2018-2019高三人教版A版数学理)高考一轮复习课件:第七章 第一节 空间几何体的结构特征及三视图与直观图

合集下载

人教版数学中考复习课件第七章第一节 尺规作图

人教版数学中考复习课件第七章第一节 尺规作图
的周长是 16 .
尺规作图题常见考查类型 1.直接作图,如作角平分线,线段的垂直平分线,作一个角等于已 知角等,直接利用五种基本的尺规作图来解答. 2.给出作图痕迹或步骤,判断结论正误或进行相关计算,对于此种 类型的题目,平时要对五种基本尺规作图了熟于心,从而判断是哪种基 本作图,再根据作图依据进行结论判断或计算.
5.★(2020·郴州)如图,在矩形 ABCD 中,AD=4,AB=8.分别以点 B,D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点 E 和 F.作直线 EF 分别与 DC,DB,AB 交于点 M,O,N,则 MN= 2 5 .
6.(2020·扬州)如图,在△ABC 中,按以下步骤作图: ①以点 B 为圆心,任意长为半径作弧,分别交 AB,BC 于点 D,E. ②分别以点 D,E 为圆心,大于12DE 的长为半径作弧,两弧交于点 F. ③作射线 BF 交 AC 于点 G. 如果 AB=8,BC=12,△ABG 的面积为 18,则△CBG 的面积为 27 .
∴∠DBA=∠ACD=45°, ∵AC=6,BC=8,∴AB=10, ∴AD=BD=AB·sin 45°=10× 22=5 2.
7.(2020·青海)如图,在 Rt△ABC 中,∠C=90°.
(1)尺规作图:作 Rt△ABC 的外接圆⊙O;作∠ACB 的角平分线交⊙O 于点 D,连接 AD;(不写作法,保留作图痕迹)
解:如图,Rt△ABC 的外接圆⊙O,线段 CD 即为所求.
(2)若 AC=6,BC=8,求 AD 的长. 解:连接 BD, ∵∠C=90°. ∴AB 是⊙O 的直径, ∴∠BDA=90°, ∵CD 平分∠ACB, ∴∠ACD=∠BCD=45°,
命题点:尺规作图及相关的证明与计算(2020 年考查 2 次,2019 年考 查 2 次,2018 年考查 2 次,2017 年考查 1 次)

2019届高考数学人教A版理科第一轮复习课件:第七章+不等式、推理与证明+7.2

2019届高考数学人教A版理科第一轮复习课件:第七章+不等式、推理与证明+7.2
������2 是 (简记:和定积最大). 4
时,xy 有最 大 值
-3-
知识梳理
双基自测
1 2 3
3.几个重要的不等式 (1)a2+b2≥ 2ab (a,b∈R),当且仅当 a=b 时取等号. (2)ab≤
������+������ 2 (a,b∈R),当且仅当 a=b 2
时取等号.
2 ������2 +������ ������+������ 2 (3) ≥ (a,b∈R),当且仅当 a=b 时取等号. 2 2 ������ ������ (4) + ≥ 2 (a,b 同号),当且仅当 a=b 时取等号. ������ ������
(1)√ (2)× (3)× (4)× (5)× (6)√
-5-
答案
知识梳理
双基自测
1 2 3 4 5
2.若 a,b∈R,且 ab>0,则下列不等式中,恒成立的是 A.a2+b2>2ab B.a+b≥2 ������������ C.������ + ������ >
1 1 2 ������ ������ D.������ + ������≥2 ������������
关闭
B 当且仅当 a=b=10 时取等号.
-7解析
答案
知识梳理
双基自测
1 2 3 4 5
4.若实数 x,y 满足 xy= ,则 x2+2y2 的最小值为
2 2
.
关闭
因为 x2+2y2=x2+( 2y)2≥2x( 2y)=2(当且仅当 x= 2y 时等号成 立),所以 x2+2y2 的最小值为 2. 2

2018版高中数学理一轮全程复习课件第七章 立体几何 7.

2018版高中数学理一轮全程复习课件第七章 立体几何 7.

[知识重温] 一、必记 2●个知识点 1.空间向量及其有关概念 语言描述 共线向量(平 表示空间向量的有向线段所在的直线互相① __________ 行向量) 平行或重合 共面向量 平行于②同一平面 ________的向量 对空间任意两个向量 a,b(b≠0),a∥b⇔存在 λ 共线向量定理 a=λb ∈R,使③________ 若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面向量定理 共面⇔存在唯一的有序实数对(x,y),使 p=④ x a+yb ________
[小题热身] 1.在下列命题中: ①若向量 a,b 共线,则向量 a,b 所在的直线平行; ②若向量 a,b 所在的直线为异面直线,则向量 a,b 一定不 共面; ③若三个向量 a,b,c 两两共面,则向量 a,b,c 共面; ④已知空间的三个向量 a,b,c,则对于空间的任意一个向 量 p 总存在实数 x,y,z 使得 p=xa+yb+zc. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3
二、必明 3●个易误点 1. 共线向量定理中 a∥b⇔存在 λ∈R, 使 a=λb 易忽视 b≠0. 2.共面向量定理中,注意有序实数对(x,y)是唯一存在的. 3.一个平面的法向量有无数个,但要注意它们是共线向量, 不要误为是共面向量.
2.数量积及坐标运算 (1)两个向量的数量积: (ⅰ)a· b=|a||b|cos〈a,b〉 ; (ⅱ)a⊥b=⑥________( a· b=0 a,b 为非零向量); (ⅲ)|a|2=a2,|a|= x2+y2+z2.
(2)向量的坐标运算: a=(a1,a2,a3),b=(b1,b2,b3) (a1+b1,a2+b2,a3+b3) 向量和 a+b=⑦________________________ 向量差 a-b=⑧________________________ (a1-b1,a2-b2,a3-b3) 数量积 a· b=⑨________________________ a1b1+a2b2+a3b3 a________0) 1=λb1,a2=λb2,a3=λb a1b1+a2b2+a3b3=0 垂直 a⊥b⇔⑪__________________ a1b1+a2b2+a3b3 夹角公式 cos〈a,b〉=⑫________________________ 2 2 2 2 2 a2 1+a2+a3 b1+b2+b3

高三数学 人教A版 理科 一轮复习资料(WORD)

高三数学 人教A版 理科 一轮复习资料(WORD)

