解三角形在测量中应用举例

合集下载

解三角形的实际应用举例

解三角形的实际应用举例

AB sin CAB 15 sin15 BC sin120 sin ACB
6 2 sin15 4
5 6 BC ( 3 1) 4.48(海里) 2
(1)解决实际应用问题的关键思想方法是把实际问题转化为 数学问题,即数学建模思想。 (2)解决实际应用问题的步骤
(1)设A到P的距离为xkm,用x表示B,C到P的距离,并求x的值;
(2)求静止目标P到海防警戒线a的距离(结果精确到0.01km).
a
P B C
D A
分析
(1)PA,PB,PC长度之间的关系可以通过收到信号的先后时
间建立起来. (2)作PD⊥a,垂足为D,要求PD的长,只需要求出PA的长和cos∠APD, 即cos∠PAB的值.由题意,PA-PB,PC-PB都是定值,因此,只需分别在 △PAB和△PAC中,求出cos∠PAB, cos∠PAC的表达式,建立方程即 可.
=3.571 ∴BC≈1.89(m). 答:顶杆BC约长1.89m.
例2.如图,两点C,D与烟囱底部在同一水平直线上,在点C1,D1利
用高1.5m的测角仪器, 测得烟囱的仰角分别是 =450和 =600, CD间的距离是12m.求烟囱的高AB (结果精确到0.01m). B
C1 C

D1 D

(18 2 6)(m)
从而 A1 B 因此
2 BC1 18 3 19.732(m) 2 AB A1B AA1 19.732 1.5 21.23(m)
例3:如图是曲柄连杆机构的示意图,当曲柄CB绕点C旋转时,通
过连杆AB的传递,活塞作直线往复运动.当曲柄在CB0位置时,曲 柄和连杆成一条直线,连杆的端点A在A处.设连杆AB长为l mm,曲 柄CB长为r mm,l>r. (1)当曲柄自CB0按顺时针方向旋转角为θ时,其中0O≤θ<360O, 求活塞移动的距离(即连杆的端点A移动的距离A0A); (2)当l =340mm, r =85mm,θ=80O时,求A0A的长(结果精确到1mm).

解三角形应用举例

解三角形应用举例

解三角形应用举例一、测量距离问题例1(1)如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B 的距离,测量者可以在河岸边选定两点C,D,若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为km.答案6 4解析∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos 45°=34+38-2×32×64×22=38.∴AB=64km.∴A,B两点间的距离为64km.(2)如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 3 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为m.答案900解析由已知,得∠QAB=∠PAB-∠PAQ=30°.又∠PBA=∠PBQ=60°,∴∠AQB=30°,∴AB=BQ.又PB为公共边,∴△PAB≌△PQB,∴PQ =PA.在Rt△PAB中,AP=AB·tan 60°=900(m),故PQ=900 m,∴P,Q两点间的距离为900 m.二、测量高度问题例2如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B 两点间的距离为60 m,则树的高度为m.答案30+30 3解析在△PAB中,∠PAB=30°,∠APB =15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-2 4,由正弦定理得PB sin 30°=AB sin 15°, 所以PB =12×606-24=30(6+2), 所以树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m ). 三、测量角度问题例3 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°≈5314,sin 22°≈3314 解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,结合题意知BC =0.5x ,AC =5,∠BAC =180°-38°-22°=120°.由余弦定理可得BC 2=AB 2+AC 2-2AB ·ACcos 120°,所以BC 2=49,所以BC =0.5x =7, 解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC=5×327=5314, 所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船. 素养提升 数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程,主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或数学术语予以表征.从实际问题中抽象出距离、高度、角度等数学问题,然后利用正弦定理、余弦定理求解,很好地体现了数学抽象的数学素养.。

高中数学 必修5 5.解三角形应用举例1(测距测高)

高中数学 必修5  5.解三角形应用举例1(测距测高)

