1mjt-方差与频率分布-中考数学复习知识讲解+例题解析+强化训练

合集下载

八年级数学第十八章 方差与频数分布北京实验版知识精讲

八年级数学第十八章  方差与频数分布北京实验版知识精讲

初二数学第十八章方差与频数分布实验版【本讲教育信息】一. 教学内容:第十八章方差与频数分布[教学目标]1. 了解极差、方差和标准差的统计含义,掌握它们的计算方法,能比较两组数据变化X 围的大小和波动性的大小。

2. 了解数据分组整理的统计含义,会据指定的分组方法对数据分组整理,理解频数、频率的统计含义,掌握频率的计算方法,了解频数分布的意义和作用,会列频数分布表和画频数分布直方图和频数折线图,能从频数分布表和频数分布图中观察数据分布的特征。

3. 体会用样本估计总体的思想。

二. 重点、难点: 1. 重点:(1)方差的概念和方差标准差的计算。

(2)频数分布的意义与作用。

(3)列频数分布表和画频数分布图。

2. 难点:(1)体会离散程度的含义。

(2)数据分布的方法和频数的累计过程。

三. 教学过程(知识要点):1. 极差:一组数据的最大值减去最小值所得的差,叫这组数据的极差。

极差=数据中的最大值-数据中的最小值 注:极差反映了一组数据变化X 围的大小。

2. 方差:方差计算公式:()()()[]S nx x x x x x n 2122221=-+-++-… 注:方差反映了一组数据波动的大小。

3. 标准差:标准差的计算公式:()()()[]σ==-+-++-S nx x x x x x n 2122221… 4. 分组整理:按数据的大小,把一组数据分成若干个小组,累计各小组的数据个数,每个小组是一个组区间,组区间两端的数值是组限,组区间的最大值与最小值的差是组距,组区间的个数是组数。

5. 频数、频率:(1)频数:累计出的每个小组的数据的个数称为这组的频数。

(2)频率:这组频数与数据总个数的比值称为这组的频率。

公式:每组的频率这组的频数数据的总个数=6.7. 个频数分布直方图。

把频数分布直方图中的每个条形图的上边中点依次联结成折线段,就画成了频数分布折线图。

【典型例题】例 1. 已知一组数据是:-1,0,1,2,3,则这组数据的极差、方差和标准差依次等于_____________。

方差与频率分布-中考数学复习知识讲解+例题解析+强化训练

方差与频率分布-中考数学复习知识讲解+例题解析+强化训练

2020年中考数学复习教材回归知识讲解+例题解析+强化训练方差与频率分布◆知识讲解 1.方差的定义在一组数据x 1,x 2,…,x n 中,各数据与它们的平均数x 的差的平方的平均数,•叫做这组数据的方差.通常用“S 2”表示,即S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 2.方差的计算 (1)基本公式 S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)简化计算公式(Ⅰ) S 2=1n [(x 12+x 22+…+x n 2)-n x 2],也可写成S 2=1n(x 12+x 22+…+x n 2)-x 2,此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方. (3)简化计算公式(Ⅱ) S 2=1n[(x`12+x`22+…+x`n 2)-nx x `2]. 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组数据x`1=x 1-a ,x`2=x 2-a ,…x`n =x n -a ,•那么S 2=1n[(x`12+x`22+…+x`n 2)-n x `2],也可写成S 2=1n(x`12+x`22+…+x`n 2)-x `2.记忆方法是:•方差等于新数据平方的平均数减去新数据平均数的平方. 3.标准差的定义和计算方差的算术平方根叫做这组数据的标准差,用“S”表示,即(n x +- 4.方差和标准差的意义方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的权是这两组数据的个数相等、平均数相等或比较接近时的情况. 方差较大的数据波动较大,方差较小的数据波动较小. 5.频率分布的意义前面学习的平均数与方差,反映了样本和总体的两个特征:平均水平和波动大小.但是在许多问题中,只知道这些还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布. 6.研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤:①计算极差(最大值与最小值的差);②决定组距与组数;③决定分点;④列频率分布表;⑤画出频率分布直方图.(2)频率分布的有关概念:①极差:最大值与最小值的差;②频数:落在各个小组内的数据的个数;③频率:每一小组的频数与数据总体(样本容量n•)的比值叫做这一小组的频率.(3)几个重要的结论:①各小组的频数之和等于数据总数;②各小组的频率之和等于1;③频率分布直方图中,各小长方形的面积等于相应各组的频率,各小长方形面积之和等于1;④各小长方形的高与该组频数成正比.◆例题解析例1甲、乙两个学习小组各4名学生的数学测验成绩如下(•单位:分)甲组:86 82 87 85 乙组:85 81 85 89(1)分别计算这两组数据的平均数;(2)分别计算这两组数据的方差;(3)哪个学习小组学生的成绩比较整齐?【分析】应用平均数计算公式和方差的计算公式求平均数和方差.【解答】(1)x甲=14(6+2+7+5)+80=85,x乙=14(5+1+5+9)+80=85.(2)S甲2=14[(86-85)2+(82-85)2+(87-85)2+(85-85)2]=3.5,S乙2 =14[(85-85)2+(81-85)2+(85-85)2+(89-85)2]=8.(3)∵S乙2>S甲2,∴甲组学习成绩较稳定.【点评】方差是反映一组数据波动大小的量.例2 为了迎接全市体育中考,•某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的500名男生中随机抽取了部分男生的测试成绩(单位:m,精确到0.01m)作为样本进行分析,绘制了如图所示的频率分布直方图(•每组含最低值,不含最高值).已知图中从左到右每个小长方形的高比依次为2:4:6:•5:3,其中1.80~2.00这一小组的频数为8,请根据有关信息解答下列问题:(1)这次调查的样本容量为______,2.40~2.60这一小组的频率为_____.(2)请指出样本成绩的中位数落在哪一小组内,并说明理由;(3)样本中男生立定跳远的人均成绩不低于多少米?(4)请估计该校初三男生立定跳远成绩在2.00m以上(包括2.00m)•的约有多少人?【分析】样本容量是样本数据,不带单位,确定中位数时,首先将样本数据按大小排序后再求出,然后分析落在哪个小组.【解答】(1)由于1.80~2.00小组的频数为8,占总份数中的4份,总份数是20•分,故样本容量为:8÷420=40.2.40~2.60这个小组的频率为3÷20=0.15.(2)由于样本容量是40,则中位数是第20人和第21人成绩的平均数,而第20•人和第21人的成绩均在2.00~2.20这个小组,则中位数落在2.00~2.20这个小组.(3)因为第一组到第五组人数依次为4人,8人,12人,10人,6人,•则可求得样本中男生立定跳远的人均成绩不低于2.03m.(4)初中男生立定跳远成绩在2.00m以上的约有2540×500=350(人).【点评】频率分布直方图中各小组频率之和为1,掌握它是解题的关键.◆强化训练一、填空题1.(2019,荆门市)已知数据:1,2,1,0,-1,-2,0,-1,这组数据的方差为______.2.(2019,宜昌市)甲、乙、丙三台包装机同时分装质量为400g的茶叶,从它们各自分装的茶叶中分别随机抽取了10盒,得到它们的实际质量的方差如下表所示.根据表中数据,可以认为三台包装机中,______包装机包装的茶叶质量稳定.3.2019年沈阳市春季房交会期间,某公司对参加本次房交会的消费者进行了随机的问卷调查,共发放1000份调查问卷,并全部收回.根据调查问卷,将消费者年收入情况整理后,制成表1;将消费者打算购买住房的面积的情况整理后,制成表2,并作出部分频率分布直方图(如图).表1 被调查的消费者年收入情况表2 被调查的消费者打算购买住房的面积的情况注:住房面积取整数请你根据以上信息,回答下列问题:(1)根据表1可得,被调查的消费者平均年收入为______万元;被调查的消费者年收入的中位数是______万元;在平均数,中位数这两个数中,更能反映出被调查的消费者年收入的一般水平;(2)根据表2可得,打算购买100.5~120.5m2房子的人数是_____人;打算购买住房面积不超过100m2的消费者的人数占被调查人数的百分数是____;(3)在下图中补全这个频率分布直方图.4.青少年视力水平的下降已经引起全社会的关注,某校为了了解初中毕业年级500名学生的视力情况,从中抽查了一部分学生视力,通过数据处理,得到如下频率分布表和频率分布直方图.请你根据给出的图表回答:(1)填写频率分布表中未完成部分的数据.(2)在这个问题中,总体是________,样本容量是________. (3)在频率分布直方图中,梯形ABCD 的面积是______.(4)请你用样本估计总体,可以得到哪些信息(写一条即可):________.5.甲,乙两种产品进行对比试验,•得知乙产品比甲产品的性能更稳定,如果甲,乙两种产品抽样数据的方差分别是S 甲2与S 乙2,•则它们的方差的大小关系是_______.6.已知:一组数据-1,x ,1,2,0•的平均数是0,•这组数据的方差是_____.7.若样本数据1,2,3,2的平均数是a ,中位数是b ,众数是c ,则数据a ,b ,c 的标准差是_______. 8.若已知一组数据:x 1,x 2,…,x n 的平均数为x ,方差为S 2,那么另一组数据:3x 1-2,•3x 2-2,…,3x n -2的平均数为______,方差为______. 二、选择题9.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7 乙:7 10 9 9 10则这次练习中,甲,乙两人方差的大小是( )A .S 甲2>S 乙2B .S 甲2<S 乙2C .S 甲2=S 乙2D .无法确定10.已知甲,乙两组数据的平均数相等,•若甲组数据的方差S 甲2=0.055,乙组数据的方差S 乙2=0.105,则( )A .甲组数据比乙组数据波动大B .乙组数据比甲组数据波动大C .甲组数据与乙组数据的波动一样大D .甲,乙两组数据的波动大小不能比较 11.(2019,宜昌市)衡量样本和总体的波动大小的特征数是( ) A .平均数 B .众数 C .标准差 D .中位数12.某少年军校准备从甲,乙,丙三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,射靶十次的平均环数是x 甲=x 乙=x 丙=8.3,方差分别是S 甲2=1.5,S 乙2=2.8,S 丙2=3.2.那么,根据以上提供的信息,•你认为应该推荐参加全市射击比赛的同学是( ) A .甲 B .乙 C .丙 D .不能确定13.(2019,广州市)甲,乙两人在相同情况下,各射靶10次,•两人命中环数的平均数是x 甲=x 乙=7,方差S 甲2=1.0,S 乙2=1.2,则射击成绩较稳定的是( ) A .甲 B .乙 C .一样 D .不能确定14.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如表所示: 甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,•其中说法正确的是( )A .甲的方差大于乙的方差,所以甲的成绩比较稳定B .甲的方差小于乙的方差,所以甲的成绩比较稳定C .乙的方差小于甲的方差,所以乙的成绩比较稳定D .乙的方差大于甲的方差,所以乙的成绩比较稳定15.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S 甲2=172,S 乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数; ④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有(• )A .2种B .3种C .4种D .5种16.(2019,盐城市)如果将一组数据中的每一个数据都加上同一个非零常数, 那么这组数据的( )A .平均数和方差都不变B .平均数不变,方差改变C .平均数改变,方差不变D .平均和方差都改变 三、解答题17.某校初三(1)班,三(2)班各有49名学生,两班一次数学测验中的成绩统计如下表:(1)请你对下面的一段话给予简要分析:初三(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班上可算上游!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,•并提出教学建议.18.武汉市教育局在中学开展的“创新素质实践行”中,进行了小论文的评比.各校交论文的时间为5月1日至30日,•评委会把各校交的论文的件数按5天一组分组统计,绘制了频率分布直方图,•已知从左到右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题:(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?有多少篇?(3)经过评比,第四组和第六组分别有20篇,4篇论文获奖,•问这两组哪组获奖率较高?19.(2008,金华)九(3)班学生参加学校组织的“绿色奥运”知识竞赛活动,•老师将对学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数的分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表(1)频数分布表中a=_____,b=___;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元.已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.九(3)班“绿色奥运”知识竞赛成绩频数分布直方图20.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图6-28所示.(1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).21.在“3.15”消费者权益日的活动中,对甲、•乙两家商场售后服务的满意度进行了抽查.如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意四个等级,并依次为1分,2分,3分,4分.(1)请问:甲商场的用户满意度分数的众数为_____分;乙商品的用户满意度分数的众数为_______分.(2)分别求出甲、乙两商场的用户满意度分数的平均分.(精确到0.01)(3)请你根据所学统计知识,判断哪家商场的用户满意度较高,并简要说明理由.参考答案1.322.乙3.(1)2.39;1.8;中位数(2)240;52% (3)略4.(1)第二列从上至下两空分别填15,50;第三列从上至下两空分别填0.5,0.3 •(2)500名学生的视力情况;50 (3)0.8 (4)该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人;或该校初中毕业年级学生视力在5.15以上的与视力在4.25以下的人数基本相等,各有20人左右5.S乙2<S甲2 6.2 7.0 8.3x-2 9S29.A 10.B 11.C 12.A 13.A 14.C 15.D 16.C17.(1)从平均数,众数和中位数角度分析;(2)平均分,众数均相同,但三(1)班的成绩中位数高,表示三(1)班成绩比三(2)•班好,但三(2)班标准差比三(1)班小,表示三(2)班学生成绩较整齐.18.(1)本次活动共有120篇文章参评(2)第四组上交的论文数量最多,有36篇(3)第六组获奖率最高.19.(1)2 0.125 (2)图略(3)由题中表得,有29名同学获得一等奖或二等奖.设有x名同学获得一等奖,则有(29-x)名同学获得二等奖,根据题意得15x+10(29-x)=335.解得x=9.∴50x+30(29-x)=1050,所以他们得到的奖金是1050元. 20.(1)如下表:(2)①∵平均数相同,S甲2<S乙2,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数.∴乙的成绩比甲好些.③∵平均数相同,命中9环以上的次数甲比乙少.∴乙的成绩比甲好些.④甲成绩在平均数上下波动,而乙处于上升势头,从第4•次以后就没有比甲少的情况发生,乙较有潜力.21.(1)3 3(2)甲商场抽查用户数为:500+1000+2000+1000=4500(户),乙商场抽查用户数为:100+900+2200+1300=4500(户).所以甲商场满意度分数的平均值=50011000220003100044500⨯+⨯+⨯+⨯≈2.78(分).乙商场满意度分数的平均值=1001900222003130044500⨯+⨯+⨯+⨯≈3.04(分)答:甲,乙两商场用户满意度分数的平均值分别为2.78分,3.04分.(3)因为乙商场用户满意度分数的平均值较高(或较满意和很满意的人数较多),所以乙商场的用户满意度较多.。

中考数学方差知识点总结

中考数学方差知识点总结

中考数学方差知识点总结一、概念1. 个体与样本的概念在统计学中,个体是指我们要研究的对象,样本是从总体中抽取的一部分个体。

在实际问题中,往往无法对总体进行完全的调查,所以需要通过抽样获取样本,在样本的基础上来推断总体的特征。

个体和样本的概念对于理解方差的计算至关重要。

2. 方差的概念方差是描述数据分布离散程度的统计量,它是所有数据与其平均数之差的平方和的平均值。

方差越大,数据的离散程度越大;方差越小,数据的离散程度越小。

方差是衡量数据分散程度的重要指标,它可以帮助我们对数据进行更准确的描述和分析。

二、计算方法1. 总体方差的计算方法总体方差的计算方法是通过对总体中所有个体的数据与总体均值的差的平方进行求和,然后除以总体容量得到总体方差。

总体方差的计算公式为:\[ \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i-\mu)^2 \]其中,\(x_i\) 为总体中第 i 个个体的数据, \(\mu\) 为总体的均值, N 为总体的容量。

2. 样本方差的计算方法样本方差的计算方法与总体方差类似,也是通过对样本中所有个体的数据与样本均值的差的平方进行求和,然后除以样本容量减一得到样本方差。

样本方差的计算公式为:\[ S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i-\overline{x})^2 \]其中,\(x_i\) 为样本中第 i 个个体的数据, \(\overline{x}\) 为样本的均值, n 为样本的容量。

3. 方差的计算步骤计算总体方差和样本方差的步骤如下:a.计算各个体数据与均值的差b.求差的平方c.对差的平方进行求和d.除以总体容量或样本容量减一e.得到总体方差或样本方差三、性质方差具有一些重要的性质,这些性质对于理解方差的作用和应用是非常重要的。