第一节集合的概念与运算1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表示集合的关系及运算.1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.1.集合的运算性质 并集的性质:A ∪∅=A ;A ∪A =A ;A ∪B =B ∪A ;A ∪B =A ⇔B ⊆A . 交集的性质:A ∩∅=∅;A ∩A =A ;A ∩B =B ∩A ;A ∩B =A ⇔A ⊆B . 补集的性质:A ∪(∁U A )=U ;A ∩(∁U A )=∅;∁U (∁U A )=A . 2.判断集合关系的三种方法 (1)一一列举观察.(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系.(3)数形结合法:利用数轴或Venn 图.1.(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32 D .A ∪B =R解析: 因为B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32,A ={x |x <2},所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,A ∪B ={x |x <2}.故选A.答案: A2.已知集合P ={x |x <2},Q ={x |x 2<2},则( ) A .P ⊆Q B .P ⊇Q C .P ⊆∁R QD .Q ⊆∁R P解析: 解x 2<2,得-2<x <2,∴P ⊇Q . 答案: B3.(2017·天津卷)设集合A ={1,2,6},B ={2,4},C ={1,2,3,4},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6}D .{1,2,3,4,6}解析: 由题意知A ∪B ={1,2,4,6},∴(A ∪B )∩C ={1,2,4},故选B. 答案: B4.已知集合A ={x |3≤x <7},B ={x |2<x <10},则(∁R A )∩B =________. 解析: 因为∁R A ={x |x <3或x ≥7},所以(∁R A )∩B ={x |2<x <3或7≤x <10}. 答案: {x |2<x <3或7≤x <10}5.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2 019=________. 解析: 由M =N 知⎩⎪⎨⎪⎧ n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1, ∴⎩⎪⎨⎪⎧m =0,n =1或⎩⎪⎨⎪⎧m =2,n =2.答案: -1或0考向一 集合的基本概念自主练透型1.已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1B .3C .6D .9解析: 当x =0时,y =0;当x =1时,y =0或y =1;当x =2时,y =0,1,2. 故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素. 答案: C2.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.解析: 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba=-1,所以a =-1,b =1.所以b -a =2. 答案: 23.设集合A ={x |(x -a )2<1},且2∈A,3∉A ,则实数a 的取值范围为________.解析: 由题意得⎩⎪⎨⎪⎧(2-a )2<1,(3-a )2≥1即⎩⎪⎨⎪⎧1<a <3,a ≤2或a ≥4,所以1<a ≤2. 答案: (1,2]求解集合基本问题的一般思路(1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件.当集合用描述法表示时,注意弄清其元素表示的意义是什么.(2)对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性. 考向二 集合间的基本关系互动讲练型(1)已知集合A ={x |y =ln(x +3)},B ={x |x ≥2},则下列结论正确的是( ) A .A =B B .A ∩B =∅ C .A ⊆BD .B ⊆A(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.解析: (1)因为A ={x |x >-3},B ={x |x ≥2},结合数轴可得:B ⊆A . (2)∵B ⊆A ,∴①若B =∅,则2m -1<m +1,此时m <2.②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 答案: (1)D (2)(-∞,3](1)判断两集合的关系的三种常用方法①列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.②变形:从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断(如例(1)).③数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(2)根据两集合的关系求参数的方法①若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;②若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.[注意] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论(如例(2)). [跟踪训练]1.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析: 因为A ={1,2},B ={1,2,3,4},A ⊆C ⊆B ,则集合C 可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.答案: D2.已知集合A ={x |-1<x <3},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________.解析: 当m ≤0时,B =∅,显然B ⊆A . 当m >0时,∵A ={x |-1<x <3}. 当B ⊆A 时,有∴⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .∴0<m ≤1.综上所述,m 的范围为m ≤1. 答案: (-∞,1]考向三 集合的基本运算分层深化型(1)(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}(2)(2017·广东七校联考)已知全集U =R ,集合A ={x |x 2-2x >0},B ={x |y =lg(x -1)},则(∁U A )∩B =( )A .{x |x >2或x <0}B .{x |1<x <2}C .{x |1<x ≤2}D .{x |1≤x ≤2}解析: (1)∵A ∩B ={1},∴1∈B , ∴1-4+m =0,即m =3.∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)解不等式x 2-2x >0,即x (x -2)>0,得x <0或x >2,故A ={x |x <0或x >2}.集合B 是函数y =lg(x -1)的定义域,由x -1>0,解得x >1,所以B ={x |x >1}.易知∁U A ={x |0≤x ≤2},所以(∁U A )∩B ={x |0≤x ≤2}∩{x |x >1}={x |1<x ≤2}.答案: (1)C (2)C集合基本运算的方法技巧(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn图运算.(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.(3)集合的交、并、补运算口诀如下:交集元素仔细找,属于A且属于B;并集元素勿遗漏,切记重复仅取一;全集U是大范围,去掉U中A元素,剩余元素成补集.[同类练]1.(2017·天津卷)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}解析:因为A={1,2,6},B={2,4},所以A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},所以(A∪B)∩C={1,2,4}.答案: B2.(2017·南昌市第一次模拟)已知全集U=R,集合A={x|y=lg x},集合B={y|y=x+1},那么A∩(∁U B)=()A.∅B.(0,1]C.(0,1) D.(1,+∞)解析:由题知,A={x|y=lg x}={x|x>0}=(0,+∞),B={y|y=x+1}={y|y≥1}=[1,+∞),所以A∩(∁U B)=(0,+∞)∩(-∞,1)=(0,1).答案: C[变式练]3.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A=() A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}解析:因为A∩B={3},所以3∈A,又(∁U B)∩A={9},所以9∈A.若5∈A,则5∉B(否则5∈A∩B),从而5∈∁U B,则(∁U B)∩A={5,9},与题中条件矛盾,故5∉A.同理1∉A,7∉A,故A={3,9}.答案: D4.(2017·洛阳市第一次统一考试)已知全集U=R,集合A={x|x2-3x-4>0},B={x|-2≤x≤2},则如图所表示阴影部分所示的集合为()A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤2}解析: 依题意得A ={x |x <-1或x >4},因为∁R A ={x |-1≤x ≤4},题中的阴影部分所表示的集合为(∁R A )∩B ={x |-1≤x ≤2}.答案: D [拓展练]5.(2017·江西南昌模拟)已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( )A .9B .8C .7D .6解析: 由x 2-4x <0得0<x <4,所以M ={x |0<x <4}.又因为N ={x |m <x <5},M ∩N ={x |3<x <n },所以m =3,n =4,则m +n =7.答案: C6.已知集合A ={x |a -1<x <a +1},B ={x |x 2-5x +4≥0},若A ∩B =∅,则实数a 的取值范围是________.解析: 因为A ={x |a -1<x <a +1},B =(-∞,1]∪[4,+∞),由已知A ∩B =∅,所以⎩⎪⎨⎪⎧a -1≥1,a +1≤4,所以2≤a ≤3. 答案: [2,3]常以“问题”为核心,以“探究”为途径,以“发现”为目的.常见的命题形式有新概念、新法则、新运算等,这类试题只是以集合为依托,考查考生理解、解决创新问题的能力.(1)设U ={1,2,3},M ,N 是U 的子集,若M ∩N ={1,3},则称(M ,N )为一个“理想配集”,则符合此条件的“理想配集”的个数(规定(M ,N )与(N ,M )不同)为________;(2)设A ,B 是非空集合,定义A ⊗B ={x |x ∈(A ∪B )且x ∉(A ∩B ).已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.解析: (1)符合条件的理想配集有①M ={1,3},N ={1,3};②M ={1,3},N ={1,2,3};③M ={1,2,3},N ={1,3}.共3个.(2)由已知A ={x |0<x <2},B ={y |y ≥0},又由新定义A ⊗B ={x |x ∈(A ∪B )且x ∉(A ∩B ),结合数轴得A ⊗B ={0}∪[2,+∞).答案: (1)3 (2){0}∪[2,+∞)解决集合中新定义问题的两个关键点(1)紧扣新定义:新定义型试题的难点就是对新定义的理解和运用,在解决问题时要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中.(2)用好集合的性质:集合的性质是破解集合类新定义型试题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.[跟踪训练]1.定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m n ,m ∈A ,n ∈B .已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2-1,k ∈A ,则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9解析: 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,则BA ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素.答案: B2.对于集合M 、N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A=⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-94,x ∈R ,B ={x |x <0,x ∈R },则A ⊕B =( ) A.⎝⎛⎭⎫-94,0 B .⎣⎡⎭⎫-94,0 C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D .⎝⎛⎦⎤-∞,-94∪(0,+∞) 解析: 依题意得A -B ={x |x ≥0,x ∈R },B -A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <-94,x ∈R ,故A ⊕B =⎝⎛⎭⎫-∞,-94∪[0,+∞).答案: C(本栏目内容,在学生用书中以独立形式分册装订!)1.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析: 集合A 表示以原点O 为圆心,半径为1的圆上的所有点的集合, 集合B 表示直线y =x 上的所有点的集合. 结合图形可知,直线与圆有两个交点, 所以A ∩B 中元素的个数为2. 故选B. 答案: B2.设全集U =R ,集合A ={x |0≤x ≤2},B ={y |1≤y ≤3},则(∁U A )∪B =( ) A .(2,3] B .(-∞,1]∪(2,+∞) C .[1,2)D .(-∞,0)∪[1,+∞)解析: 因为∁U A ={x |x >2或x <0},B ={y |1≤y ≤3},所以(∁U A )∪B =(-∞,0)∪[1,+∞). 答案: D3.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( )A .(0,3)B .(0,1)∪(1,3)C .(0,1)D .