高考总动员高考数学总复习 课时提升练72 参数方程 理 新人教版
高考真题专题训练(参数方程答案1-5题)
高考真题专题训练——参数方程专题(参考答案1-5)1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围。
【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ点,,,A B C D的直角坐标为1,1)--(2)设00(,)P x y ;则002cos ()3sin x y ϕϕϕ=⎧⎨=⎩为参数 2222224440t PA PB PC PD x y =+++=++ 25620sin [56,76]ϕ=+∈3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将45cos ,55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为cos cos 2,sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,0<α<2π).(2)M 点到坐标原点的距离d ==<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.4、(2014课标全国Ⅰ,理23,12分)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.解析:(Ⅰ)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩ ,直线l 的普通方程为260x y +-=;(Ⅱ)令点P 坐标为()2cos ,3sin θθ,点P 到直线l 的距离为d4tan 3d φ⎫===⎪⎝⎭||2sin 30dPA d ==︒,所以()()max max min min max min ||22|22PA d d PA d d ====== 5、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.31 (1)2或31(1)2-。
【高考总动员】2016届高考数学总复习 课时提升练58 随机事件的概率 理 新人教版
课时提升练(五十八) 随机事件的概率一、选择题1.从1,2,3,…,7这7个数中任取两个数,其中:(1)恰有一个是偶数和恰有一个是奇数;(2)至少有一个是奇数和两个都是奇数;(3)至少有一个是奇数和两个都是偶数;(4)至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A.(1) B.(2)(4) C.(3) D.(1)(3)【解析】(3)中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件.易知其余都不是对立事件.【答案】 C2.从存放号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:A.0.53 B.0.5 C.0.47 D.0.37【解析】取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53=0.53.故选A.100【答案】 A3.(2014·山西重点中学联考)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球【解析】对于A,两事件是包含关系,对于B,两事件是对立事件,对于C,两事件可能同时发生.【答案】 D4.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910【解析】从5个球中任取3个共有10种方法.又“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白球”,因而所求概率P=1-110=9 10.【答案】 D5.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡【解析】至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.【答案】 A6.(2013·陕西高考)对一批产品的长度(单位:毫米)进行抽样检测,图1042为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )图1042A.0.09 B.0.20 C.0.25 D.0.45【解析】由图可知抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.【答案】 D二、填空题7.若A、B为互斥事件,P(A)=0.4,P(A∪B)=0.7,则P(B)=________.【解析】 因为A 、B 为互斥事件,所以P (A ∪B )=P (A )+P (B ),故P (B )=P (A ∪B )-P (A )=0.7-0.4=0.3.【答案】 0.38.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率为________.【解析】 由题意知“出现奇数点”的概率是事件A 的概率,“出现2点”的概率是事件B 的概率,事件A ,B 互斥,则“出现奇数点或2点”的概率为P (A )+P (B )=12+16=23.【答案】 239.某城市2014年的空气质量状况如下表所示:100<T ≤150时,空气质量为轻微污染,则该城市2014年空气质量达到良或优的概率为________.【解析】 由题意可知2014年空气质量达到良或优的概率为P =110+16+13=35.【答案】 35三、解答题10.(2014·唐山模拟)某种水果的单个质量在500 g 以上视为特等品,随机抽取1 000个水果,结果有50个特等品,将这50个水果的质量数据分组,得到下面的频率分布表:(1)估计该水果的质量不少于560 g 的概率;(2)若在某批该水果的检测中,发现有15个特等品,据此估计该批水果中没有达到特等品的个数.【解】 (1)P =0.16+0.04=0.2.(2)设该批水果中没有达到特等品的个数为x ,则有 15x +15=501 000,解得x =285. 11.(2014·陕西高考)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.【解】 (1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为 4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.12.(2014·北京高考)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:图1043(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)【解】 (1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10(名),所以样本中的学生课外阅读时间少于12小时的频率是1-10100=0.9.从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[4,6)的有17人,频率为0.17, 所以a =频率组距=0.172=0.085.课外阅读时间落在组[8,10)的有25人,频率为0.25, 所以b =频率组距=0.252=0.125.(3)样本中的100名学生课外阅读时间的平均数在第4组.。
【步步高】2021届高考数学总温习 第二讲 参数方程配套文档 理 新人教A版选修4-4(1)
第二讲 参数方程1.参数方程的概念一样地,在平面直角坐标系中,若是曲线上__________的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f t ,y =g t ,而且关于t 的每一个许诺值,由方程组所确信的点M (x ,y )都在____________,那么方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称______.相关于参数方程而言,直接给出点的坐标间关系的方程叫做__________.2.几种常见曲线的参数方程(1)直线:通过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是____________(t 为参数). (2)圆:以O ′(a ,b )为圆心,r 为半径的圆的参数方程是____________,其中α是参数.当圆心在(0,0)时,方程⎩⎪⎨⎪⎧x =r cos α,y =r sin α.(3)椭圆:中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情形: 椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是____________,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是____________,其中φ是参数.(4)抛物线:抛物线y 2=2px (p >0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt .(t 为参数).1.(讲义习题改编)假设直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t(t 为参数),那么直线的斜率为________.2.椭圆⎩⎪⎨⎪⎧x =2cos θ,y =5sin θ(θ为参数)的离心率为________.3.已知点P (3,m )在以点F 为核心的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t(t 为参数)上,那么|PF |=________.4.(讲义习题改编)直线⎩⎪⎨⎪⎧x =-1+t sin 40°,y =3+t co s 40°(t 为参数)的倾斜角为________.5.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).那么点M 1(0,1),M 2(5,4)在曲线C 上的是________.题型一 参数方程与一般方程的互化例1 已知两曲线参数方程别离为⎩⎪⎨⎪⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.思维升华 (1)参数方程化为一般方程经常使用的消参技术有代入消元、加减消元、平方后再加减消元等.关于与角θ有关的参数方程,常经常使用到的公式有sin 2θ+cos 2θ=1,1+tan 2θ=1cos 2θ等.(2)在将曲线的参数方程化为一般方程时,还要注意其中的x ,y 的取值范围,即在消去参数的进程中必然要注意一般方程与参数方程的等价性.(2021·广东)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos ty =2sin t(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴成立极坐标系,那么l 的极坐标方程为________. 题型二 参数方程的应用例2 在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),直线l 通过点P (2,2),倾斜角α=π3.(1)写出圆的标准方程和直线l 的参数方程;(2)设l 与圆C 相交于A 、B 两点,求|PA |·|PB |的值.思维升华 依照直线的参数方程的标准式中t 的几何意义,有如下经常使用结论: (1)直线与圆锥曲线相交,交点对应的参数别离为t 1,t 2,那么弦长l =|t 1-t 2|; (2)定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;(3)设弦M 1M 2中点为M ,那么点M 对应的参数值t M =t 1+t 22(由此可求|M 2M |及中点坐标).已知直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =2+32t(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)将曲线C 的参数方程化为一般方程;(2)假设直线l 与曲线C 交于A 、B 两点,求线段AB 的长. 题型三 极坐标、参数方程的综合应用例3 在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,成立极坐标系.曲线C 的极坐标方程是ρ=4cos θ,直线l 的参数方程是⎩⎪⎨⎪⎧x =-3+32t ,y =12t(t 为参数),M ,N 别离为曲线C 、直线l 上的动点,那么|MN |的最小值为________.思维升华 涉及参数方程和极坐标方程的综合题,求解的一样方式是别离化为一般方程和直角坐标方程后求解.转化后可使问题变得加倍直观,它表现了化归思想的具体运用.(2021·湖北)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程别离为ρsin(θ+π4)=22m (m 为非零常数)与ρ=b .假设直线l 通过椭圆C 的核心,且与圆O 相切,那么椭圆C 的离心率为________. 参数的几何意义不明致误典例:(10分)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =22+32t (t 为参数),假设以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位成立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4).(1)求直线l 的倾斜角;(2)假设直线l 与曲线C 交于A ,B 两点,求|AB |.易错分析 不明确直线的参数方程中的几何意义致使错误. 标准解答解(1)直线的参数方程能够化为⎩⎪⎨⎪⎧x =t cos 60°,y =22+t sin 60°,[2分]依照直线参数方程的意义,直线l 通过点(0,22),倾斜角为60°.[4分](2)直线l 的直角坐标方程为y =3x +22,[6分]ρ=2cos(θ-π4)的直角坐标方程为(x -22)2+(y -22)2=1,[8分]因此圆心(22,22)到直线l 的距离d =64.因此|AB |=102.[10分]温馨提示 关于直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)来讲,要注意t 是参数,而α那么是直线的倾斜角.与此类似,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的参数φ有专门的几何意义,它表示离心角.方式与技术1.参数方程化一般方程经常使用的消参技术:代入消元、加减消元、平方后加减消元等,常经常使用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.2.利用曲线的参数方程来求解两曲线间的最值问题超级简捷方便,是咱们解决这种问题的好方式.3.通过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数).假设A ,B 为直线l 上两点,其对应的参数别离为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,那么以下结论在解题中常经常使用到:①t 0=t 1+t 22;②|PM |=|t 0|=⎪⎪⎪⎪⎪⎪t 1+t 22;③|AB |=|t 2-t 1|;④|PA |·|PB |=|t 1·t 2|. 失误与防范在将曲线的参数方程化为一般方程时,不单单要把其中的参数消去,还要注意其中的x ,y 的取值范围.也即在消去参数的进程中必然要注意一般方程与参数方程的等价性. A 组 专项基础训练1.假设直线的参数方程为⎩⎪⎨⎪⎧x =1+3t ,y =2-3t(t 为参数),那么直线的倾斜角为________.2.将参数方程⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(0≤t ≤5)化为一般方程为________________.3.(2021·湖南)在平面直角坐标系xOy 中,假设直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右极点,那么常数a 的值为________.4.(2021·陕西)如图,以过原点的直线的倾斜角θ为参数,那么圆x 2+y 2-x =0的参数方程为______________.5.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )通过点(m ,12),那么m =________.6.(2021·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴成立极坐标系.假设极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,那么|AB |=________.7.(2021·天津)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,核心为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.8.已知曲线C :⎩⎪⎨⎪⎧ x =2cos θ,y =2sin θ(θ为参数)和直线l :⎩⎪⎨⎪⎧x =t ,y =t +b(t 为参数,b 为实数),假设曲线C 上恰有3个点到直线l 的距离等于1,那么b =________.9.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧ x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,那么a =________. 10.假设直线l 的极坐标方程为ρcos(θ-π4)=32,圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上的点到直线l 的距离为d ,那么d 的最大值为________.B 组 专项能力提升1.已知抛物线C 1的参数方程为⎩⎪⎨⎪⎧x =8t 2y =8t (t 为参数),圆C 2的极坐标方程为ρ=r (r >0),假设斜率为1的直线通过抛物线C 1的核心,且与圆C 2相切,那么r =________.2.直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.3.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程别离为⎩⎪⎨⎪⎧x =t ,y =t(t 为参数)和⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴成立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =t -12(t 为参数)相交于A ,B 两点,那么线段AB 的中点的直角坐标为________.5.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2=1上的任意一点,那么点P 到直线l 的距离的最大值为________.6.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴成立极坐标系,直线l 的极坐标方程为ρsin θ=1,那么直线l 与圆C 的交点的直角坐标为________________.7.(2021·辽宁改编)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴成立极坐标系.圆C 1,直线C 2的极坐标方程别离为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)C 1与C 2交点的极坐标为________;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b2t 3+1(t ∈R 为参数),那么a ,b 的值别离为________.答案基础知识自主学习 要点梳理1.任意一点 这条曲线上 参数 一般方程2.(1)⎩⎪⎨⎪⎧ x =x 0+t cos α,y =y 0+t sin α (2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(3)⎩⎪⎨⎪⎧ x =a cos φ,y =b sin φ ⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ夯基释疑1.