1. 方差的非负性方差是所有数据与其平均数之差的平方和的平均值,所以方差永远是非负的。

2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布重点解析练习题

2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布重点解析练习题

京改版八年级数学下册第十七章方差与频数分布重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是( )A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<2、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n 条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a 条鱼,如果在这a 条鱼中有b 条鱼是有记号的,那么估计鱼塘中鱼的条数为( )A .an bB .bn aC .b anD .a bn3、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别26S =甲,2 1.8S =乙,25S =丙,28S =丁,这四个旅游团中年龄相近的旅游团是( )A .甲团B .乙团C .丙团D .丁团4、中学生骑电动车上学给交通安全带来隐患,为了了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A .调查方式是普查B .该校只是360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度5、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有()A.32人B.40人C.48人D.50人6、一组数据a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,则另一组数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数和方差分别是()A.2m-3、2n-3 B.2m-1、4n C.2m-3、2n D.2m-3、4n7、已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可分成().A.11组B.9组C.8组D.10组8、用计算器计算方差时,要首先进入统计计算状态,需要按键()A.B.C.D.9、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89 B.众数是93C.中位数是89 D.方差是2.810、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,则这四名学生的数学成绩最稳定的是()A.甲B.乙C.丙D.丁第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.2、已知一组数据的方差S 21n=[(6﹣7)2+(10﹣7)2+(a ﹣7)2+(b ﹣7)2+(8﹣7)2](a ,b 为常数),则a +b 的值为_______.3、新冠疫情期间,小李同学连续两周居家健康检测,如下图是小李记录的体温情况折线统计图,记第一周体温的方差为21S ,第二周体温的方差为22S ,试判断两者之间的大小关系21S ______22S (用“>”、“=”、“<”填空).小李连续两周居家体温测量折线统计图4、在数3141592653中,偶数出现的频率是______.5、在方差计算公式222212201(15)(15)(15)20s x x x ⎡⎤=-+-++-⎣⎦中,可以看出15表示这组数据的______________.三、解答题(5小题,每小题10分,共计50分)1、由重庆市教育委员会主办的中小学生艺术展演活动落下帷幕,重庆某中学学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m=,补全条形统计图;(2)各组得分的中位数是分,众数是分;(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?2、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有多少人?3、在精准扶贫的政策下,某贫困户在当地政府的支持和帮助下办起了养殖业,经过一段时间的精心饲养,总量为6000只的一批兔子达到了出售标准,现从这批兔中随机选择部分进行称重,将得到的数据用下列统计图表示(频数分布直方图每组含前一个边界值,不含后一个边界值).根据以上信息,解答下列问题:(1)补全图中的频数分布直方图;(2)估计这批兔子中质量不小于1.7kg 的有多少只.4、学校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图:(1)此次共调查了多少人?(2)通过计算将条形统计图补充完整;(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?5、2021年9月起,重庆市各中小学为落实教育部政策,全面开展课后延时服务.某区教委为了了解该区中学延时服务的情况,随机抽查了甲、乙两中学各100名家长进行问卷调查.家长对延时服务的综合评分记为x ,将所得数据分为5组(“很满意”:90100x ≤≤;“满意”:8090x ≤<;“比较满意”:7080x ≤<;“不太满意”:6070x ≤<;“不满意”:060x ≤<;)区教委将数据进行分析后,得到如下部分信息:a.甲中学延时服务得分情况扇形统计图b.乙中学延时服务得分情况频数分布直方图c.甲、乙两中学延时服务得分的平均数、中位数、众数如表:d.乙中学“满意组”的分数从高到低排列,排在最后的10个数分别是:83,83,83,83,83,82,81,81,80,80.e.甲、乙两中学“满意组”的人数一样多.请你根据以上信息,回答下列问题:(1)直接写出a和m的值;(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);(3)区教委指出:延时服务综合得分在70分及以上才算合格,请你估计甲中学2000名家长中认为该校延时服务合格的人数.-参考答案-一、单选题1、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D.【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.2、A【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a条鱼,发现其中带标记的鱼有b条,∴有标记的鱼占ba,∵共有n条鱼做上标记,∴鱼塘中估计有n÷ba=anb(条).故选:A.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.3、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=6,S2乙=1.8,S2丙=5,S2丁=8,∴1.8<5<6<8∴S2乙最小,∴这四个旅游团中年龄相近的旅游团是:乙团.故选:B.本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、D【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【详解】解:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;B.在调查的400个家长中,有360个家长持反对态度,该校只有36025002250400⨯=个家长持反对态度,故本项错误,不符合题意;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;D.该校约有90%的家长持反对态度,本项正确,符合题意,故选:D.【点睛】本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.5、D【分析】根据频率=频数÷总数,求解即可.【详解】解:根据频率=频数÷总数,即总数=频数÷频率,则参加比赛的同学共有40÷0.8=50(人),【点睛】本题考查了频数与频率,记住公式:频率=频数 总数是解题的关键.6、B【分析】根据平均数和方差的变化规律即可得出答案.【详解】∵a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,∴数据a、b、c、d、e、f、g的平均数是m+1,方差是n,∴2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22•n=4n;故选:B.【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.7、A【分析】据组数=(最大值-最小值)÷组距计算即可得解,注意小数部分要进位.【详解】解:由组数=(最大值-最小值)÷组距可得:组数=(140-40)÷10+1=11,故选择:A【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.8、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求2xS的功能键,即可得出结果.故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.9、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为8889909093905++++=,众数为90,中位数为90,故选项A、B、C错误;方差为222221[(8890)(8990)(9090)(9090)(9390)] 2.85⨯-+-+-+-+-=, 故选项D 正确.故选:D .【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.10、A【分析】根据方差的意义求解即可.【详解】解:∵S 甲2=6,S 乙2=24,S 丙2=25.5,S 丁2=36,∴S 甲2<S 乙2<S 丙2<S 丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A .【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.二、填空题1、11【分析】根据极差=最大值-最小值求解可得.【详解】解:这组数据的最大值为19,最小值为8,所以这组数据的极差为19-8=11,故答案为:11.【点睛】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.2、11【分析】根据方差及平均数的定义解答.【详解】 解:由题意得610875a b ++++=, ∴11a b +=,故答案为:11.【点睛】此题考查方差的定义,平均数的计算公式,熟记方差的定义是解题的关键.3、<【分析】方差反应是数据的波动程度,方差越大,波动性越大,结合折线图可得小丽第一周居家体温在36.6C ~36.8C ︒︒之间,第二周居家体温在36.4C ~37.2C ︒︒之间,从最大值与最小值的差可以得到答案.【详解】解:根据折线统计图很容易看出小丽第一周居家体温在36.6C ~36.8C ︒︒之间,第二周居家体温在36.4C ~37.2C ︒︒之间,小丽第一周居家体温数值波动小于其第二周居家体温数值波动,2212S S ∴<.故答案为:<.【点睛】本题考查的是折线统计图,数据的波动性即方差,理解方差的含义是解题的关键.4、30%【分析】在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.【详解】由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:3100%30% 10⨯=故答案为:30%【点睛】本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.5、平均数【分析】方差是由每个数据与平均值的差的平方之和除以总数得到,由此判断即可.【详解】解:根据方差计算公式可知,公式中15是这组数据的平均数,故答案为:平均数.【点睛】本题考查方差公式的理解,理解方差公式中每个数据的含义是解题关键.三、解答题1、(1)25,图见详解;(2)6.5;6;(3)12【分析】(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数,然后根据题意画出统计图;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.【详解】解:(1)1050%20÷=(组),2023105---=(组),=⨯=5%100%25%20m , 统计图如下:(2)∵8分这一组的组数为5, ∴各组得分的中位数是()176 6.52⨯+=,分数为6分的组数最多,故众数为6;故答案为:6.5,6;(3)由题可得,21201220⨯=(组), ∴该展演活动共产生了12个一等奖.【点睛】本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.2、(1)100;(2)见解析;(3)600【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;(3)利用样本估计总体即可估计爱好运动的学生人数.【详解】解:(1)爱好运动的人数为40,所占百分比为40%∴共调查人数为:4040%100÷=,故答案为:100;()2爱好上网的人数所占百分比为10%∴爱好上网人数为:10010%10⨯=,∴爱好阅读人数为:10040201030---=,补全条形统计图,如图所示,(3)爱好运动的学生人数所占的百分比为40%,∴估计爱好运用的学生人数为:150040%600⨯=,故答案为:600;【点睛】本题考查统计的基本知识,样本估计总体,解题的关键是正确利用两幅统计图的信息.3、(1)见解析;(2)960只【分析】(1)先根据D组的频数和占比求出抽取兔子的数量,然后求出C组兔子的数量,最后补全统计图即可;(2)先求出样本中这批兔子中质量不小于1.7kg的百分比,然后估计总体即可.【详解】解:(1)抽取兔子的数量是1530%50÷=,则质量在“C”部分的兔子数量是506915812----=(只).补全频数分布直方图如下:(2)由题意得:这批兔子中质量不小于1.7kg的大约有8600096050⨯=(只).【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,补全条形统计图,解题的关键在于能够正确理解题目所示的统计图.4、(1)200人;(2)画图见解析;(3)600人【分析】(1)由喜欢体育类的有80人,占比40%,再列式8040%计算即可;(2)先分别求解喜欢其它与喜欢艺术的人数,再补全图形即可;(3)由总人数乘以样本中喜欢体育类的占比即可得到答案. 【详解】解:(1)由喜欢体育类的有80人,占比40%,可得此次共调查80=200 40%人(2)由喜欢文学的有60人,则占比:60100%=30%, 200所以喜欢其它的占比:140%20%30%10%,则有:20010%=20人,喜欢艺术的有:20020%=40人,补全图形如下:(3)该校有1500名学生,喜欢体育类社团的学生有:801500=600200人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形统计图,利用样本估计总体,掌握“获取条形图与扇形图的互相关联的信息”是解本题的关键.5、(1)10a =;82.5m =;(2)见解析;(3)1500名【分析】(1)根据甲、乙两中学“满意组”的人数一样多得出甲组满意的人数为40人,从而得出甲组满意所占总人数百分比,进而得出a 的值;根据中位数的计算方法得出乙组的中位数位于第50和51的平均数;(2)根据平均数以及中位数进行分析即可;(3)由甲组70分及以上所占百分比估算甲中学2000名家长中认为该校延时服务合格的人数即可.【详解】解:(1)∵甲、乙两中学“满意组”的人数一样多,∴甲满意的人数为40人, ∴甲满意的人数占甲组的百分比为:4010040100⨯=%%, ∴=1-7-18-25-40=10a %%%%%%,∴10a =;乙学校中位数为第50名和51名的平均数,∴乙(中位数)=838282.52+=, ∴82.5m =;(2)从平均数来看,乙学校整体成绩高于甲学校整体成绩;从中位数来看,乙学校的高分段人数较多;综上:乙学校的延时服务开展得更好;(3)甲中学70分及以上的百分比=25401075++=%%%%,2000751500⨯=%(名),答:甲中学2000名家长中认为该校延时服务合格的人数为1500名.【点睛】本题考查了扇形统计图,频数分布直方图,中位数,平均数,由部分估计总体等知识点,读懂题意,理解相关定义是解本题的关键.。

2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布定向训练试题(精选)

2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布定向训练试题(精选)

京改版八年级数学下册第十七章方差与频数分布定向训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )A .样本中位数是200元B .样本容量是20C .该企业员工捐款金额的极差是450元D .该企业员工最大捐款金额是500元2、已知数据1x ,2x ,3x 的平均数 5x =,方差23S =,则数据12x ,22x ,32x 的平均数和方差分别为( )A.5,12 B.5,6 C.10,12 D.10,63、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是()A.乙同学的成绩更稳定B.甲同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定D.不能确定哪位同学的成绩更稳定4、一个人做“抛硬币”的游戏,正面出现4次,反面出现了6次,正确说法为()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频率是60% D.出现正面的频数是40%5、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为()A.500千克,7500元B.490千克,7350元C.5000千克,75000元D.4850千克,72750元6、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是()A.该班共有学生60人B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内C.某同学身高155厘米,那么班上恰有10人比他矮D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%7、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是()A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;8、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196.现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大9、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为()A.3和2 B.4和3 C.5和2 D.6 和210、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D.丁第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).2、一组数据3,5,a,4,3的平均数是4,这组数据的方差为______.3、小宇调查了初一年级三个班学生的身高,并进行了统计,列出如下频数分布表:若要从每个班级中选取10名身高在160cm和170cm之间同学参加学校的广播操展示,不考虑其他因素的影响,则 _____(填“1班”,“2班”或“3班”)的可供挑选的空间最大.4、小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充分搅拌后再随意取出100粒,其中有5粒是黑色芝麻,因此可以估算这碗芝麻有________粒.5、一个样本有20个数据:35 31 33 35 37 39 35 38 40 39 36 34 35 37 36 32 34 35 36 34.在列频数分布表时,如果组距为2,那么应分成________组,36在第________组中.三、解答题(5小题,每小题10分,共计50分)1、为庆祝五四青年节,学校计划在“五四”前夕举行班级歌咏比赛,要确定一首喜欢唱的人数最多A B C D四首备选曲目让学生选择,经过抽样调查,并将的歌曲为每班必唱歌曲.为此提供代号为,,,采集的数据绘制成如下的两幅不完整的统计图.请根据图1,图2所提供的信息,解答下列问题:(1)本次抽样调查的学生有多少名?(2)请将条形统计图补充完整;(3)求扇形图中A的圆心角度数;(4)由统计图发现喜欢唱的人数最多的歌曲为哪一首?若全校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生喜欢唱此歌曲?2、表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.(1)小明6次成绩的众数是_______分;中位数是_______分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注意:①平时成绩用四次成绩的平均数;②每次考试满分都是100分).3、为了秉承“弘扬剪纸非遗文化,增强校园文化底蕴”的宗旨,某校邀请剪纸艺术工作室开设剪纸小课堂并举行剪纸比赛,比赛结束后从中随机抽取了20名学生的剪纸比赛成绩x,收集数据如下:根据以上信息,解答下列问题:(1)成绩6070≤<这一段的人数占被抽取总人数的百分比为_____________;x(2)若本次共有260名学生参加比赛,请估计剪纸比赛成绩不低于70分的学生人数.4、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的折线统计图如下:(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组;但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.5、某校为了增强学生的疫情防控意识,组织全校600名学生进行了疫情防控知识竞赛.从中随机抽取了n 名学生的竞赛成绩(满分100分,每名学生的成绩记为x 分),分成四组:A 组6070x ≤<;B 组7080x ≤<;C 组8090x ≤<;D 组90100x ≤≤,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)求n 的值.(2)补全频数分布直方图.(3)若规定学生竞赛成绩90x ≥为优秀,请估计全校竞赛成绩达到优秀的学生人数.-参考答案-一、单选题1、A【详解】解:A 、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A 不正确;B 、共20人,样本容量为20,故选项B 正确;C 、极差为500﹣50=450元,故选项C 正确;D 、该企业员工最大捐款金额是500元,故选项D 正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.2、C【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可.【详解】解:∵数据1x ,2x ,3x 的平均数5x = 即:123++53x x x = ∴数据12x ,22x ,32x 的平均数为1231232+222()1033x x x x x x +++== 又∵数据1x ,2x ,3x 的方差23S =即:()()()22212355533x x x -+-+-=∴数据12x ,22x ,32x 的方差为()()()()()()222222123123210210210454545=431233x x x x x x -+-+--+-+-=⨯=故选:C【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键.3、A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A.【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.4、C【分析】根据频率的计算方法判断各个选项.【详解】解:A、应为:出现正面的频数是4,错误,不符合题意;B、应为:出现反面的频数是6,错误,不符合题意;C、正确,符合题意;D、出现正面的频率是40%,错误,不符合题意.故选:C.【点睛】本题考查了频率以及频数的概念,熟知频率的计算方法是解本题的关键.5、C【分析】先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.【详解】解:选出的10棵油桃树的平均产量为:4451574748504953495210+++++++++=50(千克),估计100棵油桃树的总产量为:50×100=5000(千克),按批发价的总收入为:15×5000=75000(元).故选C.【点睛】本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.6、B【分析】由两幅统计图的数据逐项计算判断即可.【详解】解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,1525%60=,故D正确,不符合题意;根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7、D【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A 选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:360︒乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:74017.5%=,A选项正确;60~80分钟的人数为:40451678----=人,先对数据排序后可得:最中间的数在第20,21之间,459+=,91625+=,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:7815+=人,估算全校人数中每天超过1小时的人数为:1580030040⨯=人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:43603640︒⨯=︒,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.8、A【分析】分别计算出原数据和新数据的平均数和方差即可得.【详解】解:原数据的平均数为1891911931951965++++=192.8,则原数据的方差为15[(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2]=4.512,新数据的平均数为1891911931951925++++=192,则新数据的方差为15[(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2]=4,所以平均数变小,方差变小,故选:A.【点睛】本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式.9、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解.【详解】解:由题意得345755x++++=,解得x=6,∴这组数据的方差是()()()()()22222 356545557525-+-+-+-+-=.故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.10、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意, 丁同学的平均分为:9796989797975++++=, 方差为:222221[(9797)(9697)(9897)(9797)(9797)]0.45-+-+-+-+-=;∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D .【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题1、①②③【分析】根据中位数,平均数和方差的意义,逐一判断即可.【详解】解:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.故答案是:①②③.【点睛】本题主要考查中位数,平均数和方差,掌握中位数和方差的意义,是解题的关键.2、0.8【分析】根据平均数的计算公式先求出a 的值,再根据方差公式代数计算即可.【详解】解:∵3,5,a ,4,3的平均数是4,∴(3+5+a +4+3)÷5=4,解得:a =5,则这组数据的方差S 2=15 [(3-4)2+(5-4)2+(5-4)2+(4-4)2+(3-4)2]=0.8,故答案为:0.8.【点睛】本题考查了方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差(2222121[()())n S x x x x x x n ⎤=-+-++-⎦,此题难度不大. 3、1班【分析】根据各个班身高在160cm 和170cm 之间同学的人数,进行判断即可.【详解】解:身高在160cm 和170cm 之间同学人数:1班26人,2班13人,3班18人,因此可挑选空间最大的是1班,故答案为:1班.【点睛】此题考查频数分布表的表示方法,从表格中获取数据和数据之间的关系是正确判断的前提. 4、2000【分析】设碗中有芝麻x 粒,根据取出100粒刚好有记号的5粒列出算式,再进行计算即可.【详解】解:设碗中有芝麻x 粒,根据题意得:1001005x =, 解得:2000x =.故答案为:2000.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,解题的关键是掌握利用样本中的数据对整体进行估算.5、5 3【分析】确定组数时依据公式:组数=极差÷组距,计算时应该注意,组数应为正整数,若计算得到的组数为小数,则应将小数部分进位;再确定36所在的组数即可.【详解】解:极差为:40319-=92 4.5÷=,所以应分成5组,第一组为[31,32],第二组为[33,34],第三组为[35,36]所以36在第3组中,故答案为5,3【点睛】本题考查的是组数的计算,属于基础题,熟练掌握“组数=极差÷组距”是解答本题的关键.三、解答题1、(1)本次抽样调查的学生有180人;(2)见解析;(3)72°;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【分析】(1)用曲目D的人数除以其占比即可得到答案;(2)根据(1)所求,先算出曲目C的人数,然后补全统计图即可;(3)用360度乘以曲目A的人数占比即可得到答案;(4)根据统计图可知喜欢曲目C的人数最多,然后用全校人数乘以样本中曲目C的占比即可得到答案.【详解】解:(1)由题意得:总人数8442180360︒=÷=︒人,答:本次抽样调查的学生有180人;(2)由(1)得喜欢曲目C的人数180********=---=人,∴补全条形统计图如下所示:(3)由题意得扇形图中A的圆心角度数3636072180=︒⨯=︒;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有721200480180⨯=人,答:由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,补全统计图,求扇形圆心角度数等等,读懂统计图是解题的关键.2、(1)90,90;(2)小明平时成绩的方差5;(3)小明本学期的综合成绩是93.5分.解题过程见解析.【分析】(1)根据众数和中位线的概念求解即可;(2)先求出平时成绩的平均数,然后根据方差的计算公式代入求解即可;(3)根据加权平均数的计算方法求解即可.【详解】解:(1)由表格可知,出现次数最多的90,∴小明6次成绩的众数是90分;把这6次成绩按从小到大排列为:86,88,90,90,92,96,∴中间两个数为90,90, ∴中位数为:9090=902+, 故答案为:90,90;(2)平均分86889092894+++==, 小明平时成绩的方差()()()()22221868988899089928954⎡⎤=⨯-+-+-+-=⎣⎦; (3)8910%9030%9660%93.5⨯+⨯+⨯=,∴小明本学期的综合成绩是93.5分.【点睛】此题考查了平均数,中位数,众数,方差的计算等知识,解题的关键是熟练掌握平均数,中位数,众数,方差的计算方法.3、(1)30%;(2)182人.【分析】(1)由题意根据图表得出成绩6070x ≤<这一段的人数,进而除以抽取总人数即可得到答案;(2)根据题意先得出抽取的成绩不低于70分的学生人数并得出其所占百分比,进而乘以260即可得出答案.【详解】解:(1)根据图表可得成绩6070x ≤<这一段的人数为:6人,所以成绩6070x ≤<这一段的人数占被抽取总人数的百分比为:620100%30%÷⨯=,故答案为:30%;(2)根据图表可得成绩不低于70分的学生人数为:55414++=(人),所以剪纸比赛成绩不低于70分的学生人数为:1426018220⨯=(人).答:剪纸比赛成绩不低于70分的学生人数有182人.【点睛】本题考查数据的分析与处理,熟练掌握用样本估计总体的统计思想方法是解题的关键.4、(1)甲组平均数为6.8,中位数为6,乙组方差为1.96;(2)见解析【分析】(1)由折线图中数据,根据中位数和加权平均数、方差的定义求解可得;(2)可从平均数和中位数两方面阐述即可.【详解】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其平均数为5657921010+⨯++⨯+=6.8,中位数为6,乙组成绩从小到大排列为:5、5、6、7、7、8、8、8、9、9,∴乙组学生成绩的方差为=110[2×(5-7.2)2+(6-7.2)2+2×(7-7.2)2+3×(8-7.2)2+2×(9-7.2)2]=1.96;(2)①因为乙组学生的平均分高于甲组学生,所以乙组学生的成绩好于甲组;②因为乙组学生的中位数高于甲组学生,所以乙组学生的成绩好于甲组;所以乙组学生的成绩好于甲队组.【点睛】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.5、(1)50;(2)见解析;(3)180人【分析】(1)根据B组的频数和所占的百分比,可以求得n的值;(2)根据(1)中n的值和频数分布直方图中的数据,可以计算出D组的频数,从而可以将频数分布直方图补充完整;(3)根据直方图中的数据,可以计算出全校成绩达到优秀的人数.【详解】解:(1)1224%50n=÷=;(2)D组学生有:505121815---=(人),补全的频数分布直方图如图所示;(3)1560018050⨯=(人),答:估算全校成绩达到优秀的有180人.【点睛】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确统计图的特点和中位数的含义,利用数形结合的思想解答.。

2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布章节测试试卷(含答案解析)

2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布章节测试试卷(含答案解析)