(-∞,1)∪(3,+∞)解析: ∵A ∩B 有4个子集,∴A ∩B 中有2个不同的元素,∴a ∈A ,∴a 2-3a <0,解得0<a <3且a ≠1,即实数a 的取值范围是(0,1)∪(1,3),故选B.答案: B4.(2017·湖北武昌一模)设A ,B 是两个非空集合,定义集合A -B ={x |x ∈A ,且x ∉B }.若A ={x ∈N |0≤x ≤5},B ={x |x 2-7x +10<0},则A -B =( )A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5}解析: ∵A ={x ∈N |0≤x ≤5}={0,1,2,3,4,5},B ={x |x 2-7x +10<0}={x |2<x <5},A -B ={x |x ∈A 且x ∉B },∴A -B ={0,1,2,5}.故选D. 答案: D5.(2017·河北衡水中学七调)已知集合A ={x |log 2x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)解析: A ={x |log 2x <1}={x |0<x <2},因为A ∪B =B ,所以A ⊆B ,所以c ≥2,所以c ∈[2,+∞),故选D.答案: D6.(2017·江苏卷)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为________.解析: ∵B ={a ,a 2+3},A ∩B ={1},∴a =1或a 2+3=1, ∵a ∈R ,∴a =1.经检验,满足题意. 答案: 17.已知集合A =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x -1x =0,则满足A ∪B ={-1,0,1}的集合B 的个数是________. 解析: 解方程x -1x =0,得x =1或x =-1,所以A ={1,-1},又A ∪B ={-1,0,1},所以B ={0}或{0,1}或{0,-1}或{0,1,-1},集合B 共有4个.答案: 48.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 解析: 因为集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},所以∁I B ={0,1},则A ∩(∁I B )={1}.答案: {1}9.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值. (1)9∈(A ∩B ); (2){9}=A ∩B .解析: (1)∵9∈(A ∩B ), ∴2a -1=9或a 2=9, ∴a =5或a =3或a =-3.当a =5时,A ={-4,9,25},B ={0,-4,9}; 当a =3时,a -5=1-a =-2, 不满足集合元素的互异性;当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 所以a =5或a =-3. (2)由(1)可知,当a =5时, A ∩B ={-4,9},不合题意, 当a =-3时,A ∩B ={9}. 所以a =-3.10.已知集合A ={x |x 2-2x -3≤0,x ∈R },B ={x |m -2≤x ≤m +2}. (1)若A ∩B =[1,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.解析: A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[1,3],∴⎩⎪⎨⎪⎧m -2=1,m +2≥3,得m =3. (2)∁R B ={x |x <m -2或x >m +2}. ∵A ⊆∁R B ,∴m -2>3或m +2<-1. ∴m >5或m <-3.故m 的取值范围为(-∞,-3)∪(5,+∞).1.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为________.解析: 因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).答案: (-∞,-1]∪(0,1)2.设常数a ∈R ,集合A ={x |(x -1)·(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为________.解析: 若a >1,则集合A ={x |x ≥a 或x ≤1},利用数轴可知,要使A ∪B =R ,需要a -1≤1,则1<a ≤2;若a =1,则集合A =R ,满足A ∪B =R ,故a =1符合题意;若a <1,则集合A ={x |x ≤a 或x ≥1},显然满足A ∪B =R ,故a <1符合题意.综上所述,a 的取值范围为(-∞,2].答案: (-∞,2]3.已知集合A ={y |y =2x -1,0<x ≤1},B ={x |(x -a )[x -(a +3)]<0}.分别根据下列条件,求实数a 的取值范围.(1)A ∩B =A ;(2)A ∩B ≠∅.解析: 因为集合A 是函数y =2x -1(0<x ≤1)的值域, 所以A =(-1,1],B =(a ,a +3).(1)A ∩B =A ⇔A ⊆B ⇔⎩⎪⎨⎪⎧a ≤-1,a +3>1,即-2<a ≤-1,故当A ∩B =A 时,a 的取值范围是(-2,-1]. (2)当A ∩B =∅时,结合数轴知,a ≥1或a +3≤-1,即a ≥1或a ≤-4. 故当A ∩B ≠∅时,a 的取值范围是(-4,1). 4.设集合A ={x ∈R |2x 2+ax -a 2=0},1∈A ,-2∉A . (1)求a 的值,并写出A 的所有子集;(2)若集合B ={x ∈R |x 2+(m -3)x +m =0},(∁R A )∩B =∅,求实数m 的值构成的集合. 解析: (1)因为1∈A ,所以2×12+a ×1-a 2=0,解得a =-1,2,当a =2时,A ={x ∈R |2x 2+2x -4=0}={1,-2},与已知-2∉A 矛盾,所以a ≠2;当a =-1时,A ={x ∈R |2x 2-x -1=0}=⎩⎨⎧⎭⎬⎫-12,1,符合题意.所以A 的所有子集为∅,⎩⎨⎧⎭⎬⎫-12,{1},⎩⎨⎧⎭⎬⎫-12,1.(2)因为(∁R A )∩B =∅,所以B ⊆A ,因为方程x 2+(m -3)x +m =0的判别式Δ=(m -3)2-4m =m 2-10m +9, 所以按照判别式的符号分类讨论如下:①当Δ<0即1<m <9时,集合B 为空集,符合题意.②当Δ=0即m =1或m =9时,若m =1,则B ={1},符合题意,若m =9,则B ={-3},不符合题意,舍去.③当Δ>0即m <1或m >9时,集合B 有两个元素,所以B =A ,所以⎩⎨⎧-12+1=-(m -3),⎝⎛⎭⎫-12×1=m ,矛盾,舍去.所以实数m 的值构成的集合为[1,9).第二节 命题及其关系、充分条件与必要条件1.理解命题的概念.2.了解“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的含义.1.四种命题及其关系 (1)四种命题若原命题为“若p ,则q ”,则其逆命题是若q ,则p ;否命题是若綈p ,则綈q ;逆否命题是若綈q ,则綈p .(2)四种命题间的关系2.充分条件、必要条件与充要条件(1)“若p,则q”为真命题,记作:p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果既有p⇒q,又有q⇒p,记作:p⇔q,则p是q的充要条件,q也是p的充要条件.1.四种命题间的真假关系(1)两个命题互为逆否命题,它们的真假性相同.(2)两个命题互为逆命题或者互为否命题,它们的真假性没有关系.2.充分条件与必要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件.(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q,且q⇒r”⇒“p⇒r”或“p⇐q,且q⇐r”⇒“p⇐r”.1.在△ABC中,“A>B”是“sin A>sin B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由正弦定理知asin A=bsin B=2R(R为△ABC外接圆半径).若sin A>sin B,则a2R>b2R,即a>b,所以A>B;若A>B,则a>b,所以2R sin A>2R sin B,即sin A>sin B,所以“A>B”是“sin A>sin B”成立的充要条件.答案: C2.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.故选D.答案: D3.“x>1”是“x2+2x>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件,故选A.答案: A4.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A、∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”.答案:“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”5.在命题“若m>-n,则m2>n2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m=2,n=3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m=-3,n=-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案: 3考向一四种命题及其相互关系自主练透型1.(2017·河南八市联考)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:否命题是将原命题的条件和结论都否定,故命题“若a>b,则a+c>b+c”的否命题是“若a≤b,则a+c≤b+c”,故选A.答案: A2.下列命题中为真命题的是()A.命题“若x>1,则x2>1”的否命题B.命题“若x>y,则x>|y|”的逆命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若1x>1,则x >1”的逆否命题解析: 对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x >1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.答案: B3.(2017·河北衡水二中模拟)命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析: 将原命题的条件和结论互换的同时进行否定即得逆否命题,因此“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是“若x +y 不是偶数,则x ,y 不都是偶数”,所以选C.答案: C四种命题的关系及真假判断(1)在判断四种命题之间的关系时,首先要分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,要注意四种命题关系的相对性.(2)判断命题真假的方法:一是联系已有的数学公式、定理、结论进行正面直接判断;二是利用原命题和其逆否命题的等价关系进行判断.考向二 充分必要条件的判定互动讲练型(1)(2017·天津卷)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件(2)(2017·浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: (1)由2-x ≥0,得x ≤2;由|x -1|≤1,得-1≤x -1≤1,即0≤x ≤2,因为[0,2]-∞,2],所以“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.(2)法一:S 4+S 6>2S 5等价于(S 6-S 5)+(S 4-S 5)>0,等价于a 6-a 5>0,等价于d >0.法二:∵S n =na 1+12n (n -1)d ,∴S 4+S 6-2S 5=4a 1+6d +6a 1+15d -2(5a 1+10d )·d ,即S 4+S 6>2S 5等价于d >0.答案: (1)B (2)C充分、必要条件的判断方法(1)定义法:直接判断“若p ,则q ”,“若q ,则p ”的真假(如本例(1)).(2)集合法:若A ⊆B ,则“x ∈A ”是“x ∈B ”的充分条件或“x ∈B ”是“x ∈A ”的必要条件;若A =B ,则“x ∈A ”是“x ∈B ”的充要条件(如本例(2)).(3)等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假(如跟踪训练3).[跟踪训练]1.(2017·兰州市高考实战模拟)设向量a =(x -1,x ),b =(x +2,x -4),则“a ⊥b ”是“x =2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: a =(x -1,x ),b =(x +2,x -4),若a ⊥b ,则a ·b =0,即(x -1)(x +2)+x (x -4)=0,解得x =2或x =-12,∴x =2⇒a ⊥b ,反之a ⊥b ⇒x =2或x =-12,∴“a ⊥b ”是“x =2”的必要不充分条件.答案: B2.设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件解析: ∵x 2-x -20>0,∴x >5或x <-4,∴p :x >5或x <-4.∵log 2(x -5)<2,∴0<x -5<4,即5<x <9,∴q :5<x <9,∵{x |5<x x |x >5或x <-4},∴p是q 的必要不充分条件,故选C.答案: C3.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件解析: 法一:设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.法二:(等价转化法)x =y ⇒cos x =cos y , 而cos x =cos y ⇒/ x =y . 答案: C考向三 充分条件与必要条件的探求分层深化型已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析: 因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},所以由已知x ∈B 成立的一个充分不必要条件是x ∈A ,得A B ,所以m +1>3,即m >2.答案: (2,+∞)根据充要条件求解参数范围的方法(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍(如本例),处理不当容易出现漏解或增解的现象.[同类练]1.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.解析: 由|x -m |<1得m -1<x <m +1, 若13<x <12是|x -m |<1成立的充分不必要条件, 则⎩⎨⎧m -1≤13m +1>12或⎩⎨⎧m -1<13m +1≥12得-12≤m ≤43.