-32 2.215 3.4 4.50° 5.M 1题型分类深度剖析例1 ⎝ ⎛⎭⎪⎪⎫1,255解析 将两曲线的参数方程化为一般方程别离为x 25+y 2=1 (0≤y ≤1,-5<x ≤5)和y 2=45x ,联立解得交点为⎝ ⎛⎭⎪⎪⎫1,255. 跟踪训练1 ρcos θ+ρsin θ-2=0解析 由⎩⎪⎨⎪⎧x =2cos t y =2sin t(t 为参数),得曲线C 的一般方程为x 2+y 2=2.那么在点(1,1)处的切线l 的方程为y -1=-(x -1),即x +y -2=0.又x =ρcos θ,y =ρsin θ,∴l 的极坐标方程为ρcos θ+ρsin θ-2=0. 例2 解 (1)由圆C 的参数方程可得其标准方程为x 2+y 2=16.因为直线l 过点P (2,2),倾斜角α=π3,因此直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos π3,y =2+t sin π3,即⎩⎪⎨⎪⎧x =2+12t ,y =2+32t(t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =2+12t ,y =2+32t代入圆C :x 2+y 2=16中,得(2+12t )2+(2+32t )2=16, t 2+2(3+1)t -8=0,设A 、B 两点对应的参数别离为t 1、t 2,那么t 1t 2=-8,即|PA |·|PB |=8.跟踪训练2 解 (1)x 2+y 2=16.(2)将⎩⎪⎨⎪⎧x =3+12t ,y =2+32t代入x 2+y 2=16,并整理得t 2+33t -9=0.设A 、B 对应的参数为t 1、t 2,那么t 1+t 2=-33,t 1t 2=-9.|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=37.例3 12解析 化极坐标方程ρ=4cos θ为直角坐标方程x 2+y 2-4x =0,因此曲线C 是以(2,0)为圆心,2为半径的圆.化参数方程⎩⎪⎨⎪⎧x =-3+32t ,y =12t(t 为参数)为一般方程x -3y +3=0.圆心到直线l 的距离d =|2+3|1+3=52,现在,直线与圆相离,因此|MN |的最小值为52-2=12.跟踪训练363解析 椭圆C 的标准方程为x 2a2+y 2b 2=1,直线l 的标准方程为x +y =m ,圆O 的方程为x 2+y 2=b 2,由题意知⎩⎪⎨⎪⎧|m |2=ba 2-b 2=|m |,∴a 2-b 2=2b 2,a 2=3b 2,∴e =c 2a 2=3b 2-b 23b 2=23=63. 练出高分 A 组 1.150°解析 由直线的参数方程知,斜率k =y -2x -1=-3t 3t=-33=tan θ,θ为直线的倾斜角,因此该直线的倾斜角为150°.2.x -3y -5=0,x ∈[2,77]解析 化为一般方程为x =3(y +1)+2,即x -3y -5=0,由于x =3t 2+2∈[2,77],故曲线为线段. 3.3解析 椭圆C 的右极点坐标为(3,0),假设直线l 过(3,0),那么0=3-a ,∴a =3.4.⎩⎪⎨⎪⎧ x =12+12cos 2θ,y =12sin 2θ0≤θ<π解析 由题意得圆的标准方程为⎝ ⎛⎭⎪⎫x -122+y 2=⎝ ⎛⎭⎪⎫122,设圆与x 轴的另一交点为Q ,那么Q (1,0),设点P 的坐标为(x ,y ),那么OP =OQ cos θ=cos θ.∴⎩⎪⎨⎪⎧ x =OP cos θ=cos 2θ=12+12cos 2θ,y =OP sin θ=cos θ·sin θ=12sin 2θ0≤θ<π.5.±154 解析 将曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )化为一般方程为x 2+y 24=1,将点(m ,12)代入该椭圆方程,得m 2+144=1,即m 2=1516,因此m =±154. 6.16 解析 将极坐标方程ρcos θ=4化为直角坐标方程得x =4,将x =4代入⎩⎪⎨⎪⎧x =t 2,y =t 3得t =±2,从而y =±8. 因此A (4,8),B (4,-8).因此|AB |=|8-(-8)|=16.7.2解析 依照抛物线的参数方程可知抛物线的标准方程是y 2=2px , 因此y 2M =6p ,因此E ⎝ ⎛⎭⎪⎫-p 2,±6p ,F ⎝ ⎛⎭⎪⎫p 2,0,因此p 2+3=p 2+6p ,因此p 2+4p -12=0,解得p =2(负值舍去).8.±2解析 将曲线C 和直线l 的参数方程别离化为一般方程为x 2+y 2=4和y =x +b ,依题意,假设要使圆上有3个点到直线l 的距离为1,只要知足圆心到直线的距离为1即可,取得|b |2=1,解得b =± 2.9.32解析 将曲线C 1与C 2的方程化为一般方程求解. ∵⎩⎪⎨⎪⎧x =t +1,y =1-2t ,消去参数t 得2x +y -3=0. 又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1. 方程2x +y -3=0中,令y =0得x =32, 将⎝ ⎛⎭⎪⎫32,0代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a =32. 10.32+1解析 ρcos(θ-π4)=32,∴ρcos θ+ρsin θ=6, ∴直线l 的直角坐标方程为x +y =6.由圆C 的参数方程知圆C 的圆心为C (0,0),半径r =1.圆心C (0,0)到直线l 的距离为62=32.∴d min =32+1.B 组1.2 解析 抛物线C 1的一般方程为y 2=8x ,其核心坐标是(2,0),过该点且斜率为1的直线方程是y =x -2,即x -y-2=0.圆ρ=r 的圆心是极点、半径为r ,直线x -y -2=0与该圆相切,那么r =|0-0-2|2= 2.2.2解析 将参数方程化为一般方程求解. 将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0; 将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.3.(1,1)解析 化参数方程为一般方程然后解方程组求解. C 1的一般方程为y 2=x (x ≥0,y ≥0),C 2的一般方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,x ≥0,y ≥0,x 2+y 2=2得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1). 4.⎝ ⎛⎭⎪⎫52,52 解析 化射线的极坐标方程为一般方程,代入曲线方程求t 值.射线θ=π4的一般方程为y =x (x ≥0),代入⎩⎪⎨⎪⎧ x =t +1,y =t -12,得t 2-3t =0,解得t =0或t =3.当t =0时,x =1,y =1,即A (1,1);当t =3时,x =4,y =4,即B (4,4).因此AB 的中点坐标为⎝ ⎛⎭⎪⎫52,52. 5.2105解析 由于直线l 的参数方程为⎩⎪⎨⎪⎧ x =4-2t ,y =t -2(t 为参数), 故直线l 的一般方程为x +2y =0.因为P 为椭圆x 24+y 2=1上的任意一点, 故可设P (2cos θ,sin θ),其中θ∈R .因此点P 到直线l 的距离是d =|2cos θ+2sin θ|12+22 =22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫θ+π45.因此当θ=k π+π4,k ∈Z 时,d 取得最大值2105. 6.(-1,1)和(1,1)解析 ∵y =ρsin θ,∴直线l 的直角坐标方程为y =1. 由⎩⎪⎨⎪⎧x =cos α,y =1+sin α得x 2+(y -1)2=1. 由⎩⎪⎨⎪⎧ y =1,x 2+y -12=1得⎩⎪⎨⎪⎧ x =-1,y =1或⎩⎪⎨⎪⎧ x =1,y =1. ∴直线l 与圆C 的交点的直角坐标为(-1,1)和(1,1).7.(1)⎝ ⎛⎭⎪⎫4,π2,⎝⎛⎭⎪⎫22,π4 (2)-1,2 解析 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+y -22=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2. 因此C 1与C 2交点的极坐标为⎝ ⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标别离为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1,因此⎩⎪⎨⎪⎧ b 2=1,-ab 2+1=2,解得a =-1,b =2.。
【2022高考数学一轮复习(步步高)】目录
第一章集合、常用逻辑用语、不等式§1.1集合§1.2 充分条件与必要条件§1.3 全称量词与存在量词§1.4 不等关系与不等式§1.5 一元二次不等式及其解法§1.6 基本不等式强化训练1不等式中的综合问题第二章函数概念与基本初等函数Ⅰ§2.1 函数的概念及其表示第1课时函数的概念及其表示第2课时函数的定义域与值域§2.2 函数的基本性质第1课时单调性与最大(小)值第2课时奇偶性、对称性与周期性第3课时函数性质的综合问题§2.3 幂函数与二次函数§2.4 指数与指数函数§2.5 对数与对数函数§2.6 函数的图象§2.7 函数与方程强化训练2函数与方程中的综合问题§2.8 函数模型及其应用第三章导数及其应用§3.1 导数的概念及运算§3.2 导数与函数的单调性§3.3 导数与函数的极值、最值强化训练3导数中的综合问题高考专题突破一高考中的导数综合问题第1课时利用导数研究恒(能)成立问题第2课时利用导函数研究函数的零点第3课时利用导数证明不等式第四章三角函数、解三角形§4.1任意角和弧度制、三角函数的概念§4.2 同角三角函数基本关系式及诱导公式§4.3 简单的三角恒等变换第1课时两角和与差的正弦、余弦和正切公式第2课时简单的三角恒等变换§4.4 三角函数的图象与性质§4.5 函数y=A sin(ωx+φ)的图象及应用强化训练4三角函数中的综合问题§4.6 解三角形高考专题突破二高考中的解三角形问题第五章平面向量、复数§5.1 平面向量的概念及线性运算§5.2 平面向量基本定理及坐标表示§5.3 平面向量的数量积强化训练5平面向量中的综合问题§5.4 复数第六章数列§6.1 数列的概念与简单表示法§6.2 等差数列及其前n项和§6.3 等比数列及其前n项和强化训练6数列中的综合问题高考专题突破三高考中的数列问题第七章立体几何与空间向量§7.1空间几何体及其表面积、体积强化训练7空间几何体中的综合问题§7.2 空间点、直线、平面之间的位置关系§7.3 直线、平面平行的判定与性质§7.4 直线、平面垂直的判定与性质强化训练8空间位置关系中的综合问题§7.5 空间向量及其应用高考专题突破四高考中的立体几何问题第八章解析几何§8.1直线的方程§8.2 两条直线的位置关系§8.3 圆的方程§8.4 直线与圆、圆与圆的位置关系强化训练9直线与圆中的综合问题§8.5 椭圆第1课时椭圆及其性质第2课时直线与椭圆§8.6 双曲线§8.7 抛物线强化训练10圆锥曲线中的综合问题高考专题突破五高考中的圆锥曲线问题第1课时范围与最值问题第2课时定点与定值问题第3课时证明与探索性问题第九章统计与统计案例§9.1 随机抽样、用样本估计总体§9.2 变量间的相关关系、统计案例强化训练11统计中的综合问题第十章计数原理、概率、随机变量及其分布§10.1 分类加法计数原理与分步乘法计数原理§10.2 排列、组合§10.3 二项式定理§10.4 随机事件的概率与古典概型§10.5 离散型随机变量的分布列、均值与方差§10.6 二项分布与正态分布高考专题突破六高考中的概率与统计问题。
2023年高考数学(文科)一轮复习讲义——坐标系与参数方程 第二课时 参数方程
第二课时 参数方程考试要求 1.了解参数方程,了解参数的意义;2.能选择适当的参数写出直线、圆和椭圆的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2⎩⎨⎧x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数)1.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.1.思考辨析(在括号内打“√”或“×”)(1)参数方程⎩⎨⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)方程⎩⎨⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( ) 答案 (1)√ (2)√ (3)√ (4)×解析 (4)当t =π3时,点M 的坐标为(2cos π3,4sin π3),即M (1,23),∴OM 的斜率k =2 3.2.(2019·北京卷)已知直线l 的参数方程为⎩⎨⎧x =1+3t ,y =2+4t (t 为参数),则点(1,0)到直线l 的距离是( ) A.15 B.25C.45D.65答案 D解析 由题意可知直线l 的普通方程为4x -3y +2=0,则点(1,0)到直线l 的距离d =|4×1-3×0+2|42+(-3)2=65.故选D.3.在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值是________. 答案 3解析 直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为x 29+y 24=1, 所以椭圆C 的右顶点坐标为(3,0), 若直线l 过点(3,0),则3-a =0,所以a =3.4.(2019·天津卷)设直线ax -y +2=0和圆⎩⎨⎧x =2+2cos θ,y =1+2sin θ(θ为参数)相切,则实数a =________. 答案 34解析 圆的参数方程消去θ,得 (x -2)2+(y -1)2=4. ∴圆心(2,1),半径r =2. 又直线ax -y +2=0与圆相切. ∴d =|2a -1+2|a 2+1=2,解得a =34.5.已知直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),若l 与圆x 2+y 2-4x +3=0交于A ,B 两点,且|AB |=3,则直线l 的斜率为________. 答案 ±1515解析 由⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),得y =x tan α,设k =tan α,得直线的方程为y =kx ,由x 2+y 2-4x +3=0,得(x -2)2+y 2=1,圆心为(2,0),半径为1, ∴圆心到直线y =kx 的距离为 12-|AB |24=12=|2k |k 2+1,得k =±1515.6.(易错题)设P (x ,y )是曲线C :⎩⎨⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈[0,2π))上任意一点,则yx 的最大值为________.答案 33解析 由曲线C :⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数),得(x +2)2+y 2=1,表示圆心为(-2,0),半径为1的圆,yx 表示的是圆上的点和原点连线的斜率, 设yx =k ,则原问题转化为y =kx 和圆有交点的问题, 即圆心到直线的距离d ≤r ,所以|-2k |1+k 2≤1,解得-33≤k ≤33, 所以y x 的最大值为33.考点一 参数方程与普通方程的互化1.下列参数方程与方程y 2=x 表示同一曲线的是( ) A.⎩⎨⎧x =t ,y =t 2B.⎩⎨⎧x =sin 2t ,y =sin t C.⎩⎨⎧x =t ,y =|t |D.⎩⎨⎧x =1-cos 2t 1+cos 2t ,y =tan t答案 D解析 对于A ,消去t 后所得方程为x 2=y ,不符合y 2=x ;对于B ,消去t 后所得方程为y 2=x ,但要求0≤x ≤1,也不符合y 2=x ; 对于C ,消去t 得方程为y 2=|x |,且要求y ≥0,x ∈R ,也不符合y 2=x ; 对于D ,x =1-cos 2t1+cos 2t =2sin 2t2cos 2t =tan 2t =y 2,符合y 2=x .故选D.2.把下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数);(2)⎩⎨⎧x =sin θ,y =cos 2θ(θ为参数,θ∈[0,2π)). 解 (1)由已知得t =2x -2,代入y =5+32t 中得y =5+32(2x -2). 即它的普通方程为3x -y +5-3=0.(2)因为sin 2θ+cos 2θ=1,所以x 2+y =1,即y =1-x 2. 又因为|sin θ|≤1,所以其普通方程为y =1-x 2(|x |≤1).3.(2021·全国乙卷)在直角坐标系xOy 中,⊙C 的圆心为C (2,1),半径为1. (1)写出⊙C 的一个参数方程;(2)过点F (4,1)作⊙C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.解 (1)由题意知⊙C 的标准方程为(x -2)2+(y -1)2=1, 则⊙C 的参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数).(2)由题意可知,切线的斜率存在,设切线方程为y -1=k (x -4),即kx -y +1-4k =0,所以|2k -1+1-4k |k 2+1=1,解得k =±33,则这两条切线方程分别为y =33x -433+1,y =-33x +433+1, 故这两条切线的极坐标方程分别为 ρsin θ=33ρcos θ-433+1,ρsin θ=-33ρcos θ+433+1.感悟提升 1.化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法.另外,消参时要注意参数的范围.2.普通方程化为参数方程时,先分清普通方程所表示的曲线类型,结合常见曲线的参数方程直接写出. 考点二 参数方程的应用例 1 (2022·兰州模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t(t 为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为cos ⎝ ⎛⎭⎪⎫θ+π3=0.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)已知点P (3,3),曲线C 1和C 2相交于A ,B 两个不同的点,求||P A |-|PB ||的值.解(1)将⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫t +1t ,y =t -1t的参数t 消去得曲线C 1的普通方程为x 2-y 24=1.∵cos ⎝ ⎛⎭⎪⎫θ+π3=0,∴ρcos θ-3ρsin θ=0,由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ可得曲线C 2的直角坐标方程为x -3y =0. (2)由题意得点P (3,3)在曲线C 2上,曲线C 2的参数方程可表示为⎩⎪⎨⎪⎧x =3+32t ′,y =3+12t ′(t ′为参数),将上述参数方程代入x 2-y 24=1得11t ′2+443t ′+4×29=0,① Δ>0,设t ′1,t ′2为方程①的两根, 则t ′1+t ′2=-43,t ′1t ′2=4×2911,∴(|P A |-|PB |)2=(|P A |+|PB |)2-4|P A ||PB |=(t ′1+t ′2)2-4t ′1t ′2=6411,∴||P A |-|PB ||=81111.感悟提升 1.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.2.过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t为参数),t 的几何意义是P 0P →的数量,即|t |表示P 0到P 的距离,t 有正负之分.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.训练1 (2022·晋中模拟)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t ∈R ,t 为参数,α∈⎝ ⎛⎭⎪⎫0,π2).