2∴BE 2=64+(BE ﹣4)2解得:BE =10故答案为:52或10.总结提升:此题考查了折叠的性质、平行线的性质、直角三角形的性质以及勾股定理等知识 熟练掌握翻折变换的性质是解题的关键.3.如图 在Rt △ABC 中 AC =6 BC =8 D 为BC 上一点 将Rt △ABC 沿AD 折磨 点C 恰好落在AB 边上的E 点 求BD 的长.思路引领:由勾股定理求出AB=10 由折叠的性质得出CD=DE∠C=∠AED=90°AE=AC=6 得出BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得出方程解方程即可.解:∵Rt△ABC中AC=6 BC=8∴AB=√62+82=10由折叠的性质得:CD=DE∠C=∠AED=90°AE=AC=6∴BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得:x2+42=(8﹣x)2解得:x=3∴BD=8﹣3=5.总结提升:本题考查了翻折变换的性质、勾股定理等知识;熟练掌握翻折变换的性质由勾股定理得出方程是解题的关键.4.(2018秋•襄汾县校级月考)如图在Rt△ABC中∠C=90°AC=8 BC=6 按图中所示方法将△BCD沿BD折叠使点C落在边AB上的点C'处求AD的长及四边形BCDC′的面积.思路引领:利用勾股定理列式求出AB根据翻折变换的性质可得BC′=BC C′D=CD然后求出AC′设AD=x表示出C′D、AC′然后利用勾股定理列方程求解即可求出AD;然后根据三角形的面积公式计算即可求出四边形BCDC′的面积.解:∵∠C=90°AC=8 BC=6∴AB=√AC2+BC2=10由翻折变换的性质得BC′=BC=6 C′D=CD∴AC′=AB﹣BC′=10﹣6=4设CD=x则C′D=x AD=8﹣x在Rt△AC′D中由勾股定理得AC′2+C′D2=AD2即42+x2=(8﹣x)2解得x=3即CD=3∴AD=8﹣x=5;由折叠可知:S△BCD=S△BC′D∴四边形BCDC′的面积=2S△BCD=2×12×CD•BC=3×6=18.总结提升:本题考查了翻折变换的性质勾股定理此类题目熟记性质并利用勾股定理列出方程是解题的关键.5.(2021春•厦门期中)在矩形ABCD中AB=3 BC=4 E是AB上一个定点点F是BC上一个动点把矩形ABCD沿直线EF折叠点B的对应点B′落在矩形内部.若DB′的最小值为3 则AE=53.思路引领:连接DE则DB′+EB′≥DE由EB′=EB为定值故当D E B′三点共线时DB′最小利用勾股定理建立方程即可求解.解:如图1 连接DE由折叠性质可得:EB′=EB∵DB′+EB′≥DE∴DB′≥DE﹣EB′=DE﹣EB∵点E为定点∴EB为定值∴当D E B′三点共线时DB′最小且最小值为3∴DB′=3如图2∵四边形ABCD 为矩形∴∠A =90° AD =BC =4设AE =x 则:EB ′=EB =AB ﹣AE =3﹣x∴ED =EB ′+DB ′=3﹣x +3=6﹣x在Rt △AED 中 由勾股定理可得:x 2+42=(6﹣x )2解得:x =53∴AE =53故答案为:53. 总结提升:本题考查折叠的性质、矩形的性质、勾股定理等知识点 解题的关键是运用方程思想.6.(2021秋•城阳区校级月考)把一张矩形纸片(矩形ABCD )按如图方式折叠 使顶点B 和点D 重合 折痕为EF .若AB =3cm BC =5cm 则重叠部分△DEF 的面积是( )cm 2.A .2B .3.4C .4D .5.1思路引领:由矩形的性质得AD =BC =5cm CD =AB =3cm ∠A =90° 再由折叠的性质得A 'D =AB =3cm ∠A '=∠A =90° AE '=AE 设AE =xcm 则A ′E =xcm DE =(5﹣x )cm 然后在Rt △A 'DE 中 由勾股定理得出方程 解方程 进而得出DE 的长 即可解决问题.解:∵四边形ABCD 是矩形 AB =3cm BC =5cm∴AD=BC=5cm CD=AB=3cm∠A=90°由折叠的性质得:A'D=AB=3cm∠A'=∠A=90°AE'=AE 设AE=xcm则A′E=xcm DE=(5﹣x)cm在Rt△A'DE中由勾股定理得:A′E2+A′D2=ED2即x2+32=(5﹣x)2解得:x=1.6∴DE=5﹣1.6=3.4(cm)∴△DEF的面积=12DE•CD=12×3.4×3=5.1(cm2)故选:D.总结提升:此题考查了翻折变换的性质、矩形的性质、勾股定理以及三角形面积等知识熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.7.(2017秋•金牛区校级月考)如图在矩形ABCD中E是AD的中点将△ABE沿BE折叠后得到△GBE 延长BG交CD于点F结果发现F点恰好是DC的中点若BC=2√6则AB的长为?思路引领:连接EF由折叠性质得AE=EG∠A=∠EGB=90°BG=AB则∠EGF=90°易证EG=DE由矩形的性质得AB=CD∠C=∠D=90°推出∠EGF=∠D=90°由HL证得Rt△EGF≌Rt△EDF得出FG=FD求得CF=DF=FG=12CD=12AB BF=BG+FG=32AB由勾股定理得出BC2+CF2=BF2即可得出结果.