京改版八年级数学下册第十七章方差与频数分布章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于一列数据(数据个数不少于6),如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是()A.平均数B.中位数C.众数D.方差2、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为()A.11 B.10 C.9 D.83、某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为188cm的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大4、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.众数5、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成()组.A.10 B.9 C.8 D.76、在频数分布直方图中,下列说法正确的是()A.各小长方形的高等于相应各组的频率B.各小长方形的面积等于相应各组的频数C.某个小长方形面积最小,说明落在这个组内的数据最多D.长方形个数等于各组频数的和7、如表是某次射击比赛中10名选手的射击成绩(环):关于这10名选手的射击环数,下列说法不正确的是()A.众数是8 B.中位数是5 C.平均数是8 D.方差是1.28、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D.丁9、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196.现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大10、从某工厂即将出售的一批产品中抽检100件产品,其不合格的产品有8件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )A .8,0.08B .8,0.92C .100,0.08D .100,0.92第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_____.2、一组数据7,2,1,3的极差为______.3、若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.4、数据1,3,2,5和x 的平均数是3,则这组数据的方差是____________.5、甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为2s 甲_____2s 乙(填>或<).三、解答题(5小题,每小题10分,共计50分)1、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求出本次调查中,随机抽取的学生人数;(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?2、中国共产党第十九届中央委员会第六次全体会议,于2021年11月8日至11日在北京举行.为了加强学生对时事政治的学习了解,某校开展了全校学生学习时事政治活动并进行了时事政治知识竞赛,从八、九年级中各随机抽取了20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:5,6,7,7,7,7,7,7,7,7,8,8,8,8,9,9,9,10,10,10.八、九年级抽取学生的竞赛成绩统计表.根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)估计该校八年级1500名学生中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级学生时事政治的竞赛成绩谁更优异,3、某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:乙组成绩统计图根据上面的信息,解答下列问题:(1)甲组的平均成绩为______分,m ______,甲组成绩的中位数是______,乙组成绩的众数是______;(2)若已经计算出甲组成绩方差为0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?4、虎林市教育局为了解九年级学生每学期参加综合实践活动的情况,随机抽样调查某校九年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出该校九年级学生总数.(2)求出活动时间为5天的学生人数,并补全频数分布直方图.(3)求该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是多少?5、为庆祝五四青年节,学校计划在“五四”前夕举行班级歌咏比赛,要确定一首喜欢唱的人数最多A B C D四首备选曲目让学生选择,经过抽样调查,并将的歌曲为每班必唱歌曲.为此提供代号为,,,采集的数据绘制成如下的两幅不完整的统计图.请根据图1,图2所提供的信息,解答下列问题:(1)本次抽样调查的学生有多少名?(2)请将条形统计图补充完整;(3)求扇形图中A的圆心角度数;(4)由统计图发现喜欢唱的人数最多的歌曲为哪一首?若全校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生喜欢唱此歌曲?-参考答案-一、单选题1、B【分析】根据中位数不受极端值的影响即可得.【详解】解:由题得,去掉了一组数据的极端值,中位数不受极端值的影响,故选B.【点睛】本题考查了一组数的特征数据,解题的关键是掌握平均数,中位数,众数,方差.2、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:105238219999-==,∴分10组.故选:B.【点睛】本题考查了组距的划分,一般分为5~12组最科学.3、A【分析】由题意分别计算出原数据和新数据的平均数和方差进行比较即可得出答案.【详解】解:原数据的平均数为1801841881901921941886+++++=,则原数据的方差为16×[(180-188)2+(184-188)2+(188-188)2+(190-188)2+(192-188)2+(194-188)2]= 683,新数据的平均数为1801841881901921881876+++++=,则新数据的方差为16×[(180-187)2+(184-187)2+(188-187)2+(190-187)2+(188-187)2+(192-187)2]= 473, 所以平均数变小,方差变小,故选:A .【点睛】本题主要考查方差和平均数,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差222212[()))]1((n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.5、A【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【详解】解:145-50=95,95÷10=9.5,所以应该分成10组.故选A.【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.6、B【分析】根据频数直方图的定义逐一判断即可得答案.【详解】在频数分布直方图中,各小长方形的高等于频数与组距的比值,故A选项错误,在频数分布直方图中,各小长方形的面积等于相应各组的频数,故B选项正确,在频数分布直方图中,某个小长方形面积最小,说明落在这个组内的数据最少,故C选项错误,在频数分布直方图中,各组频数的和等于各小长方形的高的和,故D选项错误,故选:B.【点睛】本题考查频数直方图,准确理解频数直方图中几个等量关系是解题关键.7、B【分析】根据众数、中位数、平均数及方差的定义逐一计算可得答案.【详解】解:这组数据中8出现次数最多,即众数为8;其中位数是第5、6个数据的平均数,故其中位数为8882+=;平均数为61728492101810⨯+⨯+⨯+⨯+⨯=, 方差为222221[(68)2(78)4(88)2(98)(108)] 1.210⨯-+⨯-+⨯-+⨯-+-=, 故选:B .【点睛】本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.8、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意, 丁同学的平均分为:9796989797975++++=, 方差为:222221[(9797)(9697)(9897)(9797)(9797)]0.45-+-+-+-+-=;∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D .【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9、A【分析】分别计算出原数据和新数据的平均数和方差即可得.【详解】解:原数据的平均数为1891911931951965++++=192.8,则原数据的方差为15[(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2]=4.512,新数据的平均数为1891911931951925++++=192,则新数据的方差为15[(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2]=4,所以平均数变小,方差变小,故选:A.【点睛】本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式.10、C【分析】直接利用样本容量的定义以及结合频数除以总数=频率得出答案.【详解】解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,∴此抽样样本中,样本容量为:100,不合格的频率是:8100=0.08.故选:C.【点睛】本题主要考查了频数与频率,正确掌握频率求法是解题关键.二、填空题1、0.4【分析】先求出第四小组的频数,再根据频率=频数÷样本容量计算即可;【详解】由题可知:第四小组的频数()502815520=-+++=,频率=频数÷样本容量20500.4=÷=;故答案是0.4.【点睛】本题主要考查了频率和频数的计算,准确分析计算是解题的关键.2、6【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.【详解】解:一组数据7,2,1,3的极差为716-=,故答案为:6.【点睛】本题考查了极差的定义,熟记定义是解本题的关键.3、8 9【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x 1,x 2,…x n 的平均数是2,∴数据3x 1+2,3x 2+2,…+3x n +2的平均数是3×2+2=8;∵数据x 1,x 2,…x n 的方差为1,∴数据3x 1,3x 2,3x 3,……,3x n 的方差是1×32=9,∴数据3x 1+2,3x 2+2,…+3x n +2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.4、2【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算.一般地设n 个数据,x 1,x 2,…x n 的平均数为 x , 1x n =(x 1+x 2+…+x n ),则方差(2222121 [()())n S x x x x x x n ⎤=-+-++-⎦ . 【详解】解:x =5×3-1-3-2-5=4, s 2=15 [(1-3)2+(3-3)2+(2-3)2+(5-3)2+(4-3)2]=2.故答案为:2.【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为 x , 1x n =(x 1+x 2+…+x n ),则方差(2222121[()())n S x x x x x x n ⎤=-+-++-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5、>【分析】根据数据的波动越小,方差越小,越稳定,反之数据的波动越大,方差越大,再结合图象即可填空.【详解】由图可知甲的数据波动相对较大,乙的数据波动相对较小.∴甲的方差大于乙的方差.故答案为:>.【点睛】本题考查根据数据的波动程度判断方差的大小.掌握数据波动程度和方差的关系是解答本题的关键.三、解答题1、(1)120人;(2)见解析,36°;(3)126人【分析】(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.【详解】解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,÷=(人);本次调查人数为:5445%120---=(人),(2)∵艺术:12018541236∴补全的条形统计图如下图所示:“其他”所对应的圆心角度数为1236036 120⨯︒=︒;(3)样本中选择阅读的人数为18人,占样本的百分比为18100%=15% 120⨯,该校学生总人数为840人,估计选择阅读的学生有:84015%126⨯=(人),∴选择“阅读”的学生大约有126人.【点睛】本题考查从条形图和扇形统计图获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.2、(1)7.5;8;8.(2)750人;(3)从优秀率来评价两个年级学生时事政治的竞赛成绩,九年级更优异.【分析】(1)根据题意,利用表格和扇形统计图给出的数据,即可求出a、b、c的值;(2)先求出样本中八年级8分及以上的频率,然后估算总体的数量即可;(3)根据两个年级的优秀率,即可进行判断.【详解】解:(1)根据题意,八年级的数据中,中位数为:787.52a+==;九年级的扇形图数据中,8分出现最多,中位数落在8分内,∴中位数:8b=;众数为:8c=;故答案为:7.5;8;8.(2)样本中八年级8分及以上的频率为:100.5 20=,∴该校八年级1500名学生中竞赛成绩达到8分及以上的人数有:15000.5750⨯=(人);(3)根据数据可知,八年级的优秀率为30%;九年级的优秀率为35%;∴从优秀率来评价两个年级学生时事政治的竞赛成绩,九年级更优异.【点睛】本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.3、(1)8.7,3,8.5,8;(2)乙组成绩的方差为0.75,乙组的成绩更加稳定.【分析】(1)根据数据平均数的计算方法可得平均数;用总人数减去其他成绩的人数即为m的值;根据中位数(一组数据从小到大排序后最中间的数)和众数(一组数据中出现次数最多的)的定义即可确定甲组成绩的中位数,乙组成绩的众数;(2)先求出乙组数据的平均数,再根据方差公式求出乙组方差,然后进行比较,即可得出答案.【详解】解:(1)平均成绩为:7189951058.71955⨯+⨯+⨯+⨯=+++,202963 m=---=,甲组成绩一共有20人,从小到大最中间为8和9,则中位数为898.52+=, 乙组成绩中出现次数最多的为8,则众数为8,故答案为:8.7,3,8.5,8;(2)2798693108.520x ⨯+⨯+⨯+⨯==乙, ()()()()22222278.5988.5698.53108.50.7520S ⨯-+⨯-+⨯-+⨯-==乙,20.81S =甲,∴22S S >甲乙,∴乙组的成绩更加稳定.【点睛】题目主要考查平均数、中位数、众数的定义、方差的算法及数据的稳定性判断,理解定义及方差的算法是解题关键.4、(1)200;(2)50,图见解析;(3)90【分析】(1)根据综合实践活动的天数为4天的人数60人,所占比例为30%,即可求得总人数;(2)将总人数乘以实践活动的天数为5天的学生人数所占的比例即可求得, 活动时间为5天的学生人数,进而求得活动时间为7天的人数,即可补全统计图(3)分别求得活动时间为5,6,7天的人数,求其和即可【详解】解:(1)活动的天数为4天的人数60人,所占比例为30%,则总人数为:60÷30%=200(人)(2)活动的天数为5天的有:200×(1-10%-15%-30%-5%-15%)=50(人)活动的天数为7天的有:200×5%=10(人)补全5天和7天的两个直方条(如图)(3)50+30+200×5%=90(人)该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是90人【点睛】本题考查了频数直方图和扇形统计图信息关联,从统计图中获取信息是解题的关键.5、(1)本次抽样调查的学生有180人;(2)见解析;(3)72°;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【分析】(1)用曲目D的人数除以其占比即可得到答案;(2)根据(1)所求,先算出曲目C的人数,然后补全统计图即可;(3)用360度乘以曲目A的人数占比即可得到答案;(4)根据统计图可知喜欢曲目C的人数最多,然后用全校人数乘以样本中曲目C的占比即可得到答案.【详解】解:(1)由题意得:总人数8442180360︒=÷=︒人,答:本次抽样调查的学生有180人;(2)由(1)得喜欢曲目C的人数180********=---=人,∴补全条形统计图如下所示:(3)由题意得扇形图中A的圆心角度数3636072180=︒⨯=︒;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有721200480180⨯=人,答:由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,补全统计图,求扇形圆心角度数等等,读懂统计图是解题的关键.。

强化训练京改版八年级数学下册第十七章方差与频数分布达标测试试题(含答案及详细解析)

强化训练京改版八年级数学下册第十七章方差与频数分布达标测试试题(含答案及详细解析)

京改版八年级数学下册第十七章方差与频数分布达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A 、“北斗卫星”;B 、“5G 时代”;C 、“智轨快运系统”;D 、“东风快递”;E 、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G 时代”的频率是( )A .0.25B .0.3C .2D .302、下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在3638x ≤<小组,而不在3436x ≤<小组),根据图形提供的信息,下列说法中错误的是( )A .该学校教职工总人数是50人B .年龄在4042x ≤<小组的教职工人数占总人数的20%C .某教师40岁,则全校恰有10名教职工比他年轻D .教职工年龄分布最集中的在3840x ≤<这一组3、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )A .中位数是6.5B .众数是12C .平均数是3.9D .方差是64、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( ) A .甲 B .乙 C .丙 D .丁5、远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是136、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A .众数B .中位数C .平均数D .方差7、已知数据1x ,2x ,3x 的平均数 5x =,方差23S =,则数据12x ,22x ,32x 的平均数和方差分别为( )A .5,12B .5,6C .10,12D .10,68、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S 2=18[(x 1-88)2+(x 2-88)2+…+(x 8-88)2],以下说法不一定正确的是( )A .育才中学参赛选手的平均成绩为88分B .育才中学一共派出了八名选手参加C .育才中学参赛选手的中位数为88分D .育才中学参赛选手比赛成绩团体总分为704分9、一组数据1,1,1,3,4,7,12,若加入一个整数a ,一定不会发生变化的统计量是( )A .众数B .平均数C .中位数D .方差10、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生羊的只数是( )A .180B .140C .120D .110第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S 甲2=38,S 乙2=10,则______ 同学的数学成绩更稳定.2、当今最常用的购物软件“手机淘宝”的英语翻译为“mobile phone Taobao ”,其中字母“o ”出现的频率为__________.3、如果一组数据1,2,5,a ,9的方差是3,则2,4,10,2a ,18的方差是______.4、一个样本的方差()()()222212133312n s x x x ⎡⎤=-+-+⋯+-⎣⎦,则样本容量是_________,样本平均数是__________.5、(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用_____估计总体平均数.(2)组中值:为了更好地了解一组数据的平均水平,往往把数据进行分组,分组后,一个小组的两个端点的数的平均数叫做这个小组的_____.(3)在频数分布表中,常用各组的_____代表各组的实际数据,把各组的_____看作相应组中值的权.三、解答题(5小题,每小题10分,共计50分)1、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.(3)治污减霾,你有什么建议?2、中考改革是为了进一步推进高中阶段学校考试招生制度,眉山市在初中毕业生学业考试、综合素质评价、高中招生录取等方面进行了积极探索,对学生各科成绩实行等级制,即A、B、C、D、E五个等级,根据某班一次数学模拟考试成绩按照等级制绘制了两幅统计图(均不完整),请根据统计图提供的信息解答下列问题.(1)本次模拟考试该班学生有_____人;(2)补全条形统计图;(3)扇形统计图中D等级对应扇形的圆心角的度数为______;(4)该校共有800名学生,根据统计图估计该校A等级的学生人数.3、为落实“每天锻炼一小时,快乐学习一整天”的要求,某校举行校园阳光大课间活动,为了解七年级学生每周在校体育锻炼时间,随机抽取了部分学生进行调查,并绘制了以下不完整的频数分布表和频数分布直方图.(1)本次调查的学生总人数为______;(2)求a 、b 的值,并补全频数分布直方图;(3)若将调查结果绘制成扇形统计图,求锻炼时间在“56t ≤<”所对应的扇形圆心角的度数.4、近日,教育部印发通知,决定实施青少年急救教育行动计划,开展全国学校急救教育试点工作.某校为普及急救知识,进行了相关知识竞赛,现从七、八年级中各随机抽取20名学生的竞赛成绩进行整理、描述和分析(成绩得分用x 表示,共分为四个等级:A .60≤x <70,B .70≤x <80,C .80≤x <90,D .90≤x ≤100),下面给出了部分信息.七年级20名学生的竞赛成绩是:62,68,75,80,82,85,86,88,89,90,90,95,96,98,99,99,99,99,100,100.八年级20名学生的竞赛成绩中C 等级包含的所有数据为:82,84,85,86,88,89.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题: (1)填空:上述图表中a = ,b = c = ;(2)根据图表中的数据,判断七、八年级中哪个年级学生竞赛成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级共2000名学生参加了此次竞赛活动,估计竞赛成绩为D 等级的学生人数是多少?5、某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:请根据图中提供的信息,完成下列问题:(1)在这次调查中,一共抽查了名学生;(2)“羽毛球”部分的学生有人,并补全统计图;(3)“足球”部分所对应的圆心角为度;(4)如果该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?-参考答案-一、单选题1、B先计算出九年级(3)班的全体人数,然后用选择“5G 时代”的人数除以九年级(3)班的全体人数即可.【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G 时代”的人数为:30人,∴选择“5G 时代”的频率是:30100=0.3; 故选:B .【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.2、C【分析】各组的频数的和就是总人数,再根据百分比、众数、中位数的定义逐一解题.【详解】解:A. 该学校教职工总人数是4+6+11+10+9+6+4=50人,正确,故A 不符合题意;B. 年龄在4042x ≤<小组的教职工人数占总人数的10100%50⨯=20%,正确,故B 不符合题意;C. 教职工年龄的中位数在4042x ≤<这一组,某教师40岁,则全校恰有10名教职工比他年轻说法是错误的,故C 符合题意;D. 教职工年龄分布最集中的在3840x ≤<这一组,正确,故D 不符合题意,故选:C .【点睛】本题考查频数分布直方图,是重要考点,从图中获取正确信息是解题关键.3、D根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:552+=5;B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;D、这组数据的方差是:110×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;故选:D.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.4、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵6.2 6.0 5.8>>,∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,0.250.32<,∴甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.5、D【分析】根据中位数、平均数、众数和方差的定义计算即可得出答案.【详解】解:A.数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,故选项A不符合题意;B.x=(11+10+11+13+11+13+15)÷7=12,即平均数是12,故选项B不符合题意;C.S2=17×[(10-12)2+(11-12)2×3+(13-12)2×2+(15-12)2]=187,故选项C不符合题意;D.将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,故选项D符合题意;故选:D.【点睛】本题主要考查了中位数、平均数、众数和方差,熟练掌握中位数、众数的定义和方差、平均数的计算公式是解题的关键.6、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.7、C【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可.【详解】解:∵数据1x ,2x ,3x 的平均数5x = 即:123++53x x x = ∴数据12x ,22x ,32x 的平均数为1231232+222()1033x x x x x x +++== 又∵数据1x ,2x ,3x 的方差23S =即:()()()22212355533x x x -+-+-=∴数据12x ,22x ,32x 的方差为()()()()()()222222123123210210210454545=431233x x x x x x -+-+--+-+-=⨯=故选:C【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键.8、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S2=18[(x1−88)2+(x2−88)2+…+(x8−88)2],∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.9、A【分析】依据平均数、中位数、众数、方差的定义即可得到结论.【详解】解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;B、原来数据的平均数是297,加入一个整数a,平均数一定变化,不符合题意;C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;故选:A.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.10、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.【详解】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故选B.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题1、乙【分析】根据平均数相同时,方差越小越稳定可以解答本题.【详解】解:∵甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S甲2=38,S乙2=10,∴S甲2 S乙2,∴乙同学的数学成绩更稳定,故答案为:乙.【点睛】本题考查了方差,解题的关键是明确方差越小越稳定.2、4 17【分析】用字母“o ”出现的个数除以总的字母个数即可得出答案.【详解】解:∵字母“o ”出现的次数为4,∴该英语中字母“o ”出现的频率为417; 故答案为:417. 【点睛】此题主要考查了频率,关键是掌握频率的定义,频率=频数÷数据总数.3、12【分析】设一组数据1,2,5,a ,9的平均数是x ,则()112595x a =++++ ,根据方差的公式,得到()()()()()222221125935x x x a x x ⎡⎤-+-+-+-+-=⎢⎥⎣⎦ ,再代入2,4,10,2a ,18的方差公式中,即可求解.【详解】解:设一组数据1,2,5,a ,9的平均数是x ,则()112595x a =++++ , ∴2,4,10,2a ,18的平均数是()()11241021821259255a a x ++++=⨯++++= , ∵一组数据1,2,5,a ,9的方差是3, ∴()()()()()222221125935x x x a x x ⎡⎤-+-+-+-+-=⎢⎥⎣⎦ , ∴2,4,10,2a ,18的方差是()()()()()2222212242102221825x x x a x x ⎡⎤-+-+-+-+-⎢⎥⎣⎦ ()()()()()222222222212122252295x x x a x x ⎡⎤=-+-+-+-+-⎢⎥⎣⎦()()()()()2222221212595x x x a x x ⎡⎤=⨯-+-+-+-+-⎢⎥⎣⎦ 22312=⨯= .故答案为:12【点睛】本题考查了方差,熟练掌握一组数据的方差公式是解题的关键.4、12 3【分析】 方差公式为2222121()()()n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦ ,其中n 是样本容量,x 表示平均数.根据公式直接求解.【详解】 解:∵一个样本的方差是2222121(3)(3)1(3)2n s x x x ⎡⎤=-+-+⋯+-⎣⎦, ∴该样本的容量是12,样本平均数是3.故答案为:12,3.【点睛】此题考查方差的定义,解题的关键是熟练运用方差公式,此题难度不大.5、样本平均数 组中值 组中值 频数【分析】(1)由样本平均数的适用条件即可得;(2)根据组中值的定义(组中值是上下限之间的中点数值,以代表各组标志值的一般水平),即可得(3)权数,指变量数列中各组标志值出现的频数,据此即可得.【详解】解:(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用样本平均数估计总体平均数;(2)组中值是上下限之间的中点数值,以代表各组标志值的一般水平,可得一个小组的两个端点的数的平均数叫做这个小组的组中值;(3)在频数分布表中,常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,故答案为:①样本平均数;②组中值;③组中值;④频数.【点睛】题目主要考查样本平均数,组中值,权数的定义及适用条件,熟练掌握这几个定义是解题关键.三、解答题1、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可.【详解】解:(1)本次调查的总人数为80÷20%=400(人),则B组人数m=400×10%=40(人),C组人数n=400﹣(80+40+120+60)=100(人),∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;(2)200×120400=60(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.2、(1)40;(2)补图见解析;(3)117°;(4)40人.【分析】(1)根据B等级的人数和所占的百分比即可得出答案;(2)先求出C等级的人数,再补全统计图即可;(3)用360°乘以D等级所占的比例即可;(4)用该校的总人数乘以A等级的学生所占的比例即可.【详解】解:(1)本次模拟考试该班学生有:512.5%40÷=(人),故答案为:40;(2)C等级的人数有:402513812----=(人),补全统计图如下:(3)扇形统计图中D等级对应扇形的圆心角的度数为:1336011740︒⨯=︒,故答案为:117°;(4)估计该校A等级的学生人数有:28004040⨯=(人).【点睛】题目主要考查条形统计图和扇形统计图,包括画条形统计图,求扇形统计图的圆心角,用样本估计总体符合条件的人数等,理解题意,熟练将两个统计图结合获取信息是解题关键.3、(1)40 (2)a=6,b=10%,频数分布直方图见解析(3)72°【分析】(1)根据体育锻炼时间“3≤t<4”频数10,占学生总人数的百分比是25%,可得答案;(2)由(1)的结果学生总人数可求a,由学生总人数和频数4,可求b;(3)根据体育锻炼时间“5≤t<6”占学生总人数的百分比20%,即可得答案.【详解】解:(1)∵体育锻炼时间“3≤t<4”频数10,百分比是25%,∴学生总人数为10÷25%=40;(2)∵学生总人数为40,∴a=40-4-10-8-12=6,b=41%=%=10% 4010;∴频数分布直方图为下图:(3)体育锻炼时间“5≤t<6” 占学生总人数的百分比为20%,∴对应的扇形圆心角的度数=20%360=72⨯︒︒.【点睛】本题考查了数据的收集与整理,做题的关键是掌握由频数和对应的百分比会求总数,频数和总数会求扇形的圆心角.4、(1)40,87,99;(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;(3)900人【分析】(1)根据八年级C等级有6个学生可得a,根据扇形统计图可得八年级中位数b,根据七年级的成绩可得众数c;(2)比较平均数、中位数和众数可得结论;(3)求出七、八年级学生竞赛成绩为D等级的百分比可得答案.【详解】解:(1)八年级20名学生的竞赛成绩中C等级包含6个分数,C等级所占百分比为620=30%,a%=1﹣20%﹣10%﹣30%=40%,∴a=40,八年级成绩A等级的有20×20%=4(人),B等级的有20×10%=2(人),∴八年级中位数位于C等级的第4、5两个数据即86,88,八年级中位数位于C等级,b=86882+=87,七年级成绩是众数是99分,c=99,故答案为:40,87,99;(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;(3)七年级D等级人数是10人,八年级D等级人数是20×40%=8人,2000×10840+=900(人),答:竞赛成绩为D等级的学生人数是900人.【点睛】本题考查了扇形统计图、中位数、众数、平均数,理解中位数、众数、平均数的计算方法是正确求解的前提.5、(1)100;(2)20;作图见解析;(3)36︒;(4)240【分析】(1)篮球人数为25,占总人数的25%,可以得到调查学生总人数;(2)羽毛球部分的学生占总人数的20%,可得到羽毛球部分的学生人数;(3)足球部分为10人,占总人数的10%,占圆心角的10%,可得到足球部分对应圆心角的大小;(4)用喜欢跳绳部分的比例乘以该学校的总人数,就能估计出该校喜欢跳绳的总人数.【详解】解(1)设调查学生总人数为n则有25 25100n=⨯%%解得100n=故答案为100.(2)羽毛球部分的学生占总人数的20%,∴羽毛球的人数为1002020⨯=%故答案为20.统计图补充如图所示:(3)由图知足球部分的人数为10∴足球部分占总人数的10%∴足球部分对应圆心角的大小为10360=36⨯︒︒%故答案为36.(4)跳绳人数占比为2010020 100⨯=%%∴该校喜欢跳绳的人数有120020240⨯=%(人);答:该校有240名学生喜欢跳绳【点睛】本题考察了统计图.解题的关键与难点在于理清图中数据的含义以及数据之间的关系.。