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2sin θ,θ∈⎝ ⎛⎭⎪⎫π4,3π4.(1)求半圆C 的参数方程和直线l 的普通方程;(2)直线l 与x 轴交于点A ,与y 轴交于点B ,点D 在半圆C 上,且直线CD 的倾斜角是直线l 的倾斜角的2倍,△ABD 的面积为1+3,求α的值. 解 (1)由ρ=2sin θ,得ρ2=2ρsin θ,将x 2+y 2=ρ2,y =ρsin θ代入,得半圆C 的直角坐标方程为x 2+y 2=2y , ∵θ∈⎝ ⎛⎭⎪⎫π4,3π4,∴y =ρsin θ=2sin 2θ∈(1,2],x =ρcos θ=2sin θ·cos θ=sin 2θ∈(-1,1), ∴半圆C 的直角坐标方程为x 2+(y -1)2=1(1<y ≤2).由sin φ=y -1∈(0,1],cos φ=x ∈(-1,1)知,可取φ∈(0,π), ∴半圆C 的参数方程为⎩⎪⎨⎪⎧x =cos φ,y =1+sin φ(其中φ为参数,φ∈(0,π)).将直线l 的参数方程消去参数t ,得直线l 的普通方程为y =x tan α-2,α∈⎝ ⎛⎭⎪⎫0,π2.(2)由题意可知,A ⎝ ⎛⎭⎪⎫2tan α,0,B (0,-2),根据圆的参数方程中参数的几何意义, 结合已知条件,可得φ=2α, 所以D (cos 2α,1+sin 2α). 则点D 到直线AB 的距离d =|tan α·cos 2α-(1+sin 2α)-2|1+tan 2α=|sin αcos 2α-cos αsin 2α-3cos α| =sin α+3cos α, 又|AB |=(-2)2+⎝ ⎛⎭⎪⎫2tan α2=2sin α.∴△ABD 的面积S =12·|AB |·d =1+3tan α=1+3, ∴tan α= 3.又α∈⎝ ⎛⎭⎪⎫0,π2,∴α=π3.考点三 参数方程与极坐标方程的综合应用例2 (2020·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos k t ,y =sin kt (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为4ρcos θ-16ρsin θ+3=0. (1)当k =1时,C 1是什么曲线?(2)当k =4时,求C 1与C 2的公共点的直角坐标. 解 (1)当k =1时,C 1:⎩⎪⎨⎪⎧x =cos t ,y =sin t ,消去参数t 得x 2+y 2=1,故曲线C 1是以坐标原点为圆心,1为半径的圆.(2)当k =4时,C 1:⎩⎪⎨⎪⎧x =cos 4t ,y =sin 4t ,消去参数t 得C 1的直角坐标方程为x +y =1.C 2的直角坐标方程为4x -16y +3=0. 由⎩⎪⎨⎪⎧x +y =1,4x -16y +3=0,解得⎩⎪⎨⎪⎧x =14,y =14.故C 1与C 2的公共点的直角坐标为⎝ ⎛⎭⎪⎫14,14.感悟提升 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷地解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.训练2 (2022·长春联考)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =t -2,y =t 2-2t (t 为参数),曲线C 上异于原点的两点M ,N 所对应的参数分别为t 1,t 2.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρ=2a sin θ. (1)当t 1=1,t 2=3时,直线MN 平分曲线D ,求a 的值;(2)当a =1时,若t 1+t 2=2+3,直线MN 被曲线D 截得的弦长为3,求直线MN 的方程.解 (1)因为t 1=1,t 2=3, 所以M (-1,-1),N (1,3). 所以直线MN 的方程为y =2x +1. 因为ρ=2a sin θ,所以ρ2=2aρsin θ, 又x 2+y 2=ρ2,y =ρsin θ,所以曲线D 的方程可化为x 2+(y -a )2=a 2,因为直线MN 平分曲线D ,所以直线MN 过点(0,a ),所以a =1.(2)由题意可知k MN =(t 21-2t 1)-(t 22-2t 2)(t 1-2)-(t 2-2)=(t 1-t 2)(t 1+t 2-2)t 1-t 2=3,曲线D 的方程为x 2+(y -1)2=1,设直线MN 的方程为y =3x +m ,圆心D 到直线MN 的距离为d ,则d =|m -1|2, 因为d 2+⎝ ⎛⎭⎪⎫322=12,所以⎝ ⎛⎭⎪⎫m -122+⎝ ⎛⎭⎪⎫322=1, 所以m =0或m =2,所以直线MN 的方程为y =3x 或y =3x +2.1.将下列参数方程化成普通方程.(1)⎩⎨⎧x =t 2-1,y =t 2+1(t 为参数); (2)⎩⎨⎧x =cos θ,y =sin θ⎝⎛⎭⎪⎫θ为参数,θ∈⎣⎢⎡⎦⎥⎤π2,π. 解 (1)消去参数t ,得y =x +2,由于t 2≥0,所以普通方程为y =x +2(x ≥-1),表示一条射线.(2)消去参数θ,得x 2+y 2=1,由于θ∈⎣⎢⎡⎦⎥⎤ π2,π,所以x ∈[-1,0],y ∈[0,1],所以普通方程为x 2+y 2=1(-1≤x ≤0,0≤y ≤1),表示圆的四分之一.2.(2021·全国甲卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos θ.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),点M 为C 上的动点,点P 满足AP→=2AM →,写出点P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.解 (1)根据ρ=22cos θ,得ρ2=22ρcos θ,因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=22x ,所以曲线C 的直角坐标方程为(x -2)2+y 2=2.(2)设P (x ,y ),M (x ′,y ′),则AP→=(x -1,y ),AM →=(x ′-1,y ′). 因为AP →=2AM →,所以⎩⎪⎨⎪⎧x -1=2(x ′-1),y =2y ′,即⎩⎨⎧x ′=x -12+1,y ′=y 2. 因为点M 为C 上的动点,所以⎝ ⎛⎭⎪⎫x -12+1-22+⎝ ⎛⎭⎪⎫y 22=2, 即(x -3+2)2+y 2=4.所以点P 的轨迹C 1的参数方程为⎩⎪⎨⎪⎧x =3-2+2cos α,y =2sin α(其中α为参数,α∈[0,2π)). 所以|CC 1|=3-22,⊙C 1的半径r 1=2,又⊙C 的半径r =2,所以|CC 1|<r 1-r ,所以C 与C 1没有公共点.3.(2021·银川模拟)在平面直角坐标系xOy 中,直线l 过定点P (3,0),倾斜角为α⎝ ⎛⎭⎪⎫0<α<π2,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t(t 为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 交曲线C 于M ,N 两点,且|PM |·|PN |=103,求l 的参数方程.解 (1)由⎩⎪⎨⎪⎧x =t +1t ,y =t 2-12t 得⎩⎪⎨⎪⎧x =t +1t ,2y =t -1t ,∵⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=t 2+2+1t 2-t 2+2-1t 2=4, ∴x 2-(2y )2=4,即x 2-4y 2=4.又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴ρ2cos 2θ-4ρ2sin 2θ=4. 即曲线C 的极坐标方程为ρ2cos 2θ-4ρ2sin 2θ=4.(2)设l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),代入x 2-4y 2=4整理得(cos 2α-4sin 2α)t 2+6t cos α+5=0,设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=5cos 2α-4sin 2α, 则|PM |·|PN |=|t 1t 2|=⎪⎪⎪⎪⎪⎪5cos 2α-4sin 2α=103.解得cos α=±22, ∵0<α<π2,∴cos α=22,∴α=π4.故l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t(t 为参数). 4.(2022·合肥检测)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)(t 为参数).在以原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若曲线C 2与曲线C 1交于点A ,B ,M (-2,2),求1|MA |-1|MB |的值.解 (1)由⎩⎪⎨⎪⎧x =22(t 14-t -14),y =2(t 14+t -14)得⎩⎪⎨⎪⎧2x =t 14-t -14,12y =t 14+t -14, 两式平方相减得12y 2-2x 2=4,即y 28-x 22=1.又y =2(t 14+t -14)≥22(t >0), ∴曲线C 1的普通方程为y 28-x 22=1(y ≥22).曲线C 2:ρsin ⎝ ⎛⎭⎪⎫θ-π4-22=0,化简,得ρsin θ-ρcos θ-4=0,又x =ρcos θ,y =ρsin θ,∴y -x -4=0,∴曲线C 2的直角坐标方程为x -y +4=0.(2)设曲线C 2的参数方程为⎩⎪⎨⎪⎧x =-2+22t ′,y =2+22t ′(t ′为参数).代入曲线C 1的方程得⎝ ⎛⎭⎪⎫2+22t ′2-4⎝ ⎛⎭⎪⎫-2+22t ′2=8,即3t ′2-202t ′+40=0.Δ=320>0.设方程的两个实数根为t 1,t 2,则t 1+t 2=2023,t 1t 2=403,∴⎪⎪⎪⎪⎪⎪1|MA |-1|MB |=⎪⎪⎪⎪⎪⎪1|t 1|-1|t 2|=||t 2|-|t 1|||t 1|·|t 2|=|t 1-t 2||t 1|·|t 2|=(t 1+t 2)2-4t 1t 2|t 1|·|t 2|=853403=55,∴1|MA |-1|MB |=55或-55.5.(2022·陕西部分学校联考)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+sin φ-2cos φ,y =cos φ+2sin φ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ+2=0.(1)求曲线C 1的极坐标方程并判断C 1,C 2的位置关系;(2)设直线θ=α⎝ ⎛⎭⎪⎫-π2<α<π2,ρ∈R 分别与曲线C 1交于A ,B 两点,与曲线C 2交于P 点,若|AB |=3|OA |,求|OP |的值.解 (1)曲线C 1:⎩⎪⎨⎪⎧x -3=sin φ-2cos φ,①y =cos φ+2sin φ,②①2+②2得(x -3)2+y 2=5,即x 2+y 2-6x +4=0,将x 2+y 2=ρ2,x =ρcos θ代入上式,得曲线C 1的极坐标方程为ρ2-6ρcos θ+4=0.由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,ρcos θ+2=0得ρ2+16=0,此方程无解. 所以C 1,C 2相离.(2)由⎩⎪⎨⎪⎧ρ2-6ρcos θ+4=0,θ=α得ρ2-6ρcos α+4=0, 因为直线θ=α与曲线C 1有两个交点A ,B ,所以Δ=36cos 2α-16>0,得cos α>23.设方程ρ2-6ρcos α+4=0的两根分别为ρ1,ρ2,则⎩⎪⎨⎪⎧ρ1+ρ2=6cos α>0,③ρ1ρ2=4,④因为|AB |=3|OA |,所以|OB |=4|OA |,即ρ2=4ρ1,⑤由③④⑤解得ρ1=1,ρ2=4,cos α=56,满足Δ>0,由⎩⎪⎨⎪⎧ρcos α+2=0,θ=α得ρ=-2cos α=-125, 所以|OP |=|ρ|=125.6.(2022·贵阳适应性测试)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =r cos α,y =r sin α(0<r <2,α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2:ρ2=4cos 2θ(如图所示).(1)若r =2,求曲线C 1的极坐标方程,并求曲线C 1与C 2交点的直角坐标;(2)已知曲线C 2既关于原点对称,又关于坐标轴对称,且曲线C 1与C 2交于不同的四点A ,B ,C ,D ,求矩形ABCD 面积的最大值.解 (1)∵r =2,∴x 2+y 2=2,又x 2+y 2=ρ2,∴曲线C 1的极坐标方程为ρ=2,∴⎩⎪⎨⎪⎧ρ2=4cos 2θ,ρ=2,cos 2θ=12⇒cos θ=±32, 当cos θ=32时,sin θ=±12,当cos θ=-32时,sin θ=±12,分别代入⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,可得四个交点的直角坐标分别为⎝ ⎛⎭⎪⎫62,22,⎝ ⎛⎭⎪⎫62,-22,⎝ ⎛⎭⎪⎫-62,22,⎝ ⎛⎭⎪⎫-62,-22. (2)由(1)知曲线C 1的极坐标方程为ρ=r .由⎩⎪⎨⎪⎧ρ=r ,ρ2=4cos 2θ得cos 2θ=r 24. ∵曲线C 2关于原点和坐标轴对称, ∴S 矩形ABCD =4|r cos θ||r sin θ| =4r 2|cos θsin θ|=2r 2|sin 2θ| =2r 21-cos 22θ=2r 21-r 416 =12r 216-r 4=12r 4(16-r 4) ≤12⎝ ⎛⎭⎪⎫r 4+16-r 422=4. 当且仅当r 4=16-r 4,即r 2=22时等号成立. 故矩形ABCD 面积的最大值为4.。
统考版2022届高考数学一轮复习选修4_4.2参数方程课时作业理含解析
课时作业72 参数方程[基础达标]1.[2021·某某省示X 高中名校高三联考]在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φy =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心的极坐标为⎝⎛⎭⎪⎫7,π2且经过极点的圆.(1)求曲线C 1的极坐标方程和C 2的直角坐标方程;(2)已知射线θ=π3(ρ≥0)分别与曲线C 1,C 2交于点A ,B (点B 异于坐标原点O ),求线段AB 的长.2.[2021·黄冈中学,华师附中等八校第一次联考]在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =3+t sin α(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ2=2ρcos θ+8.(1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A ,B 两点,且|AB |=42,求直线l 的倾斜角.3.[2021·某某省七校联合体高三第一次联考试题]在平面直角坐标系xOy 中,已知曲线C 1:x +y =1与曲线C 2:⎩⎪⎨⎪⎧x =2+2cos φy =2sin φ(φ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)写出曲线C 1,C 2的极坐标方程;(2)在极坐标系中,已知l :θ=α(ρ>0)与C 1,C 2的公共点分别为A ,B ,α∈⎝ ⎛⎭⎪⎫0,π2,当|OB ||OA |=4时,求α的值.4.[2021·某某市高三年级摸底考试]在极坐标系中,圆C:ρ=4cosθ.以极点O为原点,极轴为x轴的正半轴建立直角坐标系xOy,直线l经过点M(-1,-33)且倾斜角为α.(1)求圆C的直角坐标方程和直线l的参数方程;(2)已知直线l与圆C交于A,B两点,满足A为MB的中点,求α.5.[2020·全国卷Ⅱ]已知曲线C 1,C 2的参数方程分别为C 1:⎩⎪⎨⎪⎧x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:⎩⎪⎨⎪⎧x =t +1t,y =t -1t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.6.[2021·某某市高三年级摸底测试卷]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2sin α(α∈[0,2π),α为参数),在同一平面直角坐标系中,曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=y得到曲线C 1,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系(ρ为极径,θ为极角).(1)求曲线C 的普通方程和曲线C 1的极坐标方程;(2)若射线OA :θ=β(ρ>0)与曲线C 1交于点A ,射线OB :θ=β+π2(ρ>0)与曲线C 1交于点B ,求1|OA |2+1|OB |2的值.[能力挑战]7.[2021·某某省豫北名校高三质量考评]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos φy =y 0+t sin φ(t 为参数,φ∈[0,π)).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝ ⎛⎭⎪⎫π3-θ.(1)求圆C 的直角坐标标准方程;(2)设点P (x 0,y 0),圆心C (2x 0,2y 0),若直线l 与圆C 交于M ,N 两点,求|PM ||PN |+|PN ||PM |的最大值.课时作业721.解析:(1)由曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φy =sin φ(φ为参数),消去参数φ得x 24+y 2=1,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入x 24+y 2=1得曲线C 1的极坐标方程为ρ2=4cos 2θ+4sin 2θ=41+3sin 2θ.由曲线C 2是圆心的极坐标为⎝⎛⎭⎪⎫7,π2且经过极点的圆,可得其极坐标方程为ρ=27sin θ,从而得C 2的直角坐标方程为x 2+y 2-27y =0.(2)将θ=π3(ρ≥0)代入ρ=27sin θ得ρB =27sin π3=21,将θ=π3(ρ≥0)代入ρ2=4cos 2θ+4sin 2θ得ρA =4cos 2π3+4sin 2π3=41313, 故|AB |=ρB -ρA =1321-41313.2.解析:(1)因为直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =3+t sin α(t 为参数),所以当α=π2时,直线l 的普通方程为x =2,当α≠π2时,直线l 的普通方程为y -3=tan α(x -2),即y =x tan α+3-2tan α.因为ρ2=x 2+y 2,ρcos θ=x ,ρ2=2ρcos θ+8,所以x 2+y 2=2x +8. 所以曲线C 的直角坐标方程为x 2+y 2-2x -8=0.(2)解法一 曲线C 的直角坐标方程为x 2+y 2-2x -8=0, 将直线l 的参数方程代入曲线C 的直角坐标方程整理,得t 2+(23sin α+2cos α)t -5=0.因为Δ=(23sin α+2cos α)2+20>0,所以可设该方程的两个根分别为t 1,t 2,则t 1+t 2=-(23sin α+2cos α),所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=[-(23sin α+2cos α)]2+20=42.整理得(3sin α+2cos α)2=3,故2sin ⎝ ⎛⎭⎪⎫α+π6=± 3.因为0≤α<π,所以α+π6=π3或α+π6=2π3,解得α=π6或α=π2,综上所述,直线l 的倾斜角为π6或π2.解法二 直线l 与曲线C 交于A ,B 两点,且|AB |=42,曲线C 为圆:(x -1)2+y 2=9,故圆心C (1,0)到直线l 的距离d =9-(22)2=1.①当α=π2时,直线l 的普通方程为x =2,符合题意.