答案: ⎣⎡⎦⎤-12,43 [变式练]2.是否存在实数m ,使2x +m <0是x 2-2x -3>0的必要条件?解析: 欲使2x +m <0是x 2-2x -3>0的必要条件,则只要{x |x <-1,或x >3}⊆⎩⎨⎧⎭⎬⎫x ⎪⎪x <-m 2,这是不可能的. 故不存在实数m 使2x +m <0是x 2-2x -3>0的必要条件. [拓展练]3.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]解析: 由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.故a ≥1.答案: A解”的求解策略,对于一个难以入手的命题,可以把命题转化为易于解决的等价命题,每一个等价命题都能提供一个解题思路.设p :|4x -3|≤1;q :a ≤x ≤a +1,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12 B .⎝⎛⎭⎫0,12 C .(-∞,0]∪⎣⎡⎭⎫12,+∞D .(-∞,0)∪⎝⎛⎭⎫12,+∞解析: 设A ={x ||4x -3|≤1},则A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1,B ={x |a ≤x ≤a +1}. 由綈p 是綈q 的必要不充分条件,从而p 是q 的充分不必要条件,即A B , ∴⎩⎪⎨⎪⎧ a ≤12,a +1>1或⎩⎪⎨⎪⎧a <12,a +1≥1, 故所求实数a 的取值范围是⎣⎡⎦⎤0,12. 答案: A本例将“綈p 是綈q 的必要而不充分条件”转化为“p 是q 的充分而不必要条件”;将p 、q 之间的条件关系转化为相应集合之间的包含关系,使抽象问题直观化、复杂问题简单化,体现了等价转化思想的应用.,[跟踪训练]证明:若a 2-b 2+2a -4b -3≠0,则a -b ≠1.证明: 命题“若a 2-b 2+2a -4b -3≠0,则a -b ≠1”的逆否命题是“ 若a -b =1,则a 2-b 2+2a -4b -3=0”.由a -b =1,得a 2-b 2+2a -4b -3=(a +b )(a -b )+2(a -b )-2b -3=a -b -1=0,所以原命题的逆否命题是真命题,从而原命题也是真命题.即若a 2-b 2+2a -4b -3≠0,则a -b ≠1.(本栏目内容,在学生用书中以独立形式分册装订!)1.若非空集合M ,N ,则“a ∈M 或a ∈N ”是“a ∈M ∩N ”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件解析: 因为“a ∈M ∩N ”可以推出“a ∈M 或a ∈N ”,但是反过来不能推出,所以“a ∈M 或a ∈N ”是“a ∈M ∩N ”的必要不充分条件.答案: C2.已知命题:若a >2,则a 2>4,其逆命题、否命题、逆否命题这三个命题中真命题的个数是( )A .0B .1C .2D .3解析: 原命题显然是真命题,其逆命题为“若a 2>4,则a >2”,显然是假命题,由互为逆否命题的等价性知,否命题是假命题,逆否命题是真命题.答案: B3.(2017·北京卷)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m·n <0”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件解析: 由存在负数λ,使得m =λn ,可得m 、n 共线且反向,夹角为180°,则m·n =-|m ||n |<0,故充分性成立.由m·n <0,可得m ,n 的夹角为钝角或180°,故必要性不成立.答案: B4.使a >0,b >0成立的一个必要不充分条件是( ) A .a +b >0 B .a -b >0 C .ab >1D .ab>1解析: 因为a >0,b >0⇒a +b >0,反之不成立,而由a >0,b >0不能推出a -b >0,ab >1,a b>1. 答案: A5.下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题是“若x 2=1,则x ≠1”B .“x =-1”是“x 2-x -2=0”的必要不充分条件C .命题“若x =y ,则sin x =sin y ”的逆否命题是真命题D .“tan x =1”是“x =π4”的充分不必要条件解析: 由原命题与否命题的关系知,原命题的否命题是“若x 2≠1,则x ≠1”,即A 不正确;因为x 2-x -2=0⇔x =-1或x =2,所以由“x =-1”能推出“x 2-x -2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推得tan x =1,但由tan x =1推不出x =π4,所以“x =π4”是“tan x=1”的充分不必要条件,即D不正确.答案: C6.已知p(x):x2+2x-m>0,若p(1)是假命题,p(2)是真命题,则实数m的取值范围为________.解析:因为p(1)是假命题,所以1+2-m≤0,解得m≥3;又p(2)是真命题,所以4+4-m>0,解得m<8.故实数m的取值范围是[3,8).答案:[3,8)7.(2017·山东临沂模拟)有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.解析:①原命题的否命题为“若a≤b,则a2≤b2”,假命题.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,真命题.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,真命题.答案:②③8.若“x2>1”是“x<a”的必要不充分条件,则a的最大值为________.解析:由x2>1得x>1或x<-1.由题意知{x|x<a x|x>1或x<-1},所以a≤-1,从而a的最大值为-1.答案:-19.写出命题“已知a,b∈R,若关于x的不等式x2+ax+b≤0有非空解集,则a2≥4b”的逆命题、否命题、逆否命题,并判断它们的真假.解析:(1)逆命题:已知a,b∈R,若a2≥4b,则关于x的不等式x2+ax+b≤0有非空解集,为真命题.(2)否命题:已知a,b∈R,若关于x的不等式x2+ax+b≤0没有非空解集,则a2<4b,为真命题.(3)逆否命题:已知a,b∈R,若a2<4b,则关于x的不等式x2+ax+b≤0没有非空解集,为真命题.10.指出下列命题中,p 是q 的什么条件(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种作答).(1)在△ABC 中,p :∠A =∠B ,q :sin A =sin B ; (2)非空集合A ,B 中,p :x ∈(A ∪B ),q :x ∈B ;(3)已知x ,y ∈R ,p :(x -1)2+(y -2)2=0,q :(x -1)(y -2)=0.解析: (1)在△ABC 中,∠A =∠B ⇒sin A =sin B ,反之,若sin A =sin B ,因为A 与B 不可能互补(因为三角形三个内角和为180°),所以只有A =B .故p 是q 的充要条件.(2)显然x ∈(A ∪B )不一定有x ∈B ,但x ∈B 一定有x ∈(A ∪B ),所以p 是q 的必要不充分条件. (3)条件p :x =1且y =2,条件q :x =1或y =2, 所以p ⇒q 但q ⇒/ p ,故p 是q 的充分不必要条件.1.(2017·四川南山模拟)已知条件p :14<2x <16,条件q :(x +2)(x +a )<0,若p 是q 的充分而不必要条件,则a 的取值范围为( )A .[-4,+∞)B .(-∞,-4)C .(-∞,-4]D .(4,+∞)解析: 由14<2x <16,得-2<x <4,即p :-2<x <4.方程(x +2)(x +a )=0的两个根分别为-a ,-2.①若-a >-2,即a <2,则条件q :(x +2)(x +a )<0等价于-2<x <-a ,由p 是q 的充分而不必要条件可得-a >4,则a <-4;②若-a =-2,即a =2,则(x +2)(x +a )<0无解,不符合题意;③若-a <-2,即a >2,则q :(x +2)(x +a )<0等价于-a <x <-2,不符合题意. 综上可得a <-4,故选B. 答案: B2.(2017·山西五校4月联考)已知p :(x -m )2>3(x -m )是q :x 2+3x -4<0的必要不充分条件,则实数m 的取值范围为____________.解析: p 对应的集合A ={x |x <m 或x >m +3},q 对应的集合B ={x |-4<x <1},由p 是q 的必要不充分条件可知B A ,∴m ≥1或m +3≤-4,即m ≥1或m ≤-7.答案: (-∞,-7]∪[1,+∞)3.已知命题p :“若ac ≥0,则二次方程ax 2+bx +c =0没有实根”. (1)写出命题p 的否命题;(2)判断命题p 的否命题的真假,并证明你的结论.解析: (1)否命题:“若ac <0,则二次方程ax 2+bx +c =0有实根”. (2)命题p 的否命题为真命题,证明如下:∵ac <0,∴-ac >0⇒Δ=b 2-4ac >0⇒二次方程ax 2+bx +c =0有实根. 4.已知p :x 2-7x +12≤0,q :(x -a )(x -a -1)≤0.(1)是否存在实数a ,使綈p 是綈q 的充分不必要条件,若存在,求实数a 的取值范围;若不存在,请说明理由;(2)是否存在实数a ,使p 是q 的充要条件,若存在,求出a 的值;若不存在,请说明理由.解析: 因为p :3≤x ≤4, q :a ≤x ≤a +1.(1)因为綈p 是綈q 的充分不必要条件, 所以綈p ⇒綈q ,且綈q ⇒/ 綈p , 所以q ⇒p ,且p ⇒/ q , 即q 是p 的充分不必要条件, 故{x |a ≤x ≤a +x |3≤x ≤4},所以⎩⎪⎨⎪⎧ a >3,a +1≤4或⎩⎪⎨⎪⎧a ≥3,a +1<4,无解,所以不存在实数a ,使綈p 是綈q 的充分不必要条件. (2)若p 是q 的充要条件, 则{x |a ≤x ≤a +1}={x |3≤x ≤4},所以⎩⎪⎨⎪⎧a =3,a +1=4,解得a =3.故存在实数a =3,使p 是q 的充要条件.第三节 简单的逻辑联结词、全称量词与存在量词1.了解逻辑联结词“或”“且”“非”的含义. 2.理解全称量词与存在量词的意义. 3.能正确地对含有一个量词的命题进行否定.1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“且”“或”“非”. (2)命题p ∧q 、 p ∨q 、綈p 的真假判断2.(1)全称量词和存在量词1.含逻辑联结词命题真假判断(1)p∧q中一假即假.(2)p∨q中一真必真.(3)綈p真,p假;綈p假,p真.2.全(特)称命题的真假判断方法1.命题“∃x0∈R,x20-x0-1>0”的否定是()A.∀x∈R,x2-x-1≤0 B.∀x∈R,x2-x-1>0C.∃x0∈R,x20-x0-1≤0 D.∃x0∈R,x20-x0-1≥0解析:依题意得,命题“∃x0∈R,x20-x0-1>0”的否定是“∀x∈R,x2-x-1≤0”,选A.答案: A2.下列命题中为真命题的是()A.∀x∈R,x2>0 B.∀x∈R,-1<sin x<1C.∃x0∈R,2x0<0 D.∃x0∈R,tan x0=2解析:因为∀x∈R,x2≥0,故A错;∀x∈R,-1≤sin x≤1,故B错;∀x∈R,2x>0,故C错.答案: D3.命题p:∀x∈R,sin x<1;命题q:∃x∈R,cos x≤-1,则下列结论是真命题的是()A.p∧q B.綈p∧qC.p∨綈q D.綈p∧綈q解析:p是假命题,q是真命题,所以B正确.答案: B4.命题“所有可以被5整除的整数,末位数字都是0”的否定为________________________.答案:“有些可以被5整除的整数,末位数字不是0”5.已知命题p:x2+4x+3≥0,q:x∈Z,且“p∧q”与“綈q”同时为假命题,则x=________.解析: 若p 为真,则x ≥-1或x ≤-3, 因为“綈q ”为假,则q 为真,即x ∈Z , 又因为“p ∧q ”为假,所以p 为假, 故-3<x <-1,由题意,得x =-2. 答案: -2考向一 全称命题与特称命题自主练透型1.已知命题p :∀x >0,总有(x +1)e x >1,则非p 为( ) A .∃x 0≤0,使得(x 0+1)e x 0≤0 B .∃x 0>0,使得(x 0+1)e x 0≤1 C .∀x >0,总有(x +1)e x ≤1 D .∀x ≤0,总有(x +1)e x ≤1解析: 命题p 为全称命题,所以非p :∃x 0>0,使得(x 0+1)e x 0≤1. 答案: B2.已知a >0,函数f (x )=ax 2+bx +c ,若m 满足关于x 的方程2ax +b =0,则下列选项中的命题为真命题的是( )A .∃x 0∈R ,f (x 0)<f (m )B .∃x 0∈R ,f (x 0)>f (m )C .∀x ∈R ,f (x 0)≤f (m )D .∀x ∈R ,f (x )≥f (m )解析: 由2am +b =0,得m =-b2a ,又a >0,∴f (m )是函数f (x )的最小值, 即∀x ∈R ,有f (x )≥f (m ),故选D. 答案: D3.若命题“∃x ∈R ,使得sin x cos x >m ”是真命题,则m 的值可以是( ) A .-13B .1 C.32D .23解析: ∵sin x cos x =12sin 2x ∈⎣⎡⎦⎤-12,12,∴m <12.故选A. 答案: A1.全称(特称)命题否定的两步曲(1)改写量词:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再改变量词.(2)否定结论:对原命题的结论进行否定.[提醒] 若命题p 是真命题,则綈p 是假命题;若命题p 是假命题,则綈p 是真命题. 2.全称命题与特称命题真假的判断方法考向二 含有逻辑联结词的命题的真假判断互动讲练型(1)(2017·贵州省适应性考试)已知命题p :∀x ∈R ,log 2(x 2+4)≥2,命题q :y =x12是定义域上的减函数,则下列命题中为真命题的是( )A .p ∨(綈q )B .p ∧qC .(綈p )∨qD .(綈p )∧(綈q )(2)(2017·山东卷)已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .下列命题为真命题的是( )A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q解析: (1)命题p :函数y =log 2x 在(0,+∞)上是增函数,x 2+4≥4,所以log 2(x 2+4)≥log 24=2,即命题p 是真命题,因此綈p 为假命题;命题q :y =x 12在定义域上是增函数,故命题q是假命题,綈q 是真命题.因此选项A 是真命题,选项B 是假命题,选项C 是假命题,选项D 是假命题,故选A.(2)p :x 2-x +1=⎝⎛⎭⎫x -122+34>0恒成立,∴∃x ∈R ,x 2-x +1≥0成立.故命题p 为真. q :a 2<b 2⇒a 2-b 2<0⇒(a +b )(a -b )<0,。

