Steam-Turbines-for-Pump-Drives

合集下载

汽轮机设备SteamTurbine

汽轮机设备SteamTurbine

PPT文档演模板
汽轮机设备SteamTurbine
4.1 动叶片
小结:
了解叶片受力,叶片的振动形式 熟悉叶片自振频率的影响因素 掌握叶片的结构形式 能读懂检修规程中相关内容 能填写操作票
PPT文档演模板
汽轮机设备SteamTurbine
4.2 转子
• 转子的作用:汇集各级动叶栅所得到

的机械能并传给发电机。
汽轮机设备SteamTurbine
4.1 动叶片
三、叶片的振动
(一)引起叶片振动的激振力
1、高频激振力
⑴起因:喷嘴汽流速度在圆周上分布不均
⑵计算
全周进汽
部分进汽 2、低频激振力
(1)起因:制造加工的误差及结构等方面 (2)计算:f=in
PPT文档演模板
汽轮机设备SteamTurbine
4.1 动叶片
(二)叶根部分:是将动叶片固定在叶轮或者轮鼓上面的部 分常用的叶根形式有T型、枞树型和叉形
(三)叶顶:短叶片和中长叶片通常在叶顶用围带连在一起, 构成叶片组长叶片在叶型部分用拉金连接成组
PPT文档演模板
汽轮机设备SteamTurbine
4.1 动叶片
1、T型
(1)结构:叶根形状呈T形 (2)特点:结构简单、加工方便,被短叶片普遍采
汽轮机设备 SteamTurbine
PPT文档演模板
2020/11/24
汽轮机设备SteamTurbine
第四章 汽轮机结构及零件强度
重点:①叶片、叶轮、转子、联轴器、盘车的结构形式
②汽缸不同支承方式的优缺点 ③汽封及轴封系统的作用 ④滑动轴承的工作原理及轴承的种类 ⑤检修规程与操作票
PPT文档演模板
用 (3)装配方式 :埋入法