5.解三角形的实际应用举例教学目标班级:_____ 姓名:____________1.掌握利用正、余弦定理及其推论测距、测高的几种方法.2.了解数学建模思想,培养利用数学知识解决实际问题的能力.教学过程知识要点1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.仰角和俯角:在同一铅垂平面内,水平视线和目标视线的夹角,当目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.技能点拨一、测量可到达点A与不可到达点B之间的距离.方法:1.在可到达点A一侧再取一个点C,构造;2.测量AC距离,及AC的两个邻角的度数;(“角角边”型问题)3.利用正弦定理计算_____________________例1:海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成的视角,从B岛望C 岛和A岛成的视角,则B、C的距离为多少海里?练1:为了测量河的宽度,在一岸边选定两点A和B,望对岸的标记物C,测得,,m.求河的宽度CD.二、测量两个不可到达的点A 、B 之间的距离. 方法:1.在可到达一侧取两点C 、D ,构造三个三角形:;2.在中,测边CD 、、,“角边角”问题,利用正弦定理求AC.3.在中,测、,“角边角”问题,利用正弦定理求BC.4.在中,测,“边角边”问题, 利用余弦定理求AB.例2:如图,在四边形ABCD 中,已知CD AD ⊥,,,,,求BC 的长.三、测量俯仰角求底部不可到达的建筑的高度.方法:1.分别测量在C 、D 观测A 点的仰角ACB ∠、ADB ∠,及边CD.“角角边”问题,利用正弦定理求AC ; 2.在ABC Rt ∆中,求AB.例3:如图,在山根A 处测得山顶B 的仰角,沿倾斜角为的山坡向山顶走1000m 到达S 点,又测得山顶仰角,则山高BC 为______m.作业如图,在地面上点D 处,测量某建筑物的高度,测得此建筑物顶端A 与底部B 的仰角分别为,已知建筑物底部高出地面D 点20m (即OB=20),求建筑物高度AB.DDA CDOBS。

解三角形的实际应用

解三角形的实际应用
机航线和山顶在同一铅直 平面内,已知飞机的高度为海拔10 000m, 速度为180 km/h,飞机在A处先看到山顶的 俯角为15°,经过420 s的水平飞行到达B处, 又看到山顶的俯角为45°,求山顶的海拔 高度。
• 2.某港口O要将一件重要物品用小艇送到一 艘正在航行的轮船上.在小艇出发时,轮船位 于港口O北偏西30°且与该港口相距20 海 里的A处,并以30 海里/小时的航速沿正东方 向匀速行驶,假设该小艇沿直线方向以v 海 里/小时的航速匀速行驶,经过t 小时与轮船 相遇。 • (1)若希望相遇时小艇的航行距离最小, 则小艇航速的大小应为多少? • (2)假设小艇的最高航速只能达到30 海里 /小时,试设计航行方案(即确定航速与航 向),使得小艇能以最短时间与轮船相遇, 并说明理由。
26 )且与点A相 26
(1)求该船的航速; (2)若该船不改变航向继续行驶,判断它是否 会进入警戒水域,并说明理由。
• 3.在一个特定时段内,以点E为中心的7 海里以内 海域被设为警戒水域,点E正北55 海里处有一个雷 达观测站A,某时刻测得一艘匀速直线航行的船位 于点A北偏东45°且与点A相距40 2 海里的位置B, 经过40分钟又测得该船已行驶到点A北偏东45°
+θ(其中0°<θ<90°,sinθ= 距10 13 海里的位置C。

解三角形在实际生活中的应用

解三角形在实际生活中的应用

第3节 解三角形在实际生活中的应用
1、 小红为了测量某一树身的高度,他站在A 处看树梢,测得此时的仰角为45°,前进200m
到达B 处,测得此时的仰角为60°,小红身高1.8m,试计算树身的高度是多少米?
2、 为了测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为2
3km ,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A ,B 两点间的距离。