2022年强化训练京改版八年级数学下册第十七章方差与频数分布专题攻克试卷(无超纲带解析)

2022年强化训练京改版八年级数学下册第十七章方差与频数分布专题攻克试卷(无超纲带解析)

京改版八年级数学下册第十七章方差与频数分布专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是()A.14,0.7 B.14,0.4 C.8,0.7 D.8,0.42、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为().A.9 B.8 C.7 D.63、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是()A.180 B.140 C.120 D.1104、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选()A.甲B.乙C.丙D.丁5、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定6、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是()A.众数是6B.中位数是6C.平均数是6D.方差是47、甲、乙两位同学连续五次的数学成绩如下图所示:下列说法正确的是( ) A .甲的平均数是70 B .乙的平均数是80 C .S 2甲>S 2乙D .S 2甲=S 2乙8、在频数分布表中,所有频数之和( ) A .是1B .等于所有数据的个数C .与所有数据的个数无关D .小于所有数据的个数9、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是( ) A .乙同学的成绩更稳定B .甲同学的成绩更稳定C .甲、乙两位同学的成绩一样稳定D .不能确定哪位同学的成绩更稳定10、已知一组数据的方差s 2=15[(6﹣7)2+(10﹣7)2+(a ﹣7)2+(b ﹣7)2+(8﹣7)2](a ,b 为常数),则a +b 的值为( ) A .5B .7C .10D .11第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据:2021,2021,2021,2021,2021,2021的方差是______.2、甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.2环,方差分别是20.76S =甲,20.71S =乙,20.69S =丙,则三人中成绩最稳定的是______(填“甲”或“乙”或“丙”).3、小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充分搅拌后再随意取出100粒,其中有5粒是黑色芝麻,因此可以估算这碗芝麻有________粒.4、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是21.4S =甲,20.85S =乙,则在本次训练中,运动员__________的成绩更稳定.5、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为2S甲=38,2S乙=10,则______同学的数学成绩更稳定.三、解答题(5小题,每小题10分,共计50分)1、民以食为天,农产品是关系国计民生的重要商品,是事关经济发展、社会稳定和国家自立的头等大事,某数学兴趣小组为了解我国近几年人均主要农产品产量情况,该组成员通过对我国粮食、猪羊牛肉的人均产量进行收集、整理、描述和分析,下面给出部分信息.信息一、2005﹣2019年我国人均粮食产量统计图:信息二、将2005﹣2019年划分为三个时间段,每个时间段内我国人均粮食产量如下:信息三、2019年我国各省、市、自治区粮食、猪羊牛肉的人均产量的统计量如下:(以上数据来源于《2020中国统计年鉴》)根据以上信息,解决下列问题:(1)2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,甘肃省这两项主要农产品产量排名更靠前的是_________(填“人均粮食产量”或“人均猪羊牛肉产量”),理由是:_________.(2)根据以上数据信息分析,判断下列结论正确的是_________;(只填序号)①2005﹣2015年内我国人均粮食产量呈现持续增长趋势;②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高;③2005﹣2019年我国人均粮食产量连续12年高于人均400千克的国际粮食安全标准线.(3)记我国2005﹣2009年人均粮食产量的方差为21S ,2015﹣2019年人均粮食产量的方差为22S ,则21S _________22S .(填<、=或>)2、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:(1)根据以上信息,整理分析数据如表:填空:a = ,b = ,c = ;(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好.3、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______; (2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?4、为了解某校学生睡眠时间情况,随机抽取若干学生进行调查.学生睡眠时长记为x 小时,将所得数据分为5组(A :10x ≥;B :910x ≤<;C :89x ≤<;D :78x ≤<;E :7x <),学校将所得到的数据进行分析,得到如下部分信息:请你根据以上信息,回答下列问题: (1)直接写出a 的值;(2)补全条形统计图;(3)根据学校五项管理有关要求,中学生睡眠时间应不少于9个小时,那么估计该中学1000名学生中符合要求的有多少人?5、2021年12月2日是第十个“全国交通安全日”公安部、中央网信办、中央文明办、教育部、司法部、交通运输部、应急管理部、共青团中央联合发出通知,决定自2021年11月18日起至年底,以“守法规知礼让、安全文明出行”为主题,共同组织开展第十个“全国交通安全日”群众性主题活动.某中学团委组织开展交通安全知识竞赛现从七、八年级中各随机抽取20名同学的竞赛成绩(百分制)进行整理和分析(成绩均为整数,成绩得分用x表示),共分成五个等级:A.060≤≤,xB.6070x<≤,E.90100<≤(其中成绩大于等于x<≤,D.8090xx<≤,C.7080....),......90的为优秀下面给出了部分信息.七年级抽取的20名学生的竞赛成绩在D等级中的数据分别是:83,85,85,85,85,89.八年级抽取的20名学生的竞赛成绩在D等级中的数据分别是:83,85,85,85,85,85,89.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)请补全条形统计图,并直接写出a、b的值;(2)根据以上数据分析,你认为哪个年级的竞赛成绩更好,并说明理由(写出一条理由即可);(3)已知该校七、八年级共有1200名学生参与了知识竞赛,请估计两个年级竞赛成绩优秀的学生人数是多少?-参考答案-一、单选题1、D【分析】根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为2465320++++=.则频率为80.4 20=.故选D.【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.2、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B.【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.3、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.【详解】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故选B.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.4、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】>>,解:∵6.2 6.0 5.8∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,<,0.250.32∴甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.5、C【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.6、D【分析】根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可【详解】根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;这组数据的中位数为:6,故B选项正确,不符合题意;这组数据的平均数为1(256672)610⨯+⨯+⨯=,故C选项正确,不符合题意;这组数据的方差为:()()()222212566662760.410S ⎡⎤=⨯-+⨯-+⨯-=⎣⎦,故D 选项不正确,符合题意. 故选D .【点睛】 本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:2222121[()()()]n s x x x x x x n=-+-++-…. 7、D【分析】根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案【详解】 由条形统计图可知,甲的平均数是()16070706080=685++++,故A 选项不正确; 乙的平均数是()17080807090=785++++,故B 选项不正确; 甲的方差为()()()2221260682706880685⎡⎤-+-+-⎣⎦56=, 乙的方差为()()()222127078280789078565⎡⎤-+-+-=⎣⎦, 故C 选项不正确,D 选项正确;故选D .【点睛】本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.8、B【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解.【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确;B. 频数之和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关,故选项C不正确;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确.故选择B.【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键.9、A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A.【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.10、D【分析】根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,a ,b ,8,其平均数为7, 则15×(6+10+a +b +8)=7, ∴a +b =11,故选:D .【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.二、填空题1、0【分析】根据方差的定义求解.【详解】∵这一组数据都一样∴平均数为2021∴方差=21(20212021)606⎡⎤-⨯=⎣⎦ 故答案为:0.【点睛】本题考查方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、丙【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵S 甲2=0.76,S 乙2=0.71,S 丙2=0.69,∴S 甲2>S 乙2>S 丙2,∴三人中成绩最稳定的是丙.故答案为:丙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、2000【分析】设碗中有芝麻x 粒,根据取出100粒刚好有记号的5粒列出算式,再进行计算即可.【详解】解:设碗中有芝麻x 粒,根据题意得:1001005x =, 解得:2000x =.故答案为:2000.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,解题的关键是掌握利用样本中的数据对整体进行估算.4、乙【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵2 1.4S =甲,20.85S =乙, ∴22S S >甲乙,∴乙运动员的成绩更稳定;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、乙【分析】根据平均数相同时,方差越小越稳定可以解答本题.【详解】 解:甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为238S =甲,210S =乙, 22S S ∴>乙甲,∴乙同学的数学成绩更稳定,故答案为:乙.【点睛】本题考查方差,解题的关键是明确方差越小越稳定.三、解答题1、(1)“人均粮食产量”,2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后(2)①②③(3)>【分析】(1)根据题目中的数据和信息三,可以解答本题;(2)根据信息一中统计图中的数据,可以判断各个小题中的结论是否成立;(3)根据信息一中统计图中的数据波动大小,可以解答本题.【详解】解:(1) 我国人均粮食产量的中位数为419千克,我国人均猪羊牛肉产量的中位数是42.5千克,∵2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,∵440>419,36.2<42.5,2019年甘肃省人均粮食产量为440千克排在中位数之前,而人均猪羊牛肉产量为36.2千克,排在中位数之后,故答案为:“人均粮食产量”; 2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后;(2)①从统计图中观察2005﹣2015年内我国人均粮食产量呈现持续增长趋势正确;故①正确,②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高;∵(2010﹣2014)平均数/千克-(2005﹣2009)平均数/千克=448.4-388.4=60,(2015﹣20194)平均数/千克-(2010﹣2014)平均数/千克=77-448.4=28.6,∵60>28.6,∴2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高正确;③2005﹣2019年我国人均粮食产量连续15年平均年产量中从高于人均400千克的国际粮食安全标准线从2008年——2019年共12年2005﹣2019年我国人均粮食产量连续12年平均年产量高于人均400千克的国际粮食安全标准线但时间正确故③正确,故答案为:①②③;(3)∵我国2005﹣2009年人均粮食产量波动较大,2015﹣2019年人均粮食产量波动较小, 我国2005﹣2009年人均粮食产量的方差为21S 大于2015﹣2019年人均粮食产量的方差为22S , ∴21S >22S .故答案为:>.【点睛】本题考查频数分布直方图、加权平均数、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.2、(1)7,7.5,1.2;(2)答案见解析.【分析】(1)分别根据平均数,方差,中位数的定义求解即可;(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.【详解】解:(1)由频数直方图可得:甲的成绩如下:5,6,6,7,7,7,7,8,8,9, 其中7环出现了4次,所以众数是7a =环,7x =甲环()()()()()222221572674772879710c ⎡⎤∴=-+⨯-+⨯-+⨯-+-⎣⎦ 1=12=1.2.10⨯ 由折线统计图可得:按从小到大排序为:3,4,6,7,7,8,8,8,9,10,所以中位数为:7+8=7.52b .故答案为:7,7.5,1.2;(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.【点睛】本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.3、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×1240=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×1040=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.4、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为750(人).【分析】(1)结合两个图形可得:A组频数为23,所占比例为23%,可得抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果.【详解】解:(1)结合两个图形可得:A组频数为23,所占比例为23%,∴抽取的总人数为:2310023%=(人),∴D组所占的比例为:8100%8% 100⨯=,∴a 的值为8;(2)C 组频数为:10023528215----=,补全统计图如图所示:(3)不少于9个小时的只有A 、B 两个组,总数为:235275+=, 所占比例为:75100%75%100⨯=, ∴估计符合要求的人数为:100075%750⨯=(人).【点睛】题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟练掌握根据扇形统计图和条形统计图的获取信息是解题关键.5、(1)84a =,85b =,统计图见解析;(2)八年级的成绩比七年级的成绩好,理由见解析;(3)估计两个年级竞赛成绩优秀的学生人数是330人.【分析】(1)根据中位数的定义即可得到七年级的中位数是第10名和第11名的成绩,然后确定中位数在D 等级里面即可得到答案;由八年级统计图可知,八年级C 等级人数=20-7-6-2-1=4人,由八年级的满分率为15%,得到八年级满分人数=20×15%=3人,即可确定八年级这20名学生成绩出现次数最多的是85,由此求解即可;(2)七、八年级,众数与优秀率相同,可从平均数与中位数进行阐述;(3)先算出样本中两个年级的优秀率,然后估计总体即可.【详解】解:(1)∵七年级一共有20人,∴七年级的中位数是第10名和第11名的成绩,∵七年级A等级人数=2010%2⨯=人,七年级B等级人数=2015%3⨯=人,七年级C等级人数= 2020%4⨯=人,∴七年级的中位数在D等级里面,即为8385842+=,∴84a=;由八年级统计图可知,八年级C等级人数=20-7-6-2-1=4人,∵八年级的满分率为15%,∴八年级满分人数=20×15%=3人,∴可知八年级这20名学生成绩出现次数最多的是85,即众数为85,∴85b=,补全统计图如下:(2)∵七、八年级的众数,优秀率都相同,但是八年级的平均数大于七年级的平均数,八年级的中位数也大于七年级的中位数,∴八年级的成绩比七年级的成绩好;(3)由题意得:两个年级竞赛成绩优秀的学生人数2025%61200100%3302020⨯+⨯⨯=+人,答:估计两个年级竞赛成绩优秀的学生人数是330人.【点睛】本题主要考查了中位数与众数,统计图,用样本估计总体,解题的关键在于能够熟练掌握相关知识进行求解.。

2022年最新京改版八年级数学下册第十七章方差与频数分布重点解析试题(含解析)

2022年最新京改版八年级数学下册第十七章方差与频数分布重点解析试题(含解析)

京改版八年级数学下册第十七章方差与频数分布重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在82.5kg及以上的生猪有()A.20头B.50头C.140头D.200头2、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是()A .中位数是6.5B .众数是12C .平均数是3.9D .方差是63、下列一组数据:-2、-1、0、1、2的平均数和方差分别是( )A .0和2B .0C .0和1D .0和04、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( )A .甲组B .乙组C .丙组D .丁组5、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生羊的只数是( )A .180B .140C .120D .1106、已知数据1x ,2x ,3x 的平均数 5x =,方差23S =,则数据12x ,22x ,32x 的平均数和方差分别为( ) A .5,12B .5,6C .10,12D .10,67、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A.众数B.中位数C.平均数D.方差8、一组数据:1,3,3,4,5,它们的极差是()A.2 B.3 C.4 D.59、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是()A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;10、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为()A.anbB.bnaC.banD.abn第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:x甲=84,x乙=83.2,2S甲=13.2,2S乙=26.36,由此学校决定让甲去参加比赛,理由是_______.2、已知一组数据x 1,x 2,x 3,方差是2,那么另一组数据2x 1﹣4,2x 2﹣4,2x 3﹣4的方差是 ______________.3、已知一组数据a ,b ,c 的方差为4,那么数据3a ﹣2,3b ﹣2,3c ﹣2的方差是_____.4、已知一组数据的方差S 21n=[(6﹣7)2+(10﹣7)2+(a ﹣7)2+(b ﹣7)2+(8﹣7)2](a ,b 为常数),则a +b 的值为_______.5、当今最常用的购物软件“手机淘宝”的英语翻译为“mobile phone Taobao ”,其中字母“o ”出现的频率为__________.三、解答题(5小题,每小题10分,共计50分)1、为了解某校学生睡眠时间情况,随机抽取若干学生进行调查.学生睡眠时长记为x 小时,将所得数据分为5组(A :10x ≥;B :910x ≤<;C :89x ≤<;D :78x ≤<;E :7x <),学校将所得到的数据进行分析,得到如下部分信息:请你根据以上信息,回答下列问题: (1)直接写出a 的值; (2)补全条形统计图;(3)根据学校五项管理有关要求,中学生睡眠时间应不少于9个小时,那么估计该中学1000名学生中符合要求的有多少人?2、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?3、由重庆市教育委员会主办的中小学生艺术展演活动落下帷幕,重庆某中学学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m=,补全条形统计图;(2)各组得分的中位数是分,众数是分;(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?4、某中学为了解八年学级生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:(1)表格中的a=,b=;(2)在这次调查中,参加志愿者活动的次数的众数为,中位数为;(3)若该校八年级共有700名学生,根据调查统计结果,估计该校八年级学生参加志愿者活动的次数大于4次的人数.5、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?-参考答案-一、单选题1、B【分析】在横轴找到82.5kg的位置,由图可知在80与85的中间,即第三个与第三个长方形的前一个边界值开始算起,将后2组频数相加,即可求解.【详解】依题意,质量在82.5kg及以上的生猪有:302050+=(头)故选B.【点睛】本题考查了频数直方图的应用,根据频数直方图获取信息是解题的关键.2、D【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:552+=5;B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;D、这组数据的方差是:110×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;故选:D.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.【分析】根据平均数公式与方差公式计算即可. 【详解】 解:()12101205x =--+++=, ()()222222112101210255S ⎡⎤=-+-+++=⨯=⎣⎦.故选择A . 【点睛】本题考查平均数与方差,掌握平均数与方差公式是解题关键. 4、B 【分析】由平均数相同,根据方差越小越稳定可得出结论. 【详解】解:∵4.3>4>3.6>3.2 ∴2222S S S S 丁甲乙丙>>>, ∵四个小组的平均分相同, ∴乙组各成员实力更平均, 选择乙组代表年级参加学校决赛. 故选择B . 【点睛】本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.【分析】根据题意和直方图中的数据可以求得质量在77.5kg 及以上的生猪数,本题得以解决. 【详解】解:由直方图可得,质量在77.5kg 及以上的生猪:90+30+20=140(头), 故选B . 【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答. 6、C 【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可. 【详解】解:∵数据1x ,2x ,3x 的平均数5x =即:123++53x x x = ∴数据12x ,22x ,32x 的平均数为1231232+222()1033x x x x x x +++==又∵数据1x ,2x ,3x 的方差23S =即:()()()22212355533x x x -+-+-=∴数据12x ,22x ,32x 的方差为()()()()()()222222123123210210210454545=431233x x x x x x -+-+--+-+-=⨯=故选:C 【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键. 7、B 【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名. 【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有. 故选:B 【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键. 8、C 【分析】根据极差的定义,即一组数据中最大数与最小数之差计算即可; 【详解】 极差是514-=; 故选C . 【点睛】本题主要考查了极差的计算,准确计算是解题的关键.9、D【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A 选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:360︒乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:74017.5%=,A选项正确;60~80分钟的人数为:40451678----=人,先对数据排序后可得:最中间的数在第20,21之间,459+=,91625+=,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:7815+=人,估算全校人数中每天超过1小时的人数为:1580030040⨯=人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:43603640︒⨯=︒,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.10、A【分析】首先求出有记号的b 条鱼在a 条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a 条鱼,发现其中带标记的鱼有b 条, ∴有标记的鱼占b a, ∵共有n 条鱼做上标记,∴鱼塘中估计有n ÷b a =an b(条). 故选:A .【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.二、填空题1、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.【详解】 ∵x 甲=84, x 乙=83.2,2S 甲=13.2, 2S 乙 =26.36, ∴x x >甲乙 ,2S <甲2S 乙,∴甲的平均成绩高,且甲的成绩较为稳定;故答案为:甲的平均成绩高,且甲的成绩较为稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、8【分析】设这组数据1x ,2x ,3x 的平均数为x ,则另一组数据124x -,224x -,324x -的平均数为24x -,因为数据1x ,2x ,3x 的方差为22221231()+()+()=23S x x x x x x ⎡⎤=---⎣⎦,所以数据124x -,224x -,324x -的方差为22221231(242+4)(242+4)(242+4)3S x x x x x x ⎡⎤=--+--+--⎣⎦,进行计算即可得. 【详解】解:设这组数据1x ,2x ,3x 的平均数为x ,则另一组数据124x -,224x -,324x -的平均数为24x -, ∵数据1x ,2x ,3x 的方差为: 22221231()+()+()=23S x x x x x x ⎡⎤=---⎣⎦, ∴数据124x -,224x -,324x -的方差为:22221231(242+4)(242+4)(242+4)3S x x x x x x ⎡⎤=--+--+--⎣⎦ = 2221231(22)(22)(22)3x x x x x x ⎡⎤-+-+-⎣⎦ = 22212314()()()3x x x x x x ⎡⎤-+-+-⎣⎦ = 42⨯=8故答案为:8.【点睛】本题考查了方差,解题的关键是掌握方差的公式.3、36【分析】根据“当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍”求解可得.【详解】解:∵数据a ,b ,c 的方差为4,∴数据3a ﹣2,3b ﹣2,3c ﹣2的方差32×4=36,故答案为:36.【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.4、11【分析】根据方差及平均数的定义解答.【详解】 解:由题意得610875a b ++++=, ∴11a b +=,故答案为:11.【点睛】此题考查方差的定义,平均数的计算公式,熟记方差的定义是解题的关键.5、417【分析】用字母“o”出现的个数除以总的字母个数即可得出答案.【详解】解:∵字母“o”出现的次数为4,∴该英语中字母“o”出现的频率为417;故答案为:417.【点睛】此题主要考查了频率,关键是掌握频率的定义,频率=频数÷数据总数.三、解答题1、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为750(人).【分析】(1)结合两个图形可得:A组频数为23,所占比例为23%,可得抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果.【详解】解:(1)结合两个图形可得:A组频数为23,所占比例为23%,∴抽取的总人数为:2310023%=(人),∴D组所占的比例为:8100%8% 100⨯=,∴a的值为8;(2)C组频数为:10023528215----=,补全统计图如图所示:(3)不少于9个小时的只有A、B两个组,总数为:235275+=,所占比例为:75100%75% 100⨯=,∴估计符合要求的人数为:100075%750⨯=(人).【点睛】题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟练掌握根据扇形统计图和条形统计图的获取信息是解题关键.2、(1)40;(2)见解析;(3)360【分析】(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:(3)估计科普类书籍的本数为1200×1240=360(本). 【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.3、(1)25,图见详解;(2)6.5;6;(3)12【分析】(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数,然后根据题意画出统计图;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.【详解】解:(1)1050%20÷=(组),2023105---=(组), =⨯=5%100%25%20m , 统计图如下:(2)∵8分这一组的组数为5, ∴各组得分的中位数是()176 6.52⨯+=,分数为6分的组数最多,故众数为6;故答案为:6.5,6;(3)由题可得,21201220⨯=(组), ∴该展演活动共产生了12个一等奖.【点睛】本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.4、(1)4,5;(2)4,4;(3)245人【分析】(1)根据所给数据分别求出次数为3和次数为5的人数即可;(2)根据中位数和众数的定义求解即可;(3)先求出样本中八年级学生参加志愿者活动的次数大于4次的人数占比,然后估计总体即可.【详解】解:(1)由所给数据可知:次数为3的人数有4人,即4a =;次数为5的人数有5人,即5b =, 故答案为:4,5;(2)由表格可知次数为4的人数最多,即参加志愿者活动的次数的众数为4,∵一共有20名学生参加调查,∴中位数为次数排在第10位和第11位的两个数据的平均数,即4442+=,故答案为:4,4;(3)由表格可知,样本中一共有5+2=7名学生参加志愿者活动的次数大于4次,∴估计该校八年级学生参加志愿者活动的次数大于4次的人数为770024520⨯=人.【点睛】本题主要考查了中位数,众数,频数分布表,用样本估计总体,解题的关键在于能够熟知相关知识.5、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×1240=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×1040=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