解:连接EF如图所示:由折叠性质得:AE=EG∠A=∠EGB=90°BG=AB ∴∠EGF=90°∵点E是AD的中点∴AE=DE∴EG=DE∵四边形ABCD是矩形∴AB=CD∠C=∠D=90°∴∠EGF =∠D =90°在Rt △EGF 与Rt △EDF 中 {EG =ED EF =EF∴Rt △EGF ≌Rt △EDF (HL )∴FG =FD∵F 点恰好是DC 的中点∴CF =DF =FG =12CD =12AB∴BF =BG +FG =AB +12AB =32AB在Rt △BCF 中 BC 2+CF 2=BF 2即:(2√6)2+(12AB )2=(32AB )2 解得:AB =2√3.总结提升:本题考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识 熟练掌握折叠的性质 证明三角形全等是解题的关键.8.(2018春•新抚区校级期中)如图 在矩形ABCD 中 已知AD =10 AB =8 将矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处 求CE 的长.思路引领:先根据矩形的性质得AD =BC =10 AB =CD =8 再根据折叠的性质得AF =AD =10 EF =DE 在Rt △ABF 中 利用勾股定理计算出BF =6 则CF =BC ﹣BF =4 设CE =x 则DE =EF =8﹣x 然后在Rt △ECF 中根据勾股定理得到x 2+42=(8﹣x )2 再解方程即可得到CE 的长.解:∵四边形ABCD 为矩形∴AD =BC =10 AB =CD =8∵矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处∴AF=AD=10 EF=DE在Rt△ABF中∵BF=√AF2−AB2=6∴CF=BC﹣BF=10﹣6=4设CE=x则DE=EF=8﹣x在Rt△ECF中∵CE2+FC2=EF2∴x2+42=(8﹣x)2解得x=3即CE=3.总结提升:本题考查了折叠的性质:折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和对应角相等.也考查了矩形的性质和勾股定理.9.(2018秋•通川区校级期中)将一张边长为2的正方形纸片ABCD对折设折痕为EF(如图(1));再沿过点D的折痕将∠A翻折使得点A落在线段EF上的点H处(如图(2))折痕交AE于点G则EG 的长度是()A.8﹣4√3B.4√3−6C.4﹣2√3D.2√3−3思路引领:由于正方形纸片ABCD的边长为2 所以将正方形ABCD对折后AF=DF=1 由折叠的性质得出AD=DH=2 AG=GH在Rt△DFH中利用勾股定理可求出HF的长进而求出EH的长再设EG=x在Rt△EGH中利用勾股定理即可求解.解:∵正方形纸片ABCD的边长为2∴将正方形ABCD对折后AE=DF=1∵△GDH是△GDA沿直线DG翻折而成∴AD=DH=2 AG=GH在Rt△DFH中HF=√HD2−DF2=√22−12=√3∴EH=2−√3在Rt△EGH中设EG=x则GH=AG=1﹣x∴GH2=EH2+EG2即(1﹣x)2=(2−√3)2+x2解得x=2√3−3.∴EG=2√3−3.故选:D.总结提升:本题考查了正方形的性质折叠的性质勾股定理关键是学会用方程的思想方法解题.10.(2020秋•新都区校级月考)如图AD是△ABC的中线∠ADC=45°把△ADC沿着直线AD对折点C落在点E的位置.如果BC=6 那么以线段BE为边长的正方形的面积为()A.6B.72C.12D.18思路引领:由题意易得BD=CD=DE=3 再求出∠BDE=90°然后根据勾股定理求出BE最后由正方形的面积进行求解即可.解:∵D是BC中点BC=6∴BD=CD=3由折叠的性质得:CD=DE=3 ∠ADC=∠ADE=45°即∠CDE=90°∴BD=DE=3 ∠BDE=90°在Rt△BDE中由勾股定理得:BE=√BD2+DE2=√32+32=3√2∴以BE为边的正方形面积为:(3√2)2=18故选:D.总结提升:本题考查了折叠的性质、勾股定理、正方形的面积计算等知识熟练掌握勾股定理及折叠的性质是解题的关键.。
人教版八下数学17.1 课时2 勾股定理在实际生活中的应用教案+学案
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时2 勾股定理在实际生活中的应用教案【教学目标】1.会运用勾股定理求线段长及解决简单的实际问题;2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.【教学重点】运用勾股定理求线段长及解决简单的实际问题..【教学难点】能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.