3、(2009宁夏、海南)为了测量两山顶M ,N 间的距离,飞机沿水平方向A ,B 两点进行测量。

A ,B ,M ,N 在同一铅垂平面内(如图)飞机能够测量的数据有俯角和A ,B 间的距离。

请设计一个方案。

包括:(1)指出需要测量的数据(用字母表示,并在图中标出)(2)用文字和公式写出计算M ,N 间的距离的步骤。

4、已知海岛A 四周8海里内有暗礁。

今有一货轮由西向东航行,望见岛A 在北偏东75°,航行202海里后,望见此岛在北偏东30°。

如果货轮不改变航向继续前进,有无触礁的危险?
5、甲船在A 处发现乙船在方位角45°与A 相距10海里的C 处正以20海里/小时的速度向南偏东75°方向航行。

已知甲船的速度是203海里/小时,问:甲船沿什么方向航行,需多长时间才能与已船相遇?。

解三角形应用举例

解三角形应用举例

B C
α β
A
D
BC AB = sin(α β ) sin(90 + β )
BC sin(90 + β ) BC cos β = 所以,AB = sin(α β ) sin(α β )
解RtABD, 得 BC cos β sin α BD = AB sin ∠BAD = sin(α β ) 28 cos 30 sin 60 = sin(60 30 ) = 42(m)
视 线
N 仰角 俯角
水平线
方位角 60度
目标方向线
视 线
二、例 题 讲 解
例2、如图,要测底部不能到达的烟囱的高 ,从与烟囱底部在 、如图,要测底部不能到达的烟囱的高AB, 间的距离是12m.已知测角仪器高 已知测角仪器高1.5m,求烟囱的高。 求烟囱的高。 , 间的距离是 求烟囱的高 β = 60° CD间的距离是 已知测角仪器高 想一想 图中给出了怎样的一个 几何图形?已知什么, 几何图形?已知什么, 求什么? 求什么?
a sin β AC = sin(α β ) a sin α sin β AB = AE + h = AC sin α + h = +h sin(α β )
ห้องสมุดไป่ตู้
练习: 在山顶铁塔上B处测得地面 练习 在山顶铁塔上 处测得地面 上一点A的俯角 的俯角α= ° 上一点 的俯角 = 60° ,在塔底 C处测得 处的俯角 =30°。已 处测得A处的俯角 处测得 处的俯角β= ° 知铁塔BC部分的高为 部分的高为28m,求出 知铁塔 部分的高为 , 山高CD. 山高 分析:根据已知条件, 分析:根据已知条件,应该设 法计算出AB或 的长 法计算出 或AC的长 解:在⊿ABC中, 中 ∠BCA=90°+β, ° ∠ABC=90°-α, ∠BAC=α° β, ∠BAD=α.根据正弦定理, 根据正弦定理, 根据正弦定理