2022年必考点解析京改版八年级数学下册第十七章方差与频数分布重点解析试题(含详细解析)

2022年必考点解析京改版八年级数学下册第十七章方差与频数分布重点解析试题(含详细解析)

京改版八年级数学下册第十七章方差与频数分布重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是()A.“买中奖率为110的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,出现一次故障”是随机事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差大的更稳定2、一组数据:1,3,3,4,5,它们的极差是()A.2 B.3 C.4 D.53、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2=18[(x1-88)2+(x2-88)2+…+(x8-88)2],以下说法不一定正确的是()A.育才中学参赛选手的平均成绩为88分B.育才中学一共派出了八名选手参加C.育才中学参赛选手的中位数为88分D.育才中学参赛选手比赛成绩团体总分为704分4、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是()A.甲B.乙C.丙D.丁5、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是()A.平均数是80 B.众数是60 C.中位数是100 D.方差是206、已知一组数据﹣1,2,0,1,﹣2,那么这组数据的方差是()A.10 B.4 C.2 D.0.27、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是()A.平均数B.中位数C.众数D.方差8、在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A.甲.B.乙C.丙D.丁9、一组数据1,1,1,3,4,7,12,若加入一个整数a,一定不会发生变化的统计量是()A.众数B.平均数C.中位数D.方差10、甲、乙两位同学连续五次的数学成绩如下图所示:下列说法正确的是()A.甲的平均数是70 B.乙的平均数是80C.S2甲>S2乙D.S2甲=S2乙第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用_____估计总体平均数.(2)组中值:为了更好地了解一组数据的平均水平,往往把数据进行分组,分组后,一个小组的两个端点的数的平均数叫做这个小组的_____.(3)在频数分布表中,常用各组的_____代表各组的实际数据,把各组的_____看作相应组中值的权.2、某果农随机从甲、乙、丙三个品种的批把树中各选5棵,每棵产量的平均数x(单位:千克)及方差(单位:千克2)如表所示,他准备从这三个品种中选出一种产量既高又稳定的批把树进行种植,则应选的品种是 __.3、已知一组数据的方差S21n[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为_______.4、在数3141592653中,偶数出现的频率是______.5、已知一组数据:2,3,4,5,6,则这组数据的标准差是 __.三、解答题(5小题,每小题10分,共计50分)1、某学校要调查学生关于“新冠肺炎”防治知识的了解情况,从七、八年级各随机抽取了10名学生进行测试(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100)七年级10名学生的成绩是:80,86,99,96,90,99,100,82,89,99.八年级10名学生的成绩在C组中的数据是:94,90,93.七、八年级抽取的学生成绩统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠肺炎”知识较好?请说明理由.(3)该校七、八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的学生人数是多少?2、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有多少人?3、为落实“每天锻炼一小时,快乐学习一整天”的要求,某校举行校园阳光大课间活动,为了解七年级学生每周在校体育锻炼时间,随机抽取了部分学生进行调查,并绘制了以下不完整的频数分布表和频数分布直方图.(1)本次调查的学生总人数为______; (2)求a 、b 的值,并补全频数分布直方图;(3)若将调查结果绘制成扇形统计图,求锻炼时间在“56t ≤<”所对应的扇形圆心角的度数. 4、某学校为了调查学生利用“天天跳绳”APP 锻炼身体的使用频率,随机抽取了部分学生,利用调查问卷进行抽样调查:用“A ”表示“一周5次”,“B ”表示“一周4次”,“C ”表示“一周3次”,“D ”表示“一周2次”(必须选且只选一项),如图是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)本次调查中,共调查了多少人? (2)将图(2)补充完整;(3)如果该学校有学生1000人,请你估计该学校学生利用“天天跳绳”APP 锻炼身体的使用频率是“一周2次”的约有多少人?5、表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.(1)小明6次成绩的众数是_______分;中位数是_______分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注意:①平时成绩用四次成绩的平均数;②每次考试满分都是100分).-参考答案-一、单选题1、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【详解】解:A、“买中奖率为110的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B.【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.2、C【分析】根据极差的定义,即一组数据中最大数与最小数之差计算即可;【详解】极差是514-=;故选C.【点睛】本题主要考查了极差的计算,准确计算是解题的关键.3、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S2=18[(x1−88)2+(x2−88)2+…+(x8−88)2],∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.4、A【分析】根据方差的意义求解即可.【详解】解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,∴S甲2<S乙2<S丙2<S丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.5、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为60270903100807⨯++⨯+=、方差为()()()()22222260-80+70-80+390-80+100-801600==77S⨯⨯.观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.6、C 【分析】根据方差公式进行计算即可.方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差.2222121[()()()]n S x x x x x x n=-+-++-…【详解】﹣1,2,0,1,﹣2,这组数据的平均数为()11201205-+++-= 222221[12125]2S =⨯+++=故选C 【点睛】本题考查了求一组数据的方差,掌握方差的计算公式是解题的关键. 7、D 【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可. 【详解】解:由题意得:原来的平均数为1122324x +++==, 加入数字2之后的平均数为21223225x ++++==,∴平均数没有发生变化,故A 选项不符合题意; 原数据处在最中间的两个数为2和2, ∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,∴新数据的中位数为2,故B 选项不符合题意;原数据中2出现的次数最多,∴原数据的众数为2,新数据中2出现的次数最多,∴新数据的众数为2,故C 选项不符合题意; 原数据的方差为()()()22221112222320.54s ⎡⎤=-+⨯-+-=⎣⎦, 新数据的方差为()()()22222112322320.45s ⎡⎤=-+⨯-+-=⎣⎦, ∴方差发生了变化,故D 选项符合题意;故选D .【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.8、A【分析】根据方差的意义,即可求解.【详解】解:∵S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75∴2222甲乙丁丙<<<S S S S∴成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.9、A【分析】依据平均数、中位数、众数、方差的定义即可得到结论.【详解】解:A 、原来数据的众数是1,加入一个整数a 后众数仍为1,符合题意;B 、原来数据的平均数是297,加入一个整数a ,平均数一定变化,不符合题意; C 、原来数据的中位数是3,加入一个整数a 后,如果a≠3中位数一定变化,不符合题意;D 、原来数据的方差加入一个整数a 后的方差一定发生了变化,不符合题意;故选:A .【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.10、D【分析】根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案【详解】 由条形统计图可知,甲的平均数是()16070706080=685++++,故A 选项不正确; 乙的平均数是()17080807090=785++++,故B 选项不正确; 甲的方差为()()()2221260682706880685⎡⎤-+-+-⎣⎦56=, 乙的方差为()()()222127078280789078565⎡⎤-+-+-=⎣⎦,故C选项不正确,D选项正确;故选D.【点睛】本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.二、填空题1、样本平均数组中值组中值频数【分析】(1)由样本平均数的适用条件即可得;(2)根据组中值的定义(组中值是上下限之间的中点数值,以代表各组标志值的一般水平),即可得(3)权数,指变量数列中各组标志值出现的频数,据此即可得.【详解】解:(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用样本平均数估计总体平均数;(2)组中值是上下限之间的中点数值,以代表各组标志值的一般水平,可得一个小组的两个端点的数的平均数叫做这个小组的组中值;(3)在频数分布表中,常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,故答案为:①样本平均数;②组中值;③组中值;④频数.【点睛】题目主要考查样本平均数,组中值,权数的定义及适用条件,熟练掌握这几个定义是解题关键.2、甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.3、11【分析】根据方差及平均数的定义解答.【详解】 解:由题意得610875a b ++++=, ∴11a b +=,故答案为:11.【点睛】此题考查方差的定义,平均数的计算公式,熟记方差的定义是解题的关键.4、30%【分析】在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.【详解】由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:3100%30%10⨯= 故答案为:30%【点睛】 本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.5【分析】计算出平均数和方差后,再计算方差的算术平方根,即为标准差.【详解】 解:1(23456)45x =++++=,2222221[(24)(34)(44)(54)(64)]25s =-+-+-+-+-=, ∴.【点睛】本题考查的是标准差的计算,掌握方差的计算公式和方差与标准差的关系是解题的关键,注意标准差即方差的算术平方根.三、解答题1、(1)40,93.5,99;(2)八年级掌握得更好,理由见解析;(3)780人【分析】(1)由八年级学生成绩的扇形统计图可求得得分在C 组的百分比,根据各百分比的和为1即可求得a 的值;由扇形统计图可求得八年级得分在各个组的人数,从而可求得中位数b ;根据七年级10名学生成绩中出现次数最多的是众数,则可得c ;(2)两个年级得分的平均数相同,但八年级得分的方差较小,根据方差的特征即可判断八年级学生掌握得更好;(3)求出两个年级得分的优秀率做为全校得分的优秀率,即可求得得分为优秀的学生人数.【详解】(1)由八年级学生成绩的扇形统计图,成绩在C组的学生所占的百分比为:3100%30%10⨯=,则%110%20%30%40%a=---=∴a=40八年级得分在A组的有:10×20%=2(人),得分在B组的有:10×10%=1(人),得分在D组的有:10×40%=4(人)由此可知,得分的中位数为:939493.52b+==七年级10名学生的成绩中99分出现的次数最多,即众数为99,故c=99(2)八年级学生掌握得更好理由如下:因为两个年级的平均数相同,而八年级的众数与中位数都比七年级的高,说明八年级高分的学生更多;八年级成绩的方差比七年级的方差小,说明八年级成绩的波动更小,成绩更接近.(3)两个年级得分的优秀率为:67100%65% 20+⨯=1200×65%=780(人)所以参加此次调查活动成绩优秀的学生人数约为780人【点睛】本题是统计图与统计表的综合,考查了扇形统计图,方差、中位数、众数,样本估计总体等知识,读懂统计图,从中获取信息是关键.2、(1)100;(2)见解析;(3)600【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;(3)利用样本估计总体即可估计爱好运动的学生人数.【详解】解:(1)爱好运动的人数为40,所占百分比为40%∴共调查人数为:4040%100÷=,故答案为:100;()2爱好上网的人数所占百分比为10%∴爱好上网人数为:10010%10⨯=,∴爱好阅读人数为:10040201030---=,补全条形统计图,如图所示,(3)爱好运动的学生人数所占的百分比为40%,∴估计爱好运用的学生人数为:150040%600⨯=,故答案为:600;【点睛】本题考查统计的基本知识,样本估计总体,解题的关键是正确利用两幅统计图的信息.3、(1)40 (2)a=6,b=10%,频数分布直方图见解析(3)72°【分析】(1)根据体育锻炼时间“3≤t<4”频数10,占学生总人数的百分比是25%,可得答案;(2)由(1)的结果学生总人数可求a,由学生总人数和频数4,可求b;(3)根据体育锻炼时间“5≤t<6”占学生总人数的百分比20%,即可得答案.【详解】解:(1)∵体育锻炼时间“3≤t<4”频数10,百分比是25%,∴学生总人数为10÷25%=40;(2)∵学生总人数为40,∴a=40-4-10-8-12=6,b=41%=%=10% 4010;∴频数分布直方图为下图:(3)体育锻炼时间“5≤t<6” 占学生总人数的百分比为20%,∴对应的扇形圆心角的度数=20%360=72⨯︒︒.【点睛】本题考查了数据的收集与整理,做题的关键是掌握由频数和对应的百分比会求总数,频数和总数会求扇形的圆心角.4、(1)500人;(2)补全图形见解析;(3)100人【分析】(1)由C组有100人,占比20%,列式10020%,计算后可得答案;(2)先求解B组人数,再补全图形即可;(3)由总人数1000乘以D组“一周2次”的占比即可得到答案.【详解】解:(1)由C组有100人,占比20%,可得:本次调查中,共调查10020%=500人.(2)B组人数有50030%150人,补全图形如下:(3)该学校有学生1000人,该学校学生利用“天天跳绳”APP锻炼身体的使用频率是“一周2次”的约有:100010%=100人.【点睛】本题考查的是从扇形图与条形图中获取信息,补全条形统计图,利用样本估计总体,理解扇形图与条形图中关联信息是解本题的关键.5、(1)90,90;(2)小明平时成绩的方差5;(3)小明本学期的综合成绩是93.5分.解题过程见解析.【分析】(1)根据众数和中位线的概念求解即可;(2)先求出平时成绩的平均数,然后根据方差的计算公式代入求解即可;(3)根据加权平均数的计算方法求解即可.【详解】解:(1)由表格可知,出现次数最多的90,∴小明6次成绩的众数是90分;把这6次成绩按从小到大排列为:86,88,90,90,92,96,∴中间两个数为90,90, ∴中位数为:9090=902+, 故答案为:90,90;(2)平均分86889092894+++==, 小明平时成绩的方差()()()()22221868988899089928954⎡⎤=⨯-+-+-+-=⎣⎦; (3)8910%9030%9660%93.5⨯+⨯+⨯=,∴小明本学期的综合成绩是93.5分.【点睛】此题考查了平均数,中位数,众数,方差的计算等知识,解题的关键是熟练掌握平均数,中位数,众数,方差的计算方法.。

2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布达标测试试题(名师精选)

2022年最新强化训练京改版八年级数学下册第十七章方差与频数分布达标测试试题(名师精选)

京改版八年级数学下册第十七章方差与频数分布达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是()A.14,0.7 B.14,0.4 C.8,0.7 D.8,0.42、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为()A.500千克,7500元B.490千克,7350元C.5000千克,75000元D.4850千克,72750元3、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是()A.20m3B.52m3C.60m3D.100m34、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是()A.该班共有学生60人B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内C.某同学身高155厘米,那么班上恰有10人比他矮D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%5、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是()A .甲、乙的众数相同B .甲、乙的中位数相同C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差6、某手机公司新推出了10,10,10,10W X Y Z 四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是( )A .10WB .10XC .10YD .10Z 7、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A .甲比乙稳定B .乙比甲稳定C .甲与乙一样稳定D .无法确定8、中学生骑电动车上学给交通安全带来隐患,为了了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A.调查方式是普查B.该校只是360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度9、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是()A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;10、2020年6月1日《苏州市生活垃圾分类管理条例》正式实施.为了配合实施垃圾分类,让同学们了解垃圾分类的相关知识.八年级某班甲、乙、丙、丁四个小组的同学参加了年级“垃圾分类知识”预赛,四个小组的平均分相同,下面表格为四个小组的方差.若要从中选出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选()A.甲组B.乙组C.丙组D.丁组第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某校九年级进行了3次体育中考项目—1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是2S 甲=0.01,2S 乙=0.009,2S 丙=0.0093.则甲、乙、丙三位同学中成绩最稳定的是________.2、现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为20.28S =甲、20.36S =乙,则身高较整齐的球队是________队(填“甲”或“乙”). 3、如果一组数据1a ,2a ,…,n a 的方差是2,那么一组新数据12a ,22a ,…,2n a 的方差是__________.4、分析数据的频数分布,首先计算出这组数据中________的差,参照这个差值决定________和________,对数据进行分组;然后列________来统计数据,进而画________更直观形象的反映数据的分布情况.5、小亮是一位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频率是________.三、解答题(5小题,每小题10分,共计50分)1、萌萌同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生都只选择了一门课程).将获得的数据整理绘制了两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了 名学生;(2)请根据以上信息补全条形统计图;(3)扇形统计图中,“语文”所对应的圆心角度数是度;(4)若该校九年级共有1200名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对物理感兴趣.2、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.3、“中国梦”是中华民族每一个人的梦,各中小学开展经典诵读活动,是“中国梦”教育这一宏大乐章里的响亮音符某学校在经典诵读活动中,对全校学生用A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行评价,现从中抽取若干名学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少名学生进行调查;(2)将图甲中的条形统计图补充完整;(3)求出图乙中D等级所对应的扇形圆心角的度数;(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生获得B等级的评价.4、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图根据图中提供的信息,解决下列问题:(1)此次共调查了名学生;(2)请补全D类条形统计图;(3)扇形统计图中.B类所对应的扇形圆心角的大小为度;(4)该校共有1560名学生,估计该校表示“很喜欢”的A类的学生有多少人?5、贵州省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.铜仁市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A-了解很多”,“B-了解较多”,“C-了解较少”,“D-不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1900名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?-参考答案-一、单选题1、D【分析】根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为2465320++++=.则频率为80.4 20=.故选D.【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.2、C【分析】先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.【详解】解:选出的10棵油桃树的平均产量为:4451574748504953495210+++++++++ =50(千克),估计100棵油桃树的总产量为:50×100=5000(千克),按批发价的总收入为:15×5000=75000(元).故选C .【点睛】本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.3、B【分析】利用加权平均数求出选出的10名同学每家的平均节水量.再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果.【详解】30.5213 1.5223 1.310m ⨯+⨯+⨯+⨯=, 由此可估计全班同学的家庭一个月节约用水的总量是340 1.352m ⨯=.故选:B .【点睛】本题考查加权平均数和由样本估计总体.正确的求出样本的平均值是解答本题的关键.4、B【分析】由两幅统计图的数据逐项计算判断即可.【详解】解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,1525%60,故D正确,不符合题意;根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5、D【分析】根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.【详解】解:A.甲的众数为7,乙的众数为8,故此项错误;B.甲的中位数为7,乙的中位数为4,故此项错误;C.甲的平均数为() 26778615⨯++++=,乙的平均数为()1 2348855⨯++++=,甲的平均数>乙的平均数, 故此项错误;D.甲的方差为()()()()()2222212666767686 4.45⨯-+-+-+⎡⎤⎣⎦-+-=,乙的方差为()()()()()2222212535458585 6.45⨯-+-+-+⎡⎤⎣⎦-+-=,甲的方差小于乙的方差,故此项正确; 故选:D .【点睛】此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.6、D【分析】先根据平均成绩选出10,10X Z ,然后根据方差的意义求出10Z【详解】解:根据平均数高,平均成绩好得出10,10X Z 的性能好,根据方差越小,数据波动越小可得出10Z 的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键7、C【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.8、D【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【详解】解:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;B.在调查的400个家长中,有360个家长持反对态度,该校只有36025002250400⨯=个家长持反对态度,故本项错误,不符合题意;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;D.该校约有90%的家长持反对态度,本项正确,符合题意,故选:D.【点睛】本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.9、D【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A 选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:360︒乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:74017.5%=,A选项正确;60~80分钟的人数为:40451678----=人,先对数据排序后可得:最中间的数在第20,21之间,459+=,91625+=,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:7815+=人,估算全校人数中每天超过1小时的人数为:1580030040⨯=人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:43603640︒⨯=︒,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.10、D【分析】在平均分数相同的情况下,方差越小,波动越小,成绩越稳定,即可得出选项.【详解】解:由图标可得:2222S S S S <<<丁乙甲丙,∵四个小组的平均分相同,∴若要从中选出一个实力更平均的小组代表年级参加学校决赛,应选择丁组,故选:D .【点睛】题目主要考查了方差,理解方差反映数据的波动程度,当平均数相同时,方差越大,波动性越大是解题关键.二、填空题1、乙【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093,∴s 乙2<s 丙2<s 甲2,∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、甲【分析】根据方差的意义可判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:∵S 2甲<S 2乙∴身高较整齐的球队是甲队.故答案为:甲.【点睛】本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3、8【分析】设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',代入方差公式2222121[()()()]n s x x x x x x n =-+-++-,计算即可.【详解】解:设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',∵2222121[()()()]n s a x a x a x n =-+-++-, ∴2222121[(22)(22)(22)]n s a x a x a x n'=-+-++-, 则2222121[4()4()4()]n s a x a x a x n '=-+-++-, ∴2222124[()()()]n s a x a x a x n '=-+-++-,∴224s s '=,2428s '=⨯=. 【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据1a ,2a ,…,n a 的方差是2s ,那么另一组数据1ka ,2ka ,⋯,n ka 的方差是22k s .4、最大值与最小值 组距 组数 频数分布表 频数分布直方图【分析】根据频数分布直方图的步骤即可得出【详解】 分析数据的频数分布,首先计算出这组数据中最大值与最小值的差,参照这个差值决定组距和组数,对数据进行分组;然后列频数分布表来统计数据,进而画频数分布直方图更直观形象的反映数据的分布情况.故答案为:最大值与最小值;组距;组数;频数分布表;频数分布直方图【点睛】本题考查频数直方分布图,掌握频数直方分布图的步骤与画法是解题关键,5、0.7534【分析】根据频率=频数÷总数进行求解即可.【详解】解:∵小亮在10分钟之内罚球20次,共罚进15次, ∴小亮点球罚进的频率是150.7520=, 故答案为:0.75.【点睛】本题主要考查了根据频数求频率,熟知频率=频数÷总数是解题的关键.三、解答题1、(1)50;(2)见解析;(3)64.8;(4)192.【分析】(1)用喜欢化学的人数除以它所占的百分比得到调查的总人数;(2)先计算出对数学感兴趣的人数,然后补全条形统计图;(3)用对语文感兴趣的人数的百分比乘以360°即可;(4)用1200乘以样本中对物理感兴趣的人数的百分比即可.【详解】解:(1)10÷20%=50,所以在这次调查中一共抽取了50名学生,故答案为:50;(2)对数学感兴趣的人数为50﹣9﹣5﹣8﹣10﹣3=15(人),补全条形统计图为:(3)扇形统计图中,“语文”所对应的圆心角度数为360°×950=64.8°,故答案为:64.8;(4)1200×850=192,所以估计该校九年级学生中有192名学生对物理感兴趣.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:110×(10×4+8×2+7+9×3)=9,则方差是:110×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1 n[(x1−x)2+(x2−x)2+…+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3、(1)100名;(2)图见解析;(3)18︒;(4)700.【分析】(1)根据C等级的条形统计图和扇形统计图的信息即可得;(2)根据(1)的结果,求出B等级的学生人数,再补全条形统计图即可;(3)利用360︒乘以D等级所占的百分比即可得;(4)利用2000乘以B等级所占的百分比即可得.【详解】解:(1)抽取调查的学生总人数为1010%100÷=(名),答:共抽取了100名学生进行调查;(2)B等级的人数为1005010535---=(名),则补全条形统计图如下:(3)图乙中D等级所对应的扇形圆心角的度数为5360100%18100⨯⨯=︒︒,答:图乙中D等级所对应的扇形圆心角的度数18︒;(4)352000100%700100⨯⨯=(名),答:估计有700名学生获得B等级的评价.【点睛】本题考查了条形统计图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键.4、(1)60;(2)补全统计图见详解;(3)150;(4)估计该校表示“很喜欢”的A 类的学生有260人.【分析】(1)C 类学生占比25%,根据条形统计图的数据可得C 类学生有15人,由此计算总人数即可;(2)计算得出D 类学生人数,根据D 类学生人数补全条形统计图即可;(3)根据前面的结论,计算出B 类人数占总调查人数的比值,将计算结果乘360︒即可得出扇形圆心角的度数;(4)利用调查样本所占的百分比估计总体学生数即可.【详解】解:(1)此次调查学生总数:1525%60÷=(人),故答案为:60;(2)D 类人数为:6010251510=---(人),补全条形统计图,如图所示,(3)扇形统计图中,B 类所对应的扇形圆心角的大小为:2536015060⨯︒=︒, 故答案为:150;(4)101560=26060(人).∴估计该校表示“很喜欢”的A类的学生有260人.【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.5、 (1) 120(名);(2) 补全统计图见详解(3)855(名).【分析】(1)结合扇形统计图D组百分比5%和条形统计图D组人数6名用除法求出全部学生数即可;(2) 利用(1)中的数据计算出C组的人数,在计算出A和B的百分比即可;(3)根据用样本B组的百分比为45%,估计总体中含有的数量,利用B组的百分比×总人数计算出人数即可.【详解】解:(1)抽样调查的学生人数为6÷5%=120(名);(2)A的百分比:36120×100%=30%,B的百分比:54120×100%=45%,C组的人数:120×20%=24名;补全统计图,如图所示:(3)对“节约教育”内容“了解较多”的有1900×45%=855(名).【点睛】本题考查的是条形统计图和扇形统计图的信息获取与处理,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,用样本的百分比含量估计总体中的数量.。