【教学过程设计】一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究知识点一:勾股定理的实际应用【类型一】勾股定理在实际问题中的应用例1如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC=5米,则AB=BC2-AC2=12米.6秒后,B′C=13-0.5×6=10米,则AB′=B′C2-AC2=53(米),则船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】利用勾股定理解决方位角问题例2如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了1003km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.解析:根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=1003km,BC=100km,∴AC=AB2+BC2=(1003)2+1002=200(km),∴A、C两点之间的距离为200km.方法总结:先确定△ABC是直角三角形,再根据各边长,用勾股定理可求出AC的长.【类型三】利用勾股定理解决立体图形最短距离问题例3如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM,AM=102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM,AM=202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】运用勾股定理解决折叠中的有关计算例4如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.5解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】勾股定理与方程思想、数形结合思想的应用例5如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C 处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设BC=a m,AC =b m,AD=x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设BC=a m,AC=b m,AD=x m.∵两猴子所经过的路程都是15m,则10+a=x+b=15m.∴a=5,b=15-x.又∵在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x =2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.知识点二:勾股定理与数轴例6如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是 5.那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a的值.【板书设计】17.1 勾股定理课时2 勾股定理在实际生活中的应用1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴【教学反思】在课堂教学中应注意充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时2 勾股定理在实际生活中的应用学案【学习目标】1.会运用勾股定理求线段长及解决简单的实际问题;2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.【学习重点】运用勾股定理求线段长及解决简单的实际问题..【学习难点】能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.【自主学习】一、知识回顾1.你能补全以下勾股定理的内容吗?如果直角三角形的两直角边长分别为a,b,斜边长为c,那么____________.2.勾股定理公式的变形:a=_________,b=_________,c=_________.3.在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=_________;(2)若a=5,c=13,则b=_________.二、合作探究考点1:勾股定理的简单实际应用【典例探究】例1在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?方法总结:利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.【跟踪训练】1.湖的两端有A 、B 两点,从与BA 方向成直角的BC 方向上的点C 测得CA =130米,CB =120米,则 AB 为 ( )A.50米B.120米C.100米D.130米2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草.(1)求这条“径路”的长;(2)他们仅仅少走了几步(假设2步为1米)?知识点2:利用勾股定理求两点距离及验证“HL ”思考:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗? 