【22份】2018版高考人教A版数学(理)一轮复习课件(8-10章)

【22份】2018版高考人教A版数学(理)一轮复习课件(8-10章)

椭圆的标准方程 全国卷Ⅰ·T20 全国卷Ⅰ·T14 全国卷Ⅰ·T20 及其性质 全国卷Ⅱ·T20 全国卷Ⅱ·T20 全国卷Ⅱ·T20
双曲线的标准方 全国卷Ⅰ·T15 全国卷Ⅰ·T5 程及其性质 全国卷Ⅱ·T11 全国卷Ⅱ·T11
全国卷Ⅰ·T4
高三一轮总复习
抛物线的标准 全国卷Ⅰ·T10 方程及其性质 全国卷Ⅲ·T20
的方程、距离
圆的方程、直 线与圆的位臵 关系、圆与圆 的位臵关系 全国卷Ⅰ·T20 全国卷Ⅰ·T14 全国卷Ⅲ·T16 全国卷Ⅱ·T7
全国卷Ⅱ·T10
全国卷Ⅱ·T16
全国卷Ⅰ·T20 全国卷Ⅱ·T11
全国卷·T20
高三一轮总复习
曲线与方程
全国卷Ⅲ·T20
全国卷Ⅱ·T20 全国卷Ⅰ·T10 全国卷Ⅰ·T20 全国卷·T4 全国卷Ⅱ·T20 全国卷Ⅰ·T4 全国卷·T8
[重点关注] 综合近 5 年全国卷高考试题,我们发现高考命题在本章呈现以下规律: 1.从考查题型看:一般有 2 个客观题,1 个解答题;从考查分值看,在 22 分 左右.基础题主要考查对基础知识和基本方法的掌握程度,中档题主要考查运算 能力和逻辑推理能力,难题考查综合应用能力.
高三一轮Байду номын сангаас复习
2.从考查知识点看:主要考查直线的方程、圆的方程、直线与圆、圆与圆的 位置关系、曲线与方程、圆锥曲线(椭圆、双曲线、抛物线)的定义、标准方程及性 质、直线与圆锥曲线的位置关系、圆锥曲线的综合应用.突出对数形结合思想、 函数与方程思想、转化与化归思想、分类讨论思想以及探究、创新能力的考查.
y-y0=k(x-x0) _______________
y=kx+b _____________
y-y1 x-x1 不含直线 x=x1(x1≠x2)和直线 y= = y - y x2-x1 y (y ≠y ) 2 1 _______________