备战中考数学(北京课改版)巩固复习第十七章方差与频数分布(含解析)

备战中考数学(北京课改版)巩固复习第十七章方差与频数分布(含解析)

备战中考数学(北京课改版)巩固复习第十七章方差与频数分布(含解析)2019备战中考数学(北京课改版)巩固复习-第十七章方差与频数分布(含解析)一、单选题1.在投掷一枚硬币的试验中,共投掷了100次,“正面朝上”的频数51,则“正面朝上”的频率为()A. 0.49B. 0.51C. 49D. 512.小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则20年后小明等五位同学年龄的方差()A. 不变B. 增大C. 减小D. 无法确80.5之间的人数是()A. 9B. 18C. 12D. 65.在数据分析的过程中,有人对两个不同城市学生的数学成绩进行了分析,结果发现这两座城市统计的方差值都是10.34,那么下列说法中,正确的是()A. 两城市学生的成绩一样B. 两城市学生的数学平均分一样C. 两城市数学成绩的中位数一样D. 两城市学生数学成绩波动情况一样6.若频率为0.2,总数为100,则频数为()A. 0.2B. 200C. 100D. 207.小明在选举班委时得了28票,下列说法错误的是()A. 不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变C. 小明所在班级的学生人数不少于28人D. 小明的选票的频率不能大于18.某个样本的频数分布直方图中一共有4组,从左至右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为()A. 6.5~9.5B. 9.5~12.5C. 8~11D. 5~89.有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A. 4组B. 5组C.6组D.7组10.不能描述一组数据的离散程度的是()A. 极差B. 方差C. 平均数D. 标准差11.下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x <36小组),根据图形提供的信息,下列说法中错误的是()A. 该学校教职工总人数是50人B. 年龄在40≤x<42小组的教职工人数占该学校总人数的20%C. 教职工年龄的中位数一定落在40≤x<42这一组D. 教职工年龄的众数一定在38≤x<40这一组二、填空题12.甲乙两人进行飞镖比赛,每人各投5次,其中甲所得环数的方差为15,乙所得环数的方差为12.5,那么成绩较稳定的是________(填“甲”或“乙”).13.某班级进行了一次诗歌朗诵比赛,甲、乙两组学生的成绩如表所示:组别平均分中位数方差甲 6.9 8 2.65乙 7.1 7 0.38你认为哪一组的成绩更好一些?并说明理由.答:________组(填“甲”或“乙”),理由是________.14.如果一组数据a1, a2,…,an的方差是2,那么一组新数据2a1, 2a2, (2)n的方差是________.15.某班6名同学在一次“1分钟仰卧起坐”测试中,成绩为(单位:次):39,42,42,37,41,39.这组数据的方差是________ .16.甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数,方差S甲2<S 乙2,则成绩较稳定的同学是________(填“甲”或“乙”).17.甲、乙、丙、丁参加体育训练,近期10次跳绳的平均成绩每分钟175个,其方差如下表所示:选手甲乙丙丁方差0.0230.0170.0210.019则这10次跳绳中,这四个人中发挥最稳定的是________.18.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.2环,方差分别为s甲2=0.56,s乙2=0.60,s丙2=0.50,s丁2=0.45,则成绩最稳定的是________.三、解答题19.图①表示的是某综合商场今年1—5月的商品各月销售总额的情况,图②表示商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1—5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部的销售额比4月份减少了,你同意他的看法吗?请说明理由.20.新学期开学初,王刚同学对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:时间分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5频数20 25 30 15 10 (1)王刚同学抽取样本的容量是多少?(2)请你根据表中数据补全图中的频数分布直方图;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?四、综合题21.某中学初三年级的同学参加了一项节能的社会调查活动,为了了解家庭用电的情况,他们随即调查了某地50个家庭一年中生活用电的电费支出情况,并绘制了如下不完整的频数分布表和频数分布直方图(费用取整数,单位:元).分组/元频数频率1000<x <1200 3 0.0601200<x12 0.2<1400 401400<x <1600 18 0.3601600<x <1800 a 0.2001800<x<20195 b2019<x <2200 2 0.040合计50 1.000请你根据以上提供的信息,解答下列问题:(1)补全频数分布表a=________,b=________,和频数分布直方图________;(2)这50个家庭电费支出的中位数落在哪个组内?(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?22.如图是若干名同学在引体向上训练时一次测试成绩(个)的频数分布折线图.(1)参加这次测试共有多少名同学?(2)组中点为9个一组的频数是多少?(3)分布两端虚设的频数为零的是哪两组?23.下图表示的是某班同学衣服上口袋的数目:(1)从图中是否能够得出以下信息?①只有4个人的衣服上有4个口袋;②只有1个人的衣服上有8个口袋;③只有3个人的衣服上有5个口袋;(2)根据上图填写下面的频数分布表口袋1≤3≤5≤7≤x数目 x<3 x<5x<7x<9≥9划记频数答案解析部分一、单选题1.【答案】B【考点】频数与频率【解析】【解答】解:“正面朝上”的频率==0.51.故选B.【分析】根据频率=即可求解.2.【答案】A【考点】方差【解析】【分析】方差是用来衡量一组数据波动大小的量,只要数据没有倍数关系的变化,其方差就不会变。

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布定向测试试卷(含答案详解)

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布定向测试试卷(含答案详解)

京改版八年级数学下册第十七章方差与频数分布定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一组数据a -1、b -1、c -1、d -1、e -1、f -1、g -1的平均数是m ,方差是n ,则另一组数据2a -3、2b -3、2c -3、2d -3、2e -3、2f -3、2g -3的平均数和方差分别是( )A .2m -3、2n -3B .2m -1、4nC .2m -3、2nD .2m -3、4n2、在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是( )A .7B .8C .9D .103、一组数据1,1,1,3,4,7,12,若加入一个整数a ,一定不会发生变化的统计量是( )A .众数B .平均数C .中位数D .方差4、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是( )A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<5、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A .甲B .乙C .丙D .丁6、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S 2=18[(x 1-88)2+(x 2-88)2+…+(x 8-88)2],以下说法不一定正确的是( )A .育才中学参赛选手的平均成绩为88分B .育才中学一共派出了八名选手参加C .育才中学参赛选手的中位数为88分D .育才中学参赛选手比赛成绩团体总分为704分7、已知数据1x ,2x ,3x 的平均数 5x =,方差23S =,则数据12x ,22x ,32x 的平均数和方差分别为( )A .5,12B .5,6C .10,12D .10,68、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为( )A .500千克,7500元B .490千克,7350元C .5000千克,75000元D .4850千克,72750元9、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A .平均数B .中位数C .方差D .众数10、为了了解某校七年级800名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x 为:6080x ≤<,则以下说法正确的是( )A .跳绳次数不少于100次的占80%B .大多数学生跳绳次数在140160-范围内C .跳绳次数最多的是160次D .由样本可以估计全年级800人中跳绳次数在6080-次的大约有84人第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、数据3,3,4,4,6的方差等于______.2、从甲、乙两块试验田各随机抽取100株麦苗测量高度(单位:cm ),计算它们的平均数和方差,结果为:13x =甲,13x =乙,2=3.6S 甲,215.8S =乙.则麦苗长势比较整齐的试验田是________(填“甲”或“乙”).3、阅读下列材料:为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了10次,成绩(单位:分)如下:回答下列问题:(1)甲成绩的平均数是_______,乙成绩的平均数是_______.(2)经计算知2213.2,26.36s s ==乙甲,这表明______(用简明的文字语言表述).(3)你认为选谁去参加比赛更合适?________,理由是_________.4、某科研小组为了考查A 区域河流中野生鱼的数量,从中捕捞200条,作上标记后,放回河中,经过一段充足的时间后,再从中抽捞出300条,发现有标记的鱼有15条,则估计A 区域河流中野生鱼有____条.5、某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).三、解答题(5小题,每小题10分,共计50分)1、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:A 表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图根据图中提供的信息,解决下列问题:(1)此次共调查了名学生;(2)请补全D类条形统计图;(3)扇形统计图中.B类所对应的扇形圆心角的大小为度;(4)该校共有1560名学生,估计该校表示“很喜欢”的A类的学生有多少人?2、某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:请根据图中提供的信息,完成下列问题:(1)在这次调查中,一共抽查了名学生;(2)“羽毛球”部分的学生有人,并补全统计图;(3)“足球”部分所对应的圆心角为度;(4)如果该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?3、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?4、由重庆市教育委员会主办的中小学生艺术展演活动落下帷幕,重庆某中学学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m=,补全条形统计图;(2)各组得分的中位数是分,众数是分;(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?5、为进一步推广大课间活动,某中学对已开设的A篮球、B立定跳远、C跑步、D跳绳,四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)学校共抽取了多少学生进行调查;(2)通过计算把条形统计图补充完整;(3)若该校共用800名学生,请你估计喜欢立定跳远和跳绳活动项目的学生共有多少人.-参考答案-一、单选题1、B【分析】根据平均数和方差的变化规律即可得出答案.【详解】∵a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,∴数据a、b、c、d、e、f、g的平均数是m+1,方差是n,∴2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22•n=4n;故选:B.【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.2、A【分析】每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数.【详解】解:第4小组的频数是40−(6+5+15+7)=7,故选:A.【点睛】本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.3、A【分析】依据平均数、中位数、众数、方差的定义即可得到结论.【详解】解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;B、原来数据的平均数是297,加入一个整数a,平均数一定变化,不符合题意;C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;故选:A.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.4、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D.【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.5、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意, 丁同学的平均分为:9796989797975++++=, 方差为:222221[(9797)(9697)(9897)(9797)(9797)]0.45-+-+-+-+-=;∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D .【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S 2=18[(x 1−88)2+(x 2−88)2+…+(x 8−88)2], ∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定, 故选:C .【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式. 7、C 【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可. 【详解】解:∵数据1x ,2x ,3x 的平均数5x =即:123++53x x x = ∴数据12x ,22x ,32x 的平均数为1231232+222()1033x x x x x x +++==又∵数据1x ,2x ,3x 的方差23S =即:()()()22212355533x x x -+-+-=∴数据12x ,22x ,32x 的方差为()()()()()()222222123123210210210454545=431233x x x x x x -+-+--+-+-=⨯=故选:C 【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键. 8、C 【分析】先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.【详解】解:选出的10棵油桃树的平均产量为:+++++++++4451574748504953495210=50(千克),估计100棵油桃树的总产量为:50×100=5000(千克),按批发价的总收入为:15×5000=75000(元).故选C.【点睛】本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.9、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.10、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘100%即可得;由频数分布直方图可知,大多数学生跳绳次数在120140-范围内;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是160次;由样本可以估计全年级800人中跳绳次数在6080-次的大约有48006450⨯=(人),进行判断即可得. 【详解】A 、跳绳次数不少于100次的占101812100%80%50++⨯=,选项说法正确,符合题意; B 、由频数分布直方图可知,大多数学生跳绳次数在120140-范围内,选项说法错误,不符合题意; C 、每组数据包括左端值不包括右端值,故跳绳次数最多的不是160次,选项说法错误,不符合题意; D 、由样本可以估计全年级800人中跳绳次数在6080-次的大约有48006450⨯=(人),选项说法错误,不符合题意; 故选A . 【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解. 二、填空题 1、1.2 【分析】根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可. 【详解】解:这组数据的平均数是:()1334465++++=4,则这组数据的方差是:()()()()()22222134344444645⎡⎤-+-+-+-+-⎣⎦=1.2,故答案为:1.2. 【点睛】本题考查方差的定义,掌握方差的计算方法是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 2、甲 【分析】根据题意可得:22S S <甲乙,即可求解. 【详解】解:∵13x =甲,13x =乙,2=3.6S 甲,215.8S =乙.∴22S S <甲乙,∴甲试验田麦苗长势比较整齐. 故答案为:甲 【点睛】本题主要考查了利用方差判断稳定性,熟练掌握一组数据方差越小越稳定是解题的关键. 3、84 83.2 甲的成绩比乙稳定 甲 甲的平均成绩高且比较稳定 【分析】(1)利用平均数等于一组数据的总和除以这组数据的个数,即可求解; (2)根据题意得:22s s <甲乙,则甲的成绩比乙稳定,即可求解; (3)根据甲的平均成绩高且比较稳定,即可确定甲去. 【详解】(1)甲成绩的平均数是:()1768490868187868285838410+++++++++= ;乙成绩的平均数是:()18284858979809189747983.210+++++++++= ; (2)∵2213.2,26.36s s ==乙甲,∴22s s <甲乙,∴甲的成绩比乙稳定,(3)甲去参加比赛更合适,理由:甲的平均成绩高且比较稳定. 【点睛】本题主要考查了求平均数,运用平均数和方差作决策,熟练掌握平均数等于一组数据的总和除以这组数据的个数是解题的关键. 4、4000 【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到15300,而在总体中,有标记的共有200条,即可得出答案. 【详解】解:∵300条鱼中发现有标记的鱼有15条, ∴有标记的占到15300, ∵有200条鱼有标记, ∴该河流中有野生鱼200÷15300=4000(条); 故答案为:4000. 【点睛】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想. 5、①②③ 【分析】根据中位数,平均数和方差的意义,逐一判断即可. 【详解】解:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确. 故答案是:①②③. 【点睛】本题主要考查中位数,平均数和方差,掌握中位数和方差的意义,是解题的关键. 三、解答题1、(1)60;(2)补全统计图见详解;(3)150;(4)估计该校表示“很喜欢”的A 类的学生有260人. 【分析】(1)C 类学生占比25%,根据条形统计图的数据可得C 类学生有15人,由此计算总人数即可; (2)计算得出D 类学生人数,根据D 类学生人数补全条形统计图即可;(3)根据前面的结论,计算出B 类人数占总调查人数的比值,将计算结果乘360︒即可得出扇形圆心角的度数;(4)利用调查样本所占的百分比估计总体学生数即可. 【详解】解:(1)此次调查学生总数:1525%60÷=(人), 故答案为:60;(2)D 类人数为:6010251510=---(人),补全条形统计图,如图所示,(3)扇形统计图中,B类所对应的扇形圆心角的大小为:2536015060⨯︒=︒,故答案为:150;(4)101560=26060⨯(人).∴估计该校表示“很喜欢”的A类的学生有260人.【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.2、(1)100;(2)20;作图见解析;(3)36︒;(4)240【分析】(1)篮球人数为25,占总人数的25%,可以得到调查学生总人数;(2)羽毛球部分的学生占总人数的20%,可得到羽毛球部分的学生人数;(3)足球部分为10人,占总人数的10%,占圆心角的10%,可得到足球部分对应圆心角的大小;(4)用喜欢跳绳部分的比例乘以该学校的总人数,就能估计出该校喜欢跳绳的总人数.【详解】解(1)设调查学生总人数为n则有25 25100n=⨯%%解得100n=故答案为100.(2)羽毛球部分的学生占总人数的20%,∴羽毛球的人数为1002020⨯=%故答案为20.统计图补充如图所示:(3)由图知足球部分的人数为10∴足球部分占总人数的10%∴足球部分对应圆心角的大小为10360=36⨯︒︒%故答案为36.(4)跳绳人数占比为2010020 100⨯=%%∴该校喜欢跳绳的人数有120020240⨯=%(人);答:该校有240名学生喜欢跳绳【点睛】本题考察了统计图.解题的关键与难点在于理清图中数据的含义以及数据之间的关系.3、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×1240=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×1040=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.4、(1)25,图见详解;(2)6.5;6;(3)12 【分析】(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数,然后根据题意画出统计图;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数. 【详解】解:(1)1050%20÷=(组),2023105---=(组),=⨯=5%100%25%20m , 统计图如下:(2)∵8分这一组的组数为5, ∴各组得分的中位数是()176 6.52⨯+=, 分数为6分的组数最多,故众数为6; 故答案为:6.5,6;(3)由题可得,212012⨯=(组),20∴该展演活动共产生了12个一等奖.【点睛】本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.5、(1)学校共抽取了150名学生进行调查;(2)见解析;(3)400人【分析】(1)根据题意由A项目人数及其所占百分比可得被调查总人数;(2)由题意根据四个项目人数之和等于总人数求出C项目人数,从而补全图形;(3)根据题意用总人数乘以样本中喜欢立定跳远和跳绳活动项目的学生所占比例即可.【详解】解:(1)根据题意得:15÷10%=150(名).答:学校共抽取了150名学生进行调查.(2)本项调查中喜欢“跑步”的学生人数是;150﹣15﹣45﹣30=60(人),画图如下:(3)800×(20%+30%)=400(人)答:估计全校喜欢立定跳远和跳绳活动项目的学生共有400人.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.。

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布定向测试练习题(精选)

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布定向测试练习题(精选)