паркер汉尼夫公司水力系列产品目录说明书

 паркер汉尼夫公司水力系列产品目录说明书

ABV101............Accumulator Bleed-Down Valve......................MV15-MV17 CDP161............Double P.O. Check Valves..................................LH85-LH86 CDPH103..........Double P.O. Check Valves..................................LH83-LH84 CP044P............Single P.O. Check Valves...................................LH46-LH48 CP074P............Single P.O. Check Valves...................................LH49-LH51 CP084P............Single P.O. Check Valves...................................LH52-LH54 CPC101P..........Pilot-to-Close Check Valves...............................LH64-LH66 CPC161P..........Pilot-to-Close Check Valves...............................LH67-LH69 CPD084P..........Double P.O. Check Valves..................................LH80-LH82 CPH064P..........Single P.O. Check Valves...................................LH55-LH57 CPH104P..........Single P.O. Check Valves...................................LH58-LH60 CPH124P..........Single P.O. Check Valves...................................LH61-LH63 CS041B............Shuttle Valves....................................................LH87-LH89 CSH101B..........Shuttle Valves....................................................LH90-LH92 CSP161............Single P.O. Check Valves...................................LH78-LH79 CSPH103..........Single P.O. Check Valves...................................LH76-LH77 CV041P............Check Valves.........................................................LH1-LH3 CV081P &091P.................Check Valves.........................................................LH4-LH6 CV082P............Check Valves.........................................................LH7-LH9 CV101P............Check Valves.....................................................LH10-LH12 CV102P............Check Valves.....................................................LH13-LH15 CV103P............Check Valves.....................................................LH16-LH18 CVH061P..........Check Valves.....................................................LH25-LH27 CVH071P..........Check Valves.....................................................LH28-LH30 CVH081P &091P.................Check Valves.....................................................LH31-LH33 CVH103P..........Check Valves.....................................................LH34-LH36 CVH084P..........Check Valves.....................................................LH37-LH39 CVH104P..........Check Valves.....................................................LH40-LH42 CVH121P..........Check Valves.....................................................LH43-LH45 CVH161P..........Check Valves.....................................................LH19-LH21 CVH201P..........Check Valves.....................................................LH22-LH24 CVO101P..........Vent-to-Open Check Valves...............................LH70-LH72 CVO161P..........Vent-to-Open Check Valves...............................LH73-LH75 DF083...............Sol. Operated, P.C. Proportional Flow Cont...........PV1-PV4 DF092C............Sol. Operated, P.C. Proportional Flow Cont...........PV5-PV8 DF092N............Sol. Operated, P.C. Proportional Flow Cont.........PV9-PV12 DF102C............Sol. Operated, P.C. Proportional Flow Cont.......PV13-PV16 DF102N............Sol. Operated, P.C. Proportional Flow Cont.......PV17-PV20 DF102P............Sol. Operated, P.C. Proportional Flow Cont.......PV21-PV23 DF122...............Sol. Operated, P.C. Proportional Flow Cont.......PV24-PV27 DF161C............Solenoid Operated, Throttle Valves....................PV28-PV31 DF201C............Solenoid Operated, Throttle Valves....................PV32-PV35 DH082..............Pilot Operated, 2-Way Valves............................DC22-DC24 DH103..............Pilot Operated, Directional Valves......................DC25-DC28 DL081..............Manual, Poppet-Type, 2-Way Valves.....................DC1-DC3 DL101..............Manual, Poppet-Type, 2-Way Valves.....................DC4-DC6 DL102..............Manual, Spool-Type, 2-Way Valves.......................DC7-DC9 DL103..............Manual, Spool-Type, 3-Way Valves...................DC10-DC12 DL104..............Manual, Spool-Type, 4-Way Valves...................DC13-DC15 DM103.............Manual, Rotary, 3-Way Valves...........................DC16-DC18 DM104.............Manual, Rotary, 4-Way Valves...........................DC19-DC21 DPR083B..........Sol. Operated, Proportional Pres. Reducing......PV36-PV39 DPR083C..........Sol. Operated, Proportional Pres. Reducing......PV40-PV43 DPR083C30......Sol. Operated, Proportional Pres. Reducing......PV44-PV47 DPR083N.........Sol. Operated, Proportional Pres. Reducing......PV48-PV51 DPR103C..........Sol. Operated, Proportional Pres. Reducing......PV52-PV55DPR104C10......Sol. Operated, Proportional Pres. Reducing......PV56-PV59 DS085..............Solenoid, Spool-Type, 4-Way, 3-Pos.............DC127-DC130 DS086C6Mand 096............Sol., Bi-Directional, Poppet-Type, 2-Way.......DC148-DC151 DS105..............Solenoid, Spool-Type, 4-Way, 3-Pos.............DC131-DC134 DS161..............Solenoid, Poppet-Type, 2-Way Valves...............DC56-DC59 DS162..............Solenoid, Spool-Type, 2-Way Valves.................DC84-DC87 DS123B............Solenoid, Spool-Type, 3-Way Valves.............DC104-DC106 DS163..............Solenoid, Spool-Type, 3-Way Valves.............DC107-DC110 DS201..............Solenoid, Poppet-Type, 2-Way Valves...............DC60-DC63 DS083BP3........Solenoid, Poppet-Type, 3-Way Valves...............DC64-DC67 DSH08D1C.......Solenoid, Poppet-Type, 2-Way Valves...........DC139-DC141 DSH08D6C.......Solenoid, Poppet-Type, 2-Way Valves...........DC145-DC147 DSH081 & 091.Solenoid, Poppet-Type, 2-Way Valves...............DC36-DC39 DSH082 & 092.Solenoid, Spool-Type, 2-Way Valves.................DC72-DC75 DSH083............Solenoid, Spool-Type, 3-Way Valves.................DC92-DC95 DSH084............Solenoid, Spool-Type, 4-Way Valves.............DC115-DC118 DSH085............Solenoid, Spool-Type, 4-Way, 3-Pos.............DC135-DC138 DSH101............Solenoid, Poppet-Type, 2-Way Valves...............DC44-DC47 DSH102............Solenoid, Spool-Type, 2-Way Valves.................DC80-DC83 DSH103............Solenoid, Spool-Type, 3-Way Valves.............DC100-DC103 DSH104............Solenoid, Spool-Type, 4-Way Valves.............DC123-DC126 DSH106C6........Sol., Bi-Directional, Poppet-Type, 2-Way.......DC156-DC159 DSH121............Solenoid, Poppet-Type, 2-Way Valves...............DC52-DC55 DSL08D6C........Sol., Bi-Directional, Poppet-Type, 2-Way.......DC142-DC144 DSL080DC........Soft Seat, Direct Act., Poppet-Type, 2-Way.......DC29-DC31 DSL081 & 091.Solenoid, Poppet-Type, 2-Way Valves...............DC32-DC35 DSL082 & 092.Solenoid, Spool-Type, 2-Way Valves.................DC68-DC71 DSL083............Solenoid, Spool-Type, 3-Way Valves.................DC88-DC91 DSL084............Solenoid, Spool-Type, 4-Way Valves.............DC111-DC114 DSL101............Solenoid, Poppet-Type, 2-Way Valves...............DC40-DC43 DSL102............Solenoid, Spool-Type, 2-Way Valves.................DC76-DC79 DSL103............Solenoid, Spool-Type, 3-Way Valves.................DC96-DC99 DSL104............Solenoid, Spool-Type, 4-Way Valves.............DC119-DC122 DSL106C6........Sol., Bi-Directional, Poppet-Type, 2-Way.......DC152-DC155 DSL121............Solenoid, Poppet-Type, 2-Way Valves...............DC48-DC51 EHVC................Electrohydraulic Valve Controller.......................PV92-PV99 ERV091C..........Solenoid Operated, Proportional P.C.................PV60-PV63 ERV091N..........Solenoid Operated, Proportional P.C.................PV64-PV67 ERV092N..........Solenoid Operated, Proportional P.C.................PV68-PV71 ERV101C..........Solenoid Operated, Proportional P.C.................PV72-PV75 ERV101N..........Solenoid Operated, Proportional P.C.................PV76-PV79 ERV102N..........Solenoid Operated, Proportional P.C.................PV80-PV83 ERV121N..........Solenoid Operated, Proportional P.C.................PV84-PV87 ERV161N..........Solenoid Operated, Proportional P.C.................PV88-PV91 FA101...............Pressure Compensated Flow Control................VC16-VC18 FC101...............Pressure Compensated Flow Control................VC22-VC24 FCP101.............Priority-Type, P.C. Valves...................................VC38-VC40 FCPH121..........Priority-Type, P.C. Valves...................................VC41-VC43 FCR101............Restrictive-Type, P.C. Valves..............................VC29-VC31 FCR121............Restrictive-Type, P.C. Valves..............................VC32-VC34 FCR161............Restrictive-Type, P.C. Valves..............................VC35-VC37 FDC101............Flow Divider/Combiner Valves...........................VC19-VC21 FL101...............Filter Cartridge.....................................................MV7-MV9 FP101...............Priority-Type, P.C. Flow Control Valves..............VC47-VC50 FPR101............Priority-Type, P.C. Flow Control Valves..............VC51-VC53 FR101...............Restrictive-Type, P.C. Flow Control Valves.........VC44-VC46FV101 & 102 .... Flow Control Valves ........................................... VC25-VC28 HLSVH101........Hi-Lo Unloading Valve.....................................MV10-MV12 HP101..............Hand Pump.....................................................MV13-MV14 NV102..............Needle Valves........................................................VC7-VC9 NV161..............Needle Valves....................................................VC10-VC12 NV162..............Needle Valves....................................................VC13-VC15 NVH081............Needle Valves........................................................VC1-VC3 NVH101............Needle Valves........................................................VC4-VC6 Offer of Sale............................................................................................TI15 P10-2*.............Cavity Plugs................................................................MV19 PDS101............Pressure Sensing..............................................PC67-PC69 PDS161............Pressure Sensing..............................................PC70-PC72 PMK101...........Panel Mount Kit..........................................................MV18 PN 812724.......Block Off Plate............................................................MV20 PR103..............Pressure Reducing/Relieving Valves.................PC91-PC93 PRCH101..........Pressure Reducing/Relieving Valves With.........................PC79-PC81PRH081............P.O. Pressure Reducing/Relieving Valves..........PC73-PC75 PRH082............P.O. Pressure Reducing Valves..........................PC94-PC96 PRH101............P.O. Pressure Reducing/Relieving Valves..........PC76-PC78 PRH102............P.O. Pressure Reducing Valves..........................PC97-PC99 PRH121............P.O. Pressure Reducing/Relieving Valves..........PC82-PC84 PRH121V..........P.O. Pressure Reducing/Relieving Valves..........PC85-PC87 PRH122............P.O. Pressure Reducing Valves......................PC100-PC102 PRH161............P.O. Pressure Reducing/Relieving Valves..........PC88-PC90 PRH162............P.O. Pressure Reducing Valves......................PC103-PC105PRS102............Pressure Reducing Spool Valves...................PC106-PC108PRS162............Pressure Reducing Spool Valves...................PC109-PC111 RAH081 & 091.P.O. Relief Valves...............................................PC49-PC51 RAH101............P.O. Relief Valves...............................................PC52-PC54 RAH101V..........P.O. Ventable Relief Valves................................PC55-PC57 RAH121............P.O. Relief Valves...............................................PC58-PC60 RAH161............P.O. Relief Valves...............................................PC61-PC63 RAH201............P.O. Relief Valves...............................................PC64-PC66 RASPH21.........Subplate/Relief Valve...........................................MV1-MV3 RASPH31.........Subplate/Relief Valve...........................................MV4-MV6 RD042..............Direct Acting Relief Valves.....................................PC7-PC9 RD072..............Direct Acting Relief Valves.................................PC13-PC15 RD102..............Direct Acting Relief Valves.................................PC19-PC21 RD163..............Direct Acting Relief Valves.................................PC31-PC33 RDH062............Direct Acting Relief Valves.................................PC10-PC12 RDH081............Direct Acting Relief Valves.....................................PC1-PC3 RDH082............Direct Acting Relief Valves.................................PC16-PC18 RDH083............Direct Acting Relief Valves.................................PC22-PC24 RDH101............Direct Acting Relief Valves.....................................PC4-PC6 RDH103............Direct Acting Relief Valves.................................PC25-PC27 RDH104............Differential Relief Valves With..........................................PC34-PC36 RDCH103.........Direct Acting Relief Valves With..........................................PC28-PC30PC139-PC141 SVCH101..........Sequence Valves w/Free Rev. Flow Check.....PC118-PC120 SVH081............Sequence Valves............................................PC112-PC114 SVH082............P.O. Sequence Valves....................................PC127-PC129 SVH101............Sequence Valves............................................PC115-PC117 SVH102............P.O. Sequence Valves....................................PC130-PC132 SVH121............Sequence Valves............................................PC121-PC12308 & 09............Coils 1/2″ I.D..........................................................CL1-CL2 DF102P &DPR104C10......Coils 1/2″ I.D..........................................................CL3-CL4 10, 12,16 & 20............Coils 5/8″ I.D..........................................................CL5-CL6 12 & 16............Coils 1″ I.D.............................................................CL7-CL8 08 & 09............Unicoils 1/2″ I.D...................................................CL9-CL10 10 & 12............Unicoils 5/8″ I.D.................................................CL11-CL12 08 & 09............Waterproof Coils 1/2″ I.D............................................CL13 10 & 12............Waterproof Coils 5/8″ I.D............................................CL14 Installation Data.........................................................................................TI1 04.....................Two and Three Way Cavity Details..................................TI206.....................Two and Three Way Cavity Details..................................TI307.....................Two and Three Way Cavity Details..................................TI408.....................Two, Three and Four Way Cavity Details...................TI5-TI609.....................Two Way Cavity Detail....................................................TI710.....................Two, Three and Four Way Cavity Details...................TI8-TI9 12.....................Two, Three and Four Way Cavity Details...............TI10-TI11 16.....................Two, Three and Four Way Cavity Details...............TI12-TI13 20.....................Two Way Cavity Detail..................................................TI14 B04-2**...........Single Function, Two Step Bodies.........................VB1-VB2 B04-3**...........Single Function, Three Step Bodies.......................VB3-VB4 B06-2**...........Single Function, Two Step Bodies.........................VB5-VB6 B06-3**...........Single Function, Three Step Bodies.......................VB7-VB8 B07-2**...........Single Function, Two Step Bodies.......................VB9-VB10 B07-3**...........Single Function, Three Step Bodies...................VB11-VB12 B08-2**...........Single Function, Two Step Bodies.....................VB13-VB14 B08-3**...........Single Function, Three Step Bodies...................VB15-VB16 B08-4**...........Single Function, Four Step Bodies.....................VB17-VB18 B09-2**...........Single Function, Two Step Bodies.....................VB19-VB20 B10-2**...........Single Function, Two Step Bodies.....................VB21-VB22 B10-2T**.........Single Function, Two Step Bodies.....................VB23-VB24 B10-3**...........Single Function, Three Step Bodies...................VB25-VB26 B10-3L**.........Single Function, Three Step Bodies...................VB27-VB28 B10-4**...........Single Function, Four Step Bodies.....................VB29-VB30 B12-2**...........Single Function, Two Step Bodies.....................VB31-VB32 B12-3**...........Single Function, Three Step Bodies...................VB33-VB34 B12-4**...........Single Function, Four Step Bodies.....................VB35-VB36 B16-2**...........Single Function, Two Step Bodies.....................VB37-VB38 B16-3**...........Single Function, Three Step Bodies...................VB39-VB40 B16-3S**.........Single Function, Three Step Bodies...................VB41-VB42 B20-2**...........Single Function, Two Step Bodies.....................VB43-VB44 Single Function BodiesCavity DetailsCartridge Valve CoilsSVH122............P.O. Sequence Valves....................................PC133-PC135 SVH161............Sequence Valves............................................PC124-PC126 SVH162............P.O. Sequence Valves....................................PC136-PC138 TR081..............Thermal Relief Valves....................................PC142-PC144 VF101...............Velocity Fuses....................................................VC54-VC56 XR101..............Cross-Over Relief Valves...................................PC37-PC39 XRDH101.........Cross-Over Relief Valves...................................PC40-PC42 XRDH102.........Dual Relief Valves w/Anti-Cavitation Checks......PC43-PC45 XRDH103.........Cross-Over Relief Valves...................................PC46-PC48。