解直角三角形在实际生活中应用

解直角三角形在实际生活中应用

解直角三角形在实际生活中应用直角三角形是一种特殊的三角形,其中一个角为90度,另外两个角则是锐角或钝角。

直角三角形的重要性在于它具有很多实际应用价值。

本文将介绍一些直角三角形在实际生活中的应用。

一、测量高度和距离直角三角形的一条腿可以用作测量高度或距离的工具。

通过测量一个物体的顶部和底部的距离,同时测量观察点到底座的距离,我们可以利用直角三角形的性质计算出物体的高度。

例如,在建筑工地上,工人可以使用测量工具和直角三角形的原理来测量建筑物的高度。

二、解决倾斜和斜率问题直角三角形可以帮助我们解决倾斜和斜率问题。

在地质学和土木工程中,我们经常需要测量地面的倾斜度和斜率。

直角三角形可以帮助我们测量坡度的比例。

通过测量斜坡上某一段的水平距离和相应的垂直距离,我们可以计算出斜坡的斜率。

三、计算不可测量的距离在某些情况下,两个点之间的距离无法直接测量,例如跨越湖泊或河流的距离。

然而,利用直角三角形的性质,我们可以使用三角函数计算出这种不可测量距离。

通过观察两个点之间的角度和某一点到这两个点之间的距离,我们可以使用正切函数计算出这个不可测量的距离。

四、导航和定位直角三角形在导航和定位中也有广泛的应用。

例如,航海员可以使用天文观测和直角三角形的性质来确定船只的位置。

通过测量星体和地平线之间的角度,同时知道船只和地平线之间的距离,我们可以利用正弦和余弦函数计算出船只的位置。

五、解决工程问题在工程领域中,直角三角形常常用于解决一些复杂问题。

例如,自然灾害生态学家可以使用直角三角形的概念来设计保护森林免受火灾侵蚀。

通过构建直角三角形网格,他们可以最大程度地减少火势蔓延的可能性,保护森林资源。

六、解决影子和光线问题在摄影和照明设计领域,直角三角形可以帮助我们解决影子和光线的问题。

通过观察物体和光源之间的角度,并结合直角三角形的性质,我们可以计算出物体产生的影子的长度。

这对于照明设计师来说非常重要,以确保正确照亮目标物体。

解三角形的实际应用举例

解三角形的实际应用举例

解三角形的实际应用举例一、测量中的距离问题1.有一长为10 m的斜坡,倾斜角为60°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长的长度(单位:m)是()A.5B.5√3C.10√3D.10答案:D解析:如图,在Rt△ABC中,AC=10,∠ACB=60°.∴AB=5√3,BC=5,在Rt△ABD中,∠ADB=30°,∴BD=15.∴CD=BD-BC=10.2.(课时训练福建宁德五校联考,14)一艘船以15 km/h的速度向东航行,船在A处看到灯塔B在北偏东60°处;行驶4 h后,船到达C处,看到灯塔B在北偏东15°处,这时船与灯塔的距离为km.答案:30√2解析:根据题意画出图形,如图所示,可得B=75°-30°=45°,在△ABC 中,根据正弦定理得,AC sinB=BC sin∠BAC,即√22=BC12,∴BC=30√2 km,即此时船与灯塔的距离为30√2 km .3.(课时训练福建厦门高二期末,15)如图,某观测站C 在A 城的南偏西20°,一条笔直公路AB ,其中B 在A 城南偏东40°,B 与C 相距31千米.有一人从B 出发沿公路向A 城走去,走了20千米后到达D 处,此时C ,D 之间的距离为21千米,则A ,C 之间的距离是 千米.答案:24解析:由已知得CD=21,BC=31,BD=20,在△BCD 中,由余弦定理得cos ∠BDC=212+202-3122×21×20=-17.设∠ADC=α,则cos α=17,sin α=4√37. 在△ACD 中,由正弦定理,得AC=21sinαsin60°=24.二、测量中的高度与角度问题4.如图,D ,C ,B 三点在地面同一直线上,DC=a ,从C ,D 两点测得A 点的仰角分别是β,α(α<β),则A点距离地面的高度AB 等于( )A.asinαsinβsin(β-α)B.asinαsinβcos(α-β)C.asinαcosβsin(β-α)D.acosαsinβcos(α-β)答案:A解析:在△ACD中,∠DAC=β-α,DC=a,∠ADC=α,由正弦定理得AC=asinαsin(β-α),∴在Rt△ACB中,AB=AC sin β=asinαsinβsin(β-α).5.运动会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10√6 m(如图所示),则旗杆的高度为()A.10 mB.30 mC.10√3 mD.10√6 m答案:B解析:如图所示,由题意知∠AEC=45°,∠ACE=180°-60°-15°=105°,∴∠EAC=180°-45°-105°=30°,由正弦定理知CEsin∠EAC =ACsin∠CEA,∴AC=CE·sin∠CEAsin∠EAC=20√3(m),∴在Rt△ABC中,AB=AC·sin∠ACB=30(m).∴旗杆的高度为30 m.6.当甲船位于A处时获悉,在其正东方向相距20 n mile的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距10 n mile C处的乙船,乙船立即朝北偏东θ角的方向沿直线前往B处救援,则sin θ的值等于()A.√217B.√22C.√32D.5√714答案:D解析:根据题目条件可作图如图:在△ABC中,AB=20,AC=10,∠CAB=120°,由余弦定理有BC2=AB2+AC2-2AB·AC cos∠CAB=202+102-2×20×10cos 120°=700, ∴BC=10√7.