京改版八年级数学下册第十七章方差与频数分布定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( )A .甲B .乙C .丙D .丁 2、下列说法中正确的是( ).A .想了解某河段的水质,宜采用全面调查B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小3、为了了解某校七年级800名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x 为:6080x ≤<,则以下说法正确的是( )A .跳绳次数不少于100次的占80%B .大多数学生跳绳次数在140160-范围内C .跳绳次数最多的是160次D .由样本可以估计全年级800人中跳绳次数在6080-次的大约有84人4、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是( )A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<5、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是( )A .平均数是80B .众数是60C .中位数是100D .方差是206、已知一组数据的方差s 2=15[(6﹣7)2+(10﹣7)2+(a ﹣7)2+(b ﹣7)2+(8﹣7)2](a ,b 为常数),则a +b 的值为( )A .5B .7C .10D .117、在频数分布表中,所有频数之和( )A .是1B .等于所有数据的个数C .与所有数据的个数无关D .小于所有数据的个数8、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为()A.500千克,7500元B.490千克,7350元C.5000千克,75000元D.4850千克,72750元9、甲、乙两位同学连续五次的数学成绩如下图所示:下列说法正确的是()A.甲的平均数是70 B.乙的平均数是80C.S2甲>S2乙D.S2甲=S2乙10、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆周率π≈3.141592653589793,数字5出现的频数是____.2、已知一组数据的方差S21n[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为_______.3、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.4、一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.5、数据3,3,4,4,6的方差等于______.三、解答题(5小题,每小题10分,共计50分)1、安岳县教育和体育局在全县中小学开展群文阅读活动,要求每人暑假假期阅读3-6本图书.活动结束后随机抽查了40名学生每人的阅读图书量,并将其分为四类:A:三本,B:四本,C:五本,D:六本,将各类的人数绘制成扇形统计图(图1)和条形统计图(图2),经确定扇形统计图是正确的,而条形统计图存在错误.(1)请指出条形统计图中存在的错误,并说明理由;(2)若该校有3000名学生,请估计全校共有多少名学生阅读量为B类.(3)请计算D类学生在扇形统计图中的圆心角.2、某校为研究学生的课余爱好情况,采取抽样调査的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有_______名;(2)补全条形统计图,并计算阅读部分圆心角是_______度;(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?3、一个口袋中有10个黑球和若干个白球,从口袋中随机摸出一球,记下其颜色后再把它放回口袋中摇匀,重复上述过程,共试验100次,其中75次摸到白球,估计袋中共有多少球?4、为庆祝中国共产党建党100周年,某中学组织七、八年级全体学生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).收集数据:七年级:90,95,95,80,85,90,80,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过计算求出e的值;(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(4)该校七八年级共1600人,本次竞赛成绩不低于90分的为“优秀”,估计这两个年级共多少名学生达到“优秀”?5、今年是中国共产党建党100周年,为了更好地对中学生开展党史学习教育活动,甲、乙两校进行了相关知识测试.在两校各随机抽取20名学生的测试成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲校20名学生成绩的频数分布表和频数分布直方图表1甲校学生样本成绩频数分布表:b.甲校成绩在8090≤<的这一组的具体成绩是:83,86,87,84,88,89,89,89mc.甲、乙两校成绩的统计数据如表2所示:根据以如图表提供的信息,解答下列问题:(1)表1中=a ____;表2中m =___;并补全图1甲校学生样本成绩频数分布直方图;(2)在此次测试中,某学生的成绩是86分,在他所属学校排在前10名,由表中数据可知该学生是___校的学生(填“甲”或“乙”),理由____;(3)若甲校共有1200人,成绩不低于85分为“优秀”,则甲校成绩“优秀”的人数约为多少人?-参考答案-一、单选题1、D【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵x x x x =<=乙丙甲丁,∴从丙和丁中选择一人参加比赛,∵S 丙2>S 丁2,∴选择丁参赛,故选:D .【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.2、B【分析】分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.【详解】解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;故选:B.【点睛】本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘100%即可得;由频数分布直方图可知,大多数学生跳绳次数在120140-范围内;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是160次;由样本可以估计全年级800人中跳绳次数在6080-次的大约有48006450⨯=(人),进行判断即可得.【详解】A、跳绳次数不少于100次的占101812100%80%50++⨯=,选项说法正确,符合题意;B 、由频数分布直方图可知,大多数学生跳绳次数在120140-范围内,选项说法错误,不符合题意;C 、每组数据包括左端值不包括右端值,故跳绳次数最多的不是160次,选项说法错误,不符合题意;D 、由样本可以估计全年级800人中跳绳次数在6080-次的大约有48006450⨯=(人),选项说法错误,不符合题意;故选A .【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解.4、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A 中包含的数据有:6和7,其频数为2;选项B 中包含的数据有:8,8,8,9,9,9,其频数为6;选项C 中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D 中包含的数据有:12,12,12,13,其频数为4,故选:D .【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.5、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为60270903100807⨯++⨯+=、方差为()()()()22222260-80+70-80+390-80+100-801600==77S⨯⨯.观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.6、D【分析】根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,a,b,8,其平均数为7,则15×(6+10+a+b+8)=7,∴a+b=11,故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.7、B【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解.【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确;B. 频数之和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关,故选项C不正确;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确.故选择B.【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键.8、C【分析】先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.【详解】解:选出的10棵油桃树的平均产量为:+++++++++4451574748504953495210=50(千克),估计100棵油桃树的总产量为:50×100=5000(千克),按批发价的总收入为:15×5000=75000(元).故选C.【点睛】本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.9、D【分析】根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案【详解】 由条形统计图可知,甲的平均数是()16070706080=685++++,故A 选项不正确; 乙的平均数是()17080807090=785++++,故B 选项不正确; 甲的方差为()()()2221260682706880685⎡⎤-+-+-⎣⎦56=, 乙的方差为()()()222127078280789078565⎡⎤-+-+-=⎣⎦, 故C 选项不正确,D 选项正确;故选D .【点睛】本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.10、B【分析】根据频率分布直方图的意义,从左到右各个小组的频率之和是1,结合题意,可得第五小组的频率,进而根据同时每小组的频率=小组的频数:总人数可得此次统计的样本容量;又因为合格成绩为20,可得本次测试的合格率,即答案.【详解】解:由频率的意义可知,从左到右各个小组的频率之和是1,从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,∴第五小组的频率是10.050.150.250.300.25----=,∴此次统计的样本容量是250.25100÷=.∵合格成绩为20,∴本次测试的合格率是0.250.300.250.880%++==.故选B .【点睛】本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.二、填空题1、3【分析】从 3.141592653589793π≈数5出现的次数即可得出答案.【详解】在 3.141592653589793π≈中,5出现了3次,∴数字5出现的频数是3.故答案为:3.【点睛】本题考查频数的定义:一组数据中,某数据出现的次数,掌握频数的定义是解题的关键. 2、11【分析】根据方差及平均数的定义解答.【详解】 解:由题意得610875a b ++++=, ∴11a b +=,故答案为:11.【点睛】此题考查方差的定义,平均数的计算公式,熟记方差的定义是解题的关键.3、16【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.【详解】解:由频数分布直方图可得,这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,故答案为:16.【点睛】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.4、7【分析】根据平均数和方差的计算公式即可得.【详解】解:设数据,,,,a b c d e 的平均数为5a b c d e x ++++=, 则2,2,2,2,2a b c d e +++++的平均数为2222225a b c d e x +++++++++=+, 数据,,,,a b c d e 的方差是7,()()()()()22222175a x b x c x d x e x ⎡⎤∴-+-+-+-+-=⎢⎥⎣⎦, ()()()()()222221222222222275a x b x c x d x e x ⎡⎤∴+--++--++--++--++--=⎢⎥⎣⎦,即2,2,2,2,2a b c d e +++++的方差是7,故答案为:7.【点睛】本题考查了求方差,熟记公式是解题关键.5、1.2【分析】根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可.【详解】 解:这组数据的平均数是:()1334465++++=4, 则这组数据的方差是:()()()()()22222134344444645⎡⎤-+-+-+-+-⎣⎦=1.2, 故答案为:1.2.【点睛】本题考查方差的定义,掌握方差的计算方法是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题1、(1)C 项错误图书数应为12,理由见解析;(2)该校有3000名学生,估计全校共1200学生阅读量为B 类;(3)D 类学生在扇形统计图中的圆心角为36︒.【分析】(1)依次计算每一项正确的数量,即可判断条形统计图的错误;(2)利用样本估计总体的思想解决问题即可;(3)用360°乘以“D”类人数所占比例即可;.【详解】解:(1)C项错误,学生数应为12,理由如下:A类学生数是:4020%8⨯=,B类学生数是:4040%16⨯=,C类学生数是:4030%12⨯=,D类学生数是:4010%4⨯=,所以,C项错误,学生数应为12.(2)该校有3000名学生,估计学生阅读量为B类人数:300040=1200⨯%(人).所以,该校有3000名学生,估计全校共1200学生阅读量为B类.(3)D类学生在扇形统计图中的圆心角:36010=36︒⨯︒%.所以,D类学生在扇形统计图中的圆心角为36︒.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.2、(1)100,600;(2)图形见解析,108°;(3)500【分析】(1)根据娱乐的人数以及百分比求出总人数即可.再根据抽查的学生中爱好运动的学生比例计算全校爱好运动的人数.(2)求出阅读的人数,画出条形图即可,利用360°×百分比取圆心角.(3)根据总人数,个体,百分比之间的关系解决问题即可.【详解】(1)总人数=20÷20%=100(名),若该校共有1500名学生,估计全校爱好运动的学生有1500×40100=600(名).故答案为100,600.(2)阅读人数10040201030---=人圆心角=30360108100⨯︒=︒ 条形图如图所示:故答案为108.(3)150÷30%=500(名),答:估计九年级有500名学生.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、40【分析】根据频率稳定性定理,用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,进而得出得到白球的概率,即可得出等式求出即可.【详解】解:设小球共有x 个,根据题意可得:1075100x x -= 解得:x =40.经检验x =40,为方程的解且符合题意,答:袋中共有40个球【点睛】此题主要考查了分式方程的应用和利用频率估计概率,得出求白球的频率公式是解题关键.4、(1)a =2,b =90,c =90,d =90;(2)31;(3)八年级的学生成绩好,理由见解析;(4)1040人【分析】(1)通过八年级抽取人数10人,即可得到a ,根据中位数、平均数、众数的定义得到b 、c 、d ;(2)根据方差的计算公式,求解即可;(3)由于中位数和众数相同,通过分析平均数和方差即可得到答案;(4)根据抽取的人中,不低于90分的比例即可得到两个年级共多少名学生达到“优秀”.【详解】解:(1)观察八年级95分的有2人,故a =2;七年级成绩按从小到大顺序排列为80,85,85,85,90,90,90,95,95,100, 七年级的中位数为9090920+=,故b =90; 八年级的平均数为:1(85895809590909010090]9010⨯+++++++++=,故c =90; 八年级中90分的最多,故d =90;(2)七年级的方差2222221(8089)(8589)4(9089)2(9589)(10089)3110e +⎡⎤=⨯-⨯-+⨯-+⨯-+-=⎣⎦; (3)八年级的学生成绩好,理由如下:七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更稳定,综上,八年级的学生成绩好;(4)∵131600104020⨯=(人), ∴估计该校七、八年级这次竞赛达到优秀的有1040人.【点睛】本题考查了中位数、众数、方差、平均数,以及样本估计总体,审清题中数据并了解基本的定义是解题的关键.5、(1)1,87.5;补全图见解析;(2)乙,理由见解析;(3)甲校成绩“优秀”的人数约为720人.【分析】(1)根据表1中的数据,可以求得a 、b 的值,进而由中位数的定义可得m 的值,可补全图1甲校学生样本成绩频数分布直方图;(2)根据表2中的数据,可以得到该名学生是哪个学校的,并说明理由;(3)根据表1中的数据,可以计算出甲校成绩“优秀”的人数约为多少人.【详解】解:(1)由题意可得:a =20×0.05=1,b =20-1-3-8-6=2,由题意知甲校成绩的中位数恰好在8090m ≤<的这一组重新排列后的第4、5两个数,∴m =(87+88)÷2=87.5,故答案为:1,87.5;补全甲校学生样本成绩频数分布直方图,如图所示:(2)由表2可知:在此次测试中,某学生的成绩是86分,在他所属学校排在前10名,由表中数据可知该学生是乙校学生,理由:乙校的中位数85<86<甲校的中位数87.5,故答案为:乙;(3)甲校学生样本成绩在8090m ≤<的这一组数据中成绩不低于85分有6人,在90100m ≤≤的这一组数据中有6人, 1200×6620+=720(人), ∴甲校成绩“优秀”的人数约为720人.【点睛】本题考查了频数分布直方图,频数分布表,用样本估计总体,中位数等知识,明确题意,数形结合是解决问题的关键.。

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布达标测试试卷(含答案详解)

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布达标测试试卷(含答案详解)

京改版八年级数学下册第十七章方差与频数分布达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元2、某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s2=23.后来小颖进行了补测,成绩是92分,关于该班50人的数学测试成绩,下列说法正确的是()A.平均分不变,方差变小B.平均分不变,方差变大C.平均分和方差都不变D.平均分和方差都改变3、为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2020年4月份用电量的调查结果:关于这15户居民月用电量(单位:度),下列说法错误的是()A.平均数是43.25 B.众数是30C.方差是82.4 D.中位数是424、用计算器计算方差时,要首先进入统计计算状态,需要按键()A.B.C.D.5、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是()A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.46、已知一组数据的方差s2=15[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为()A.5 B.7 C.10 D.117、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是()A .中位数是6.5B .众数是12C .平均数是3.9D .方差是68、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg 及以上的生羊的只数是( )A .180B .140C .120D .1109、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A .众数B .中位数C .平均数D .方差10、在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75,成绩最稳定的是( )A .甲.B .乙C .丙D .丁第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、八年级(1)、(2)两班人数相同,在同一次数学单元测试中,班级平均分和方差如下:2218,80,24S S x ===甲乙则成绩较为稳定的班级是___.2、对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的______,方差则反映一组数据在平均数左右的______,因此从平均数看或从方差看,各有长处.3、一个样本的方差()()()222212133312n s x x x ⎡⎤=-+-+⋯+-⎣⎦,则样本容量是_________,样本平均数是__________.4、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.5、一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.三、解答题(5小题,每小题10分,共计50分)1、本校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.(1)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数;本校部分学生体质健康测试成绩统计图(2)本校规定达到3分才算合格. 已知本校共有学生1600人,根据以上数据估计本校学生体质健康测试成绩达到合格的人数;(3)为了更好贯彻落实健康第一的指导思想,请你根据以上数据对本校体育老师提出一条合理的建议.2、某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:乙组成绩统计图根据上面的信息,解答下列问题:(1)甲组的平均成绩为______分,m ______,甲组成绩的中位数是______,乙组成绩的众数是______;(2)若已经计算出甲组成绩方差为0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?3、为提升学生的艺术素养,学校计划开设四门艺术选修课:A:书法;B,绘画;C,乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),将数据进行整理,并绘制成如图两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)木次调查的学生共有人,扇形统计图中∠α的度数是;(2)请把条形统计图补充完整.4、佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下:(1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.5、随着经济的发展,我们身边的环境受到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:(1)这50名学生平均每人收集废旧电池多少节?(2)这组废旧电池节数的中位数,众数分别是多少?(3)根据统计发现,本次收集的各种废旧电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?-参考答案-一、单选题1、A【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为500﹣50=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.2、A【分析】根据平均数,方差的定义计算即可.【详解】解:∵小颖的成绩和其他49人的平均数相同,都是92分,∴该班50人的测试成绩的平均分为92分,方差变小,故选:A.【点睛】本题考查了方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3、A【分析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.【详解】解:15户居民2015年4月份用电量为30,30,30,30,30,42,42,42,50,50,50,51,51,51,51,平均数为115×(30+30+30+30+30+42+42+42+50+50+50+51+51+51+51)=42,中位数为42;众数为30,方差为115×[5×(30﹣42)2+3×(42﹣42)2+3×(50﹣42)2+4×(51﹣42)2]=82.4.故B、C、D正确.故选:A.【点睛】本题考查的是平均数,中位数,众数,方差,熟练掌握平均数,中位数,众数,方差的定义是解题关键.4、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求2xS的功能键,即可得出结果.故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.5、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,故选:B.【点睛】此题主要考查了频率,关键是掌握计算方法.6、D【分析】根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,a,b,8,其平均数为7,则15×(6+10+a+b+8)=7,∴a+b=11,故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.7、D【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:552=5;B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;D、这组数据的方差是:110×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;故选:D.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.8、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.【详解】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故选B.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.9、B根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.10、A【分析】根据方差的意义,即可求解.【详解】解:∵S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75∴2222甲乙丁丙<<<S S S S∴成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.二、填空题1、甲班根据平均数相同,方差反应一组数据与平均数的离散程度越小说明比较稳定即可得出结论.【详解】解:∵两班的平均成绩相同,221880S S ==甲乙<,根据方差反应一组数据与平均数的离散程度越小说明比较稳定,∴成绩较为稳定的班级是甲班,故答案为甲班.【点睛】本题考查平均数与方差,掌握平均数的求法与方差的求法,熟练方差反应一组数据与平均数的离散程度,方差越大离散的程度越大,方差越小离散程度越小,越稳定,与整齐等是解题关键.2、一般水平 波动大小【分析】根据平均数和方差的意义进行回答即可.【详解】解:平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,故答案为:一般水平;波动大小【点睛】本题考查了平均数和方差的区别,熟练掌握平均数和方差的意义是解答本题的关键.3、12 3【分析】 方差公式为2222121()()()n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦ ,其中n 是样本容量,x 表示平均数.根据公式直接求解.【详解】解:∵一个样本的方差是2222121(3)(3)1(3)2n s x x x ⎡⎤=-+-+⋯+-⎣⎦, ∴该样本的容量是12,样本平均数是3.故答案为:12,3.【点睛】此题考查方差的定义,解题的关键是熟练运用方差公式,此题难度不大.4、16【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.【详解】解:由频数分布直方图可得,这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,故答案为:16.【点睛】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.5、7【分析】根据平均数和方差的计算公式即可得.【详解】解:设数据,,,,a b c d e 的平均数为5a b c d e x ++++=, 则2,2,2,2,2a b c d e +++++的平均数为2222225a b c d e x +++++++++=+, 数据,,,,a b c d e 的方差是7,()()()()()22222175a x b x c x d x e x ⎡⎤∴-+-+-+-+-=⎢⎥⎣⎦,()()()()()222221222222222275a x b x c x d x e x ⎡⎤∴+--++--++--++--++--=⎢⎥⎣⎦, 即2,2,2,2,2a b c d e +++++的方差是7,故答案为:7.【点睛】本题考查了求方差,熟记公式是解题关键.三、解答题1、(1)平均数是2.75分、中位数是3分,众数是3分;(2)1000人;(3)(加强体育锻炼)答案不唯一.【分析】(1)根据平均数,众数及中位数的求法依次计算即可;(2)利用总人数乘以合格人数占抽查总人数的比例即可;(3)抓住健康第一,建议合理即可.【详解】解:(1)平均数为:304453302151 2.7530453015⨯+⨯+⨯+⨯=+++; 抽查的120人中,成绩是3分出现的次数最多,共出现45次,因此众数是3分;将这120人的得分从小到大排列处在60,61两个位置的分数都是3分,因此中位数是3分;答:这组数据的平均数是2.75分,中位数是3分,众数是3分;(2)估计本校学生体质健康测试成绩达到合格的人数为:304516001000120+⨯=(人), ∴估计本校学生体质健康测试成绩达到合格的人数为1000人;(3)加强体育锻炼(答案不唯一,合理即可).【点睛】题目主要考查从条形统计图获取信息,计算平均数,中位数,众数及利用部分估计整体,熟练掌握各个数据的计算方法是解题关键.2、(1)8.7,3,8.5,8;(2)乙组成绩的方差为0.75,乙组的成绩更加稳定.【分析】(1)根据数据平均数的计算方法可得平均数;用总人数减去其他成绩的人数即为m 的值;根据中位数(一组数据从小到大排序后最中间的数)和众数(一组数据中出现次数最多的)的定义即可确定甲组成绩的中位数,乙组成绩的众数;(2)先求出乙组数据的平均数,再根据方差公式求出乙组方差,然后进行比较,即可得出答案.【详解】解:(1)平均成绩为:7189951058.71955⨯+⨯+⨯+⨯=+++, 202963m =---=, 甲组成绩一共有20人,从小到大最中间为8和9,则中位数为898.52+=, 乙组成绩中出现次数最多的为8,则众数为8,故答案为:8.7,3,8.5,8;(2)2798693108.520x ⨯+⨯+⨯+⨯==乙, ()()()()22222278.5988.5698.53108.50.7520S ⨯-+⨯-+⨯-+⨯-==乙,20.81S =甲,∴22S S >甲乙,∴乙组的成绩更加稳定.【点睛】题目主要考查平均数、中位数、众数的定义、方差的算法及数据的稳定性判断,理解定义及方差的算法是解题关键.3、(1)40,108︒;(2)画图见解析【分析】(1)由B 组8人,占比20%,列式可得总人数,由C 组的占比乘以360︒可得圆心角的度数;(2)先计算出C 组的人数,再补全图形即可.【详解】解:(1)由B 组8人,占比20%,可得总人数为:820%=40÷人,所以C 组所在扇形的圆心角为:()140%10%20%360=108.---⨯︒︒故答案为:40,108︒(2)C 组的人数为:30%4012⨯=人,补全图形如下:【点睛】本题考查的是从扇形图与条形图中获取信息,频数与频率,画条形统计图,计算扇形某部分的圆心角,掌握以上基础知识是解题的关键.4、(1)见解析;(2)72゜;(3)750人【分析】(1)根据参与调查的总人数及条形统计图中的数据信息,可求得选择美术的人数,从而可补全条形统计图;(2)求得选择书法在参与调查的总人数中所占的百分比,它与360度的积即是所求扇形圆心角的度数;(3)求出选择音乐兴趣班的百分比,即可估计出3000名学生中选择音乐兴趣班的学生人数.【详解】(1)由条形统计图知,选择除美术兴趣班外的学生共有:150+180+120+30=480(人),则选择美术兴趣班的学生有:600-480=120(人),所以可以补充完整条形统计图,补全的条形统计图如下:(2)选择书法兴趣班的学生人数占所参与调查的学生人数的百分比为:120100%20% 600⨯=,则表示“书法”的扇形圆心角的度数为20%×360゜=72゜(3)选择音乐兴趣班的学生人数占所参与调查的学生人数的百分比为:150100%25%600⨯=,则估计在3000名学生中选择音乐兴趣班的学生人数大约有;25%×3000=750(人)【点睛】本题是条形统计图与扇形统计图的综合,考查了求扇形统计图中圆心角的度数,画条形统计图,用样本的百分数估计总体的百分数,关键是读懂统计图中包含的信息,能正确运用这些信息解决问题.5、(1)4.8节;(2)众数为4个,中位数为4.5节;(3)本次活动可减少受浸染的水3200000吨.【分析】(1)求出50名学生收集废旧电池的总数,再求平均数即可;(2)从统计表格即可求得众数为5,然后按从大到小给所有数据排序,求出中位数即可;(3)先求出这些电池可污染的水的数量即可解决问题.【详解】解:(1)50名学生平均每人收集废旧电池的节数=(10×3+15×4+12×5+7×6+6×8)÷50=4.8(节);(2)从统计表格得,众数为4节;由于收集3节和4节电池的人数有25个人,收集5节的人有12人,所以中位数=(4+5)÷2=4.5(节);(3)样本中电池总数4.8×50=240,由于本次收集的各种电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3, 故可得出手机电池、7号电池、5号电池、1号电池与总数的比值分别为:22343+++,32343+++,42343+++,32343+++,即212,312,412,312, 由于各种电池1节能污染水的量的比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,故可得手机电池、5号电池、1号电池一节分别能污染水的吨数为500×6,500×2,500×3,故在50名学生收集的废电池可少受污染水的吨数为324050062405002405002240500312321142212⨯⨯⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯ =320000(吨)320000÷50×500=3200000吨,答:本次活动可减少受浸染的水3200000吨.【点睛】本题考查了从统计图中获取信息的能力;对平均数、中位数和众数等概念的掌握程度.同时通过此题倡导学生参加义务收集废旧电池活动中来.。