蒸汽涡轮机英文作文

蒸汽涡轮机英文作文

蒸汽涡轮机英文作文Title: The Steam Turbine - A Pioneering Invention in Energy ConversionThe steam turbine is a remarkable invention that revolutionized the field of energy conversion. This mechanical device extracts energy from pressurized steam and converts it into rotational motion, making it a crucial component in various industrial applications, particularly in power generation.The steam turbine operates on the principle of thermodynamics. Pressurized steam is directed into the turbine, where it expands and rotates the turbine blades. This rotational motion is then harnessed to perform work, such as driving a generator to produce electricity.The efficiency and reliability of the steam turbine have made it a preferred choice in power plants worldwide. Its ability to convert thermal energy into mechanical energy with minimal losses has been a key factor in its widespread adoption. Furthermore, the steam turbine is highly scalable, allowing it to be tailored to meet the specific needs ofdifferent power plants, from small-scale industrial applications to large-scale utility plants.The impact of the steam turbine on society is immense. It has been instrumental in powering industrial revolution, enabling the production of goods and services on an unprecedented scale. Moreover, the widespread use of steam turbines in power generation has contributed to the availability of affordable and reliable electricity, which is crucial for modern society.However, the steam turbine is not without its challenges. The high temperatures and pressures involved in its operation require robust materials and precise engineering. Additionally, the maintenance of steam turbines can be complex and costly.尽管如此,随着technological advancements, the efficiency and durability of steam turbines have been continuously improved, making them more sustainable and cost-effective.In conclusion, the steam turbine stands as a testament to human ingenuity in energy conversion. Its pivotal role in powering industrial revolution and modern society cannot be overstated. With continuous innovation and improvement, the steam turbine remains a crucial component in our energyinfrastructure, driving us towards a brighter and more sustainable future.。

火电厂设备专用英语缩写

火电厂设备专用英语缩写

很好“电力专业词汇”专业常用英语电力系统 power system 发电机 generator 励磁 excitation励磁器 excitor 电压 voltage 电流 current升压变压器 step-up transformer 母线 bus 变压器 transformer空载损耗:no-load loss 铁损:iron loss 铜损:copper loss空载电流:no-load current 无功损耗:reactive loss 有功损耗:active loss输电系统 power transmission system高压侧 high side 输电线 transmission line高压: high voltage 低压:low voltage 中压:middle voltage功角稳定 angle stability 稳定 stability 电压稳定 voltage stability暂态稳定 transient stability 电厂 power plant 能量输送 power transfer交流 AC 直流 DC 电网 power system落点 drop point 开关站 switch station 调节 regulation高抗 high voltage shunt reactor 并列的:apposable 裕度 margin故障 fault 三相故障 three phase fault 分接头:tap切机 generator triping 高顶值 high limited value 静态 static (state)动态 dynamic (state) 机端电压控制 AVR 电抗 reactance电阻 resistance 功角 power angle 有功(功率) active power电容器:Capacitor 电抗器:Reactor 断路器:Breaker电动机:motor 功率因数:power-factor 定子:stator阻抗电压:阻抗:impedance 功角:power-angle 电压等级:voltage grade有功负载: active load/PLoad 无功负载:reactive load 档位:tap position电阻:resistor 电抗:reactance 电导:conductance电纳:susceptance 上限:upper limit 下限:lower limit正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance 零序阻抗:zero sequence impedance无功(功率) reactive power 功率因数 power factor 无功电流 reactive current斜率 slope 额定 rating 变比 ratio参考值 reference value 电压互感器 PT 分接头 tap仿真分析 simulation analysis 下降率 droop rate 传递函数 transfer function框图 block diagram 受端 receive-side 同步 synchronization保护断路器 circuit breaker 摇摆 swing 阻尼 damping无刷直流电机:Brusless DC motor 刀闸(隔离开关):Isolator 机端 generator terminal变电站 transformer substation永磁同步电机:Permanent-magnet Synchronism Motor异步电机:Asynchronous Motor三绕组变压器:three-column transformer ThrClnTrans双绕组变压器:double-column transformer DblClmnTrans固定串联电容补偿fixed series capacitor compensation双回同杆并架 double-circuit lines on the same tower单机无穷大系统 one machine - infinity bus system励磁电流:magnetizing current 补偿度 degree of compensationElectromagnetic fields 电磁场失去同步 loss of synchronization装机容量 installed capacity 无功补偿 reactive power compensation故障切除时间 fault clearing time 极限切除时间 critical clearing time强行励磁 reinforced excitation 并联电容器:shunt capacitor< 下降特性 droop characteristics 线路补偿器 LDC(line drop compensation)电机学 Electrical Machinery 自动控制理论 Automatic Control Theory电磁场 Electromagnetic Field微机原理 Principle of Microcomputer电工学 Electrotechnics Principle of circuits 电路原理Electrical Machinery 电机学。

热能与动力工程专用英语词汇二(汽机部分)

热能与动力工程专用英语词汇二(汽机部分)

热能与动⼒⼯程专⽤英语词汇⼆(汽机部分)汽机部分汽轮机steam turbine⾼压汽缸high-pressure(HP) cylinder凝汽式汽轮机condensing steam turbine中压汽缸intermediate-pressure(IP) cylinder亚临界压⼒汽轮机subcritical pressure turbine低压汽缸low-pressure(LP) cylinder 汽缸台板(底板)cylinder sole pin汽轮机转⼦turbine rotor 汽封steam seal gland, steam sealing叶轮blade disc 轴承⽀架bearing stoll, bearing bracket叶⽚blade, bucket主油泵main oil pump喷嘴nozzle备⽤油泵emergency bearing oil pump固定螺钉dowel交流润滑油泵AC lube oil pump注油器oil injector直流润滑油泵DC lube oil pump喷油嘴oil nozzle ⾼位油箱head oil tank, elevated oil tank杠杆lever凝汽器condenser轴shaft管板tube plate弹簧spring热⽔井hot well凝汽器喉部condenser throat凝结⽔泵condensate pump泵壳pump casing低压加热器low-pressure feed water heater⾼压加热器high-pressure feed water heater除氧器deaerator除氧⽔箱deaerated water tank除盐⽔箱demineralized water tank汽动给⽔泵steam-driven feed water pump前置⽔泵booster pump给⽔泵feed water pump 疏⽔泵drain pump⽔室water chamber 疏⽔扩容器drain flash tank挡板baffle plate 封头end cover真空泵vaccum pump⼯业⽔泵industrial water pump, service waterpump收球⽹ball screen胶球泵rubber ball recirculating pump主蒸汽系统main steam system⽀撑斜钢supporting wedge再热蒸汽系统reheat steam syetem⾃然通风冷却塔natural draft cooling tower抽汽系统extraction steam system 主蒸汽管道main steam piping, live steam piping轴封shaft seal真空系统vaccum system凝结⽔系统condensate system再热蒸汽管道reheat steam system给⽔系统feed water system循环⽔系统circulating water system供油系统oil supply system⼯业⽔系统industrial water system, service watersystem抽汽管道steam extraction pipe供汽联箱steam header压缩空⽓管道compressed air piping疏⽔管道drain water piping 氢⽓管道hydrogen piping凝结⽔管道condensate piping 循环⽔管道circulating water piping冷却⽔管道cooling water piping 给⽔管道feed water piping润滑油管lube oil piping除盐⽔管道demineralized water piping旁路门bypass valve减温⽔管道attemperating water piping球型阀globe valve再循环⽔管道recirculating water piping闸板阀gate valve排⽔管道water discharge piping疏⽔阀drain valve⾼压主汽门high-pressure main stop valve蝶阀butterfly valve中压主汽门intermediate pressure main stop valve转速rotating speed, revolution 热效率thermal efficiency, heat efficiency过热度superheat degree新蒸汽压⼒initial steam pressure, live steampressure温差temperature difference开启opening再热蒸汽冷段压⼒cold reheated steam pressure关闭closing再热蒸汽热段压⼒hot reheated steam pressure启动starting-up再热蒸汽热段温度hot reheated steam temperature停⽌shutting down再热蒸汽冷段温度cold reheated steam temperature检查inspection, examination低压缸排汽流量low-pressure cylinder exhaust steamflow巡检routing inspection再热蒸汽流量reheated steam flow主蒸汽流量steam flow 法兰加热flange heating螺栓加热bolt heating正常状态normal condition清洗cleaning操作operation酸洗acid cleaning, pickling解体disassembly组装assembly检修maintenance拆开dismantling 汽缸扣盖cylinder covering变形deformation ⽑刺burr裂纹crack锈蚀rusting壁厚wall thickness同⼼concentricity找正centering垫铁iron cushion, packing iron plate,adjusting pad找中⼼alignment台板sole plate天车turbine hall overhead crane管束tube bundle 汽机基座turbine pedestal流量flow抽汽量steam extraction capacity海⽔sea water保温材料heat insulating material防腐anti-corrosion。