证明:如图,在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C =∠C ’=90°, AB =A ’ B ’,AC =A ’ C ’.求证:△ABC ≌△A ’ B ’ C ’ .证明:在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C=∠C ’=90°,根据勾股定理得BC =_______________,B ’C ’=_________________.∵AB=A ’ B ’,AC=A ’ C ’,∴_______=________.∴____________≌____________ (________).【典例探究】例2 如图,在平面直角坐标系中有两点A (-3,5),B (1,2)求A ,B 两点间的距离.方法总结:两点之间的距离公式:一般地,设平面上任意两点()()()()2211222121,,,,.A x y B x y AB x x y y =-+-则知识点3:利用勾股定理求最短距离想一想:1.在一个圆柱石凳上,若小明在吃东西时留下一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,蚂蚁怎么走最近(在以下四条路线中选择一条)?2.若已知圆柱体高为12 c m,底面半径为3 c m,π取3,请求出最短路线的长度.要点归纳:立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.【典例探究】例3 有一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米(已知油罐的底面半径是2 m,高AB是5 m,π取3)?变式题小明拿出牛奶盒,把小蚂蚁放在了点A处,并在点B处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?例4 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?方法总结:求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.【跟踪训练】1.如图,是一个边长为1的正方体硬纸盒,现在A处有一只蚂蚁,想沿着正方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少三、知识梳理勾股定理用勾股定理解决实际问题解决“HL”判定方法证全等的正确性问题用勾股定理解决点的距离及路径最短问题四、学习中我产生的疑惑【学习检测】1.从电杆上离地面5m的C处向地面拉一条长为7m的钢缆,则地面钢缆A到电线杆底部B的距离是()A.24mB.12mC.74mD. 26c m2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12c m,则这只铅笔的长度可能是()A.9cmB.12cmC.15cmD.18cm3.已知点(2,5),(-4,-3),则这两点的距离为_______.4.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?5.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?。
勾股定理的折叠问题
勾股定理的折叠问题
众所周知,勾股定理是数学中的一条重要定理,描述了直角三角形中,直角边
的平方和等于斜边的平方。
而关于勾股定理的折叠问题则考察了一个有趣而实用的几何学思考。
勾股定理的折叠问题是指,如果我们将一个正方形纸张的一角折叠到对边上,
能否构造出一条长度为整数的直角边,并利用这条直角边实现勾股定理。
答案是肯定的。
通过将正方形纸张的一角折叠到对边上,我们可以得到一个直角三角形。
根据
勾股定理,该直角三角形的直角边长度的平方和等于斜边长度的平方。
因此,我们只需要找到两个整数的平方和等于第三个整数的平方即可。
以3、4和5为例,我们可以将正方形纸张的一个角折叠到对边上,构造出一
个边长为3、4和5的直角三角形。
这是因为3的平方加上4的平方等于5的平方。
同样,使用其他整数组合,我们也可以得到满足勾股定理的直角三角形。
勾股定理的折叠问题不仅仅是一道有趣的数学问题,它在实际生活中也具有应
用价值。
例如,当我们需要制作直角三角形的时候,可以利用这个折叠方法,通过简单的实验就能得到所需的尺寸。
然而,需要注意的是,勾股定理的折叠问题是一个抽象的概念,对于任意给定
的正方形纸张,我们并不能保证总能构造出满足勾股定理的直角三角形。
所以,在实践中还是要注意具体问题具体分析。
总的来说,勾股定理的折叠问题是一个有趣而实用的数学探索。
通过将一个正
方形纸张的一角折叠到对边上,我们可以得到满足勾股定理的直角三角形。
这个问题不仅启发我们对数学的思考,还可以在实际生活中找到应用。
人教版数学八年级下册17.1.2用勾股定理解决折叠问题(教案)
一、教学内容
人教版数学八年级下册17.1.2用勾股定理解决折叠问题。本节课主要内容包括:
1.理解折叠问题的基本概念,掌握折叠过程中边长、角度的变化规律。
2.运用勾股定理解决实际问题,如折叠后的形状的边长计算、角度计算等。