2018-2019学年高三数学人教版A版数学(理)高考一轮复习课件:第七章 第五节 直线、平面垂直的判定及性质

2018-2019学年高三数学人教版A版数学(理)高考一轮复习课件:第七章  第五节  直线、平面垂直的判定及性质

知识点二
(3)符号语言:a⊂α,b⊂α,a∩b=P,l⊥a,l⊥b⇒l⊥α.
知识点一
2.直线与平面垂直的性质定理
知识点一
自然语言:垂直于 同一个平面 的两条直线平⊥α⇒a∥b.
知识点一
易误提醒
知识点一
斜线在平面上的射影是过斜足和垂足的一条直
[自测练习]
1. 设 a, b 是平面 α 内两条不同的直 线,l 是平面 α 外的一条直线,则“l
试题
解析
由线面垂直的判定 定理知,充分性不成 立,由线面垂直的性 质定理知,必要性成 立,故选 C.
知识点一
⊥a,且 l⊥b”是“l⊥α”的( C ) A.充要条件
知识点二
B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件
知识点一
如果两个相交平面所成的二面角是直二面角, 那么就说这两个平面互相 垂直.平面 α 与 β 垂直,记作 α⊥β. (2)两个平面垂直的判定定理 自然语言:一个平面过 另一个平面的垂线 ,则这两个平面垂直. 图形语言:如图 1 所示. 符号语言:AB ⊥β,AB⊂α⇒α⊥β.
知识点二
图1
知识点二
题组训练
A.若 l∥α,m⊥l,则 m⊥α B.若 l⊥m,m⊥n,则 m∥n C.若 a⊥α,a⊥b,则 b∥α D.若 l⊥α,l∥a,则 a⊥α
考点一
2.(2016· 丽水一模)在四面体 ABCD 中, 下列条件不能得出 AB⊥CD 的是( D ) A.AB⊥BC 且 AB⊥BD
试题
解析
A.∵AB⊥BD,AB⊥BC,BD∩BC=B, ∴AB⊥平面 BCD,∵CD⊂平面 BCD,∴AB⊥ CD.B.设 A 在平面 BCD 内的射影为 O, 则 AO⊥ 平面 BCD, ∵AD⊥BC, AC⊥BD, ∴O 为△BCD 的垂心,连接 BO,则 BO⊥CD,又 AO⊥CD, AO∩BO=O,∴CD⊥平面 ABO,∵AB⊂平面 ABO,∴AB⊥CD.C.取 CD 中点 G,连接 BG, AG. ∵AC=AD 且 BC=BD,∴CD⊥BG,CD⊥AG, ∵BG∩AG=G, ∴CD⊥平面 ABG,∵AB⊂平面 ABG,∴AB⊥ CD,故选 D.

2018届高考数学(理)人教A版(全国)一轮复习必修一 §1.1 集合及其运算 PPT 课件

2018届高考数学(理)人教A版(全国)一轮复习必修一 §1.1 集合及其运算 PPT 课件
解析答案
题型三 集合的基本运算
命题点1 集合的运算
例3 (1)设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则
∁U(A∪B)等于( D ) A.{1,4}
B.{1,5}
C.{2,5}
D.{2,4}
解析 由题意可知U={1,2,3,4,5},A∪B={1,3,5},
所以∁U(A∪B)={2,4}.故选D.
答案
2
考点自测
1. (教材改编)设A={x|x2-4x-5=0},B={x|x2=1},则A∪B等于( A )
A.{-1,1,5}
B.{-1,5}
C.{1,5}
D.{-1}
解析 ∵A={-1,5},B={-1,1},
∴A∪B={-1,1,5}.
12345
解析答案
2.已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B等于( A )
A.0
B.1
C.2
D.3
解析答案
跟踪训练4
(2015·湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,
|y|≤2,x,y∈Z},定义集合A B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2, y2)∈B},则A B中元素的个数为( )
A.77
解析答案
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3.已知集合 A=x|x∈Z,且2-3 x∈Z,则集合 A 中的元素个数为( C )
N
N*(或N+)
Z
Q
R
答案
2.集合间的基本关系
A⊆B (或B⊇A)
AB (或B A)

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-4

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-4

2.数列 2,5,11,20,x,47,…中的 x 等于( ) A.28 B.32 C.33 D.27
[解析] 从第 2 项起每一项与前一项的差构成公差为 3 的等 差数列,所以 x=20+12=32.故选 B.
[答案] B
3.(选修 1-2P30 练习 T1 改编)已知数列{an}中,a1=1,n≥2 时,an=an-1+2n-1,依次计算 a2,a3,a4 后,猜想 an 的表达式 是( )
[对点训练] 1.(2019·山东日照模拟)对于实数 x,[x]表示不超过 x 的最大 整数,观察下列等式: [ 1 ]+[ 2 ]+[ 3 ]=3; [ 4 ]+[ 5 ]+[ 6 ]+[ 7 ]+[ 8 ]=10; [ 9 ]+[ 10 ]+[ 11 ]+[ 12 ]+[ 13 ]+[ 14 ]+[ 15 ] =21; … 按照此规律第 n 个等式的等号右边的结果为________.
主干知识梳理 Z
主干梳理 精要归纳
1.合情推理
[知识梳理]
2.演绎推理 (1)定义:从一般性的原理出发,推出某个特殊情况下的结论, 我们把这种推理称为演绎推理.简言之,演绎推理是由一般到 特殊 的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况作出的判断.
[解析] 根据题图(1)所示的分形规律,可知 1 个白圈分形为 2
个白圈 1 个黑圈,1 个黑圈分形为 1 个白圈 2 个黑圈,把题图(2)
中的树形图的第 1 行记为(1,0),第 2 行记为(2,1),第 3 行记为(5,4),
第 4 行的白圈数为 2×5+4=14,黑圈数为 5+2×4=13,所以第

高考数学一轮复习 第七章 不等式 7.1 不等式及其解法课件 理

高考数学一轮复习 第七章 不等式 7.1 不等式及其解法课件 理

D.a2>ab>b2
答案 D 选项A,∵c为实数,∴取c=0,得ac2=0,bc2=0,此时ac2=bc2,故选项A不正确;选项B, 1 - 1 =
ab
b ,a∵a<b<0,∴b-a>0,ab>0,∴ b>0a,即 >1 ,1故选项B不正确;选项C,∵a<b<0,∴取a=-2,b=-1,
ab
ab
ab
12/11/2021
2.(2014江苏,10,5分)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的
取值范围是
.
答案
2 2
,0
解析 要满足f(x)=x2+mx-1<0对于任意x∈[m,m+1]恒成立,
只需
f f
(即m ) 0,解得-
(m 1) 0,
∵0<log0.20.3<log0.20.2=1,log20.3<log20.5=-1,即0<a<1,b<-1,∴a+b<0,排除D.
∵ b =l o g 2=0 . 3 =llgo0g.220.2,∴b- =logb 20.3-log20.2=log2
a lo g 0.2 0 .3 l g 2
a
解法二:易知0<a<1,b<-1,∴ab<0,a+b<0,
<1,∴3 b<1+
2
⇒ab b<a+b,排除A.故选B.
a
∵ 1 +1 =log0.30.2+log0.32=log0.30.4<1,