化工设备英文名称大全

化工设备英文名称大全

精心整理目??录??Contents1.工艺设备ProcessEquipment11.1.塔Column11.1.1.板式塔和填料塔PlateColumnandPackedColumn1液流型式Liquid–FlowPatterns2填料塔附件楼梯(梯子)和平台StairandPlatform15吸收塔CO2Absorber16再生塔/CO2汽提塔Regenerator/CO2Stripper17造粒塔PrillTower18(造粒塔)总图及造粒喷头组装图GeneralAssemblyandPrill-SprayAssembly18造粒塔扒料机PrilltowerReclaimer201.2.反应器Reactor22氨合成塔AmmoniaConverter22聚合釜Polymerizer24电解槽Cell261.3.浮顶罐1.4.1.5.换热器部件ComponentsofHeatExchanger40固定端头盖(或管箱),壳体及后端头盖型式TypesofStationaryHead,ShellandRearEndHead42管板Tubesheets43管子-管板连接,膨胀节及其他零件Tube-TubeSheetJoints,ExpansionJointsandOtherParts44横向折流板和纵向折流板TransverseBafflesandLongitudinalBaffles46套管式换热器和刮面式换热器Double-PipeHeatExchangerandScraped-SurfaceExchanger47套管式纵向翅片换热器DoublePipeLongitudinalFinnedExchanger48 板式换热器Plate-TypeExchangers49翅片1.6.加热炉Heaters62燃烧器,烧嘴Burners63炉管,联管箱和回弯头Tube,HeadersandReturnBends64管架TubeSupports65转化炉Reformers(ReformingFurnaces)66二段转化炉SecondaryReformer67变换炉ShiftConverter68热回收和废热锅炉HeatRecoveryandWasteHeatBoiler69热回收HeatRecovery69火炬1.7.固体混合机械SolidsMixingMachines82双螺杆连续混合机DoubleScrewContinuousMixer831.8.萃取器Extractors84连续萃取设备,连续抽提设备ContinuousContact(DifferentialContact)Equipments84 浸提设备LeachingEquipments861.9.旋风分离器、沉清器、过滤器和离心机Cyclone,Decanter,FilterandCentrifuge87 旋风分离器(1)CycloneSeparators(Ⅰ)87旋风分离器(2)CycloneSeparators(Ⅱ)88气体洗涤器GasScrubbers90沉降罐,澄清器GravitySettlers(Decanters)92过滤机压滤机叶滤机离心机1.10.直接干燥器DirectDryers102喷雾干燥器SprayDryers104雾化喷头,喷雾嘴,雾化器SprayNozzles(Atomizers)105气流(气动)输送干燥器??PneumaticConveyorDryers1061.11.其他??Miscellaneous107石油炼制中的流化过程??FluidizationProcessesinPetroleumRefinery1071.11.1.1.流态化??Fluidization108流化床分布器??DistributorsforFluidizedBed109破沫器及其应用??DemisterandItsApplications110破沫网的安装和纤维除雾器??InstallationofMeshandFiberMistEliminator1112.泵2.1.2.2.离心泵离心泵2.3.2.4.双作用蒸汽往复泵??DuplexActingSteam-DrivenReciprocatingPump123 2.5.双作用活塞式往复泵??DoubleActionReciprocatingPump,BucketType124 2.6.混流泵??Mixed-FlowPump1262.7.计量泵??MeteringPumps1272.8.喷射泵??JetPumps1282.9.喷射装置??EjectorUnits1293.压缩机、鼓风机和风机??CompressorsBlowersandFans131 3.1.螺杆压缩机??ScrewCompressors1313.2.旋转式螺杆压缩机??RotaryHelicalScrewCompressors1323.3.3.4.3.5.机3.6.3.7.3.8.3.9.4.4.1.4.2.带式输送机??Band(Belt)Conveyor152600英尺的单轮传动带式输送机用的张紧装置??Take-upUnitforSingleDrumDriveBeltConveyorExceeding600FeetCenters1554.3.4.4.4.5.4.6.5.5.1.5.2.5.3.5.4.盘式回转破碎机??TrayTypeGyratoryCrusher1705.5.液压锥形破碎机和冲击式破碎机(叶片破碎机)??HydraulicConeCrusherandImpactCrusher(ImpellerBreaker)1725.6.辊子粉碎机??RollerMill1735.7.双轴锤击破碎机??DoubleShaftHammerMill1745.8.球磨机??BallMill1765.9.干燥粉磨机??Dryer-Pulveriser1775.10.返混设备布置??LayoutofBackmixingEquipment1785.11.振动筛??VibratingScreen1795.12.6.6.1.6.2.6.3.6.4.7.7.1.7.2.7.3.7.4.(7.5.带式计量秤??DosingBeltWeigher1917.6.定量给料秤??ConstantFeedWeigher1927.7.自动装袋系统??AutomaticBaggingSystem1938.汽轮机??SteamTurbine1948.1.汽轮机的分类(1)??ClassificationofSteamTurbines(Ⅰ)194汽轮机的分类(2)??ClassificationofSteamTurbines(Ⅱ)1968.2.汽轮机的循环??SteamTurbineCycles1978.3.汽轮机供汽方式????MethodsofSteamSupplytoaTurbine1988.4.单级汽轮机??SingleStageSteamTurbine1998.5.冲动式汽轮机??ImpulseTurbines2008.6.8.7.8.8.8.9.8.10.8.11.9.锅炉9.1.9.2.9.3.9.4.蒸汽净化及锅筒内件(2)??SteamPurificationandDrumInternals(Ⅱ)216 蒸汽净化及锅筒内件(3)??SteamPurificationandDrumInternals(Ⅲ)218 蒸汽净化及锅筒内件(4)??SteamPurificationandDrumInternals(Ⅳ)219 9.5.过热器??Superheater2209.6.减温器??Attemperators2219.7.空气预热器??AirPreheater222 9.8.炉排??Grates2249.9.下饲炉排??UnderfeedStoker225 9.10.喷燃器,燃烧器??Burners226 9.11.省煤器??Economizer2289.12.9.13.10.10.1.10.2.10.3.10.4.10.5.10.6.10.7.10.8.加油机构??OilingDevices240 10.9.紧固件??Fastener24111.配管(管路)和管件??PipingandFitting24511.1.阀杆与阀盖结构??ValveStemandBonnetDesigns24511.2.阀门(1)??Valves(Ⅰ)246阀门(2)??Valves(Ⅱ)248阀门阀门11.3.11.4.11.5.11.6.11.7.11.8.11.9.11.10.11.11.11.12.蒸汽疏水阀(器)和空气疏水阀(器)??SteamTrapsandAirTraps260 11.13.管道附件??PipeLineFitments26211.14.法兰、法兰密封面及垫片??Flanges,FlangeFacingsandGaskets264 11.15.填料??Packings26611.17.塑料压接管接头??PlasticsCompressionJoints27011.18.预制弯管与膨胀节??FabricatedPipeBendsandExpansionJoints27111.19.11.20.11.21.11.22.软管站27612.12.1.12.2.12.3.流量测量元件??FlowMeasuringElement28512.4.12.5.变送器??Transmitter31112.6.12.7.12.8.氧分析器??OxygenAnalysisEquipment33012.9.二氧化碳分析器??CarbonDioxideAnalyzer33212.10.PH计??pHmeters33312.11.粘度测量仪表??ViscosityMeasuringInstruments33412.12.比重仪表??SpecificGravityInstrument33612.13.12.14.12.15.12.16.12.17.12.18.12.19.12.20.12.21.12.22.总体分散系统(3)??TotalDistributedControlSystem(Ⅲ)352 12.23.总体分散系统(4)??TotalDistributedControlSystem(Ⅳ)353 12.24.总体分散系统(5)??TotalDistributedControlSystem(Ⅴ)354 12.25.总体分散系统(6)??TotalDistributedControlSystem(Ⅵ)35513.1.旋转电机??ElectricalRotatingMachine35613.2.13.3.原电池(2)??PrimaryBatteries(Ⅱ)37013.4.高压开关装置??HighVoltageSwitchgear37213.5.低压开关??Low-VoltageSwitches37813.6.13.7.13.8.13.9.内线??InteriorWiring40114.14.1.起重机起重机14.2.工具??Tools42215.焊接15.1.15.2.15.3.15.4.15.5.15.6.15.7.15.8.填角焊,角焊??FilletWelding44015.9.自动埋弧焊??AutomaticSubmergedArcWelding441 15.10.气体保护电弧焊??Gas-ShieldedArcWelding44215.11.金属极楕性气体保护焊??GasMetal-Arcwelding44415.13.普通电渣焊??ConventionalElectroslagWelding44615.14.熔嘴电渣焊??ElectroslagWeldingbyConsumableGuideTube447 15.15.电气焊??ElectrogasWelding44815.16.管状焊丝电弧焊??Flux-CoredArcWelding45015.17.气焊设备??GasWeldingEquipment45115.18.15.19.15.20.16.16.1.16.2.16.3.X16.4.16.5.16.6.16.7.超声波发射探头及接受探头??UltrasonicTransducerandRefraction463 16.8.配管焊缝的超声波探伤??UltrasonicTestingofWeldinTubing46416.9.液体渗透试验??LiquidPenetrantTest46516.10.磁化法??MethodsofMagnetization46617.土建工程??CivilEngineeringandBuilding46717.1.地形图和土层剖面图??TopographicalMapandSubsoilProfile467 17.2.土壤与基础??SoilsandFoundations46817.3.桩的形式??TypesofPile46917.4.设备基础??FoundationsforEquipment47017.5.大型设备的锚固(1)??AnchorageofHeavyMachine(Ⅰ)47117.6.17.7.17.8.17.9.17.10.17.11.17.12.门的形式??TypesofDoors48517.13.窗的形式??TypesofWindows48617.14.工业构筑物??IndustrialStructures48818.1.18.2.18.3.18.4.18.5.18.6.18.7.18.8.18.9.吸附柱??AbsorptionColumn50619.流程图和管道布置图??FlowDiagramandpipingLayout50719.1.工厂平面布置总图??MasterPlotPlan50719.2.炼厂加工流程图(1)??DiagrammaticFlowSheetofPetroleumRefinery(Ⅰ)508炼厂加工流程图(2)??DiagrammaticFlowSheetofPetroleumRefinery(Ⅱ)51019.3.合成氨装置工艺流程图??AmmoniaPlantProcessFlowDiagram512 19.4.乙烯装置工艺流程图??EthylenePlantProcessFlowDiagram514 19.5.管道布置-装置配管??PipingLayout-InstallationPiping51619.6.配管图,管道(路)图??PipingDrawing51719.7.19.8.19.9.19.10.列20.其他20.1.20.2.钢管的制造方法??ManufacturingMethodsofSteelPipe538参考文献??Reference539。