再由正弦定理得ABsin∠ACB =BCsin∠CAB,∴sin∠ACB=AB·sin∠CABBC=10√7=√217.又0°<∠ACB<90°,∴cos∠ACB=2√77,∴sin θ=sin(30°+∠ACB )=sin 30°cos ∠ACB+cos 30°sin ∠ACB =12×2√77+√32×√217=5√714. 7.某海岛周围38 n mile 有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30 n mile 后测得此岛在东北方向,若不改变航向,则此船 触礁的危险(填“有”或“无”). 答案:无解析:由题意在△ABC 中,AB=30 n mile,∠BAC=30°,∠ABC=135°,∴∠ACB=15°. 由正弦定理,得BC=AB sin∠ACB·sin ∠BAC=30sin15°·sin 30°=√6-√24=15(√6+√2).在Rt △BDC 中,CD=√22BC=15(√3+1)>38.∴无触礁的危险.8.如图,在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距40√2海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45°+θ(其中sinθ=√2626,0°<θ<90°)且与点A 相距10√13海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.解:(1)因为AB=40√2,AC=10√13,∠BAC=θ,sin θ=√2626,0°<θ<90°, 所以cos θ=√1-(√2626)2=5√2626.由余弦定理得BC=√AB 2+AC 2-2AB ·AC ·cosθ=10√5,所以该船的行驶速度为v=10√523=15√5(海里/小时).(2)设直线AE 与BC 的延长线相交于点Q. 在△ABC 中,由余弦定理得 cos ∠ABC=AB 2+BC 2-AC 22AB ·BC=√2)2√5)2√13)22×40√2×10√5=3√1010, 所以sin ∠ABC=√1-cos 2∠ABC =√1-910=√1010. 在△ABQ 中,由正弦定理得AQ=ABsin∠ABC sin (45°-∠ABC )=40√2×√1010√22×2√1010=40.因为AE=55>40=AQ ,所以点Q 位于点A 和点E 之间,且QE=AE-AQ=15.过点E 作EP ⊥BC 于点P ,则EP 为点E 到直线BC 的距离. 在Rt △QPE 中,PE=QE ·sin ∠PQE=QE ·sin ∠AQC=QE ·sin(45°-∠ABC )=15×√55=3√5<7.故该船会进入警戒水域.(建议用时:30分钟)1.如图,已知两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )的位置. A.北偏东10° B.北偏西10°C.南偏东10°D.南偏西10° 答案:B解析:由图可知,∠ACB=180°-(40°+60°)=80°.又∵AC=BC,∴∠A=∠CBA=1(180°-80°)=50°.2∵CE∥BD,∴∠CBD=∠BCE=60°,∴∠ABD=60°-50°=10°.∴灯塔A在灯塔B的北偏西10°的位置.2.如图所示,为测一树的高度,在地面上选取A,B两点(点A,B与树根部在同一直线上),从A,B两点分别测得树尖的仰角为30°,45°,且A,B两点之间的距离为60 m,则树的高度为()A.(30+30√3) mB.(30+15√3) mC.(15+30√3) mD.(15+3√3) m答案:A解析:设树高为h,则由题意得√3h-h=60,∴h==30(√3+1)=(30√3+30)(m).√3-13.一艘客船上午9:30在A处,测得灯塔S在它的北偏东30°,之后它以32 n mile/h的速度继续沿正北方向匀速航行,上午10:00到达B处,此时测得船与灯塔S相距8√2 n mile,则灯塔S在B处的()A.北偏东75°B.东偏南75°C.北偏东75°或东偏南75°D.以上方位都不对答案:C解析:根据题意画出示意图,如图,由题意可知AB=32×12=16,BS=8√2,∠A=30°.在△ABS中,由正弦定理得ABsinS =BSsinA,sin S=ABsinABS=8√2=√22,∴S=45°或135°,∴B=105°或15°,即灯塔S在B处的北偏东75°或东偏南75°.4.一货轮航行到M处,测得灯塔S在货轮的北偏东15°方向,与灯塔S相距20 n mile,随后货轮按北偏西30°的方向航行3 h后,又测得灯塔在货轮的东北方向,则货轮的速度为()A.103(√6+√2) n mile/hB.103(√6−√2) n mile/hC.103(√6+√3) n mile/hD.103(√6−√3) n mile/h答案:B解析:如图,设货轮的时速为v,则在△AMS中,∠AMS=45°,∠SAM=105°,∠ASM=30°,SM=20,AM=3v.由正弦定理得3vsin30°=20sin105°,即v=206sin105°=103(√6−√2)(n mile/h).5.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离d1与第二辆车与第三辆车的距离d2之间的关系为()A.d1>d2B.d1=d2。