②当α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π时,直线l 的方程为x tan α-y +3-2tan α=0,所以d =|tan α-0+3-2tan α|1+tan 2α=1,整理得|3-tan α|=1+tan 2α,解得α=π6. 综上所述,直线l 的倾斜角为π6或π2.3.解析:(1)由x =ρcos θ,y =ρsin θ,可得曲线C 1的极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.曲线C 2的普通方程为(x -2)2+y 2=4,即x 2+y 2-4x =0, 又x =ρcos θ,y =ρsin θ,所以曲线C 2的极坐标方程为ρ=4cos θ. (2)由(1)知|OA |=ρA =1cos α+sin α,|OB |=ρB =4cos α,∴|OB ||OA |=4cos α(cos α+sin α)=2(1+cos2α+sin2α)=2+22sin ⎝ ⎛⎭⎪⎫2α+π4.∵|OB ||OA |=4,∴2+22sin ⎝ ⎛⎭⎪⎫2α+π4=4,sin ⎝ ⎛⎭⎪⎫2α+π4=22.由0<α<π2,知π4<2α+π4<5π4,∴2α+π4=3π4,∴α=π4.4.解析:(1)由圆C :ρ=4cos θ可得ρ2=4ρcos θ, 因为ρ2=x 2+y 2,x =ρcos θ,所以x 2+y 2=4x ,即(x -2)2+y 2=4,故圆C 的直角坐标方程为(x -2)2+y 2=4. 直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos αy =-33+t sin α(t 为参数,0≤α<π).(2)设A ,B 对应的参数分别为t A ,t B ,将直线l 的参数方程代入C 的直角坐标方程并整理,得t 2-6t (3sin α+cos α)+32=0,Δ=36(3sin α+cos α)2-4×32>0 ①,所以t A +t B =6(3sin α+cos α),t A ·t B =32.又A 为MB 的中点,所以t B =2t A ,因此t A =2(3sin α+cos α)=4sin ⎝ ⎛⎭⎪⎫α+π6,t B =8sin ⎝⎛⎭⎪⎫α+π6,所以t A ·t B=32sin 2⎝ ⎛⎭⎪⎫α+π6=32,即sin 2⎝ ⎛⎭⎪⎫α+π6=1.因为0≤α<π,所以π6≤α+π6<7π6,从而α+π6=π2,即α=π3,又α=π3满足①式,所以所求α=π3.5.解析:(1)C 1的普通方程为x +y =4(0≤x ≤4).由C 2的参数方程得x 2=t 2+1t 2+2,y 2=t 2+1t 2-2,所以x 2-y 2=4.故C 2的普通方程为x 2-y 2=4.(2)由⎩⎪⎨⎪⎧x +y =4,x 2-y 2=4得⎩⎪⎨⎪⎧x =52,y =32,所以P 的直角坐标为⎝ ⎛⎭⎪⎫52,32.设所求圆的圆心的直角坐标为(x 0,0),由题意得x 20=⎝⎛⎭⎪⎫x 0-522+94,解得x 0=1710.因此,所求圆的极坐标方程为ρ=175cos θ.6.解析:(1)将曲线C 的参数方程⎩⎪⎨⎪⎧x =2cos αy =2sin α(α∈[0,2π),α为参数)消去参数,得x 2+y 2=4,所以曲线C 的普通方程为x 2+y 2=4.曲线C 经过伸缩变换得到曲线C 1,则曲线C 1的参数方程为⎩⎪⎨⎪⎧x ′=4cos αy ′=2sin α,得x ′2+4y ′2=16,将x ′=ρcos θ,y ′=ρsin θ,代入上式得曲线C 1的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=16. (2)将θ=β(ρ>0)代入ρ2cos 2θ+4ρ2sin 2θ=16,得1ρ2=cos 2β16+sin 2β4,即1|OA |2=cos 2β16+sin 2β4,同理1|OB |2=cos 2⎝ ⎛⎭⎪⎫β+π216+sin 2⎝ ⎛⎭⎪⎫β+π24=sin 2β16+cos 2β4,所以1|OA |2+1|OB |2=116+14=516.7.解析:(1)圆C 的极坐标方程为ρ=8cos ⎝ ⎛⎭⎪⎫π3-θ=4cos θ+43sin θ,所以ρ2=43ρsin θ+4ρcos θ.因为ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y , 所以x 2+y 2-4x -43y =0,所以圆C 的直角坐标标准方程为(x -2)2+(y -23)2=16.(2)由(1)知圆C 的圆心的直角坐标为(2,23),则⎩⎪⎨⎪⎧2x 0=22y 0=23,所以⎩⎪⎨⎪⎧x 0=1y 0=3,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos φy =3+t sin φ(t 为参数,φ∈[0,π)).将直线l 的参数方程代入(x -2)2+(y -23)2=16,得t 2-(23sin φ+2cos φ)t -12=0.设点M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=23sin φ+2cos φ,t 1t 2=-12.故|PM ||PN |+|PN ||PM |=|PM |2+|PN |2|PM |·|PN |=|t 1|2+|t 2|2|t 1||t 2|=(t 1+t 2)2-2t 1t 2|t 1t 2|=112[23sin φ+2cos φ)2+24]=112⎣⎢⎡⎦⎥⎤4sin ⎝⎛⎭⎪⎫φ+π62+2,因此,当φ=π3时,|PM ||PN |+|PN ||PM |取得最大值,最大值为103.。
高考数学专题复习:参数方程知识与习题精选
高考数学专题复习:参数方程知识与习题一.常见直曲线的参数方程1、直线参数方程的标准式是2、圆心在点(a,b),半径为r 的圆的参数方程是3、 4、双曲线12222=-b y a x 的参数方程是5、抛物线y 2=2px 的参数方程是备注:参数t 的几何意义:Tips:判断参数方程表示的是什么曲线题中,关键是“消参”.常用方法:平方法——三角函数、t t 1+型.注意观察是否规定参数的范围练习1:将参数方程化为普通方程 (1) (2)练习2:已知椭圆16410022=+y x 有一内接矩形ABCD ,求矩形ABCD 的最大面积.练习3:如图,已知点P 是圆x 2+y 2=16上的一个懂点,点A 坐标为(12,0).当点P 在圆上运动时,线段PA 中点M 的轨迹是什么?一、直线参数方程中的参数的几何意义1、已知直线l 经过点(1,1)P ,倾斜角6πα=,①写出直线l 的参数方程;②设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积.2、已知直线).3cos(2.32),2,1(πθρπ+=-圆方程的直线倾斜角为是过点P l(I )求直线l 的参数方程;(II )设直线l 与圆相交于M 、N 两点,求|PM|·|PN|的值.二、巧用参数方程解最值题1、在椭圆2211612x y+=上找一点,使这一点到直线2120x y--=的距离的最小值.2、已知点(,)P x y是圆222x y y+=上的动点,(1)求2x y+的取值范围;(2)若0x y a++≥恒成立,求实数a的取值范围.3、在平面直角坐标系xOy中,动圆2228cos6sin7cos80x y x yθθθ+--++=的圆心为(,)P x y,求2x y-的取值范围高考数学专题复习:参数方程知识与习题专题:参数方程练习1:(1) y=1-x 2 (x ∈[-1,1]) (2) 12222=-b y a x练习2:设椭圆的参数方程为 θθsin 8cos 10==y x ,设点A 坐标为(10cos θ,8sin θ),θ∈[0,2π] 则由椭圆的对称性知:B(10cos θ, - 8sin θ),D(-10cos θ,8sin θ)|AB|=16sin θ , |AD|= 20cos θS 矩形ABCD=|AB|·|AD|=320 sin θ cos θ=160sin2θ∵θ∈[0,2π], sin 2θ∈[-1,1]∴当2θ=π/2时sin2θ取得最大值1,此时矩形面积最大值为S max =160练习3设圆的参数方程为θθsin 4cos 4==y x ,设点P 坐标为(4cos θ,4sin θ),θ∈[0,2π]则PA 中点M(2cos θ+6,2sin θ),即θθsin 26cos 2=+=y x (移项、平方、相加)得(x-6)2+y 2=4∴M 轨迹为圆巩固练习一、1解 (1)直线的参数方程为,31112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩ 运用 快速写出(2)则点P 到,A B 两点的距离之积为22解:(Ⅰ)l的参数方程为,11,2()2.x t t y ⎧=--⎪⎪⎨⎪=⎪⎩为参数(Ⅱ)12||||||6PM PN t t ==+g)3/cos(π+θ∈[-1,1]当cos()13πθ+=时,min 5d =,此时所求点为(2,3)-.2圆的参数方程为1sin cos +==θθy x ,则P(cos θ, sin θ) (1)2x+y=2cos θ+ sin θ+1=5sin(αθ+)+1 (tan α=2) -1≤sin(αθ+)≤1121x y ≤+≤∴2x+y ∈[-5+1, 5+1](2) x+y+a= cos θ+ sin θ+1+a=2 sin(4/π+θ)+1+a ≥0恒成立,即a ≥-2 sin(4/π+θ)-1 恒成立,所以a ≥[-2 sin(4/π+θ)-1]max ,即a ≥2-13圆的标准方程为1)sin 3()4cos -(x 22=-+θθy ,即P(4cos θ, 3sin θ)。
【高考总动员】高考数学大一轮复习 第1章 第2节 命题及其关系、充分条件与必要条件课时提升练 文 新
课时提升练(二)命题及其关系、充分条件与必要条件一、选择题1.(2023·东北四市联考)以下命题中真命题是( )A.“a>b”是“a2>b2”的充分条件B.“a>b”是“a2>b2”的必要条件C.“a>b”是“ac2>bc2”的必要条件D.“a>b”是“|a|>|b|”的充要条件【解析】C中,当c2=0时,由a>b ac2>bc2;反过来,由ac2>bc2⇒a>b,故“a>b”是“ac2>bc2”的必要条件.【答案】 C2.命题“假设a,b,c成等比数列,那么b2=ac”的逆否命题是( )A.“假设a,b,c成等比数列,那么b2≠ac”B.“假设a,b,c不成等比数列,那么b2≠ac”C.“假设b2=ac,那么a,b,c成等比数列”D.“假设b2≠ac,那么a,b,c不成等比数列”【解析】根据原命题与其逆否命题的关系知,命题“假设a,b,c成等比数列,那么b2=ac”的逆否命题为“假设b2≠ac,那么a,b,c不成等比数列”.【答案】 D3.(2023·长沙模拟)设A,B为两个互不相同的集合,命题p:x∈A∩B,命题q:x∈A 或x∈B,那么┑q是┑p的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件【解析】由题意p⇒q,故┑q⇒┑p;而q p,故┑p┑q,所以┑q是┑p的充分不必要条件.【答案】 B4.有以下四个命题:①“假设x+y=0,那么x,y互为相反数”的逆否命题;②“全等三角形的面积相等”的否命题;③“假设q≤1,那么x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中的真命题为( )A.①②B.②③C.①③D.③④【解析】“假设x+y=0,那么x,y互为相反数”为真命题,那么逆否命题也为真;“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等”,该否命题为假命题;假设q≤1⇒4-4q≥0,即Δ=4-4q≥0,那么x2+2x+q=0有实根,所以原命题为真命题,故其逆否命题也为真;“不等边三角形的三个内角相等”的逆命题为“三个内角相等的三角形是不等边三角形”,该逆命题为假命题.应选C.【答案】 C5.(2023·重庆模拟)假设p是q的必要条件,s是q的充分条件,那么以下推理一定正确的选项是( )A.┑p⇔┑s B.p⇔sC.┑p⇒┑s D.┑s⇒┑p【解析】由题意得q⇒p,且s⇒q,故s⇒p,所以┑p⇒┑s.【答案】 C6.(2023·深圳高级中学高三月考)命题:①假设“p且q”为假命题,那么p,q均为假命题;②命题“假设x≥2且y≥3,那么x+y≥5”的否命题为“假设x<2且y<3,那么x+y<5”;③在△ABC中,“A>45°”是“sin A>22”的充要条件;④命题“∃x0∈R,使得e x0≤0”是真命题.其中正确命题的个数是( )A.3 B.2C.1 D.0【解析】假设“p且q”为假命题,那么p,q至少有一个为假命题,①错;②中命题的否命题为:“假设x<2或y<3,那么x+y<5”,②错;③中当A=150°时,sin A<22,③错;由指数函数的性质,可知∀x∈R,e x>0,故④错.【答案】 D7.(2023·天津高考)设a,b∈R,那么“a>b”是“a|a|>b|b|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|,应选C.【答案】 C8.(2023·甘肃诊断)以下选项中,p是q的必要不充分条件的是( ) A.p:x=1,q:x2=xB.p:A∩B=A,q:∁U B⊆∁U AC.p:x>a2+b2,q:x>2abD.p:a+c>b+d,q:a>b且c>d【解析】A中,x=1⇒x2=x,x2=x⇒x=0或x=1 x=1,故p是q的充分不必要条件;B中,由A∩B=A得A⊆B,所以∁U B⊆∁U A.反之,假设∁U B⊆∁U A,那么A⊆B,那么A∩B =A,故p是q的充要条件;C中,因为a2+b2≥2ab,由x>a2+b2得x>2ab.反之不成立,如a=0,b=2,x=1,那么有x>2ab,但x=1<4=a2+b2,故p是q的充分不必要条件;D中,取a=-1,b=1,c=0,d=-3,满足a+c>b+d,但a<b,c>d.反之,由同向不等式可加性得a>b,c>d⇒a+c>b+d,故p是q的必要不充分条件.综上所述,应选D.【答案】 D9.(2023·福建高考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,那么“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【解析】 将直线l 的方程化为一般式得kx -y +1=0,所以圆O :x 2+y 2=1的圆心到该直线的距离d =1k 2+1.又弦长为21-1k 2+1=2|k |k 2+1,所以S △OAB =12·1k 2+1·2|k |k 2+1=|k |k 2+1=12,解得k =±1.因此可知“k =1”是“△OAB 的面积为12”的充分而不必要条件,应选A.【答案】 A10.已知集合A ={x |x >5},集合B ={x |x >a },假设命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,那么实数a 的取值范围是( )A .a <5B .a ≤5C .a >5D .a ≥5【解析】 由题意可知A B ,又A ={x |x >5},B ={x |x >a },如下图,由图可知a <5.【答案】 A11.(2023·上海高考)钱大姐常说“廉价没好货”,她这句话的意思是:“不廉价”是“好货”的( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件【解析】 根据等价命题,廉价⇒没好货,等价于,好货⇒不廉价,应选B. 【答案】 B12.(2023·湖北高考)设U 为全集,A ,B 是集合,那么“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件【解析】 假设存在集合C 使得A ⊆C ,B ⊆∁U C ,那么可以推出A ∩B =∅;假设A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件. 【答案】 C 二、填空题13.已知集合A ={1,a },B ={1,2,3},那么“a =3”是“A ⊆B ”的________条件. 【解析】 a =3⇒A ⊆B ,A ⊆B ⇒a =2或3,因此“a =3”是“A ⊆B ”的充分不必要条件. 【答案】 充分不必要14.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“假设两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,那么a 1b 2-a 2b 1=0”.那么f (p )=________.【解析】 命题p 为真命题,其逆否命题也为真命题;命题p 的逆命题为假命题,其否命题也为假命题.【答案】 215.假设命题“ax 2-2ax -3>0不成立”是真命题,那么实数a 的取值范围是________. 【解析】 由题意得,ax 2-2ax -3≤0,当a =0时,有-3≤0,成立;当a ≠0时,需满足⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,即-3≤a <0,综上知-3≤a ≤0.【答案】 [-3,0]16.已知命题p :⎩⎪⎨⎪⎧x +2≥0,x -10≤0,命题q :1-m ≤x ≤1+m ,m >0,假设q 是p 的必要而不充分条件,那么m 的取值范围为________.【解析】 命题p :-2≤x ≤10,由q 是p 的必要不充分条件知, {x |-2≤x ≤10}{x |1-m ≤x ≤1+m ,m >0},∴⎩⎪⎨⎪⎧m >01-m ≤-21+m >10或⎩⎪⎨⎪⎧m >01-m <-21+m ≥10,∴m ≥9,即m 的取值范围是[9,+∞). 【答案】 [9,+∞)。
高三数学参数方程试题答案及解析
高三数学参数方程试题答案及解析1.在平面直角坐标系中,曲线的参数方程为(为参数)的普通方程为___________.【答案】【解析】由x=1+t得t=x-1代入y=-1+3t整理得,,即为曲线C的普通方程.考点:参数方程与普通方程互化2.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线的参数方程为(t为参数,),曲线C的极坐标方程为.(Ⅰ)求曲线C的直角坐标方程。