STEAM-Turbine

STEAM-Turbine

The
changing direction and therefore velocity produces an impulsive force which mainly acts in the direction of rotation of the moving turbine blades causing rotation and mechanical work. The passage between the blades is of parallel section, no expansion or change of pressure takes place between the inlet and outlet sides of the blading.
ቤተ መጻሕፍቲ ባይዱ
1
2’

4
3’ 6
3 5 s
1-2 –> Water heated in boiler 2`-2->wet steam heated in superheated boiler 2-3->HP dry steam expand in turbine to obtain much work 3-4->LP steam coming out of turbine is condensed into water in condenser 4-1-> water from the condenser heated return back to boiler drum- this complete the cycle
Types of Turbines
Impulse
Turbine
Reaction
turbine

Steam turbine controller(汽轮机控制)

Steam turbine controller(汽轮机控制)

4.1.2.20 高压调门1阀位控制The valve position controller for the HP steam control valve serves to set the valve position according to steam turbine operating mode in such a way as to ensure that HP steam flow always fulfills the set requirements. The required position is then defined either by one of the master controllers via the admission setpoint formation or directly by the position limiting submodule. The following principles apply: The higher the position setpoint, the more HP steam is admitted to the HP section and the greater the steam turbine output. The position of the operating piston for the electrohydraulic actuator (EHA) is acquired as the actual value with the aid of an analog position transducer.高压调门阀位控制是根据汽轮机某种运行方式来设定阀门开度,以保证高压蒸汽流量总是满足运行的要求。

阀门开度是由汽轮机的主控制器根据设定值或者是该阀门的阀限来定义的。

阀门开度越大进入高压缸的高压蒸汽越多,排汽也越多。

5_Steam turbine(课堂PPT)

5_Steam turbine(课堂PPT)
3
1.3 Difference between steam engine and steam turbine
The turbine compared with engine:
in much larger capacities occupies less floor space much lighter less vibration requires a lighter foundation
The reaction stage (反动式) the pressure drop is divided over both the stationary and rotating row
11
3.2 Velocity change
A pure impulse stage: The velocity rises in nozzles but falls in the blades
10
3 Impulse and Reaction Blading
3.1 Pressure drop
A pure impulse stage (冲动式)
pressure drop across the stationary row no pressure drop across the rotating row
6
2 General Principles
FORCE
STEAM OFF
STEAM IN
The general principle of steam turbine
7
2.1 General principles
Energy conversion
the law of Momentum
Energy conservation

蒸汽涡轮机英文作文

蒸汽涡轮机英文作文

蒸汽涡轮机英文作文Steam turbines are a type of rotary engine that convert steam energy into mechanical energy. They are widely used in power generation plants, marine propulsion systems, and various industrial applications. The basic principle of a steam turbine involves the expansion ofhigh-pressure steam through a series of stationary nozzles and rotating blades, which in turn causes the rotor to turn and generate mechanical power. Steam turbines offer several advantages, including high efficiency, reliable operation, and the ability to generate large amounts of power. They are commonly used in fossil fuel power plants, nuclear power plants, and renewable energy facilities such as geothermal and solar thermal power plants. Additionally, steam turbines are crucial components in the operation of ships and submarines, where they provide propulsion by rotating the propeller shaft. In industrial settings, steam turbines are utilized in applications such as driving compressors, pumps, and generators. Overall, steam turbines play a significant role in modern society by providing a reliable and efficient source of power generation and mechanical energy.蒸汽涡轮机是一种将蒸汽能转换为机械能的旋转式引擎。