2019届高考数学人教A版理科第一轮复习课件第七章不等式、推理与证明7.4

2019届高考数学人教A版理科第一轮复习课件第七章不等式、推理与证明7.4

-18-
考点1
考点2
考点3
(2)证明 ①在△PAB中,因为E,F分别为PA,AB的中点,所以EF∥PB. 又因为EF⊄平面PBC,PB⊂平面PBC, 所以直线EF∥平面PBC. ②如图,连接BD. 因为AB=AD,∠BAD=60°, 所以△ABD为正三角形. 因为F是AB的中点,所以DF⊥AB. 因为平面PAB⊥平面ABCD,DF⊂平面ABCD,平面PAB∩平面 ABCD=AB, 所以DF⊥平面PAB. 又因为DF⊂平面DEF, 所以平面DEF⊥平面PAB.
1 2
2.间接证明 间接证明是不同于直接证明的又一类证明方法 ,反证法是一种常用 的间接证明方法. 不成立 (即在原命题的条件下, (1)反证法的定义:假设原命题 矛盾,因此说明假设错 结论不成立),经过正确的推理,最后得出 误,从而证明 原命题成立 的证明方法. (2)用反证法证明的一般步骤:①反设——假设命题的结论不成立; ②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断 言假设不成立,从而肯定原命题的结论成立.
-2-
知识梳理
双基自测
1 2
续 内容 综合法 证明 由因导果 思路 分析法 执果索因

证明 P⇒Q1 → Q1⇒Q2 →…→ Qn⇒Q 个明显 流程 成立的条件 文字 因为……所以…… 表达 或由……得……
Q⇐P1 → P1⇐P2 →…→ 得到一
要证……只需证…… 即证……
-3-
知识梳理
双基自测
关闭
因为“方程x3+ax+b=0至少有一个实根”等价于“方程x3+ax+b=0的实
根的个数大于或等于1”,所以要做的假设是“方程x3+ax+b=0没有实 A

高考数学理科(人教A)一轮复习课件 第七章 立体几何7-3

高考数学理科(人教A)一轮复习课件 第七章 立体几何7-3

• 规律方法 (1)证明点或线共面问题,一般 有两种途径:①首先由所给条件中的部分 线(或点)确定一个平面,然后再证其余的 线(或点)在这个平面内.②将所有条件分 为两部分,然后分别确定平面,再证两平 面重合.
• (2)证明点共线问题,一般有两种途径: ①先由两点确定一条直线,再证其他各点 都在这条直线上;②直接证明这些点都在 同一条特定直线上.
• 答案:A
平面的基本性质及应用(师生共研)
• 例1 如图,在正方体ABCD A1B1C1D1中 ,E,F分别是AB和AA1的中点,求证:
• (1)E,C,D1,F四点共面; • (2)CE,D1F,DA三线共点.
证明 (1)如图,连接 CD1,EF,A1B, ∵E,F 分别是 AB 和 AA1 的中点, ∴EF∥A1B 且 EF=21A1B.
• A.空间不同三点确定一个平面
• B.空间两两相交的三条直线确定一个平 面
• C.两组对边相等的四边形是平行四边形
• D.和同一直线都相交的三条平行线在同 一平面内
• 解析:A是假命题,当三点共线时,过三 点有无数个平面;B不正确,两两相交的 三条直线不一定共线;C不正确,两组对
• 3.下列命题正确的个数为( )
1.已知在空间四边形 ABCD 中,E,H 分别是边 AB,AD 的中点, F,G 分别是边 BC,CD 上的点,且CCFB=CCGD=23(如图所示),求证:三条 直线 EF,GH,AC 交于一点.
证明:∵AEEB=HAHD=1, ∴EH∥12BD,EH=12BD;而CCBF=CCGD=23,∴FBGD=23,且 FG∥BD. ∴四边形 EFGH 为梯形,从而两腰 EF、GH 必相交于一点 P. ∵P∈直线 EF,EF⊂平面 ABC,∴P∈平面 ABC. 同理 P∈平面 ADC, ∴P 在平面 ABC 和平面 ADC 的交线 AC 上. 故 EF、GH、AC 三直线交于一点.

【4份】2018版高考人教A版数学(理)一轮复习课件::选修

【4份】2018版高考人教A版数学(理)一轮复习课件::选修

高三一轮总复习
5.(2015· 江苏高考)已知圆 C 的极坐标方程为 ρ +2 C 的半径.
2
π 2ρsinθ-4-4=0,求圆
[解] 以极坐标系的极点为平面直角坐标系的原点 O, 以极轴为 x 轴的正半轴, 建立直角坐标系 xOy.2 分 圆 C 的极坐标方程可化为 ρ +2
2
x2+y2-2y=0 [由 ρ=2sin θ,得 ρ2=2ρsin θ. 所以曲线 C 的直角坐标方程为 x2+y2-2y=0.]
高三一轮总复习
4. 已知直线 l 的极坐标方程为
π 2ρsinθ-4=
2, 点 A 的极坐标为
A2
7π 2, 4 ,
则点 A 到直线 l 的距离为________.
高三一轮总复习
抓 基 础 · 自 主 学 习
明 考 向 · 题 型 突 破
课 时 分 层 训 练
选修 4-4
坐标系与参数方程
高三一轮总复习
第一节
坐标系
[考纲传真] 1.理解坐标系的作用, 了解在平面直角坐标系伸缩变换作用下平 面图形的变化情况.2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的 位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形表示的极 坐标方程.
2 π 5 2 2 [由 2ρsinθ-4= 2,得 2ρ sin θ- cos θ = 2, 2 2 2
∴y-x=1. 由
A2
7π 2, 4 ,得点 A 的直角坐标为(2,-2).
|2+2+1| 5 2 ∴点 A 到直线 l 的距离 d= = 2 .] 2
π π ρcos θ=a - <θ< . ___________ 2 2

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-1

高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-1
令(4x+a)(3x-a)=0,解得 x1=-a4,x2=a3.
①当 a>0 时,-a4<a3,不等式的解集为 x|x<-a4,或x>a3; ②当 a=0 时,-a4=a3=0,不等式的解集为{x|x∈R,且 x≠0}; ③当 a<0 时,-a4>a3,不等式的解集为 x|x<a3,或x>-a4. 综上所述:当 a>0 时,不等式的解集为 x|x<-a4,或x>a3;
5.简单分式不等式的解法
x-a x-b>0
等价于(x-a)(x-b)>0;
x-a x-b<0
等价于(x-a)(x-b)<0;
xx--ab≥0 等价于xx--ba≠0x-;b≥0, xx--ab≤0 等价于xx--ba≠0x-. b≤0,
[辨识巧记] 1.倒数性质的几个必备结论 (1)a>b,ab>0⇒1a<1b. (2)a<0<b⇒1a<1b. (3)a>b>0,0<c<d⇒ac>bd. (4)0<a<x<b 或 a<x<b<0⇒1b<1x<1a.
[知识梳理]
1.两个实数比较大小的方法
a-b>0⇔a>b, (1)作差法a-b=0⇔a=ba,b∈R,
a-b<0⇔a<b.
ab>1⇔a>ba∈R,b>0, (2)作商法ab=1⇔a=ba∈R,b>0,
ab<1⇔a<ba∈R,b>0.
2.不等式的基本性质
m+n=3, n-m=-1,
解得mn==12.,
因为-π2<α-β<π2,0<α+β<π,