(Ⅱ)设直线与曲线C相交于A,B两点,当a变化时,求的最小值【答案】(Ⅰ)(Ⅱ)4【解析】(Ⅰ)将两边乘以得,,将代入上式得曲线C的直角坐标方程;(Ⅱ)将将直线的参数方程代入曲线C的普通方程中,整理关于t的二次方程,设M,N两点对应的参数分别为,利用一元二次方程根与系数将,用表示出来,利用直线参数方程中参数t的几何意义得,|AB|=,再转化为关于与的函数,利用前面,关于的表示式,将上述函数化为关于的函数,利用求最值的方法即可求出|AB|的最小值.试题解析:(Ⅰ)由,得所以曲线C的直角坐标方程为(4分)(Ⅱ)将直线l的参数方程代入,得设A、B两点对应的参数分别为t1、t2,则t 1+t2=,t1t2=,∴|AB|=|t1-t2|==,当时,|AB|的最小值为4 (10分)【考点】极坐标方程与直角坐标互化,直线与抛物线的位置关系,直线的参数方程中参数t的几何意义,设而不求思想3.(本小题满分7分)选修4—4:极坐标与参数方程已知直线的参数方程为,(为参数),圆的参数方程为,(为常数).(I)求直线和圆的普通方程;(II)若直线与圆有公共点,求实数的取值范围.【答案】(I),;(II)【解析】(I)由已知直线的参数方程为,(为参数),消去参数即可得直线的普通方程.由圆的参数方程为,(为常数)消去参数,即可得圆的普通方程.(II)由直线与圆有公共点,等价于圆心到直线的距离小于或等于圆的半径4,由点到直线的距离公式即可得到结论.试题解析:(I)直线的普通方程为.圆C的普通方程为.(II)因为直线与圆有公共点,故圆C的圆心到直线的距离,解得.【考点】1.参数方程.2.直线与圆的位置关系.4.直线(为参数)的倾斜角是【答案】.【解析】直线的斜率为,因此该直线的倾斜角为.【考点】1.直线的参数方程;2.直线的斜率5.直角坐标系中,以原点O为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线:(为参数)和曲线:上,则的最小值为.【答案】3【解析】利用化归思想和数形结合法,把两条曲线转化为直角坐标系下的方程.曲线的方程是,曲线的方程是,两圆外离,所以的最小值为.6.在平面直角坐标系中,直线经过点P(0,1),曲线的方程为,若直线与曲线相交于,两点,求的值.【答案】1【解析】利用直线的参数方程的几何意义,可简便解决有关线段乘积问题. 设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得.所以.【解】设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得. 5分(只要代入即可,没有整理成一般形式也可以)所以. 10分【考点】直线的参数方程7.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【答案】(1)(2)(, ),(2, )【解析】(1)将消去参数t,化为普通方程 , 即C1:.将代入得.所以C1的极坐标方程为.(2)C2的普通方程为 .由解得或所以C1与C2交点的极坐标分别为(, ),(2, )8.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(,),直线l的极坐标方程为ρcos()=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(为参数),试判断直线l与圆C的位置关系.【答案】(1)x+y-2=0 (2)相交【解析】(1)由点A(,)在直线ρcos(-)=a上,可得a=,所以直线l的方程可化为,从而直线l的直角坐标方程为.(2)由已知得圆C的直角坐标方程为(x-1)2+y2=1,所以圆C的圆心为(1,0),半径r=1,因为圆心C 到直线l的距离d=<1,所以直线l与圆C相交.9.在直角坐标平面内,以坐标原点为极点、轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,曲线的参数方程为(为参数),则点到曲线上的点的距离的最小值为.【答案】【解析】由已知得,点的直角坐标为,曲线的普通方程为,表示以为圆心,为半径的圆,故点到曲线上的点的距离的最小值为.【考点】1、直角坐标和极坐标的互化;2、参数方程和普通方程的互化;3、点和圆的位置关系.10.已知曲线C的参数方程为(t为参数),若点P(m,2)在曲线C上,求m的值.【答案】m=16【解析】点P(m,2)在曲线C上,则,所以m=16.11.在平面直角坐标系中,曲线的参数方程为(为参数),为坐标原点,为上的动点,点满足,点的轨迹为曲线.则的参数方程为 .【答案】(为参数)【解析】设点.由,可得.即的参数方程为(为参数).【考点】1.参数方程的知识.2.向量相等.12.在直角坐标系中,曲线的参数方程为(t为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的极坐标方程为,则与的两个交点之间的距离等于.【答案】【解析】、的普通方程分别为、,与的两个交点之间的距离即为圆截直线得到的弦长,所以,.【考点】参数方程与极坐标,直线与圆的位置关系.13.若直线(为参数)被圆截得的弦长为最大,则此直线的倾斜角为;【答案】【解析】直线的普通方程为,圆的直角坐标方程为;直线被圆截得的弦长最大,即圆心到直线的距离最小,,当时,.【考点】参数方程与普通方程的转化、极坐标与直角坐标的转化、最值问题.14.过点M(2,1)作曲线C:(θ为参数)的弦,使M为弦的中点,求此弦所在直线的方程.【答案】2x+y-5=0【解析】由于曲线表示的是圆心在原点O,半径为r=4的圆,所以过点M的弦与线段OM垂直.∵kOM=,∴弦所在直线的斜率是-2,故所求直线方程为y-1=-2(x-2),即2x+y-5=0.15.已知直线与圆相交于AB,则以AB为直径的圆的面积为 .【答案】【解析】消掉可得直线方程为,利用可得圆的方程为,联立方程组得交点,交点间距离为,则所求圆的面积为.另解:因为圆心到直线的距离为,所以,则所求圆的面积为【考点】直线与圆的参数方程16.在平面直角坐标系xOy中,若直线l1: (s为参数)和直线l2: (t为参数)平行,则常数a的值为________.【答案】a=4【解析】由消去参数s,得x=2y+1. 由消去参数t,得2x=ay+a.∵l1∥l2,∴=,∴a=4.17.在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),它与曲线C:(y-2)2-x2=1交于A、B两点.(1)求|AB|的长;(2)以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.【答案】(1)(2)【解析】(1)把直线的参数方程代入曲线方程并化简得7t2-12t-5=0.设A,B对应的参数分别为t1,t2,则t1+t2=,t1t2=-.所以|AB|=|t1-t2|=5(2)易得点P在平面直角坐标系下的坐标为(-2,2),根据中点坐标的性质可得AB中点M对应的参数为=.由t的几何意义可得点P到M的距离为|PM|=·=.18.已知曲线(为参数),(为参数).(1)化的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线的左顶点且倾斜角为的直线交曲线于两点,求.【答案】(1),曲线为圆心是,半径是1的圆,曲线为中心是坐标原点,焦点在x轴上,长轴长是8,短轴长是6的椭圆;(2).【解析】本题考查参数方程与普通方程的互化,考查学生的转化能力和计算能力.第一问,利用参数方程与普通方程的互化方法转化方程,再根据曲线的标准方程判断曲线的形状;第二问,根据已知写出直线的参数方程,与曲线联立,根据韦达定理得到两根之和两根之积,再利用两根之和两根之积进行转化求出.试题解析:⑴曲线为圆心是,半径是1的圆.曲线为中心是坐标原点,焦点在x轴上,长轴长是8,短轴长是6的椭圆. 4分⑵曲线的左顶点为,则直线的参数方程为(为参数)将其代入曲线整理可得:,设对应参数分别为,则所以. 10分【考点】1.参数方程与普通方程的互化;2.圆和椭圆的标准方程;3.韦达定理;4.直线的参数方程.19.过点M(3,4),倾斜角为的直线与圆C:(为参数)相交于A、B两点,试确定的值.【答案】15【解析】将过点M(3,4),倾斜角为的直线写成参数方程.再将圆的参数方程写成一般方程,联立后求得含t的一元二次方程.将的值转化为韦达定理的根的乘积关系.即可得结论.本小题主要就是考查直线的参数方程中t的几何意义.试题解析:直线l的参数方程为.代入C:.方程得到:.设为方程两根,则.【考点】1.直线的参数方程.2.圆的参数方程.20.将参数方程(为参数,)化成普通方程为 ______ .【答案】【解析】由已知得,将两式平方相加有,,所以普通方程为.【考点】参数方程与普通方程的互化.21.过点,倾斜角为的直线与圆C:(为参数)相交于两点,试确定的值.【答案】15.【解析】先将曲线:(圆)的参数方程化成普通方程,再将直线的参数方程代入其中,得到一个关于的一元二次方程,最后结合参数的几何意义,利用一元二次方程的根与系数之间的关系式即可求得距离之积.试题解析:由已知得直线的参数方程为(为参数),即(为参数) 3分曲线的普通方程为. 6分把直线的参数方程代入曲线的普通方程,得∴点到两点的距离之积为15. 10分【考点】1.圆的参数方程;2.直线和圆相交有关计算.22.在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面坐标系,圆的参数方程(为参数),若圆与相切,则实数 .【答案】.【解析】圆的直角坐标方程为,其标准方程为,圆心为,半径长为,圆的圆心坐标为,半径长为,由于圆与圆外切,则.【考点】1.参数方程与直角坐标方程之间的转化;2.两圆的位置关系23.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.24.在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的参数方程为(为参数),曲线的极坐标方程为,则与交点在直角坐标系中的坐标为 ____.【答案】(2,5)【解析】曲线的参数方程为(为参数),将代入,因为,所以其一般方程为.再将曲线的极坐标方程为转化为直角坐标系中的方程,因为,,故曲线的一般方程为.联立方程组,解得或,又,所以舍去.所以与交点在直角坐标系中的坐标为(2,5).【考点】坐标系与参数方程25.已知在平面直角坐标系中圆的参数方程为:,(为参数),以为极轴建立极坐标系,直线极坐标方程为:则圆截直线所得弦长为 .【答案】【解析】圆C的参数方程为的圆心为,半径为3, 直线普通方程为,即,圆心C到直线的距离为,所以圆C截直线所得弦长.【考点】1.参数方程;2.点到直线的距离.26.在直角坐标系中,曲线的参数方程为,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.⑴求曲线的普通方程和曲线的直角坐标方程;⑵当时,曲线和相交于、两点,求以线段为直径的圆的直角坐标方程.【答案】(1)(2)【解析】(1)代入消参数法求解直线方程,利用极坐标公式求解圆的普通方程;(2)借助弦长公式求出直径的长,确定圆心坐标,利用圆的标准方程求解.试题解析:(1)对于曲线消去参数得:当时,;当时,. (3分)对于曲线:,,则. (5分)(2) 当时,曲线的方程为,联立的方程消去得,即,,圆心为,即,从而所求圆方程为. (10分)【考点】1.极坐标系与参数方程的相关知识;2.极坐标方程与平面直角坐标方程的互化;3.平面内直线与曲线的位置关系.27.函数的最大值是.【答案】10【解析】由分析可考虑三角代换,令,则,代入化简可得,即可得.【考点】参数方程,辅助角公式.28.已知直线的参数方程为:(为参数),圆的极坐标方程为,那么,直线与圆的位置关系是 ( )A.直线平分圆B.相离C.相切D.相交【答案】D【解析】先把参数方程化为,再把圆的极坐标方程化成,再利用圆心到直线的距离.【考点】1.参数方程;2.极坐标.29.[选修4 - 4:坐标系与参数方程](本小题满分10分)在直角坐标系中,直线的参数方程为(为参数),若以直角坐标系的点为极点,为极轴,且长度单位相同,建立极坐标系,得曲线的极坐标方程为.直线与曲线交于两点,求.【答案】圆心到直线的距离,。
高中数学 第2讲 参数方程 1 曲线的参数方程 第2课时 参数方程和普通方程的互化课后练习 新人教A版选修44
2016-2017学年高中数学 第2讲 参数方程 1 曲线的参数方程 第2课时 参数方程和普通方程的互化课后练习 新人教A 版选修4-4一、选择题(每小题5分,共20分)1.曲线⎩⎪⎨⎪⎧x =1+cos θy =-2+sin θ的中心坐标为( )A .(-2,1)B .(-1,2)C .(1,-2)D .(1,2)解析: 曲线⎩⎪⎨⎪⎧x =1+cos θy =-2+sin θ的普通方程为(x -1)2+(y +2)2=1,曲线的中心即圆心坐标为(1,-2).答案: C2.直线x -3y +4=0与曲线⎩⎪⎨⎪⎧x =2cos θy =2sin θ(θ为参数)的公共点有( )A .0个B .1个C .2个D .3个解析: 将点(2cos θ,2sin θ)代入x -3y +4=0, 得:2cos θ-23sin θ=-4. ∴cos ⎝ ⎛⎭⎪⎫θ+π3=-1,∴θ+π3=π,∴θ=2π3.∴交点为(-1,3).故有一个交点. 答案: B3.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θy =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4解析: 由题意,曲线C 可变形为:⎩⎪⎨⎪⎧x -2=3cos θy +1=3sin θ,即(x -2)2+(y +1)2=9,所以曲线C 是以点M (2,-1)为圆心,3为半径的圆, 又因为圆心M (2,-1)到直线l :x -3y +2=0的距离d =|2+3+2|12+32=71010且71010<r =3<2×71010, 所以曲线C 上到直线l 距离为71010的点的个数为2.答案: B4.参数方程⎩⎪⎨⎪⎧ x =12cos 2t +sin 2 ty =cos t +sin t (t 为参数)表示的曲线是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x 对称解析: 方程⎩⎪⎨⎪⎧x =12cos 2t +sin 2ty =cos t +sin t即⎩⎪⎨⎪⎧x =12-2sin 2t +sin 2t =12y =2sin ⎝ ⎛⎭⎪⎫t +π4⇔⎩⎪⎨⎪⎧x =12-2≤y ≤2,它表示以点⎝ ⎛⎭⎪⎫12,-2和点⎝ ⎛⎭⎪⎫12,2为端点的线段,关于x 轴对称.答案: A二、填空题(每小题5分,共10分)5.动点M 作等速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,运动开始时,点M 位于A (1,1),则点M 的参数方程是________.答案: ⎩⎪⎨⎪⎧x =1+9ty =1+12t(t 为参数)6.已知F 是曲线⎩⎨⎧x =22cos θy =1+cos 2θ(θ∈R )的焦点,A (1,0),则|AF |的值等于________.解析: 曲线的参数方程⎩⎨⎧x =22cos θy =1+cos 2θ,即⎩⎨⎧x =22cos θy =2cos 2 θ,曲线的普通方程为x 2=4y .焦点F (0,1),由于A (1,0),则|AF |= 2. 答案:2三、解答题(每小题10分,共20分)7.曲线⎩⎪⎨⎪⎧x =1+cos θy =sin 2θ(θ为参数)与直线y =a 有两个公共点,求a 的取值范围.解析: ∵x =1+cos θ,∴x ∈[0,2].由x =1+cos θ,可得cos θ=x -1代入y =sin 2θ=1-cos 2θ=1-(x -1)2, 整理得y =-x 2+2x (0≤x ≤2),结合函数的草图,得0≤a <1. 8.已知圆的极坐标方程为ρ2-42ρcos ⎝⎛⎭⎪⎫θ-π4+6=0.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值. 解析: (1)由ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0得ρ2-4ρcos θ-4ρsin θ+6=0, 即x 2+y 2-4x -4y +6=0为所求, 由圆的标准方程(x -2)2+(y -2)2=2, 令x -2=2cos α,y -2=2sin α, 得圆的参数方程为⎩⎨⎧x =2+2cos αy =2+2sin α(α为参数).(2)由上述可知,x +y =4+2(cos α+sin α) =4+2sin ⎝⎛⎭⎪⎫α+π4, 故x +y 的最大值为6,最小值为2.9.(10分)已知点P (m ,n )在圆x 2+y 2=2上运动,求点Q (m +n,2mn )的轨迹方程,并判断轨迹形状.解析: 设Q (x ,y ),由于点P (m ,n )在圆x 2+y 2=2上运动,故点P (m ,n )即点P (2cos θ,2sin θ).Q (m +n,2mn )即Q (2cos θ+2sin θ,4cos θsin θ).依题意,得⎩⎨⎧x =2cos θ+2sin θy =4cos θsin θ(θ为参数)将x =2cos θ+2sin θ平方,得x 2=2+4sin θcos θ. ∴x 2=2+y .又x =2sin θ+2cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4,y =2sin 2θ, ∴-2≤x ≤2,-2≤y ≤2.∴y =x 2-2(-2≤x ≤2),这是抛物线弧段.。
含答案参数方程练习题
《参数方程》练习题一.选择题:1.直线l 的参数方程为()x a t t y b t=+⎧⎨=+⎩为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是( ) A .1t B .12t C1 D1 2.直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心3.直线112()2x t t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A .(3,3)- B.( C.3)- D.(3,4.曲线的参数方程为321x t y t =+⎧⎨=-⎩(t 是参数),则曲线是( )A 、线段B 、双曲线的一支C 、圆D 、直线5.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上,则PF 等于( )A .2B .3C .4D .56.直线003sin 201cos 20x t y t ⎧=-⎨=+⎩ (t 为参数)的倾斜角是 ( ) A.200 B.700 C.1100 D.1600 7.实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( ) A 、27 B 、4 C 、29 D 、5 二、填空题: 7.曲线的参数方程是211()1x t t y t ⎧=-⎪≠⎨⎪=-⎩为参数,t 0,则它的普通方程为_____8.点P(x,y)是椭圆222312x y +=上的一个动点,则2x y +的最大值为___________。
9.直线cos sin x t y t θθ=⎧⎨=⎩(t 为参数)与圆42cos 2sin x y αα=+⎧⎨=⎩(α为参数)相切,则θ=_______________。
10.设曲线C 的参数方程为2x=t y=t ⎧⎨⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为__ _____.三、解答题:11.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程。
广西梧州市2024高三冲刺(高考数学)人教版考试(巩固卷)完整试卷
广西梧州市2024高三冲刺(高考数学)人教版考试(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题复数在复平面内对应点的坐标为()A.B.C.D.第(2)题已知m,n是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若,则B.若,则C.若,则D.若,则第(3)题已知函数设表示中的较大值,表示中的较小值,记得最小值为得最大值为,则A.B.C.D.第(4)题已知l,m为两条不同直线,,为两个不同平面,则下列命题中真命题的是()A.若,,则B.若,,则C.若,,则D.若,,则第(5)题在平面内,定点A,B,C,D满足==,===–2,动点P,M满足=1,=,则的最大值是A.B.C.D.第(6)题定义函数,若至少有3个不同的解,则实数的取值范围是()A.B.C.D.第(7)题已知直线与平面,,则下列命题中正确的是()A.若,则B.若,则C.若,则D.若,则第(8)题已知是圆上一个动点,且直线与直线相交于点P,则的取值范围是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图,正方体的棱长为3,点是侧面上的一个动点(含边界),点在棱上,且,则下列结论中正确的是()A.若,则点M的轨迹是线段B.若保持,则点M的运动轨迹长度为C.若点在平面内,点为的中点,且,则点Q的轨迹为一个椭圆D.若点到与的距离相等,则动点的轨迹是抛物线的一部分第(2)题在平面直角坐标系xOy中,角θ以坐标原点O为顶点,以x轴的非负半轴为始边,其终边经过点,,定义,,则()A.B.C.若,则D.是周期函数第(3)题已知矩形中,,,将沿折叠,形成二面角,设二面角的平面角为,若,则()A.B.异面直线与所成的角为C.四面体的体积为D.四面体外接球的体积为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在一次满分为160分的数学考试中,某班40名学生的考试成绩分布如下:成绩(分)80分以下[80,100)[100,120)[120,140)[140,160]人数8812102在该班随机抽取一名学生,则该生在这次考试中成绩在120分以上的概率为.第(2)题从5名女生和4名男生中任意挑选3名同学担任交通安全宣传志愿者,则男生、女生保证都要有的选派方法有______种.第(3)题抛物线E:与圆M:交于A,B两点,圆心,点P为劣弧上不同于A,B的一个动点,平行于y轴的直线PN交抛物线于点N,则的周长的取值范围是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在中,角A、B、C的对边分别是a、b、c,且.(1)求角C的大小;(2)若的平分线交AB于点D,且,,求的面积.第(2)题在直角坐标系xOy中,曲线C的参数方程为(为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)已知直线l与x轴的交点为P,l与C交于A,B两点,求的值.第(3)题已知动圆经过定点,且与圆:内切.(1)求动圆圆心的轨迹的方程;(2)设轨迹与轴从左到右的交点为,,点为轨迹上异于,的动点,设交直线于点,连接交轨迹于点,直线,的斜率分别为,.①求证:为定值;②证明:直线经过轴上的定点,并求出该定点的坐标.第(4)题一只不透明的袋中装有10个相同的小球,分别标有数字0~9,先后从袋中随机取两只小球.用事件A表示“第二次取出小球的标号是2”,事件B表示“两次取出小球的标号之和是m”.(1)若用不放回的方式取球,求;(2)若用有放回的方式取球,求证:事件A与事件B相互独立的充要条件是.第(5)题如图,已知椭圆与轴的一个交点为,离心率为,,为左、右焦点,M,N为椭圆上的两动点,且.(1)求椭圆的方程;(2)设,的斜率分别为,,求的值;(3)求△面积的最大值.。