蒸汽轮机说明书

蒸汽轮机说明书

Steam TurbinesSteam turbines are a mature technology and have been used since the 1880s for electricity production. Most of the electricity generated in the United States is produced by steam turbines integrated in central station power plants. In addition to central station power, steam turbines are also commonly used for combined heat and power (CHP) instal-lations (see Table 1 for summary of CHP attributes). ApplicationsBased on data from the CHP Installation Database,1 there are 699 sites in the United States that are using steam turbines for CHP operation. These steam turbine CHP installations have an average capacity of 37 MW and a combined capacity of 26 GW, representing 32% of the installed CHP capacity in the United States.2 The majority of these CHP steam turbines are used at industrial plants (e.g., paper, chemicals, and food), commercial buildings with high thermal loads(e.g., hospitals), and districtheating sites (e.g., universities).Steam turbines are well suited tomedium- and large-scale indus-trial and institional applicationswhere inexpensive fuels such ascoal, biomass, solid wastes andbyproducts (e.g., wood chips),refinery residual oil, and refineryoff gases are available.TechnologyDescriptionA steam turbine is driven withhigh pressure steam produced bya boiler or heat recovery steamgenerator (HRSG). Unlike gasturbines or microturbines, steamturbines do not directly consumefuel. Rather, the fuel driving theprocess is the fired boiler or plantequipment that produces heat forthe HRSG (e.g., a gas turbine).1 U.S. DOE Combined Heat and Power Installation Database, data compiled throughDecember 31, 2015.2 These statistics only include steam turbines integrated with boilers. The statistics donot include steam turbines driven by steam produced from heat recovery steam genera-tors used in combined cycle CHP systems.ADVANCED MANUFACTURING OFFICESteam turbines operate on the Rankine cycle (see Figure 1). In this thermo-dynamic cycle, water is pumped to high pressure and then heated to generate high pressure steam. The high pressure steam is then expanded through a steam turbine where steam energy is converted to mechanical power that drives an electri-cal generator. For CHP configurations, low pressure steam that exits the steam turbine is then available to satisfy on-site thermal needs. Condensed liquid is then returned to the pump, and the cycle is repeated.Steam turbines for CHPapplications are classified as either non-condensing or extraction. A non-condensing turbine, also referred to as a backpressure turbine (see Figure 2), exhausts steam directly to an industrial process or to a steam distribution system. In a backpressure turbine, common pressure levels are 50, 150, and 250 psig, with lower pressures often used in district heating systems; higher pressures are more typical for industrial processes.An extraction turbine has one or more openings in its casing to extract steam at an intermediate pressure. The extracted steam is then used in CHP configurations that require steam pressures higher than pressures available from backpressure steam turbines.Regardless of steam turbine type – backpressure or extraction – the primary objective of most steam turbine CHP systems is to deliver relatively large amounts of thermal energy, with electric-ity generated as a byproduct of heat generation. Therefore, most steam turbine CHP systems are characterized by low power to heat ratios, often below 0.2.Performance CharacteristicsTable 2 shows performance characteristics for three representative backpressure steam turbines used in CHP applications with electric power capacities of 500 kW, 3 MW, and 15 MW. As indicated, all three systems have overall efficiencies near 80%3 and power to heat ratios of 0.1 or lower. High overall efficiencies and low power to heat ratios are common characteristics for steam turbines configured for CHP applications.Figure 1. Components of a boiler/steam turbine.Figure courtesy of U.S. Department of EnergyFigure 2. Non-condensing (backpressure) steam turbine.Figure courtesy of U.S. Department of EnergyInterior view of steam turbine blades.Photo courtesy of Siemens3 The overall CHP efficiency for a backpressure boiler/steam turbine system is typically slightly lower than the boiler efficiency.Capital and O&M CostsMajor subsystems required for a complete steam turbine CHP plant include a boiler or HRSG, steam loop, and a steam turbine. In addition, a control system is needed and emission reduction hardware may be required depending on local air quality requirements. The steam turbine is just one cost component in a complete CHP plant. As an example, for a steam turbine CHP plant burning solid biomass, the installed cost for the complete CHP plant will be roughly $5,000/kW or higher. The installed cost for the steam turbine and electrical generator will represent approximately 15% to 25% of this total installed cost. These cost estimates are rough guidelines and are only intended to offer a perspective on the relative cost for the turbine/generator components that are integrated into a complete steam turbine CHP installation.Table 3 shows capital costs and opera-tion and maintenance (O&M) costs for three representative backpressure steam turbines. As indicated, installed costs for the turbine/generator range from approximately $670/kW to $1,140/kW, with costs on a per kW basis declining as capacity increases. The turbine/generator costs in Table 3 include the steam turbine, generator, and generator control system. The costs do not include the boiler, steam loop, and controls.Non-fuel O&M costs rangefrom 0.6 to 1.0 ¢/kWh for thethree steam turbines shownin Table 3. Similar to capital costs, there are economies of scale, and the O&M costs decline on a per kWh basis as the steam turbine capacity increases. The O&M costs shown in Table 3 are forthe steam turbine/generator subsystem and do not include O&Mexpenses for the boiler and steam loop.a specific product.4 Manufacturers often express fuel input and efficiency values based on the lower heat -ing value (LHV) of the fuel. All quantities in this fact sheet are expressed based onhigher heating value (HHV) unless noted otherwise. For natural gas, the ratio of LHV to HHV is approximately 0.9.5 Power to heat ratio is the electric power output divided by the useful thermal output.The quantities are expressed in equivalent units, and the ratio is unit-less. 6 Installation and BOP costs estimated at 70% of the turbine/generator capital cost.EmissionsSteam turbine emissions depend on how the steam is generated (e.g., boiler or HRSG) and what type of fuel is used to generate the steam. Table 4 shows NOx, CO, and VOC emissions based on EPA emission fac-tors for boilers that are fired with natural gas and coal. A 500 kW steam turbine utiliz-ing a natural gas fired boiler will have estimated NOx emissions in the range of 26-81 ppm (at 3% oxygen). A larger 15,000 kW CHP steam turbine integrated with a natural gas boiler will have estimated NOx emis-sions in the range of 81-226 ppm (at 3% oxygen). This 15,000 kW steam turbine, if integrated with a coal fired boiler, will have estimated NOx emissions in the range of 141-929 ppm (at 3% oxygen).Table 4 shows CO 2 emis-sions for steam turbineplants based on the electric power output and on thecomplete CHP system. For the complete CHP system, CO 2emissions are calculated with a thermal credit for fuel that would otherwise be used by an on-site boiler. With this credit, CO 2emissions range from 519 to 531 lbs/MWh for natural gas boil -ers, and 935-957 lbs/MWh for coal fired boilers. For compari -son, a typical natural gas combined cycle power plant will haveemissions of 800-900 lbs/MWh, and a coal plant will have CO 2emissions near 2,000 lbs/MWh. product.7 NOx, CO, and VOC emission factors are based on EPA AP-42 values. 8 Emission factors for System #1 are based on boiler input < 100 MMBtu/hr. Emission factors for Systems #2 and #3 are based on boiler input > 100 MMBtu/hr.9 System #1 is relatively small and would typically not be integrated with a coal firedboiler. Emissions for System #1 are only shown for natural gas boiler fuel.10 N Ox, CO, and VOC emissions expressed in units of lbs/MWh are based on electricoutput and do not include a thermal credit.11 N Ox conversion (natural gas): NOx [lbs/MWh] = NOx [ppm @ 3% O2] / 824 / electri -cal efficiency [%, HHV] X 3.412. For coal, use factor of 732 instead of 824.12 C O conversion (natural gas): CO [lbs/MWh] = CO [ppm @ 3% O2] / 1,354 / electrical efficiency [%, HHV] X 3.412. For coal, use factor of 1,203 instead of 1,354.13 V OC conversion (natural gas): VOC [lbs/MWh] = VOC [ppm @ 3% O2] / 2,362 / electrical efficiency [%, HHV] X 3.412. For coal, use factor of 2,099 instead of 2,362.14 T he CHP CO2 emissions include a thermal credit for avoided fuel that would other -wise be used by an onsite boiler.DOE/EE-1334 • July 2016For more information, visit the CHP Deployment Program at /chp *********************.gov。

GE汽轮机系列英文介绍

GE汽轮机系列英文介绍

GE ENERGY STE AM TURBINE PRODUCTS
s Steam Turbine Technology 2 s Reheat — Combined Cycle 4 — A SERIES — D SERIES s Non-Reheat 6 s STAG™ Combined Cycle Reference Guide 7 s Fossil 8 — A SERIES — D SERIES — G SERIES s Nuclear 11 — N SERIES
s s
PRODUCT CHARACTERISTICS
40" and 48" stainless steel last-stage buckets provide increased power plant efficiency.
PSP30484-07-09
GE’s HEAT™ steam turbine incorporates design advances like this high-reaction drum rotor.
With over 530 GW of steam turbine capacity in more than 5600 units installed or on order, GE Energy is a world leader in the design, development and application of steam turbine technology.
KEY FEATURES
s s
Designed for robust operation and rapid start-up Compact design—maximizes power density — Separate HP casing — Combined IP/LP casing Single-flow LP Axial exhausts Wide range of last-stage buckets—accommodate site-specific backpressure conditions High efficiency LP hood and diffuser Robust low pressure-drop combined stop and control valves