3.通过实际操作,观察折叠前后的形状变化,培养学生的空间想象能力。
在讲授过程中,我特别强调了勾股定理在折叠问题中的运用和折叠过程中的边长、角度变化这两个重点。通过举例和图示,我希望能够帮助学生突破这些难点。然而,从学生的反馈来看,我意识到在今后的教学中,需要更加注重引导学生从直观到抽象的思维过渡。
实践活动和小组讨论环节,学生们表现出了很高的热情。他们积极参与讨论,提出自己的观点,并在小组内展开激烈的辩论。这让我看到,学生们具备一定的团队合作能力和问题解决能力。但同时,我也注意到,部分学生在讨论过程中仍然存在依赖心理,需要加强独立思考能力的培养。
3.培养学生逻辑思维和推理能力,让学生在解决问题的过程中,学会分析、归纳、总结,提高数学逻辑素养。
4.培养学生合作交流、分享成果的意识,提高学生的团队协作素养,使学生能在团队中发挥个人优势,共同解决问题。
5.激发学生数学学习兴趣,让学生在探索折叠问题的过程中,体验数学的乐趣,培养数学情感素养。
三、教学难点与重点
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指在直角三角形中,斜边的平方等于两直角边的平方和。它在几何学中有着极其重要的作用,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们折叠一个直角三角形纸片,如何通过勾股定理计算折叠后的形状的边长?这个案例将展示勾股定理在实际中的应用。
勾股定理折叠问题的实际应用
勾股定理折叠问题的实际应用勾股定理是数学中最基础的定理之一,也是最具有实用性的几何定理之一。
通过勾股定理,我们可以求解直角三角形中的各种问题,比如求三角形的边长、角度等。
除了在数学领域有着广泛的应用外,勾股定理还可以应用在一些实际生活中的问题中,比如在建筑、工程、设计等领域中。
本文将主要围绕勾股定理在折叠问题中的应用展开讨论。
1. 折纸问题折纸作为一种传统的手工艺品,一直受到人们的喜爱。
在折纸的过程中,勾股定理往往能够帮助我们准确的计算出纸张的折叠位置和角度,从而使得折出的作品更加美丽和精致。
比如,我们想要折一个正方形纸张成一个等腰直角三角形,勾股定理就可以派上用场。
根据勾股定理,我们知道直角三角形的两直角边和斜边的关系是:a^2 + b^2 = c^2。
假设正方形的边长为a,我们要将其折叠成一个等腰直角三角形,那么直角边的长度就可以使用a和a的关系来计算。
将正方形对角线对折,便可以得到一个等腰直角三角形,其中直角边的长度为a,斜边的长度为√2a。
这就是勾股定理在折纸问题中的应用之一。
另外,在实际折纸中,有时我们需要折叠出一个特定形状的纸片,比如心形、星形等。
在这种情况下,勾股定理也可以派上用场。
通过勾股定理,我们可以计算出每个折叠角度的大小,从而准确地完成所需要的折纸形状。
2. 纸箱设计在工程领域,设计纸箱是一个常见的问题。
设计者需要考虑到纸箱的结构稳定性、承重能力以及空间利用等因素。
勾股定理在这个过程中也发挥着重要的作用。
以设计一个正方体纸箱为例。
假设我们需要设计一个边长为a的正方体纸箱,勾股定理可以帮助我们计算出纸箱的对角线长度。
正方体的对角线的长度就是正方体的空间对角线的长度,即√(a^2 + a^2 + a^2) = √3a。
这个对角线长度可以帮助我们确定纸箱的尺寸以及结构设计。
另外,有些设计需要将纸箱折叠成非常规的形状,比如六面体或者其他多面体。
在这种情况下,设计者需要考虑到每个面的尺寸和角度,勾股定理就可以帮助解决这个问题。
人教版八年级下册勾股定理的应用
C
C 17
例题
例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格
点△ABC各顶点的坐标,并求出此三角形的周长.
AB 42 32 5,
AC 12 42 17, BC 12 52 26,
举一反三
如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,求 AB边上的高.
8 13 13
51
课堂练习
5.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已 知四边形ABCD的周长为32cm,求△BCD的面积.
拓展应用
问题背景:
在△ABC中,AB、BC、AC三边的长分别为 5、10、13 ,求这个三角形的面
积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长
点C的距离为半径作弧,交数轴于一点,则该点位置大致在数轴上( )
注意
l B AC
变式
如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.
(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.
会运用勾股定理确定数轴上表示实数的点及解决网格问题
∴AC²= A′C′ ²,
数学人教版八年级下册勾股定理在折叠问题中的应用
思考:指出是将长方形怎样的折叠?折 叠后哪些图形全等?
A E D
B
F C
C
思考:指出是将长方形怎样的折叠?折 叠后哪些图形全等?
E D F C
A
B
思考:指出将长方形是怎样的折叠?折 叠后哪些图形全等?