解三角形应用举例

解三角形应用举例

B
例4:如图,在山顶铁塔上B处测得地面上一 点A的俯角,在塔底C处测得A处的俯角.已 知铁塔BC部分的高为27.3米,求出山高 CD.
例5:一辆汽车在一条水平的公路上向正 东行驶,到A处时测得公路南侧远处一山 顶D在东偏南15°的方向上,行驶5KM后 到达B处,测得此山顶在东偏南25°的方 向上,仰角为8° ,求此山的高度CD.

(1)已知a=14.8cm,c=23.5cm,B=148.5° (2)已知B=62.7°C=65.8° ,b=3.16cm; (3)已知三边的长分别为 a=41.4cm,b=27.3cm,c=38.7cm.
例8:在某市进行城市环境建设中,要把 一个三角形的区域改造城市内公园,经 过测量得到这个三角形区域的三条边长 分别为68m,88m,127m,这个区域的面 积是多少? (精确到0.1cm2)
例1 设A,B两点在河的两岸,要测量两点之间的 距离,测量者在A的 同侧,在所在的河岸边选定一点C,测出AC的距离是55cm,
BAC 51, ACB 75
求A,B两点间的距离
B
A
C
例 2 如图A,B两点都在河的对岸(不可到达),设 计一种测量A,B两点距离的方法
A B
例3 : AB是底部B不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高 度AB的方法. A
例6:如图一艘海轮从A出发,沿北偏东75°的方 向航行67.5海里后到达海岛B,然后从B出发,沿 北偏东32°的方向航向54海里后到达海岛C. 如果下次航行直接从A出发到达C,此船应该沿 怎样的方向航行,需要航行多少距离?,根据下列条件,求三角 形的面积S(精确到0.1cm2)

_高中数学第一章解三角形2应用举例4课件新人教版必修

_高中数学第一章解三角形2应用举例4课件新人教版必修

命题方向2 正、余弦定理在生产、生活中不易到达点测距 中的应用
要测量河对岸两地 A、B 之间的距离,在岸边选取相距 100 3 m 的 C、D 两点,并测得∠ACB=75°,∠BCD=45°, ∠ADC=30°,∠ADB=45°(A、B、C、D 在同一平面内),求 A、 B 两地的距离.
[分析] 此题是测量计算河对岸两点间的距离,给出的角度较 多,涉及几个三角形,重点应注意依次解哪几个三角形才较为 简便.
跟踪练习
如图所示,a是海面上一条南北方向的海防警戒线,在a上点A 处有一个水声监测点,另两个监测点B、C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个 声波,8 s后监测点A、20 s后监测点C相继收到这一信号.在当 时的气象条件下,声波在水中的传播速度是1.5 km/s.
[解析] (1)依题意,PA-PB=1.5×8=12(km),PC-PB= 1.5×20=30(km).
∴PB=(x-12)km,PC=(18+x)km. 在△PAB 中,AB=20 km, cos∠PAB=PA2+2PAAB·A2-B PB2=x2+2022-x·20x-122=3x+5x32. 同理,cos∠PAC=723-x x. 由于 cos∠PAB=cos∠PAC, 即3x+5x32=723-x x,解得 x=1372(km).
∴cosC=-cos(A+B)=-cosAcosB+sinAsinB
=-45×
22+
22×35=-
2 10 .
(2)由(1)知 cosC=-102,∴sinC=7102, 由正弦定理,得sAinBC=sBinCA, ∴AB=10×27102=14.
2 ∴BD=7.
在△BCD 中,由余弦定理,得

解三角形的实际应用举例

解三角形的实际应用举例

小结:
1、解决应用题的思想方法是什么? 答:把实际问题转化为数学问题,即数学建模思想。 2、解决应用题的步骤是什么? 实际问题 分析转化
数学问题(画出图形)
检 验
数学结论 解三角形问题
布置作业:课本P.70 习题B 1、2
课外探究:
如果要测量某铁塔的高度,但不能到达铁塔 的底部,在只能使用简单的测量工具的前提 下,你能设计出哪些测量方法?并提供每种 方法的计算公式。
思考与交流:
1、你能设计出别的测量方法吗?把你设 计的方案与本小组的同学讨论,看看是否 B 可行。

CD
C

90o

D
A

例2:如图,一辆汽车在一条水平的公路上向西行 750 驶,到A处时测得公路北侧远处一山顶D在北偏西 的 方向上,行驶5km后到达B处,测得此山顶在北偏 0 西 的方向上,仰角为 8 ,求此山的高度CD.
B
C1
C