蒸汽涡轮机英文作文

蒸汽涡轮机英文作文

蒸汽涡轮机英文作文英文回答:Steam turbines are a type of turbine that utilizessteam as its working fluid. They are commonly employed in various industries, including power generation, propulsion for ships and other vessels, and industrial applications. The conversion of heat energy present in steam into mechanical energy is the fundamental principle behind the operation of steam turbines.Steam turbines consist of several essential components:1. Steam Inlet: The high-pressure steam is directedinto the turbine through a steam inlet.2. Nozzle: The nozzle is responsible for expanding the steam, converting its pressure energy into kinetic energy.3. Rotor: The rotor is the rotating part of the turbine,comprising blades that are attached to the rotor shaft.4. Stator: The stator is the stationary part of the turbine, housing blades that are arranged around the rotor blades.5. Exhaust Outlet: The steam, after passing through the stator blades, exits the turbine through the exhaust outlet.The operation of a steam turbine involves the following steps:1. High-pressure steam enters the turbine through the steam inlet.2. The steam expands through the nozzle, gainingvelocity and losing pressure.3. The high-velocity steam impinges on the rotor blades, causing them to rotate.4. As the steam passes through the stator blades, itexerts a force on the stator blades, which in turn applies a torque to the rotor shaft.5. The rotation of the rotor shaft is utilized to drivea generator, compressor, or other mechanical device.Steam turbines offer numerous advantages, including:1. High Efficiency: Steam turbines can achieve high thermal efficiencies, converting a significant portion of the heat energy in steam into mechanical energy.2. Reliability: Steam turbines are known for their reliability and durability, with some turbines operatingfor decades with minimal maintenance.3. Scalability: Steam turbines can be designed and manufactured in a wide range of sizes and capacities, catering to various power generation requirements.4. Fuel Flexibility: Steam turbines can operate on a variety of fuels, including fossil fuels, nuclear energy,and renewable energy sources such as biomass.5. Environmental Compatibility: Steam turbines can be equipped with emission control systems to minimize environmental impact, making them a relatively clean source of energy.中文回答:蒸汽涡轮机是一种以蒸汽为工作流体的涡轮机。

STEAM TURBINE-DRIVEN PUMP CONTROLLER

STEAM TURBINE-DRIVEN PUMP CONTROLLER
申请人:MITSUBISHI JUKOGYO K权出版社提供
专利名称:STEAM TURBINE-DRIVEN PUMP CONT ROLLER
发明人:KOGA MIKIO,HIRATA KIYOMI,MAEKAWA EIICHI,MATSUMURA TAKEO
申请号:JP10163983 申请日:19830609 公开号:J P S59229004 A 公开日:1984 1222
摘要:PURPOSE:To reduce the size and provide automation of the steam turbinedriven pump controller in the headline by a method wherein said steam turbine-driven pump controller comprises a host computer, a programmable sequencer for causing plural turbines to execute sequences, and a controller which controls the delivery pressure of each pump. CONSTITUTION:The controller of a steam turbine for driving a pump for use in a tanker or the like, consists of a host computer 10 incorporating a pump control program module 12, a programmable sequencer 2, which causes plural pump driving steam trubines to execute their respective given sequences according to the output of the host computer, and a pump controller 1 including a one-loop controller 3 which controls the delivery pressure of a pump so that it is kept at a set value according to the output of the host computer. The host computer 10 may only output a set value instruction to the one loop controller 3, and this enables reduction of the size of the cont r ol l e r .

汽轮机英文版说明书

汽轮机英文版说明书

汽轮机英文版说明书《Steam Turbine User Manual》1. IntroductionThe Steam Turbine User Manual provides essential information and instructions for the operation, maintenance, and troubleshooting of steam turbines. This manual aims to assist users in understanding the principles, components, and procedures related to steam turbine systems.2. Product Overview2.1 DescriptionThe steam turbine is a powerful and versatile machine used to convert thermal energy contained in steam into mechanical energy. It is widely employed in various industries, such as power generation, oil and gas, chemical processing, and manufacturing.2.2 ComponentsThe steam turbine consists of several key components, including the turbine rotor, casing, nozzles, diaphragms, bearings, seals, and control system. Each component plays a vital role in ensuring the efficiency and reliability of the turbine system.3. Operating Instructions3.1 Pre-Operation ChecksBefore starting the steam turbine, it is crucial to perform thorough pre-operation checks. These checks include inspecting the lubrication system,checking the steam supply, verifying the alignment, and ensuring the safety devices are in proper working condition.3.2 Start-up ProcedureThe start-up procedure of the steam turbine involves several important steps. These steps include opening steam valves, purging the system, gradually increasing the steam flow, and monitoring various parameters to ensure a smooth and safe start-up process.3.3 Operation GuidelinesDuring normal operation, certain guidelines should be followed to maintain optimal performance and prevent any potential issues. These guidelines include monitoring temperature and pressure, performing regular inspections, ensuring proper lubrication, and promptly addressing any abnormalities.4. Maintenance and Inspection4.1 Routine MaintenanceRoutine maintenance is essential to keep the steam turbine in good operating condition. This includes regular lubrication, filter replacement, cleaning of the turbine components, and inspection of the seals and bearings.4.2 Scheduled InspectionsPeriodic inspections should be conducted according to the manufacturer's recommendations or as specified in the maintenance schedule. These inspections help identify and address potential problems before they lead to major failures or performance issues.4.3 TroubleshootingIn the event of an unexpected shutdown or performance decline, troubleshooting procedures should be followed to diagnose and rectify the problem. This involves analyzing system parameters, checking for mechanical faults, and consulting the troubleshooting section of this manual.5. Safety Considerations5.1 General Safety GuidelinesOperating and maintaining a steam turbine system involves inherent risks. Safety precautions, such as wearing appropriate personal protective equipment, following lockout/tagout procedures, and adhering to industry standards, must be strictly followed to ensure the safety of personnel and equipment.5.2 Emergency ShutdownProcedures for emergency shutdown should be clearly defined and communicated to all operators. These procedures outline the steps to be taken in case of an emergency, including shutting off steam supply, activating safety devices, and evacuating the affected area if necessary.6. ConclusionThe Steam Turbine User Manual presented the fundamental information and guidelines necessary for the operation, maintenance, and troubleshooting of steam turbines. Users are encouraged to familiarize themselves with this manual and apply the recommended procedures to ensure safe and efficient operation of the steam turbine system.Please note that this is a general example of how a user manual for a steam turbine could be structured. The specific content and format may vary depending on the manufacturer and product.。

SMARTPUMP 安装说明说明书

SMARTPUMP 安装说明说明书

SMARTPUMP安装说明重要安全信息您有责任安全、谨慎地操作您的船只。

自动舵是一种可以增强船只操作能力的工具。

这并不能减轻您确保船只安全运作的责任。

避免导航危险,确保不会发生无人掌舵的状态。

总是为迅速重新手动控制您的船只做好准备。

注意为避免损坏船只,应由合格的海事安装人员安装自动舵系统。

必须具备具体的海洋转向及电气系统方面的知识,才能正确安装。

钻孔或切割时,请始终检查表面反面的情况以避免船舶受损。

此泵仅适用于 Garmin®自动舵系统。

尝试在其他系统中使用此泵可能会损坏系统、泵或船只。

此泵不得安装有无排气储液器的转向系统,否则会损坏泵。

安装泵前,必须确认船只操舵系统使用的是有排气装置的储液器。

通风孔通常位于最高的舵的加注口盖中。

如果您不清楚操舵系统是否带有排气装置,则应咨询舵的制造商或储液罐制造商进行验证。

泵必须安装在干燥位置,防止受到水和天气的影响。

SmartPump 根据自动舵系统的命令通过与液压转向系统交互来操控船的方向。

自动舵软件更新完成自动舵安装后,您应在执行配置过程之前更新软件。

如果您使用 Garmin 海图仪将自动舵系统连接至 NMEA 2000®网络,则可以使用海图仪更新软件。

如果您未使用 Garmin 海图仪将自动舵系统连接至 NMEA 2000 网络,则必须使用 NMEA 2000 网络更新器(单独出售)。

有关更新信息,请访问。

所需工具•护目镜•钻机和钻头•扳手•转矩扳手(如果为不平衡转向气缸配置泵)•钢丝钳/剥线钳•螺丝刀:十字头和一字头•扎线带•海洋腐蚀抑制剂喷雾•安装螺钉:泵套件包含安装螺钉,但如果随附的螺钉不适合安装表面,则您必须提供正确的螺钉类型•液压系统硬件 (液压系统注意事项, 第 3 页):◦液压软管,-4 [6 毫米(1/4英寸)ID] 或更高,带有机器压接或现场可更换配件,最小额定值为 1000 psi ◦液压 T 形接头◦液压截止阀◦螺纹密封剂,比如 Loctite® 567◦液压放气设备◦液压液安装注意事项泵必须安装在干燥位置,防止受到水和天气的影响。