A D
E B F C
1、如图,小颍同学折叠一个直角三角形的纸 片,使A与B重合,折痕为DE,若已知 AC=8cm,BC=6cm,你能求出CE的长吗? (1) 直接说出下列线段的长度:
重过程 折
重结果 叠
利用方程思想
折叠问题
1、两手都要抓:重视“折”,关注“叠”
2、本质:轴对称(全等性,对称性)
3、关键:根据折叠实现等量转化
4、基本方法:构造方程: (1)根据勾股定理得方程。 (2)根据相似比得方程。
(3)根据面积得方程。
D
B
A E
C
☞小试牛刀
A
A
D
折 实质 E 叠 F C
由折叠可得:
B
轴 对 称F E
D
轴对称性质:
1.△AFE≌△ADE
2.AE是DF的垂直 平分线
1.图形的全等性:重合部分是全等图形,对应边角相等.
2.点的对称性:对称点连线被对称轴(折痕)垂直平分.
全等性
轴对称 本 质 折叠问题 精 髓
对称性
A
3
4
D F
2
②AC= 5
③AF= 3
,
。
勾股定理 轴对称的性质
x
B
E 4-x
C
(2)你还能求出线段EF的长度吗? (3)若连接BF,试判断AE和BF的关系.
用勾股定理解决折叠问题 初中八年级下册数学教案教学设计课后反思 人教版
一、知识讲解首先请学生拿出一张A4纸,沿着对角线进行对折,随后沿着折痕剪开,留下下边的直角三角形。
带领学生把这个三角形记为三角形ABC,经过折叠,将A点与B点重合,折痕记为EF。
求EF的长度,让学生观察这个折叠后的图形,教师提问——请问你有什么办法吗?经测量可知,AC=10cm,BC=8cm,F是AC的中点。
首先带领学生标记一下已知量,AC=10cm,BC=8cm,F是AC的中点,所以AF=5cm。
让学生观察一下三角形AEF和三角形BEF,同时引导学生找出相等的量(A点折叠到B点,其实就是AE变成了BE,AF 变成了BF,那么EF=EF,所以这两个三角形全等!),E是AB的中点,根据勾股定理,AB=6,AE=3,在RT三角形AEF,得出AE,AF长度,再根据勾股定理,就可以得出EF 的长度了,EF=4!教师讲解完毕后,给一点时间让学生进行回顾。
紧接着教师根据上一个问题进行解题步骤展示标出题目中给出的已知内容找出折叠后相等的量第三步构造直角三角形,设x,列方程最后利用勾股定理,解决实际问题。
边讲解步骤便对应上面的那道题(教师讲解上面的是等差数列,并且说出公差)二、例题讲解1、教师展示第一个三角形中的折叠,如图,有一张直角三角形纸片,两直角边AC=5 cm BC=10 cm将△ABC 折叠,使点B与点A重合,折痕为DE,则CD的长为多少?随后教师先进行例题分析[分析]图中CD在Rt△ACD中,由于AC已知,要求CD,只需求AD,由折叠的对称性,得AD=BD,注意到CD+BD=BC,利用勾股定理即可解之.教师展示解题步骤,提醒学生注意过程,不要忘记答,教师将本题和上一个例题进行对比。
2、教师展示第二个矩形中的折叠,如图长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处。
折痕的一端G点在AD边上,且BG=10,EF=EG。
求证:求AF的长。
教师要求学生思考解题步骤,根据解题步骤进行解题(还是我们按部就班,首先标出已知量,AB=8,BG=10,EF=EG。
第17章 勾股定理——勾股定理的应用---折叠问题教案-2021-2022学年人教版八年级数学下册
课题勾股定理的应用课型复习课课题勾股定理的应用---折叠问题课时 3 日期2022.4.21.教学内容解析:勾股定理是第十七章的内容,它指出了直角三角形三边之间的数量关系,这就搭建起了几何图形和数量关系之间的一座桥梁,从而发挥了重要的作用。
勾股定理不仅在平面几何中是重要的定理,而且在三角形、解析几何、微积分中都是理论基础,没有勾股定理,就难以建立起整个数学的大厦。