D1
D

A1 A
49028 35012
11.12 m
1.52m
B
49028
35 12
0
求A1B
D1
C1


A1
C 11.12 m D
A
1.52m
B
49028
35012
C1
求A1B
D1


A1
C1D1B 180 0 130 032,
解:
A C 11.12 m D 在BC1D1中,已知BC1D1 35012,
0 56
D

西
B
0 56
C
750
A
0 解:在⊿ABC中 A 15,0ACB 250 150 10, 根 据正弦定理,

解三角形实际应用举例

解三角形实际应用举例
的应用
我国古代很早就有测量方面的知识, 我国古代很早就有测量方面的知识,公元 解三角形问题是三角学的基本问题之一。 解三角形问题是三角学的基本问题之一。 解三角形的方法在度量工件、 解三角形的方法在度量工件、测量距离和 一世纪的《周髀算经》 一世纪的《周髀算经》里,已有关于平面测量 什么是三角学?三角学来自希腊文“三角形” 什么是三角学?三角学来自希腊文“三角形” 高度及工程建筑等生产实际中,有广泛的应用, 高度及工程建筑等生产实际中,有广泛的应用, 的记载,公元三世纪, 的记载,公元三世纪, 我国数学家刘徽在计 测量” 最初的理解是解三角形的计算, 和“测量”。最初的理解是解三角形的计算, 在物理学中, 在物理学中,有关向量的计算也要用到解三角 算圆内接正六边形、正十二边形的边长时, 算圆内接正六边形、正十二边形的边长时,就 后来, 后来,三角学才被看作包括三角函数和解三角 形的方法。 形的方法。 已经取得了某些特殊角的正弦…… 形两部分内容的一门数学分学科。 形两部分内容的一门数学分学科。
B间的距离? 间的距离?
α βa
C B
简解: 简解:由正弦定理可 得 AB/sinα=BC/sinA =a/sin(α+β) A
α
β
a C
B
两点在河的两岸, 例1、设A、B两点在河的两岸,要测量两点之间的距离。 、 、 两点在河的两岸 要测量两点之间的距离。 测量者在A的同测,在所在的河岸边选定一点 , 测量者在 的同测,在所在的河岸边选定一点C, 的同测 测出AC的距离是 的距离是55cm,∠BAC=51o, ∠ACB 测出 的距离是 , = 两点间的距离( =75o,求A、B两点间的距离(精确到 、 两点间的距离 精确到0.1m) )
练习1:海中有岛 ,已知A岛周围 岛周围8海里内有 练习 :海中有岛A,已知 岛周围 海里内有 暗礁,今有一货轮由西向东航行,望见A岛 暗礁,今有一货轮由西向东航行,望见 岛 在北75° 航行20 2海里后,见此岛在北 海里后, 在北 °东,航行 30°东,如货轮不改变航向继续前进,问有 如货轮不改变航向继续前进, ° 无触礁危险。 无触礁危险。 A

解三角形在生活中的应用

解三角形在生活中的应用

c b sin B
c c sin C
所以
a sin A
b sin B
c sin C
可是在斜三角形中是否成立的问题,在高一 的学习中已经证明也是成立的。
4
实际测量的几个例子
问题1:测量书柜的高度
模型转化
H
α
β
a
5
为了避免测量误差,我们采取了多次测量求平均 值的方法
次数
长度单位:厘米(cm) 角度单位:度()
374. 1
3.7
所以:使用我们的测角仪实际上还可以测量水平物体的长度, 实际上,这种测量方法还可以测量AB、CD间的距离,比如在河的一边, 测河的宽度。
15
1、我们设计的测角仪虽然不成熟,但我们自认为 在短距离的测量中它比光学测角仪有一定的优势, 而且通过对测角仪的设计与制做,体会了制做的乐 趣。做任何事不能等待,必须动手实践,当你使用 你自制工具工作时,工作变成了乐趣。 2、我们在实验中体会了测角仪的应用方法,结合 角三角形的数学知识,我们学会了用测角仪测量高 度,水平长度、水平宽度这三类问题,深刻体会了 我们的先辈仅用尺与测角仪进行地质测绘的过程, 而且深入理解了三角函数知识在实际生活中的作用。
基高 100 50.5 48.6 1745.7 17.5 1763.2 17.5 2
基高 50 48.6 47.7 1766.1 17.7 1783.7 17.7 3
11
数据比较,如下
1768.104 1764.64
1761.176 1757.712 1754.248 1750.784
1747.32 1743.856 1740.392 1736.928 1733.464
水平长度测量计算器

中考数学复习:专题7-12 解直角三角形在实际生活中的应用

中考数学复习:专题7-12 解直角三角形在实际生活中的应用

专题12 解直角三角形在实际生活中的应用【专题综述】在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.【方法解读】一、航空问题例1:抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图).求A 、B 两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)【举一反三】(2016内蒙古巴彦淖尔市)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m 的高空C 处时,测得A 处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB 是( )A .30003mB .3000(31)+mC .3000(31)-mD .15003m二、测量问题例2:如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .【举一反三】我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。