斯达芬地 steam 铁说明书

斯达芬地 steam 铁说明书

Azur Elite3000W70 g/min continuous steam260g steam boostSteamGlide Advanced soleplateGC5037/86Our smartest and most powerful steam ironGuaranteed no burns,with intelligent steam releasePowerful, intelligent iron for perfect results faster. Iron everything from jeans to silkwith no risk of burning thanks to OptimalTEMP technology. Advanced DynamiQsteam mode ensures the perfect amount of powerful steam when you need it*Intelligent ironing for ultimate convenienceOptimalTEMP technology: Guaranteed no burns, no settingsConvenient steam modes: DynamiQ, MAX, IONIC and OFFDynamiQ mode, intelligent steam release for perfect resultsIonic steam mode, deep ionized steam for hygienic ironingEasier and faster ironing3000 W for quick heat-up and powerful performanceTurbo steam pump pushes up to 50% more steam through fabric*Steam output up to 70g/min for faster crease removalUp to 260 g steam boost blasts stubborn creasesComfortable ironingSteamGlide Advanced soleplate, ultimate gliding & durabilityQuick Calc Release in 15s for long-lasting steam performanceAutomatic shut-off when the iron is left unattendedHighlightsOptimalTEMP technologyThanks to OptimalTEMP technology, we guarantee this iron will never cause burns to any ironable fabric and you can iron everything from jeans to silk, from linen to cashmere safely, in any order, without waiting for the temperature to adjust or pre-sorting clothes.Philips steam irons with OptimalTEMP makes your ironing easier and faster and has been tested by independent textile experts .Convenient steam modesChoose from multiple steam modes. DynamiQ mode delivers the perfect amount of steam automatically when you need it, Max mode blasts stubborn creases with powerfulcontinuous steam, IONIC steam mode withpowerful steam bursts for more hygienic ironing and OFF steam enables you switch off the steamDynamiQ steam modeThanks to DynamiQ sensor, the most advanced motion sensor used in steam irons knowsprecisely how your iron is moving and when itsstanding still. DynamiQ steam mode releases automatically perfect amount of steam when its needed during your ironing to get the ironing results faster. The steam automatically starts when your iron is moving and stopswhen you don't move for ultimate convenience and effortless ironing.Deep Ionic SteamIonic Steam mode produces deep and powerful ionic steam bursts for more hygienic ironing for your specific garment needs.3000 W for fast heat upDelivers a fast warm-up and powerfulperformance to get your ironing done quicklySteamGlide Advanced soleplateOur superior SteamGlide Advanced soleplate delivers smooth gliding performance on any fabric. Its stainless steel base is twice as hard as a aluminum, and our patented 6-layercoating with its advanced titanium layereffortlessly glides on any fabric for the fastest results.Turbo Steam powerOur built-in Turbo Steam pump delivers up to 50% more powerful continuous steam so creases disappear even quicker.Continuous steam up to 70g/minStrong and consistent steam output penetrates up to 50% more steam through fabric to remove creases faster.Steam boost up to 260 gPenetrates deeper into fabrics to easily remove stubborn creases.SpecificationsFast crease removalContinuous steam: 70 g/minIonic Deep SteamPower: 3000 WSteam boost: 260 gVertical steamEasy to useSoleplate name: SteamGlide Advanced Water tank capacity: 350 mlExtra stable heel rest Power cord length: 2.5 mDrip stopExtra large filling holeAuto shut-offScale managementDescaling and cleaning: Quick Calc ReleaseSize and weightProduct dimensions (WxHxL): 33,3 x 17,5 x13,5 cmGuarantee2 year worldwide guaranteeGreen efficiencyUser manual: 100% recycled paper* On all ironable fabrics* Compared to GC4910© 2021 Koninklijke Philips N.V.All Rights reserved.Specifications are subject to change without notice. Trademarks are the property of Koninklijke Philips N.V. or their respective owners.Issue date 2021‑02‑03 Version: 5.0.1。

汽轮机技术说明

汽轮机技术说明
真空破坏装置规定可以手动在就地操作或在主控制室。
-Automaticventingofthecoolingwaterchambersat outageofcoolingwater pumps.
循环冷却水室应有自动排气,在循环冷却水泵中断时。
-Vacuumpumpsofadequatecapacityshallbeprovidedtomaintainthevacuuminthecondenserbyexpellingthenon-condensable gases.Onevacuumpumpwilloperateduringnormalplantoperationandduringstart-up,twounitswillbeoperated,suchthatthedesiredvacuumcanbepulledwithinashorttime.
盘车油泵(交流电机驱动),提供盘车装置运行时轴承润滑油。
-Controloilpumpsforgoverningsystemwithallaccessories.
调节系统的控制油泵及其附件。
-OilvaporextractionfansatleastoneoperatingwithA.CDriveandtheotherwithD.Cdrivewithoilseparationinthepiping.
正常运行油箱包含油滤网
-Mainoilpumppreferablydirectlydriven
主油泵最好是主轴直接驱动。
-Necessarylube oilpumpslikeAuxiliaryoilpumps&emergencyoilpumpsorbearingsflushingpumpscompletewithAC/DCdrivesasapplicable.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
Steam Turbines
What is a Steam Turbine?
3
Steam Turbines
Steam Cycle Terms
Non- Condensing:
"Non-condensing" cycle is used when the turbine exhaust pressure is above atmospheric (14.7 psia). The exhaust steam energy is usually utilized in the plant process (resulting in a high "Steam-Cycle" efficiency).
Critical duties - power not required to operate a steam turbine Generate power when power is not available
Why Steam Turbines? Flexibility
Variety of duties, common design Upgradeability
12
Why Steam Turbines?
Why Steam Turbines? Variable Speeds
Design speed Simple governors Advanced governors 100% 100% Maximum Continuous speed 105% 105% Minimum speed 85% 65% or more
Selecting SteamTurbines for Pump Drives
Dave Scott Ramco Energy Products Ltd Wayne Adams J.W. Adams & Assoc. Inc Calgary Pump Symposium November 13,2009
5
Steam Turbines
Steam Cycle Terms
Steam Rates:
Theoretical Steam Rate (TSR) is based on "isentropic" turbine performance [no losses] or 100% efficiency. Actual Steam Rate (ASR) reflects turbine efficiency and is expressed in the same terms as the TSR. Lower ASR’s are indicative of higher turbine efficiencies. Larger wheel sizes are often more efficient. Smaller wheels have lower windage losses and can be more efficient at low horsepowers than large wheels. Typical single-stage turbine efficiencies range between 30 - 50%. Standard multistage turbine efficiencies range between 60 - 70%. Engineered multistage turbine efficiencies range between 70 - 80%.
Steam Turbines
Steam Turbines Applications
Pumps Generator Drives Compressors Fans Blowers Paper Mills Sugar Mills Palm Oil Mills
11
Steam Turbines
Advantages of Steam Turbine Drives
Steam Turbines
What is a Steam Turbine?
A Steam Turbine is an energy conversion device. It extracts heat energy from steam and converts it to velocity, or kinetic energy. The velocity energy, in turn, is used to produce rotary motion or useable shaft power.
24
Steam Turbine Construction Steam Chest
Steam Turbine Design Components
Single Governor Valve & Venturi Trip
Trip Valve
Governor Valve 26
Steam Turbine Design Components
Why Steam Turbines? Speed Capability
Typical pump speeds:
1500, 1800, 3000, 3600 RPM
Maximum speeds -To 12000 RPM (and more)
Why Steam Turbinnes
Mollier Diagram
Saturation Line
7
Steam Turbines
Steam Cycle
P1 Inlet Pressure T1 Inlet Temp H1 Inlet Enthalpy
H2 Actual Exhaust H2 P2
8
Theoretical Exhaust Enthalpy
29
Steam Turbine Design Components
Blades / Buckets Drawn Blades:
Machined from extruded airfoil shaped stock. Cut to length, tenon and root machined. Packer piece (spacer) between each blade. Wedge/block locking piece at rim insertion point.
Exhaust Pressure
Steam Turbines For Pump Drives Outline
•Why Steam Turbines? •Steam Turbine construction •Specifications •Steam Turbine selection
Steam Turbines as Prime Movers
Why Steam Turbines? Availability of Steam
Exothermic processes
Why Steam Turbines? Availability of Steam
Waste product for fuel
Why Steam Turbines? Electrical Power Alternatives
4
Steam Turbines
Steam Cycle Terms
Condensing:
"Condensing" cycle is used when the turbine exhausts to a pressure lower that atmospheric (usually to a steam condenser). The steam is cooled in the condenser (by water or air cooling) and the resulting condensate is pumped back to the boiler. Condensing "Steam Cycle" efficiencies are usually very low since most of the exhaust steam energy is lost to the cooling medium and not recovered.
Venturi Trip - single seated and piloted. Normally actuated through springs and linkages but also can be used in conjunction with bellows assemblies for low/air pressure trip functions. No throttling capability. Built-in T &T Valve - The trip and governor valve are housed in the same inlet casing. Separate T & T Valve - just as the name implies, it is separate from the turbine. Oil operated or latch type.
Trip &Throttle Valve
Trip Valve Governor Valve
27
Steam Turbine Design Components
Rotor
Curtis 2 row wheel is standard but 1 Rateau wheel is available for high speed applications. Single profiled disc with 2 rows of blades shrunk and keyed on to shaft is standard. Solid rotor construction is available for certain applications and API 612 machines.
相关文档
最新文档