因此,勾股定理不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一。
课程标准(2011年版)指出,要想培养学生的空间观念,关键是要让学生会描述图形的运动和变化。
图形的运动有平移、旋转、折叠等。
由于折叠问题题型多样,变化灵活,在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质、考查学生的空间想象能力和动手操作能力,所以是近几年中考试题的热点题型。
在勾股定理的学习过程中,应用勾股定理求线段长度则是勾股定理章节学习的重点,而求折叠问题中线段长度则是勾股定理章节中的难点,为此对勾股定理应用---折叠专题的深度学习,就尤为重要,本专题蕴含了大量的数学思想,如转化思想、方程思想、数形结合思想、分类讨论思想,因而本节课能够培养学生的数学思想,为学生后续学习数学奠定基础。
2.学情分析:在本节课之前同学们已经系统地学习了轴对称性质、勾股定理,因此学生具备了应用勾股定理求解在折叠问题中线段长度的知识基础。
.但学生们对于勾股定理应用---折叠问题,仅限于纸上谈兵。
在这里本节课将进一步加深学生对折叠的认识。
加强应用勾股定理求线段长度的能力以及解决问题的能力。
3.目标确定:1. 我能正确地运用勾股定理建立方程求解折叠问题中线段的长度。
(重点、难点)2.我能在探索勾股定理解决折叠问题的方法中,体会数形结合、转化和方程的思想方法,进一步发展说理和简单推理的意识及能力。
3. 我能通过先独立思考再合作交流的过程,培养独立思考以及合作交流能力。
期末复习专题勾股定理与折叠问题教学设计人教版数学八年级下册
-教师巡回指导,针对学生的疑惑和困难,给予及时解答和指导。
4.实践应用,巩固知识
-设计具有挑战性的实际问题,让学生运用勾股定理及其逆定理解决问题,提高学以致用的能力。
-通过变式练习,引导学生发现勾股定理在不同情境下的应用,巩固知识。
4.结合实际生活中的例子,引导学生将勾股定理与折叠问题应用于实际,培养学生的学以致用能力。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养他们热爱数学的情感。
2.通过勾股定理与折叠问题的学习,让学生体会到数学的实用性和美感,提高审美情趣。
3.培养学生勇于探索、敢于创新的精神,增强他们面对困难、解决问题的信心。
期末复习专题勾股定理与折叠问题教学设计人教Βιβλιοθήκη 数学八年级下册一、教学目标
(一)知识与技能
1.理解并掌握勾股定理的内容、证明和应用,能熟练运用勾股定理解决实际问题。
2.学会运用折叠方法,将复杂的几何问题转化为简单的勾股定理问题,提高解决问题的能力。
3.能够运用勾股定理及折叠问题,解决生活中的实际问题,如建筑、工程等领域。
4.培养学生的团队协作精神,让他们在合作中学会互相尊重、互相帮助,形成良好的集体氛围。
5.引导学生关注生活中的数学,体会数学在现实世界中的广泛应用,增强学生的社会责任感。
本章节教学设计以勾股定理与折叠问题为核心,旨在帮助学生巩固知识、提高能力、培养情感。在教学过程中,教师应关注学生的个体差异,因材施教,充分调动学生的积极性,让每个学生都能在愉快的氛围中学习、成长。
2.选做题:
-鼓励学有余力的学生探索勾股定理在其他领域的应用,例如艺术、工程等,并撰写一篇小报告,分享他们的发现和体会。
八下数学勾股定理折叠问题求面积
八下数学勾股定理折叠问题求面积
小明正在学习八年级数学中的勾股定理,并尝试解决一个折叠问题。
给定一个直角三角形,边长分别为3、4、5,把这个三角形沿着斜边折叠成一个四边形,求这个四边形的面积。
小明知道勾股定理可以用来求斜边长,即 $sqrt{3^2+4^2}=5$,因此可以确定四边形的一条边长为5。
接着,他想到可以利用勾股定理求出两个斜边的长度,分别为3和4。
那么,如何求出另外两条边的长度呢?