【高三】2021高考数学坐标系与参数方程总复习测试(含答案)
【高三】2021高考数学坐标系与参数方程总复习测试(含答案)2021年高考数学总复习12-2坐标系与参数方程但因为测试新人教b版1.(海淀中期,北京,2022年)在极坐标系中,已知圆C的方程为ρ=2cosθ,那么在以下几点中,圆C上的方程为()a.(1,-π3)b.(1,π6)c、(2,3π4)d.(2,5π4)[答案] a[analysis]将替代答案代入圆C的方程中,因为2cos(-π3)=2×12=1,所以a成立2.(2021湖南,4)极坐标方程ρ=cosθ和参数方程x=-1-ty=2+t(t为参数)所表示的图形分别是( )a、直线,直线B.直线,圆c.圆、圆d.圆、直线[答:]d[解析] 由ρ=cosθ得ρ2=ρcosθ,∴x2+y2-x=0.此方程所表示的图形是圆.通过消除方程x=-1-ty=2+t,x+Y-1=0中的参数t。
这个方程式所代表的图形是一条直线3.()(2021湖南十二校联考)若直线的参数方程为x=1+3ty=2-3t(t为参数),则直线的倾斜角为( )a、30°b.60°c.120°d.150°[答:]d[解析] 由直线的参数方程知,斜率k=y-2x-1=-3t3t=-33=tanθ,θ为直线的倾斜角,所以该直线的倾斜角为150°.(理论上)直线的参数方程为x=tsin50°-1y=-tcos50°(t为参数),则直线的倾角为()a.40°b.50°c、140°d.130°[答案] c【分析】对直线的参数方程进行变形,得到x=-1-tcos 140°,y=-Tsin 140°,倾角为140°4.()(2021皖中地区示范高中联考)在平面直角坐标系xoy中,直线l的参数方程为x=ty=t+1(t∈r),圆的参数方程为x=cosθ+1y=sinθ(θ∈[0,2π)),则圆心c到直线l的距离为( )a、 0b.2c.2d.22[答:]C[解析] 化直线l的参数方程x=ty=t+1(t∈r)为普通方程为x-y+1=0,化圆的参数方程x=cosθ+1y=sinθ(θ∈[0,2π))为普通方程为(x-1)2+y2=1,则圆心c(1,0)到直线l的距离为1-0+112+-12=2.(原因)(上海市奉贤区2022年)如果已知点P(3,)位于以点F为焦点的抛物线x=4t2y=4T(t为参数)上,则pf=()a.1 b.2c、三,d、四,[答案] d【分析】将抛物线的参数方程转化为一般方程,即y2=4x,然后焦点f(1,0),拟线性方程为x=-1,P(3,)在抛物线上。
第2课时 参 数 方 程
高考调研 ·高三总复习·数学(理)
∵90°<α<180°,∴当 2α=270°,即 α=135°时,|PA|·|PB| 有最小值.
∴直线方程为x=3-
22t, (t
为参数),化为普通方程即
x+y
y=2+
2 2t
-5=0.
【答案】 x+y-5=0
第33页
高考调研 ·高三总复习·数学(理)
(2)(2018·福建八校模拟)已知在平面直角坐标系xOy中,直线
π 当 θ= 2 时,|AB|取得最小值,最小值为 2.
第19页
高考调研 ·高三总复习·数学(理)
授人以渔
第20页
高考调研 ·高三总复习·数学(理)
题型一 参数方程化为普通方程
把下列参数方程化为普通方程.
x= (1)y=2
t, 1-t(t
为参数);
x=sinθ, (2)y=cos2θ (θ
为参数,θ∈[0,2π]).
A.直线 x+2y-2=0 B.以(2,0)为端点的射线 C.圆(x-1)2+y2=1 D.以(2,0)和(0,1)为端点的线段
第11页
高考调研 ·高三总复习·数学(理)
答案 D 解析 将曲线的参数方程化为普通方程得 x+2y-2= 0(0≤x≤2,0≤y≤1).
第12页
高考调研 ·高三总复习·数学(理)
4.已知直线xy= =xy00+ +abtt,(t 为参数)上两点 A,B 对应的参数
值是 t1,t2,则|AB|等于( ) A.|t1+t2|
B.|t1-t2|
C. a2+b2|t1-t2|
D.
|t1-t2| a2+b2
第13页
高考调研 ·高三总复习·数学(理)
新人教版新高考高中数学必修第二册全套导学案课后练习题
平面向量的概念【学习过程】一、问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、合作探究探究点1: 向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 探究点2: 向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.探究点3:共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 互动探究1.变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.三、学习小结1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 四、精炼反馈1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC ,所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一学时】学习重难点学习目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题?2.如何用向量方法解决物理问题? 二、合作探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0.故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF→·DE →=(2,1)·(1,-2)=2-2=0, 所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AFFB=12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO→=OE →. 又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD→|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, 所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.探究点2:向量在物理中的应用(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC→|=|AB →|=12.5.|AD→|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB→=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB→=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦). 三、学习小结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、精炼反馈1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .226 m/sC .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2). 3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB .证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD→-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【学习过程】一、问题导学预习教材内容,思考以下问题: 1.余弦定理的内容是什么?2.余弦定理有哪些推论?二、合作探究探究点1:已知两边及一角解三角形(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .42 B .30 C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 探究点2:已知三边(三边关系)解三角形(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90°B .120°C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B 探究点3: 判断三角形的形状在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 三、学习小结2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、精炼反馈1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.①又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43. 答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca+c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么?2.正弦定理的内容是什么?二、合作探究探究点1:已知两角及一边解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.解:因为A=45°,C=30°,所以B=180°-(A+C)=105°.由asin A=csin C得a=c sin Asin C=10×sin 45°sin 30°=102.因为sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b=c sin Bsin C=10×sin(A+C)sin 30°=20×2+64=52+56.探究点2:已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B,b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.探究点3:判断三角形的形状已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.三、学习小结1.正弦定理2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、精炼反馈1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、合作探究探究点1:测量距离问题海上A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B岛与C岛间的距离是________.解析:如图,在△ABC中,∠C=180°-(∠B+∠A)=45°,由正弦定理,可得BCsin 60°=ABsin 45°,所以BC=32×10=56(海里).答案:56海里互动探究:变条件:在本例中,若“从B岛望C岛和A岛成75°的视角”改为“A,C两岛相距20海里”,其他条件不变,又如何求B岛与C岛间的距离呢?解:由已知在△ABC中,AB=10,AC=20,∠BAC=60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC2=AB2+AC2-2AB·AC·cos 60°=102+202-2×10×20×12=300.故BC=103.即B,C间的距离为103海里.探究点2测量高度问题如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).答案:1006互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.探究点3:测量角度问题岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB=BC sin∠ACBsin∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t小时,则BD=103t,CD=10t,又因为∠BCD=180°-∠ACB=180°-60°=120°,所以BD2=BC2+CD2-2BC·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12,所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时) 三、学习小结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线. 2.基线与测量精确度的关系一般来说,基线越长,测量的精确度越高. 图示南偏西60°(指以正南方向为始边,转向目标方向线形成的角)四、精炼反馈1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上D .西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v=()A.60B.80C.100D.125解析:选C.画出图象如图所示,由余弦定理得(2.5v)2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34cos β,sin2α+cos2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos(α+β)=1225-1225=0,代入①解得v=100.4.某巡逻艇在A处发现在北偏东45°距A处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123tsin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC→+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB+BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ →C .SP →D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么? 二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|, 所以|AB→+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算? 二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →,MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →, 所以MN →=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( ) A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120°=4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( ) A .3 B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量, 则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为。
2021届高考数学选做题冲刺辅导(文理通用)专题02 参数方程
专题02 参数方程【知识网络】【考情分析】【知识详单】1.曲线的参数方程(1)概念:在取定的坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数,⎩⎨⎧==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M (x,y )都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.(2)求曲线的参数方程的一般步骤:第一步 设点:建立适当的直角坐标系,用(x,y )表示曲线上任意一点M 的坐标;第二步 选参:选择合适的参数;第三步 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系式,并由此分别解出用参数表示的x 、y 的表达式.第四步 结论:用参数方程的形式表示曲线的方程.(3)曲线的普通方程的概念:相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程.注意:参数方程的几个基本问题 (1)消去参数,把参数方程化为普通方程.(2)由普通方程化为参数方程.(3)利用参数求点的轨迹方程.(4)常见曲线的参数方程.2.几种常见曲线的参数方程(1) 直线的参数方程(ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) 注意:t 的几何意义:t 表示有向线段P P 0的数量,P (y x ,)为直线上任意一点.(ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是⎩⎨⎧+=+=bty y at x x 00 (t 为参数) 【例1】已知动点都在曲线为参数上,对应参数分别为与,为的中点. (Ⅰ)求的轨迹的参数方程; (Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.【解析】(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π,d =0,故M 的轨迹过坐标原点.(2)圆的参数方程(ⅰ)圆222r y x =+的参数方程为⎩⎨⎧==ϕϕsin cos r y r x (ϕ为参数)ϕ的几何意义为“圆心角” (ⅱ)圆22020)()(r y y x x =-+-的参数方程是⎩⎨⎧+=+=ϕϕsin cos 00r y y r x x (ϕ为参数)ϕ的几何意义为“圆心角”(3)椭圆的参数方程(ⅰ)椭圆12222=+b y a x (0>>b a ) 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (ϕ为参数) (ⅱ)椭圆1)()(220220=-+-by y a x x (0>>b a )的参数方程是 ⎩⎨⎧+=+=ϕϕsin cos 00b y y a x x (ϕ为参数),ϕ的几何意义为“离心角” (4)双曲线的参数方程(ⅰ)双曲线12222=-b y a x 的参数方程为⎩⎨⎧==ϕϕbtg y a x sec (ϕ为参数) (ⅱ)双曲线1)()(220220=---by y a x x 的参数方程是 ⎩⎨⎧+=+=ϕϕbtg y y a x x 00sec (ϕ为参数)ϕ的几何意义为“离心角”(5)抛物线的参数方程px y 22= (p >0) 的参数方程为⎩⎨⎧==pt y pt x 222(t 为参数)其中t 的几何意义是抛物线上的点与原点连线的斜率的倒数(顶点除外).3.参数方程与普通方程的互化参数方程 普通方程 ; 普通方程 参数方程这时普通方程和参数方程是同一曲线的两种不同表达形式.参数方程化为普通方程,可通过代入消元法和三角恒等式消参法消去参数方程中的参数,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数.消去参数 恰当选择参数【例2】在平面直角坐标系xoy 中,若,3cos ,:(t )C :()2sin x t x l y t a y ϕϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆为参数的右顶点,则常数 a 的值为 .【答案】3【解析】依据直线的参数方程得:y x a =-,椭圆的参数方程化成普通方程为:22194x y +=,所以它的右顶点为()3,0,将此代人直线的方程求得3a =。
2023届高考二轮总复习试题适用于老高考旧教材数学(理) 坐标系与参数方程(选修4—4)(含解析)