2018-2019年高三数学人教版A版数学(理)高考一轮复习课件:第七章 第四节 直线、平面平行的判定及其性质

2018-2019年高三数学人教版A版数学(理)高考一轮复习课件:第七章  第四节  直线、平面平行的判定及其性质

试题
解析
如图所示,在平行六面体 ABCDA1B1C1D1 中,E,F,G, H, M, N, P, Q 分别为相 应棱的中点, 容易证明平 面 EFGH , 平面 MNPQ 均与平面 BDD1B1 平行. 平面 EFGH 和平面 MNPQ 中分别有 6 条直线(相应四边形 的四条边和两条对角线 ) 满足要 求,故共有 12 条直线符合要求.
知识点一
列结论正确的是( B
)
A.α 内的所有直线都与直线 a 异面 B.α 内可能存在与 a 平行的直线
知识点二
C.α 内的直线都与 a 相交 D.直线 a 与平面 α 没有公共点
知识点一
2.对于直线 m,n 和平面 α,若 n ⊂ α ,则“m ∥ n”是“m ∥ α” 的
知识点一
试题
解析
当 m∥n 时,m⊂α 或 m∥α,当 m∥α 时, m 与 n 可能平行 也可能为异面直线.
在平面内,否则会出现错误. (2)一条直线平行于一个平面,它可以与平面内的无数条 直线平行,但这条直线与平面内的任意一条直线可能平 行,也可能异面.
知识点二
知识点一
[自测练习]
1.若直线 a 不平行于平面 α,则下
试题
解析
直线 a 与 α 不平行, 则直线 a 在 α 内或与 α 相交,当直线 a 在 平面 α 内时, 在α内 存在与 a 平行的直 点 M 在四边形 EFGH 及 其内部运动,则 M 只需满足条 件________时,就有 MN∥平 面 B1BDD1(填上正确的一个条件即可, 不必考 虑全部可能情况).点 M 与点 H 重合(或点
M 在线段 FH 上)
考点一
试题
解析
题组训练
(1)证明:因为 O,M 分别为 AB,VA 的中点,所以 OM 3.(2015· 高考北京卷)如图, 在三棱 ∥VB. 又因为 VB⊄平面 MOC, 锥 VABC 中, 所以 VB∥平面 MOC. 平 面 VAB ⊥ 平 (2)证明:因为 AC=BC,O 为 AB 的中点,所以 OC⊥AB. 面 ABC, △VAB 又因为平面 VAB⊥平面 ABC,且 OC⊂平面 ABC, 所以 OC⊥平面 VAB. 为等边三角形, 所以平面 MOC⊥平面 VAB. AC⊥BC 且 AC=BC= 2,O,M (3)在等腰直角三角形 ACB 中,AC=BC= 2, 分别为 AB,VA 的中点. 所以 AB=2,OC=1,所以 S△VAB= 3, 又因为 OC⊥平面 VAB, (1)求证:VB∥平面 MOC; 1 3 (2)求证:平面 MOC⊥平面 VAB; 所以 VCS△VAB= . VAB= OC· 3 3 (3)求三棱锥 VABC 的体积. 又因为三棱锥 VABC 的体积与三棱锥 CVAB 的体积相 等, 3 所以三棱锥 VABC 的体积为 . 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试题
解析
由于三视图可见部分用实 线画出,不可见部分用虚 线画出,故选 B.
知识点二
知识点三
知识点二
4.某几何体的三视图如图所示,根
知识点一
试题
据三视图可以判断这个几何体为 (C )
解析
知识点二
根据俯视图与侧视图, 可得 该几何体为三棱柱.
知识点三
A.圆锥 C.三棱柱
B.三棱锥 D.三棱台
知识点三
知识点二
B.棱锥的侧棱长都相等 C.三棱台的上、下底面是相似
知识点三
三角形 D.有的棱台的侧棱长都相等
知识点一
知识点一
试题
2.如图,在球中被平面所截面 的截面小圆的半径为
解析
由条件知 r=2, R =3, ∴ r2+d2= R2,∴ d = R2-r2= 5.
知识点二
2,球心半径为 3,则 球心到截面圆心距离为
正左 正上 方观察几何体的正投影图. ____方、_____
知识点二
知识点一
易误提醒
(1)画三视图时,能看见的线和棱用实线表
知识点二
示,不能看见的线和棱用虚线表示. (2)一物体放置的位置不同,所画的三视图可能不同.
知识点三
知识点二
知识点一
[自测练习]
3. (2016· 深圳调研)用一个平行于 水平面的平面去截球, 得到如图所示的几何 体,则它的俯视图是( B )
知识点一
空间几何体的直观图
空间几何体的直观图常用 斜二测 画法来画,其规则是 1.原图形中 x 轴、y 轴、z 轴两两垂直,直观图中,x′轴,y′
知识点二
或 135° 轴的夹角为 45° , z′轴与 x′轴和 y′轴所在平面 垂直 .
2.原图形中平行于坐标轴的线段,直观图中仍 平行于坐标轴 ;
知识点三
A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴, 其余两边旋转形成的曲面所围成的几何体
题组训练
叫圆锥 C .棱锥的侧棱长与底面多边形的边长相 等,则该棱锥可能是六棱锥 D. 圆锥的顶点与底面圆周上的任一点的连 线都是母线
考点一
解决空间几何体结构特征问题的三个策略
题组训练
知识点一
知识点一
空间几何体的结构特征
1.多面体的结构特征 (1)棱柱的侧棱都 互相平行 ,上下底面是全等 的多边形.
知识点二
(2)棱锥的底面是任意多边形,侧面是有一个公共顶点 的 三角形.
知识点三
(3)棱台可由 平行于底面 的平面截棱锥得到,其上下底面 是相似多边形.
知识点一
2.旋转体的形成
知识点一
知识点三
知识点三
知识点一
[自测练习]
5. 用斜二测画法画一个水平放置的 平面图形的直观图为如图所示的一 个正方形,则原来的图形是( A )
试题
解析
根据斜二测画法的规则 知,选 A.
知识点二
知识点三
考点一
空间几何体的结构特征|
1.给出下列命题: ①棱柱的侧棱都相等,侧面都是全等的 平行四边形;②用一个平面去截棱锥, 棱锥底面与截面之间的部分是棱台;③ 若三棱锥的三条侧棱两两垂直,则其三 个侧面也两两垂直;④棱台的侧棱延长 后交于一点,侧面是等腰梯形. 其中正确命题的序号是( C ) A.①②③ B.②③ C.③ D.①②③④
第一节
空间几何体的结构特征及三视图与直观图
三视图与直观图 (1)认识柱、锥、台、球及其简单组合体的结构特征,并 能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱 等的简易组合)的三视图,能识别上述三视图所表示的立 体模型,会用斜二测画法画出它们的直观图. (3)会用平行投影方法画出简单空间图形的三视图与直观 图,了解空间图形的不同表示形式. (4) 会画某些建筑物的视图与直观图 ( 在不影响图形特征 的基础上,尺寸、线条等不作严格要求).
平行于 x 轴和 z 轴的线段在直观图中保持原长度 不变 ; 平行于 y 轴的线段在直观图中 长度为原来的一半 .
ቤተ መጻሕፍቲ ባይዱ识点三
知识点一
必记结论
斜二测画法中的“三变”与“三不变”
知识点二
坐标轴的夹角改变 “三变”与y轴平行的线段的长度变为原来的一半 图形改变 平行性不改变 “三不变”与x,z轴平行的线段的长度不改变 相对位置不改变
试题
解析
对于①,棱柱的侧面不一 定全等,故①错;对于②, 截面与底面不一定平行, 故②错;对于④,棱台的 侧棱延长后相交于一点, 但侧面不一定是等腰梯 形,故④错;由面面垂直 的判定及性质知③正确, 故选 C.
题组训练
考点一
2.下列结论中正确的是(
试题
解析
D
)
当一个几何体由具有相同的底面 且顶点在底面两侧的两个三棱锥 构成时,尽管各面都是三角形, 但它不是三棱锥,故 A 错误;若 三角形不是直角三角形或是直角 三角形但旋转轴不是直角边所在 直线, 所得几何体就不是圆锥, B 错误; 若六棱锥的所有棱都相等, 则底面多边形是正六边形,由几 何图形知, 若以正六边形为底面, 则棱长必然要大于底面边长,故 C 错误.
知识点二
知识点三
(1)球心和截面(不过球心)圆心的连线垂直于截面; (2)球心到截面的距离 d 与球的半径 R 及截面的半径 r 有下面的关 系:r= R2-d2.
知识点一
知识点一
[自测练习]
1 .关于空间几何体的结构特 征, 下列说法不正确的是( B ) A.棱柱的侧棱长都相等
试题
解析
根据棱锥的结构特 征知,棱锥的侧棱长 不一定都相等.
知识点三
5 . ________
知识点二
知识点一
空间几何体的三视图
1.三视图的名称 几何体的三视图包括: 正视图 、 侧视图 、 俯视图 . 2.三视图的画法 (1)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.
知识点二
知识点三
(2)三视图的正视图、 侧视图、 俯视图分别是从几何体的 正前 方、
(1)把握几何体的结构特征,提高空间想象力. (2)构建几何模型、变换模型中的线面关系. (3)通过反例对结构特征进行辨析.
几何体
知识点二
旋转图形
矩形
旋转轴
任一边 所在的直线
任一直角边 所在的直线 垂直于底边的腰 所在的直线 直径 所在的直线
圆柱
圆锥
知识点三
直角三角形
直角梯形 半圆
圆台 球
知识点一
易误提醒 (1)棱台可以看成是由棱锥截得的, 但截面一定与底面
知识点一
平行. (2)球的任何截面都是圆.球面被经过球心的平面截得的圆叫作大 圆,大圆的半径等于球的半径;被不经过球心的平面截得的圆叫作 小圆,小圆的半径小于球的半径. 必记结论 球的截面的性质
相关文档
最新文档