小明发现,这个四边形可以被分成两个等腰直角三角形,它们的斜边分别为3和4,可以用勾股定理求出它们的短边长为
$frac{3}{sqrt{2}}$和$frac{4}{sqrt{2}}$。
因此,四边形的另外两条边的长度分别为5-$frac{3}{sqrt{2}}$和5-$frac{4}{sqrt{2}}$。
最后,小明利用四边形的面积公式 $S=(a+b+c+d)r/2$,其中
$r$为对角线的长度,计算出这个四边形的面积为17.5。
小明非常开心,他用勾股定理和几何知识成功解决了这个折叠问题。
- 1 -。
【初中数学】人教版八年级下册方法提升(三) 巧用勾股定理解折叠问题(练习题)
人教版八年级下册方法提升(三)巧用勾股定理解折叠问题(849)1.如图所示,有一块直角三角形纸片,两直角边AC=3,BC=4,将直角三角形纸片ABC折叠,使直角边AC落在斜边AB上,点C与点C′重合,折痕为AD,求BD 的长.2.如图,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求CE的长.3.如图所示,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于点E.若AD=8,AB=4,求△BED的面积.4.如图所示,将长方形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接CE.(1)求证:AE=AF=CE=CF;(2)设AE=a,ED=b,DC=c,请写出一个a,b,c三者之间的数量关系式.参考答案1.【答案】:解:在直角△ABC中,AB=√AC2+BC2=5,由折叠知,AC′=AC=3,DC=DC′,设BD=x,则DC′=DC=4−x,在直角△BC′D中,根据勾股定理,得x2=22+(4−x)2,,解得x=52.故BD的长为522.【答案】:解:由折叠的性质,知AD=AF=10cm,DE=EF.在Rt△ABF中,BF=√AF2−AB2=√102−82=√36=6(cm),∴CF=BC−BF=4cm.设CE=xcm,则DE=EF=(8−x)cm.在Rt△FEC中,CF2+CE2=FE2,即42+x2=(8−x)2,解得x=3,即CE=3cm【解析】:由折叠的性质推导出BF的长度,进而得到CF的长度,然后集中在Rt△CEF中,根据勾股定理设边列方程求解CE的长.3.【答案】:解:如图,由折叠知,∠1=∠2,又∵AD//BC,∴∠1=∠3,∴∠2=∠3,∴BE=DE,设DE=BE=x,则AE=8−x,在直角△ABE中,根据勾股定理,得x2−(8−x)2=42,解得x=5,DE⋅AB=10.∴S△BED=12故△BED的面积为104(1)【答案】证明:∵四边形ABCD是矩形,∴AD//BC,∴∠AEF=∠EFC.由折叠的性质,可得∠AEF=∠CEF,AE=CE,AF=CF,∴∠EFC=∠CEF,∴CF=CE,∴AF=CF=CE=AE.(2)【答案】解:a,b,c三者之间的数量关系式为a2=b2+c2. 理由:由折叠的性质,得CE=AE.∵四边形ABCD是矩形,∴∠D=90∘.∵AE=a,ED=b,DC=c,∴CE=AE=a.在Rt△DCE中,CE2=CD2+ED2,∴a,b,c三者之间的数量关系式为a2=b2+c2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B D F
E C G A ´ D A B C 勾股定理折叠问题中应用
1.如图,Rt ⊿ABC 中,∠C=90°,AC=6,AB=10,D 为BC 上一点,将AC 沿AD 折叠,使点C 落在AB 上,求CD 的长。
1 2
2.如图,Rt ⊿ABC 中,∠C=90°, D 为AB 上一点,将⊿ABC 沿DE 折叠,使点B 与点A 重合, ①若AC=4,BC=8,求CE 的长。
②若AC=24,BC=32,求折痕DE 的长。
二、矩形的折叠
1.如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG 。
1 2 3 2.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm , 求EC 的长。
3.如图,矩形纸片ABCD 中,AB=4cm ,BC=8cm ,现将A 、C 重合,使纸片折叠压平,设折痕为EF , ①求DF 的长;②求重叠部分△AEF 的面积;③求折痕EF 的长。
三、正方形的折叠
1.将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN , ①求线段CN 的长②求AM ③求折痕MN 的长
1 2 4
总结:①折叠的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等。
②注意利用线段关系和勾股定理列方程计算
2、如图,矩形纸片ABCD 中,AD=9,AB=3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.
4、如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B ′处,点A 落在点A ′处,(1)求证:B ′E=BF ;(2)设AE=a ,AB=b, BF=c,试猜想a 、b 、c 之间有何等量关系,并给予证明。
A C B D C ´
A C
B D E A B C D E F D´ E A ´ D A B
C N M C ’ A F
D B C A B C D
E
F A ′ B ′。