若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。

三、建桥问题例3:如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.一直BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,2 ,sin37°≈0.60,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据: 1.41cos37°≈0.80).【举一反三】黄冈市为了改善市区交通状况,计划修建一座新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0. 24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.四、图案设计问题例4. “创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O的半径OC所在的直线为对称轴的轴对称图形,A是OD与圆O的交点.由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中i 是坡面CE的坡度),求r的值.1:0.75【举一反三】如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;(2)结合你的示意图,写出求电线杆高度的思路.【强化训练】1.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?2.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).3.如图,在我市的上空一架飞机由A向B沿水平直线方向飞行,沿航线AB的正下方有两个景点水城明珠大剧院(记为点C),光岳楼(记为点D),飞机在A处时,测得景点C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了3千米到B处时,往后测得景点C的俯角为30°.而景点D恰好在飞机的正下方,求水城明珠大剧院与光岳楼之间的距离(最后结果精确到0.1千米)4.某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)5.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得二架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5万千米的C处.⑴该飞机航行的速度是多少千米/小时?(结果保留根号)⑵如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由。

解三角形在现实生活中的应用——正,余弦定理

解三角形在现实生活中的应用——正,余弦定理

解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。

例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。

以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。

假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。

你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。

2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。

假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。

你可以使用正弦定理或余弦定理计算出树的高度。

3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。

假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。

这对于导航非常重要。

4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。

例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。

通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。

课件1:9.2 第1课时 解三角形在实际测量中的应用(一)

课件1:9.2 第1课时 解三角形在实际测量中的应用(一)

教学小测 判断(正确的打“√”,错误的打“×”) (1)一般来说,在测量过程中基线越长,测量精确度越低.( ) (2)已知三角形的三个角,能够求其三条边.( ) (3)两个不可到达的点之间的距离无法求得.( ) (4)坡面与水平面的夹角称之为坡角.( ) (5)坡面的水平宽度与坡面的铅直高度之比称为坡比.( ) (6)坡角的范围是[0,π].( )
5.如图所示,有两座建筑物 AB 和 CD 都在河的对岸(不知道它们的高度,且不能 到达对岸),某人想测量两座建筑物尖顶 A、C 之间的距离,但只有卷尺和测量仪两 种工具.若此人在地面上选一条基线 EF,用卷尺测得 EF 的长度为 a,并用测角仪 测量了一些角度:∠AEF=α,∠AFE=β,∠CEF=θ,∠CFE=φ,∠AEC=γ.
名师指津 测量高度问题的两个关注点
1.“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所 求线段所在的平面,将空间问题转化为平面问题. 2.“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思 路.
[再练一题]3.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择
[再练一题] 1.如图,在河岸边有一点 A,河对岸有一点 B,要测量 A,B 两点的距离,先在岸 边取基线 AC,测得 AC=120 m,∠BAC=45°,∠BCA=75°,求 A,B 两点间的距 离.
【解】在△ABC 中,AC=120,A=45°,C=75°, 则 B=180°-(A+C)=60°, 由正弦定理,得 AB=ACssiinn CB=12s0insin607°5°=20(3 2+ 6). 即 A,B 两点间的距离为 20(3 2+ 6)m.
[构建·体系]
当堂检测
1.甲、乙两人在同一地平面上的不同方向观测 20 m 高的旗杆,甲观测的仰角为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学研究课题: 解三角形在测量中的应用
雅礼寄宿制中学 陈建明
问题1 :如图,要测算山脚两点A、B之间 的直线距离,如果你是技术人员,应如 何设计测量方案而通过所测数据计算得 到AB的距离?测量工具有测角仪和有刻 度的皮尺。
A
B
C
问题2: 如图,若山与测量地之间 有一条河,又该如何测量呢?
A
B
问题
问题
题的解
题的解
2、课后思考:日常生活中还有 哪些与解三角形有关的实际
问题,通过事例加以说明,并 写出你的研究性报告。
1 C
4
23
D
问题3:若要测量山顶高 度,又该如何?
P
O
2 1
3
A
B
问题4:如图,山的周围都是水,且山在水中的倒影清晰 可见,若离山不远处水面有个高度已知的平台供你测量 用, 又该如何测量才能求出山距湖面的高度?
P
C
1
A
2
平台OΒιβλιοθήκη BP/1、小结:解三角形的基本思路
实际 作图 数学 解三角形 数学问 检验 实际问
相关文档
最新文档