考点突破练22 坐标系与参数方程(选修4—4)1.(2020·全国Ⅱ·理22)已知曲线C 1,C 2的参数方程分别为C 1:{x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:{x =t +1t,y =t -1t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.2.(2022·陕西榆林三模)在直角坐标系xOy 中,曲线C 的参数方程为{x =4cosθ,y =3sinθ(θ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ+ρsin θ-12=0. (1)求C 的普通方程与直线l 的直角坐标方程.(2)若P 为C 上任意一点,A 为l 上任意一点,求|PA|的最小值.3.(2022·安徽怀南一模)在直角坐标系xOy 中,曲线C 的参数方程为{x =t 2,y =2t (t 为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为2cos α-sin α=4ρ. (1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,求以AB 为直径的圆的极坐标方程.4.(2022·陕西榆林二模)在数学中,有许多方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线.如图,在直角坐标系中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,图中的曲线就是笛卡尔心型曲线,其极坐标方程为ρ=1-sin θ(0≤θ<2π,ρ≥0),M 为该曲线上一动点. (1)当|OM|=12时,求M 的直角坐标;(2)若射线OM 逆时针旋转π2后与该曲线交于点N ,求△OMN 面积的最大值.5.(2022·安徽合肥二模)在直角坐标系xOy 中,直线l 的参数方程为{x =1+√2t ,y =1-√2t(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=acos2θ(a>0,ρ∈R ). (1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)若直线θ=π4(ρ∈R )与直线l 交于点M ,直线θ=π6(ρ∈R )与曲线C 交于点A ,B ,且AM ⊥BM ,求实数a 的值.6.(2022·安徽马鞍山一模)在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2sinα,y =2cosα+1(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的直角坐标方程为x+√3y-2√3=0. (1)写出曲线C 的普通方程和直线l 的极坐标方程;(2)若直线θ=π6(ρ∈R )与曲线C 交于A ,B 两点,与直线l 交于点M ,求|MA|·|MB|的值.7.(2022·河南郑州二模)在直角坐标系xOy 中,曲线C 1的参数方程为{x =1+cosα,y =sinα(α为参数).已知M是曲线C 1上的动点,将OM 绕点O 逆时针旋转90°得到ON ,设点N 的轨迹为曲线C 2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 1,C 2的极坐标方程;(2)设点Q (1,0),若射线l :θ=π3与曲线C 1,C 2分别相交于异于极点O 的A ,B 两点,求△ABQ 的面积.8.(2022·山西太原一模)在平面直角坐标系中,直线l 的参数方程为{x =-2+35t ,y =2+45t (t 为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+4ρsin θ-3=0,点P 的极坐标为2√2,3π4.(1)求点P 的直角坐标和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,求点P 到线段AB 的中点M 的距离.考点突破练22 坐标系与参数方程(选修4—4)1.解 (1)C 1的普通方程为x+y=4(0≤x ≤4). 由C 2的参数方程得x 2=t 2+1t2+2,y 2=t 2+1t2-2, 所以x 2-y 2=4.故C 2的普通方程为x 2-y 2=4. (2)由{x +y =4,x 2-y 2=4得 {x =52,y =32,所以P 的直角坐标为(52,32). 设所求圆的圆心的直角坐标为(x 0,0),由题意得x 02=(x 0-52)2+94,解得x 0=1710.因此,所求圆的极坐标方程为ρ=175cos θ.2.解 (1)因为曲线C 的参数方程为{x =4cosθ,y =3sinθ(θ为参数),所以C 的普通方程为x 216+y 29=1.又因为直线l 的极坐标方程为ρcos θ+ρsin θ-12=0,所以直线l 的直角坐标方程为x+y-12=0. (2)设P (4cos θ,3sin θ),|PA|的最小值即点P 到直线l 的距离的最小值,由√2=√2≥7√22,其中tan φ=43.当且仅当θ+φ=π2+2k π,k ∈Z 时取等号,故|PA|的最小值为7√22. 3.解 (1)由{x =t 2,y =2t (t 为参数),得{x =t 2,y 2=t (t 为参数),消去参数t ,得y 2=4x ,即曲线C 的普通方程为y 2=4x.(2)由2cos α-sin α=4ρ,得2x-y=4, 联立{y 2=4x ,2x -y =4得A (1,-2),B (4,4),所以AB 的中点坐标为52,1,|AB|=√45=3√5,故以AB 为直径的圆的极坐标方程为(x -52)2+(y-1)2=454,即x 2+y 2-5x-2y-4=0,将{x =ρcosθ,y =ρsinθ代入,得ρ2-5ρcos θ-2ρsin θ-4=0.4.解 (1)令ρ=12,可得sin θ=12,所以θ=π6或θ=5π6,M 的直角坐标为±√34,14.(2)△OMN 的面积S=12ρ1ρ2=12(1-sin θ)1-sin θ+π2=12(1-sin θ)(1-cos θ)=12[1-(sin θ+cos θ)+sinθcos θ],令t=sin θ+cos θ=√2sin θ+π4∈[-√2,√2], S=121-t+t 2-12=14(t-1)2,当t=-√2时,S 取得最大值3+2√24. 5.解 (1)由{x =1+√2t ,y =1-√2t(t 为参数)得x+y=2,∴直线l 的极坐标方程为ρcos θ+ρsin θ=2.由ρ2=acos2θ,得ρ2cos 2θ=a ,∴ρ2(cos 2θ-sin 2θ)=a ,ρ2cos 2θ-ρ2sin 2θ=a , ∴x 2-y 2=a ,∴曲线C 的直角坐标方程为x 2-y 2=a.(2)直线l 的极坐标方程为ρcos θ+ρsin θ=2,将θ=π4代入直线l 的极坐标方程得ρ=√2,∴点M 的极坐标为√2,π4.将θ=π6代入曲线C 的极坐标方程ρ2=acos2θ,得ρ1=√2a ,ρ2=-√2a ,∴|AB|=|ρ1-ρ2|=2√2a . ∵AM ⊥BM ,且O 为线段AB 的中点, ∴|OM|=12|AB|=√2a ,即√2a =√2,得a=1.6.解 (1)由{x =2sinα,y -1=2cosα(α为参数),得曲线C 的普通方程为x 2+(y -1)2=4.由x+√3y-2√3=0,得直线l 的极坐标方程为ρcos θ+√3ρsin θ-2√3=0,即ρsin θ+π6=√3.(2)(方法1)曲线C :x 2+(y-1)2=4的极坐标方程为ρ2-2ρsin θ-3=0,将θ=π6代入曲线C 的极坐标方程,得ρ2-ρ-3=0,∴ρ1+ρ2=1,ρ1·ρ2=-3. 将θ=π6代入直线l 的极坐标方程,得ρ=2.|MA|·|MB|=|ρ-ρ1|·|ρ-ρ2|=|(2-ρ1)·(2-ρ2)|=|4-2(ρ1+ρ2)+ρ1·ρ2|=1.(方法2)直线θ=π6的普通方程为y=√33x ,与直线l :x+√3y-2√3=0的交点为M (√3,1),直线θ=π6的参数方程为{x =√3+√32t ,y =1+12t(t 为参数),代入曲线C :x 2+(y-1)2=4,得t 2+3t-1=0,则|MA|·|MB|=|t 1·t 2|=1.7.解 (1)C 1的普通方程为(x-1)2+y 2=1,则x 2+y 2-2x=0,由ρ2=x 2+y 2,x=ρcos θ,得ρ2=2ρcos θ,故C 1的极坐标方程为ρ=2cos θ.设N (ρ,θ),则M ρ,θ-π2,将M ρ,θ-π2代入ρ=2cos θ,得ρ=2cos θ-π2=2sin θ,即C 2的极坐标方程为ρ=2sin θ.(2)将θ=π3分别代入曲线C 1,C 2的极坐标方程,得|OA|=ρA =2cos π3=1,|OB|=ρB =2sin π3=√3, 所以|AB|=||OB|-|OA||=√3-1. 又Q 到射线l 的距离d=|OQ|sin π3=√32,故△ABQ 的面积为S=12×(√3-1)×√32=3-√34. 8.解 (1)点P 的极坐标为2√2,3π4,由{x =ρcosθ,y =ρsinθ可得点P 的直角坐标为(-2,2),曲线C :ρ2cos2θ+4ρsin θ-3=0,即ρ2cos 2θ-ρ2sin 2θ+4ρsin θ-3=0, 于是得曲线C 的直角坐标方程为x 2-y 2+4y-3=0. (2)显然点P (-2,2)在直线l 上,将直线l 的参数方程{x =-2+35t ,y =2+45t代入方程x 2-y 2+4y-3=0,得-2+35t 2-2+45t 2+42+45t -3=0,整理得725t 2+125t-5=0,。
「精选」人教版最新高中数学高考总复习抛物线习题及详解及参考答案-精选文档
高中数学高考总复习抛物线习题(附参考答案)一、选择题1.(2010·湖北黄冈)若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4[答案] D[解析] 椭圆中,a 2=6,b 2=2,∴c =a 2-b 2=2, ∴右焦点(2,0),由题意知p2=2,∴p =4.2.已知点M 是抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与y 轴的关系是( )A .相交B .相切C .相离D .以上三种情形都有可能[答案] B[解析] 如图,由MF 的中点A 作准线l 的垂线AE ,交直线l 于点E ,交y 轴于点B ;由点M 作准线l 的垂线MD ,垂足为D ,交y 轴于点C ,则MD =MF ,ON =OF , ∴AB =OF +CM 2=ON +CM2=DM 2=MF 2, ∴这个圆与y 轴相切.3.(2010·山东文)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则线段AB 的中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,∵A 、B 在抛物线y 2=2px 上,∴⎩⎪⎨⎪⎧y 12=2px 1 ①y 22=2px 2 ② ①-②得y 12-y 22=2p (x 1-x 2),∴k AB =y 1-y 2x 1-x 2=2p y 1+y 2=p 2,∵k AB =1,∴,p =2∴抛物线方程为y 2=4x ,∴准线方程为:x =-1,故选B.4.双曲线x 29-y 24=1的渐近线上一点A 到双曲线的右焦点F 的距离等于2,抛物线y 2=2px (p >0)过点A ,则该抛物线的方程为( )A .y 2=9xB .y 2=4xC .y 2=41313xD .y 2=21313x[答案] C[解析] ∵双曲线x 29-y 24=1的渐近线方程为y =±23x ,F 点坐标为(13,0),设A 点坐标为(x ,y ),则y =±23x ,由|AF |=2⇒(x -13)2+⎝⎛⎭⎫23x 2=2⇒x =913,y =±613,代入y 2=2px 得p =21313,所以抛物线方程为y 2=41313x ,所以选C.5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3 C. 5D.92[答案] A[解析] 记抛物线y 2=2x 的焦点为F ⎝⎛⎭⎫12,0,准线是l ,由抛物线的定义知点P 到焦点F 的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于⎝⎛⎭⎫122+22=172,选A. 6.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为,则点A 的坐标为( )A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)[答案] D[解析] 如图,由题意可得,|OF |=1,由抛物线定义得,|AF |=|AM |,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,∴S △AMFS △AOF =12×|AF |×|AM |×sin ∠MAF 12×|OF |×|AF |×sin (π-∠MAF )=3, ∴|AM |=3,设A ⎝⎛⎭⎫y 024,y 0,∴y024+1=3, 解得y 0=±22,∴y 024=2,∴点A 的坐标是(2,±22),故选D.7.(2010·河北许昌调研)过点P (-3,1)且方向向量为a =(2,-5)的光线经直线y =-2反射后通过抛物线y 2=mx ,(m ≠0)的焦点,则抛物线的方程为( )A .y 2=-2xB .y 2=-32xC .y 2=4xD .y 2=-4x[答案] D[解析] 设过P (-3,1),方向向量为a =(2,-5)的直线上任一点Q (x ,y ),则PQ →∥a ,∴x +32=y -1-5,∴5x +2y +13=0,此直线关于直线y =-2对称的直线方程为5x +2(-4-y )+13=0,即5x -2y +5=0,此直线过抛物线y 2=mx 的焦点F ⎝⎛⎭⎫m 4,0,∴m =-4,故选D.8.已知mn ≠0,则方程是mx 2+ny 2=1与mx +ny 2=0在同一坐标系内的图形可能是()[答案] A[解析] 若mn >0,则mx 2+ny 2=1应为椭圆,y 2=-mn x 应开口向左,故排除C 、D ;∴mn <0,此时抛物线y 2=-mnx 应开口向右,排除B ,选A.9.(2010·山东聊城模考)已知A 、B 为抛物线C :y 2=4x 上的不同两点,F 为抛物线C 的焦点,若F A →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43[答案] D[解析] ∵F A →=-4FB →,∴|F A →|=4|FB →|,设|BF |=t ,则|AF |=4t ,∴|BM |=|AA 1|-|BB 1|=|AF |-|BF |=3t ,又|AB |=|AF |+|BF |=5t ,∴|AM |=4t ,∴tan ∠ABM =43,由对称性可知,这样的直线AB 有两条,其斜率为±43.10.已知抛物线C 的方程为x 2=12y ,过点A (0,-4)和点B (t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(-∞,-1)∪(1,+∞) B.⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞ C .(-∞,-22)∪(22,+∞) D .(-∞,-22)∪(2,+∞) [答案] B[解析] 由题意知方程组⎩⎨⎧x 2=12y ①x t +y-4=1 ②无实数解由②得y =4xt -4,代入①整理得,2x 2-4x t +4=0,∴Δ=16t 2-32<0,∴t >22或t <-22,故选B. [点评] 可用数形结合法求解,设过点A (0,-4)与抛物线x 2=12y 相切的直线与抛物线切点为M (x 0,y 0),则切线方程为y -y 0=4x 0(x -x 0), ∵过A 点,∴-4-2x 02=4x 0(0-x 0), ∴x 0=±2,∴y 0=4,∴切线方程为y -4=±42x -8, 令y =0得x =±22,即t =±22,由图形易知直线与抛物线无公共点时,t <-22或t >22. 二、填空题11.已知点A (2,0)、B (4,0),动点P 在抛物线y 2=-4x 上运动,则AP →·BP →取得最小值时的点P 的坐标是______.[答案] (0,0)[解析] 设P ⎝⎛⎭⎫-y 24,y ,则AP →=⎝⎛⎭⎫-y 24-2,y ,BP →=⎝⎛⎭⎫-y 24-4,y ,AP →·BP →=⎝⎛⎭⎫-y24-2⎝⎛⎭⎫-y 24-4+y 2=y 416+52y 2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|F A |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 设抛物线准线为l ,作AA 1⊥l ,BB 1⊥l ,FQ ⊥l ,垂足分别为A 1、B 1、Q ,作BM ⊥AA 1垂足为M ,BM 交FQ 于N ,则由条件易知∠ABM =30°,设|BF |=t ,则|NF |=t 2,|MA |=t +32,∵|AM |=|QN |,∴3-t +32=p -t 2,∴p =32,∴抛物线方程为y 2=3x .(理)(2010·泰安质检)如图,过抛物线y 2=2px (p >0)的焦点的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 解法1:过A 、B 作准线垂线,垂足分别为A 1,B 1,则|AA 1|=3,|BB 1|=|BF |,∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴|AC |=2|AA 1|=2|AF |=6,∴|CF |=3,∴p =12|CF |=32,∴抛物线方程为y 2=3x .解法2:由抛物线定义,|BF |等于B 到准线的距离,由|BC |=2|BF |得∠BCB 1=30°,又|AF |=3,从而A ⎝⎛⎭⎫p 2+32,332在抛物线上,代入抛物线方程y 2=2px ,解得p =32.点评:还可以由|BC |=2|BF |得出∠BCB 1=30°,从而求得A 点的横坐标为|OF |+12|AF |=p2+32或3-p 2,∴p 2+32=3-p 2,∴p =32. 13.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.[答案] 3+2 2[解析] 分别由A 和B 向准线作垂线,垂足分别为A 1,B 1,则由条件知, ⎩⎪⎨⎪⎧|AA 1|+|BB 1|=|AB |,|AA 1|-|BB 1|=22|AB |,解得⎩⎪⎨⎪⎧|AA 1|=2+24|AB ||BB 1|=2-24|AB |,∴|AA 1||BB 1|=3+22,即|F A ||FB |=3+2 2. 14.(文)若点(3,1)是抛物线y 2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案] 2[解析] 设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y 12=2px 1y 22=2px 2,两式相减得,y 1-y 2x 1-x 2=2p y 1+y 2=2,∵y 1+y 2=2,∴p =2.(理)(2010·衡水市模考)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |=________.[答案] 8[解析] 过A 、B 、P 作准线的垂线AA 1、BB 1与PP 1,垂足A 1、B 1、P 1,则|AF |+|BF |=|AA 1|+|BB 1|=2|PP 1|=2[1-(-3)]=8.三、解答题15.(文)若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的顶点上.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2, 由离心率e =c a =4-b 22=32得,b 2=1.∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x ,∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k (x +1)x 2=4y 得:x 2-4kx -4k =0, 由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0. 又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.(理)在△ABC 中,CA →⊥CB →,OA →=(0,-2),点M 在y 轴上且AM →=12(AB →+CD →),点C在x 轴上移动.(1)求B 点的轨迹E 的方程;(2)过点F ⎝⎛⎭⎫0,-14的直线l 交轨迹E 于H 、E 两点,(H 在F 、G 之间),若FH →=12HG →,求直线l 的方程.[解析] (1)设B (x ,y ),C (x 0,0),M (0,y 0),x 0≠0, ∵CA →⊥CB →,∴∠ACB =π2,∴2x 0·y 0-x 0=-1,于是x 02=2y 0① M 在y 轴上且AM →=12(AB →+AC →),所以M 是BC 的中点,可得 ⎩⎨⎧x 0+x 2=0y +02=y,∴⎩⎪⎨⎪⎧x 0=-x ②y 0=y2③ 把②③代入①,得y =x 2(x ≠0),所以,点B 的轨迹E 的方程为y =x 2(x ≠0). (2)点F ⎝⎛⎭⎫0,-14,设满足条件的直线l 方程为: y =kx -14,H (x 1,y 1),G (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -14y =x 2消去y 得,x 2-kx +14=0.Δ=k 2-1>0⇒k 2>1,∵FH →=12HG →,即⎝⎛⎭⎫x 1,y 1+14=12(x 2-x 1,y 2-y 1), ∴x 1=12x 2-12x 1⇒3x 1=x 2.∵x 1+x 2=k ,x 1x 2=14,∴k =±233,故满足条件的直线有两条,方程为:8x +43y +3=0和8x -43y -3=0. 16.(文)已知P (x ,y )为平面上的动点且x ≥0,若P 到y 轴的距离比到点(1,0)的距离小1.(1)求点P 的轨迹C 的方程;(2)设过点M (m,0)的直线交曲线C 于A 、B 两点,问是否存在这样的实数m ,使得以线段AB 为直径的圆恒过原点.[解析] (1)由题意得:(x -1)2+y 2-x =1,化简得:y 2=4x (x ≥0). ∴点P 的轨迹方程为y 2=4x (x ≥0).(2)设直线AB 为y =k (x -m ),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -m )y 2=4x,得ky 2-4y -4km =0, ∴y 1+y 2=4k ,y 1·y 2=-4m .∴x 1·x 2=m 2,∵以线段AB 为直径的圆恒过原点, ∴OA ⊥OB ,∴x 1·x 2+y 1·y 2=0.即m 2-4m =0⇒m =0或4.当k 不存在时,m =0或4. ∴存在m =0或4,使得以线段AB 为直径的圆恒过原点.[点评] (1)点P 到定点F (1,0)的距离比到y 轴的距离大1,即点P 到定点F (1,0)的距离与到定直线l :x =-1的距离相等.∴P 点轨迹是以F 为焦点,l 为准线的抛物线,∴p =2,∴方程为y 2=4x .(理)已知抛物线y 2=4x ,过点(0,-2)的直线交抛物线于A 、B 两点,O 为坐标原点. (1)若OA →·OB →=4,求直线AB 的方程.(2)若线段AB 的垂直平分线交x 轴于点(n,0),求n 的取值范围.[解析] (1)设直线AB 的方程为y =kx -2 (k ≠0),代入y 2=4x 中得,k 2x 2-(4k +4)x +4=0①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k +4k 2,x 1x 2=4k 2.y 1y 2=(kx 1-2)·(kx 2-2)=k 2x 1x 2-2k (x 1+x 2)+4=-8k.∵OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=4k 2-8k =4,∴k 2+2k -1=0,解得k =-1±2.又由方程①的判别式Δ=(4k +4)2-16k 2=32k +16>0得k >-12,∴k =-1+2,∴直线AB 的方程为(2-1)x -y -2=0.(2)设线段AB 的中点的坐标为(x 0,y 0),则由(1)知x 0=x 1+x 22=2k +2k 2,y 0=kx 0-2=2k, ∴线段AB 的垂直平分线的方程是 y -2k =-1k ⎝⎛⎭⎫x -2k +2k 2. 令y =0,得n =2+2k +2k 2=2k 2+2k +2=2⎝⎛⎭⎫1k +122+32.又由k >-12且k ≠0得1k <-2,或1k>0,∴n >2⎝⎛⎭⎫0+122+32=2.∴n 的取值范围为(2,+∞). 17.(文)(2010·全国Ⅰ)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设F A →·FB →=89,求△BDK 的内切圆M 的方程.[解析] 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0) (1)将x =my -1(m ≠0)代入y 2=4x 并整理得 y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4① 直线BD 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2)即y -y 2=4y 2-y 1⎝⎛⎭⎫x -y 224 令y =0,得x =y 1y 24=1,所以点F (1,0)在直线BD 上.(2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2, x 1x 2=(my 1-1)(my 2-1)=1因为F A →=(x 1-1,y 1),FB →=(x 2-1,y 2),F A →·FB →=(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4m 2=89,解得m =±43,精选文档 可编辑修改11 直线l 的方程为3x +4y +3=0,3x -4y +3=0.从而y 2-y 1=±(4m )2-4×4=±437, 故4y 2-y 1=±37因而直线BD 的方程为3x +7y -3=0,3x -7y -3=0.因为KF 为∠BKD 的角平分线,故可设圆心M (t,0),(-1<t <1),M (t,0)到直线l 及BD 的距离分别为3|t +1|5,3|t -1|4, 由3|t +1|5=3|t -1|4得t =19或t =9(舍去),故圆M 的半径为r =3|t +1|5=23, 所以圆M 的方程为⎝⎛⎭⎫x -192+y 2=49. (理)(2010·揭阳市模考)已知点C (1,0),点A 、B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析] (1)法一:连结CP ,由AC →·BC →=0知,AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2,即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9,化简得,x 2-x +y 2=4.精选文档 可编辑修改12法二:设A (x 1,y 1),B (x 2,y 2),P (x ,y ),根据题意知,x 12+y 12=9,x 22+y 22=9,2x =x 1+x 2,2y =y 1+y 2,∴4x 2=x 12+2x 1x 2+x 22,4y 2=y 12+2y 1y 2+y 22故4x 2+4y 2=(x 12+y 12)+(2x 1x 2+2y 1y 2)+(x 22+y 22)=18+2(x 1x 2+y 1y 2)①又∵AC →·BC →=0,∴(1-x 1,-y 1)·(1-x 2,-y 2)=0∴(1-x 1)×(1-x 2)+y 1y 2=0,故x 1x 2+y 1y 2=(x 1+x 2)-1=2x -1,代入①式得,4x 2+4y 2=18+2(2x -1),化简得,x 2-x +y 2=4.(2)根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px 上,其中p 2=1,∴p =2,故抛物线方程为y 2=4x , 由方程组⎩⎪⎨⎪⎧y 2=4x x 2-x +y 2=4得,x 2+3x -4=0, 解得x 1=1,x 2=-4,由于x ≥0,故取x =1,此时y =±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).。
高三参数方程练习题
高三参数方程练习题参数方程是描述几何图形的一种数学表示方法,可以用来表达平面曲线、空间曲线等多种几何情况。
在高三数学学习中,参数方程也是一个重要的知识点。
本文将为大家提供一些高三参数方程练习题,帮助大家加深对参数方程的理解和运用。
1. 练习题一:求参数方程已知直线L1与x轴交于点A(3,0),与y轴交于点B(0,4)。
直线L2过点A,与直线L1垂直,求直线L1与直线L2的交点坐标。
解析:设直线L2为参数方程x=3+3t,y=-4t。
将直线L2的x、y坐标带入直线L1的方程,得到交点的坐标。
直线L1的参数方程可表示为:x = aty = bt + c将点A(3,0)带入得到3 = 3a,解得a=1。
将点B(0,4)带入得到4 = c,解得c=4。
因此,直线L1的参数方程为:x = ty = t + 4将直线L2的参数方程代入直线L1的参数方程,得到:t = 3 + 3tt = -1/2带入直线L1的参数方程,得到交点坐标为:x = -1/2y = 7/22. 练习题二:求参数方程已知抛物线y^2 = 8x的焦点为F,顶点为V,直线L过点F(2,0)与抛物线交于两点A、B。
求直线L的参数方程。
解析:首先,求出焦点坐标。
由抛物线的顶点坐标可知,V(0,0)。
将焦点距离顶点的距离设为p,焦点坐标为F(p,0)。
将焦点坐标带入抛物线方程,得到:p^2 = 8 * 2p = 4因此,焦点坐标为F(4,0)。
接下来,求出直线L的方程。
由题目可知直线L过点F(2,0)与抛物线交于两点A、B。
设直线L的参数方程为x=at,y=bt+c。
将直线L的参数方程带入抛物线方程,得到:(at)^2 = 8 * a * t + 8 * 2 (1)将点F(2,0)带入直线L的参数方程,得到:2a = 2 (2)因此,a=1。
将a=1代入方程(1)中,得到:t^2 = 8t + 16t^2 - 8t - 16 = 0求解此二次方程,得到t ≈ 9.857,t ≈ -1.857。
2017高三一轮立体几何 极坐标 参数方程(理)(教师版)
2017高三一轮立体几何极坐标参数方程(理)(教师版)立体几何极坐标参数方程(理)第一节空间几何体的结构特征、表面积和体积及其三视图和直观图[归纳·知识整合] 1.空间几何体的结构特征①棱柱的侧棱都互相平行,上下底面是互相平行且全等的多边形②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形多面体③棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相互平行且相似的多边形①圆柱可以由矩形绕其任一边旋转得到②圆锥可以由直角三角形绕其一条直角边所在直线旋转得到旋转体③圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到④球可以由半圆或圆绕直径所在直线旋转得到[探究] 1.有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?提示:不一定.如图所示,尽管几何体满足了两个平面平行且其余各面都但不能保证每相邻两个侧面的公共边互相平行.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱是平行四边形,圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r +r′)l 3.空间几何体的表面积和体积公式名称表面积体积几何体柱体(棱柱和圆柱) S 表面积=S 侧+2S 底V=Sh 1 锥体(棱锥和圆锥) S 表面积=S 侧+S 底V=Sh 3 1 V =(S 上+S 下+ 3 台体(棱台和圆台) S 表面积=S 侧+S 上+S 下S上S下) h 4 球S=4πR2 V=πR3 3 [探究] 如何求不规则几何体的体积?提示:常用方法:分割法、补体法、转化法.通过计算转化得到基本几何体的体积来实现.4.中心投影与平行投影平行投影的投影线是平行的,而中心投影的投影线相交于一点.在平行投影中投影线垂直于投影面的投影称为正投影.5.三视图与直观图空间几何体的三视图是用平行投影得到的,它包括正视图、侧视图、俯视图,三视图其画法规则是:长对正,高平齐,宽相等空间几何体的直观图常用斜二测画法规则来画,基本步骤是:①画几何体的底面在已知图形中取互相垂直的x 轴、y 轴,两轴相交于点O,画直观图时,把它们直观图画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45° (或135° ),已知图形中平行x 轴、y 轴的线段在直观图中分别画成平行于x′轴、y′轴的线段.已知图形中平行于x 轴的线段,在直观图中长度不变,平行于y 轴的线立体几何极坐标参数方程(理)第 1 页共119 页段,长度变为原来的一半.②画几何体的高在已知图形中过O 点作z 轴垂直于xOy 平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z′轴且长度不变题型一空间几何体的结构特征1.下列结论中正确的是( ) A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任一点的连线都是母线[自主解答] A 错误.如图,由两个结构相同的三棱锥叠放在一起构成的几何体,都是三角形,但它不是棱锥. B 错误.如下图,若△ABC 不是直角三角形,或是直角三角形但旋转轴不是直角得的几何体都不是圆锥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时提升练(七十二) 参数方程一、选择题1.当参数θ变化时,动点P (2cos θ,3sin θ)的轨迹必过点( ) A .(2,0) B .(2,3)C .(1,3)D.⎝⎛⎭⎪⎫0,π2【解析】 由题意可知,动点P 的轨迹方程为x 24+y 29=1,结合四个选项可知A 正确.【答案】 A2.直线l :⎩⎪⎨⎪⎧x =-2+t s in 20°,y =5+t cos 20°(t 为参数)的倾斜角为( )A .20°B .70° C.160° D .120°【解析】 法一:将直线l :⎩⎪⎨⎪⎧x =-2+t sin 20°,y =5+t cos 20°(t 为参数)化为参数方程的标准形式为⎩⎪⎨⎪⎧x =-2+t cos 70°,y =5+t sin 70°(t 为参数),故直线的倾斜角为70°.法二:将直线l :⎩⎪⎨⎪⎧x =-2+t sin 20°,y =5+t cos 20°(t 为参数)化为直角坐标方程为y -5=cos 20°sin 20°(x +2),即y -5=sin 70°cos 70°(x +2),∴y -5=tan 70°(x +2),∴直线的倾斜角为70°. 【答案】 B3.(2014·北京高考)曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上 【解析】 消去参数θ,将参数方程化为普通方程.曲线可化为(x +1)2+(y -2)2=1,其对称中心为圆心(-1,2),该点在直线y =-2x 上,故选B.【答案】 B4.已知在平面直角坐标系xOy 中,点P (x ,y )是椭圆x 22+y 23=1上的一个动点,则S =x+y 的取值范围为( )A .[5,5]B .[-5,5]C .[-5,-5]D .[-5,5]【解析】 因椭圆x 22+y 23=1的参数方程为⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),故可设动点P 的坐标为(2cos φ,3sin φ),其中0≤φ<2π,因此S =x +y =2cos φ+3sinφ=5⎝⎛⎭⎪⎫25cos φ+35sin φ=5sin(φ+γ),其中tan γ=63,所以S 的取值范围是[-5,5],故选D.【答案】 D5.(2014·安徽高考)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214 C. 2D .2 2【解析】 将参数方程和极坐标方程化为直角坐标方程求解.直线l 的参数方程⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数)化为直角坐标方程是y =x -4,圆C 的极坐标方程ρ=4cos θ化为直角坐标方程是x 2+y 2-4x =0.圆C 的圆心(2,0)到直线x -y -4=0的距离为d =22= 2.又圆C 的半径r =2,因此直线l 被圆C 截得的弦长为2r 2-d 2=2 2.故选D.【答案】 D 6.已知圆C的参数方程为⎩⎪⎨⎪⎧x =-1+cos α,y =1+sin α(α为参数),当圆心C 到直线kx +y+4=0的距离最大时,k 的值为( )A.13B.15 C .-13 D .-15【解析】 圆C 的直角坐标方程为(x +1)2+(y -1)2=1,∴圆心C (-1,1),又直线kx +y +4=0过定点A (0,-4),故当CA 与直线kx +y +4=0垂直时,圆心C 到直线距离最大,∵k CA =-5,∴-k =15,∴k =-15.【答案】 D 二、填空题7.(2014·咸阳模拟)已知直线l 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数)与圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)的位置关系不可能是________.【解析】 把直线l 1的方程:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数)化为直角坐标方程为x tanα-y -tan α=0,把圆C 2的方程:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)化为直角坐标方程为x2+y 2=1,圆心到直线的距离d =|-tan α|tan 2α+1=|tan α|tan 2α+1≤1=r ,所以直线与圆相交或相切,故填相离.【答案】 相离8.(2013·陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.【解析】 将参数方程化为普通方程为y 2=4x ,表示开口向右,焦点在x 轴正半轴上的抛物线,由2p =4⇒p =2,则焦点坐标为(1,0).【答案】 (1,0)9.(2014·湖南高考)在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.【解析】 曲线⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数),消去参数得(x -2)2+(y -1)2=1.由于|AB |=2,因此|AB |为圆的直径,故直线过圆的圆心(2,1),所以直线l 的方程为y -1=x -2,即x -y -1=0,化为极坐标方程为ρcos θ-ρsin θ=1,即ρ(cos θ-sin θ)=1.【答案】 ρ(cos θ-sin θ)=1 三、解答题10.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.【解】 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝ ⎛⎭⎪⎫1-22t , 解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.11.(2014·长春模拟)长为3的线段两端点A ,B 分别在x 轴正半轴和y 轴的正半轴上滑动,BA →=3PA →,点P 的轨迹为曲线C .(1)以直线AB 的倾斜角α为参数,求曲线C 的参数方程; (2)求点P 到点D (0,-2)距离的最大值. 【解】 (1)设P (x ,y ),由题设可知, 则x =23|AB |cos(π-α)=-2cos α,y =13|AB |sin(π-α)=sin α,所以曲线C 的参数方程为⎩⎪⎨⎪⎧x =-2cos α,y =sin α(α为参数,π2<α<π).(2)由(1)得|PD |2=(-2cos α)2+(sin α+2)2=4cos 2α+sin 2α+4sin α+4=-3sin 2α+4sin α+8=-3⎝ ⎛⎭⎪⎫sin α-232+283.当sin α=23时,|PD |取得最大值2213.12.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.【解】 (1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3, 即⎝ ⎛⎭⎪⎫32,32.。