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布定向测评练习题(名师精选)

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布定向测评练习题(名师精选)

京改版八年级数学下册第十七章方差与频数分布定向测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2=18[(x1-88)2+(x2-88)2+…+(x8-88)2],以下说法不一定正确的是()A.育才中学参赛选手的平均成绩为88分B.育才中学一共派出了八名选手参加C.育才中学参赛选手的中位数为88分D.育才中学参赛选手比赛成绩团体总分为704分2、下列说法中正确的是().A.想了解某河段的水质,宜采用全面调查B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3 D.一组数据的波动越大,方差越小3、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有()A.32人B.40人C.48人D.50人4、已知一组数据的方差s2=15[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为()A.5 B.7 C.10 D.115、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是()A.平均数是80 B.众数是60 C.中位数是100 D.方差是206、在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是()A.7 B.8 C.9 D.107、甲、乙两人各射击5次,成绩如表.根据数据分析,在两人的这5次成绩中()A.甲的平均数大于乙的平均数B.甲的中位数小于乙的中位数C.甲的众数大于乙的众数D.甲的方差小于乙的方差8、为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是()A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;9、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%10、一组数据分别为a,b,c,d,e,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是()A.中位数B.方差C.平均数D.众数第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据7,2,1,3的极差为______.2、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S甲2=38,S乙2=10,则______ 同学的数学成绩更稳定.3、某学校有学生2000名,从中随意询问200名,调查收看电视的情况,结果如下表:则全校每周收看电视不超过6小时的人数约为________.4、为了了解社区居民的用水情况,小江调查了80户居民,发现人均日用水量在基本标准量(50升)范围内的频率是0.75,那么他所调查的居民超出了标准量的有________户.5、新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数x(单位:千克)及方差(单位:千克2)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.三、解答题(5小题,每小题10分,共计50分)1、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:(1)根据以上信息,整理分析数据如表:填空:a=,b=,c=;(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好.2、某校为研究学生的课余爱好情况,采取抽样调査的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有_______名;(2)补全条形统计图,并计算阅读部分圆心角是_______度;(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?3、民以食为天,农产品是关系国计民生的重要商品,是事关经济发展、社会稳定和国家自立的头等大事,某数学兴趣小组为了解我国近几年人均主要农产品产量情况,该组成员通过对我国粮食、猪羊牛肉的人均产量进行收集、整理、描述和分析,下面给出部分信息.信息一、2005﹣2019年我国人均粮食产量统计图:信息二、将2005﹣2019年划分为三个时间段,每个时间段内我国人均粮食产量如下:信息三、2019年我国各省、市、自治区粮食、猪羊牛肉的人均产量的统计量如下:(以上数据来源于《2020中国统计年鉴》)根据以上信息,解决下列问题:(1)2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,甘肃省这两项主要农产品产量排名更靠前的是_________(填“人均粮食产量”或“人均猪羊牛肉产量”),理由是:_________.(2)根据以上数据信息分析,判断下列结论正确的是_________;(只填序号)①2005﹣2015年内我国人均粮食产量呈现持续增长趋势;②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高;③2005﹣2019年我国人均粮食产量连续12年高于人均400千克的国际粮食安全标准线.(3)记我国2005﹣2009年人均粮食产量的方差为21S ,2015﹣2019年人均粮食产量的方差为22S ,则21S _________22S .(填<、=或>) 4、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求出本次调查中,随机抽取的学生人数;(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?5、学校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图:(1)此次共调查了多少人?(2)通过计算将条形统计图补充完整;(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?-参考答案-一、单选题1、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S2=18[(x1−88)2+(x2−88)2+…+(x8−88)2],∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.2、B【分析】分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.【详解】解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;故选:B.【点睛】本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3、D【分析】根据频率=频数÷总数,求解即可.【详解】解:根据频率=频数÷总数,即总数=频数÷频率,则参加比赛的同学共有40÷0.8=50(人),故选:D.【点睛】本题考查了频数与频率,记住公式:频率=频数÷总数是解题的关键.4、D【分析】根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,a,b,8,其平均数为7,则15×(6+10+a+b+8)=7,∴a+b=11,故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.5、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为60270903100807⨯++⨯+=、方差为()()()()22222260-80+70-80+390-80+100-801600==77S⨯⨯.观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.6、A【分析】每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数.【详解】解:第4小组的频数是40−(6+5+15+7)=7,故选:A .【点睛】本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.7、C【分析】根据题意求出众数,中位数,平均数和方差,然后进行判断即可.【详解】解:A 、甲的成绩的平均数=15(3+7+8+8+10)=7.2(环),乙的成绩的平均数=15(7+7+8+9+10)=8.2(环),所以A 选项说法错误,不符合题意;B 、甲的成绩的中位数为8环.乙的成绩的中位数为8环,所以B 选项说法错误,不符合题意;C 、甲的成绩的众数为8环,乙的成绩的众数为7环;所以C 选项说法正确,符合题意;D 、()()()()22222137.277.2287.2107.2 5.685S ⎡⎤=-+-+⨯-+-=⎣⎦甲,()()()()222221278.288.298.2108.2 1.365S ⎡⎤=⨯-+-+-+-=⎣⎦乙,所以D 选项说法错误,不符合题意. 故选C .【点睛】本题主要考查了平均数,众数,中位数和方差,解题的关键在于能够熟练掌握相关知识进行求解.8、D【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:360︒乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:74017.5%=,A选项正确;60~80分钟的人数为:40451678----=人,先对数据排序后可得:最中间的数在第20,21之间,459+=,91625+=,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:7815+=人,估算全校人数中每天超过1小时的人数为:1580030040⨯=人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:43603640︒⨯=︒,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.9、B【分析】根据频率分布直方图的意义,从左到右各个小组的频率之和是1,结合题意,可得第五小组的频率,进而根据同时每小组的频率=小组的频数:总人数可得此次统计的样本容量;又因为合格成绩为20,可得本次测试的合格率,即答案.【详解】解:由频率的意义可知,从左到右各个小组的频率之和是1,从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,----=,∴第五小组的频率是10.050.150.250.300.25÷=.∴此次统计的样本容量是250.25100∵合格成绩为20,++==.∴本次测试的合格率是0.250.300.250.880%故选B.【点睛】本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.10、B【分析】根据方差的意义及平均数、众数、中位数的定义求解可得.【详解】解:一组数据a,b,c,d,e的每一个数都加上同一数m(m>0),则新数据a+m,b+m,…e+m的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;故选:B.【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.二、填空题1、6【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.【详解】解:一组数据7,2,1,3的极差为716-=,故答案为:6.【点睛】本题考查了极差的定义,熟记定义是解本题的关键.2、乙【分析】根据平均数相同时,方差越小越稳定可以解答本题.【详解】解:∵甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为S 甲2=38,S 乙2=10,∴S 甲2>S 乙2,∴乙同学的数学成绩更稳定,故答案为:乙.【点睛】本题考查了方差,解题的关键是明确方差越小越稳定.3、1400【分析】由样本情况估计总体情况时,用总体人数乘以所求部分占样本的百分比即可.【详解】样本频率为()15477820014020070%++÷=÷=.∴全校每周收看电视不超过6小时的人数约为200070%1400⨯=.故答案为:1400.【点睛】本题考查由样本数据估算总体数据,掌握基本计算方法是关键.4、20【分析】根据频数等于总数乘以频率,即可求解.【详解】解:调查的居民超出了标准量的有()8010.7520⨯-= 户.故答案为:20.【点睛】本题主要考查了频数和频率,熟练掌握频率之和等于1,且频数等于总数乘以频率是解题的关键.5、乙【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到乙比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又乙的方差比甲小,所以乙的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是乙;故答案为:乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.三、解答题1、(1)7,7.5,1.2;(2)答案见解析.【分析】(1)分别根据平均数,方差,中位数的定义求解即可;(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.【详解】解:(1)由频数直方图可得:甲的成绩如下:5,6,6,7,7,7,7,8,8,9,其中7环出现了4次,所以众数是7a =环,7x =甲环()()()()()222221572674772879710c ⎡⎤∴=-+⨯-+⨯-+⨯-+-⎣⎦ 1=12=1.2.10⨯ 由折线统计图可得:按从小到大排序为:3,4,6,7,7,8,8,8,9,10,所以中位数为:7+8=7.52b =. 故答案为:7,7.5,1.2;(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.【点睛】本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.2、(1)100,600;(2)图形见解析,108°;(3)500【分析】(1)根据娱乐的人数以及百分比求出总人数即可.再根据抽查的学生中爱好运动的学生比例计算全校爱好运动的人数.(2)求出阅读的人数,画出条形图即可,利用360°×百分比取圆心角.(3)根据总人数,个体,百分比之间的关系解决问题即可.【详解】(1)总人数=20÷20%=100(名),若该校共有1500名学生,估计全校爱好运动的学生有1500×40100=600(名).故答案为100,600.(2)阅读人数10040201030---=人圆心角=30360108 100⨯︒=︒条形图如图所示:故答案为108.(3)150÷30%=500(名),答:估计九年级有500名学生.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、(1)“人均粮食产量”,2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后(2)①②③(3)>【分析】(1)根据题目中的数据和信息三,可以解答本题;(2)根据信息一中统计图中的数据,可以判断各个小题中的结论是否成立;(3)根据信息一中统计图中的数据波动大小,可以解答本题.【详解】解:(1) 我国人均粮食产量的中位数为419千克,我国人均猪羊牛肉产量的中位数是42.5千克,∵2019年甘肃省人均粮食产量为440千克,人均猪羊牛肉产量为36.2千克,∵440>419,36.2<42.5,2019年甘肃省人均粮食产量为440千克排在中位数之前,而人均猪羊牛肉产量为36.2千克,排在中位数之后,故答案为:“人均粮食产量”; 2019年甘肃省人均粮食产量排在我国人均粮食产量的中位数之前,人均猪羊牛肉产量排在我国人均猪羊牛肉产量的中位数之后;(2)①从统计图中观察2005﹣2015年内我国人均粮食产量呈现持续增长趋势正确;故①正确,②2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高;∵(2010﹣2014)平均数/千克-(2005﹣2009)平均数/千克=448.4-388.4=60,(2015﹣20194)平均数/千克-(2010﹣2014)平均数/千克=77-448.4=28.6,∵60>28.6,∴2005﹣2019年划分的三个时间段中,2010﹣2014年人均粮食产量的平均增长率最高正确;③2005﹣2019年我国人均粮食产量连续15年平均年产量中从高于人均400千克的国际粮食安全标准线从2008年——2019年共12年2005﹣2019年我国人均粮食产量连续12年平均年产量高于人均400千克的国际粮食安全标准线但时间正确故③正确,故答案为:①②③;(3)∵我国2005﹣2009年人均粮食产量波动较大,2015﹣2019年人均粮食产量波动较小, 我国2005﹣2009年人均粮食产量的方差为21S 大于2015﹣2019年人均粮食产量的方差为22S , ∴21S >22S .故答案为:>.【点睛】本题考查频数分布直方图、加权平均数、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.4、(1)120人;(2)见解析,36°;(3)126人【分析】(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.【详解】解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%, 本次调查人数为:5445%120÷=(人);(2)∵艺术:12018541236---=(人),∴补全的条形统计图如下图所示:“其他”所对应的圆心角度数为1236036 120⨯︒=︒;(3)样本中选择阅读的人数为18人,占样本的百分比为18100%=15% 120⨯,该校学生总人数为840人,估计选择阅读的学生有:84015%126⨯=(人),∴选择“阅读”的学生大约有126人.【点睛】本题考查从条形图和扇形统计图获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.5、(1)200人;(2)画图见解析;(3)600人【分析】(1)由喜欢体育类的有80人,占比40%,再列式8040%计算即可;(2)先分别求解喜欢其它与喜欢艺术的人数,再补全图形即可;(3)由总人数乘以样本中喜欢体育类的占比即可得到答案. 【详解】解:(1)由喜欢体育类的有80人,占比40%,可得此次共调查80=200 40%人(2)由喜欢文学的有60人,则占比:60100%=30%, 200所以喜欢其它的占比:140%20%30%10%,则有:20010%=20人,喜欢艺术的有:20020%=40人,补全图形如下:(3)该校有1500名学生,喜欢体育类社团的学生有:801500=600200人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形统计图,利用样本估计总体,掌握“获取条形图与扇形图的互相关联的信息”是解本题的关键.。

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布必考点解析试题(精选)

2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布必考点解析试题(精选)

京改版八年级数学下册第十七章方差与频数分布必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列一组数据:-2、-1、0、1、2的平均数和方差分别是()A.0和2 B.0C.0和1 D.0和02、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是()A.20m3B.52m3C.60m3D.100m33、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是()A.平均数B.中位数C.众数D.方差4、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是()A .该班共有学生60人B .乙在整理时遗漏的数据一定在169.5-173.5这个范围内C .某同学身高155厘米,那么班上恰有10人比他矮D .某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%5、若样本12,,,n x x x ⋯的平均数为10,方差为2,则对于样本1232,32,,32n x x x ++⋅⋅⋅+,下列结论正确的是( )A .平均数为30,方差为8B .平均数为32,方差为8C .平均数为32,方差为20D .平均数为32,方差为186、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是2S 甲=1.2,2S 乙=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )A .乙比甲稳定B .甲比乙稳定C .甲和乙一样稳定D .甲、乙稳定性没法对比 7、一个人做“抛硬币”的游戏,正面出现4次,反面出现了6次,正确说法为( )A .出现正面的频率是4B .出现反面的频率是6C .出现反面的频率是60%D .出现正面的频数是40%8、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为2206S =甲,2198S =乙,2156S =丙,则成绩波动最小的班级( )A.甲B.乙C.丙D.无法确定9、甲、乙两位同学连续五次的数学成绩如下图所示:下列说法正确的是()A.甲的平均数是70 B.乙的平均数是80C.S2甲>S2乙D.S2甲=S2乙10、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.众数第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是20.6 S=小刘,2 1.4S=小李,那么两人中射击成绩比较稳定的是_________.2、数据6,3,9,7,1的极差是_________.3、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:x甲=84,x乙=83.2,2S甲=13.2,2S乙=26.36,由此学校决定让甲去参加比赛,理由是_______.4、在频数分布直方图中,横坐标表示________,纵坐标表示各组的________,各个小长方形的面积等于相应各组的________,全体小长方形总面积即________,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的________,等距分组时,通常直接用小长方形的高表示________.5、已知样本25,21,25,21,23,25,27,29,25,28,30,29,26,24,25,27,27,22,24,26,若组距为2,那么应分为_____组,在24.5~26.5这一组的频数是_____.三、解答题(5小题,每小题10分,共计50分)1、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250<x≤300;B:200<x≤250;C:150<x≤200;D:100<x≤150),下面给出了部分信息:甲、乙食堂的人数统计表:甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a=,b=,c=,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?2、表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.(1)小明6次成绩的众数是_______分;中位数是_______分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注意:①平时成绩用四次成绩的平均数;②每次考试满分都是100分).3、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:(1)本次调查的学生共有多少人;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人?4、实行垃圾分类是保护生态环境的有效措施.为了解社区居民掌握垃圾分类知识的情况,增强居民环保意识,某校环境保护兴趣小组从A、B两个小区各随机抽取20位居民进行垃圾分类知识测试(测试满分为10分),现将测试成绩进行整理、描述和分析如下:A小区20位居民的测试成绩如下:6,7,7,4,8,10,9,9,7.6,8,6,5,8,8,9,9,7,8,5B小区20位居民测试成绩的条形统计图如下:A、B小区抽取的居民测试成绩统计表如下:根据以上信息,回答下列问题:(1)填空:a=,b=,c=;(2)请结合数据,分析本次测试中两个小区居民对垃圾分类知识的了解情况,并提出一条合理化建议.5、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.-参考答案-一、单选题1、A【分析】根据平均数公式与方差公式计算即可.【详解】 解:()12101205x =--+++=, ()()222222112101210255S ⎡⎤=-+-+++=⨯=⎣⎦. 故选择A .【点睛】本题考查平均数与方差,掌握平均数与方差公式是解题关键.2、B【分析】利用加权平均数求出选出的10名同学每家的平均节水量.再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果.【详解】30.5213 1.5223 1.310m ⨯+⨯+⨯+⨯=, 由此可估计全班同学的家庭一个月节约用水的总量是340 1.352m ⨯=.故选:B .【点睛】本题考查加权平均数和由样本估计总体.正确的求出样本的平均值是解答本题的关键.3、D【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.解:由题意得:原来的平均数为1122324x +++==, 加入数字2之后的平均数为21223225x ++++==, ∴平均数没有发生变化,故A 选项不符合题意;原数据处在最中间的两个数为2和2,∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,∴新数据的中位数为2,故B 选项不符合题意;原数据中2出现的次数最多,∴原数据的众数为2,新数据中2出现的次数最多,∴新数据的众数为2,故C 选项不符合题意; 原数据的方差为()()()22221112222320.54s ⎡⎤=-+⨯-+-=⎣⎦, 新数据的方差为()()()22222112322320.45s ⎡⎤=-+⨯-+-=⎣⎦, ∴方差发生了变化,故D 选项符合题意;故选D .【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.4、B【分析】由两幅统计图的数据逐项计算判断即可.解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A 正确,不符合题意; 根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C 正确,不符合题意; 根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,1525%60=,故D 正确,不符合题意;根据甲的直方图能够得出身高在(169.5﹣174.5)cm 之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm 的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B 错误,符合题意;故选B .【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5、D【分析】由样本12,,,n x x x ⋯的平均数为10,方差为2,可得()()()()222212312310,101010102,n n x x x x n x x x x n ++++=-+-+-++-=再利用平均数公式与方差公式计算1232,32,,32n x x x ++⋅⋅⋅+的平均数与方差即可.【详解】 解: 样本12,,,n x x x ⋯的平均数为10,方差为2,()()()()()22221231231110,2,n n x x x x x x x x x x x x x n n ⎡⎤∴=++++=-+-+-++-=⎢⎥⎣⎦ ()()()()222212312310,101010102,n n x x x x n x x x x n ∴++++=-+-+-++-=∴ ()123132323232n x x x x n++++++++ ()1131023232,n n n n n=⨯+=⨯= ()()()()222212313232323232323232n x x x x n ⎡⎤+-++-++-+++-⎣⎦ ()()()()22221231910910910910n x x x x n ⎡⎤=-+-+-++-⎣⎦ 19218,n n=⨯⨯= 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.6、A【分析】根据方差的性质解答.【详解】解:∵甲乙两人的方差分别是2S 甲=1.2,2S 乙=1.1,∴乙比甲稳定,故选:A .【点睛】此题考查了方差的性质:方差越小越稳定.7、C【分析】根据频率的计算方法判断各个选项.【详解】解:A 、应为:出现正面的频数是4,错误,不符合题意;B 、应为:出现反面的频数是6,错误,不符合题意;C 、正确,符合题意;D 、出现正面的频率是40%,错误,不符合题意.故选:C .【点睛】本题考查了频率以及频数的概念,熟知频率的计算方法是解本题的关键.8、C【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵2206S =甲,2198S =乙,2156S =丙,∴222S S S >>甲乙丙,∴成绩波动最小的班级是:丙班.故选:C .【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键.9、D【分析】根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案【详解】 由条形统计图可知,甲的平均数是()16070706080=685++++,故A 选项不正确; 乙的平均数是()17080807090=785++++,故B 选项不正确; 甲的方差为()()()2221260682706880685⎡⎤-+-+-⎣⎦56=, 乙的方差为()()()222127078280789078565⎡⎤-+-+-=⎣⎦, 故C 选项不正确,D 选项正确;故选D .【点睛】本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.10、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.二、填空题1、小刘【分析】根据方差的意义即可求出答案.【详解】解:由于S小刘2<S小李2,且两人10次射击成绩的平均值相等,∴两人中射击成绩比较稳定的是小刘,故答案为:小刘【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,熟练运用方差的意义是解题的关键.2、8【分析】根据极差的定义,分析即可,极差:一组数据中最大值与最小值的差叫做这组数据的极差.【详解】-=解:数据6,3,9,7,1的极差是918故答案为:8【点睛】本题考查了极差定义,理解极差的定义是解题的关键.3、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.【详解】∵x 甲=84, x 乙=83.2,2S 甲=13.2, 2S 乙 =26.36, ∴x x >甲乙 ,2S <甲2S 乙,∴甲的平均成绩高,且甲的成绩较为稳定;故答案为:甲的平均成绩高,且甲的成绩较为稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、组距频数组距频数 样本容量 频率 频数 【分析】根据画频数直方图的相关概念分析即可.【详解】 在频数分布直方图中,横坐标表示组距,纵坐标表示各组的频数组距,各个小长方形的面积等于相应各组的频数,全体小长方形总面积即样本容量,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的频率,等距分组时,通常直接用小长方形的高表示频数. 故答案为:组距;频数组距;频数;样本容量;频率;频数 【点睛】本题考查了频数直方图,掌握画频数直方图是解题的关键.5、5 7【分析】根据题意可以求出这组数据的极差,然后根据组距即可确定组数,再根据题目中的数据即可得到在24.5~26.5这一组的频数.【详解】解:由所给的数据可知,最大的数为30,最小的数为21,∴极差是:30219-=,∵组距为2,92 4.5÷=,∴应分为5组;∴在24.5~26.5这一组的数据有:25、25、25、25、26、25、26、∴在24.5~26.5这一组的频数是7.故答案为:5,7.【点睛】本题考查频数分布表,解答本题的关键是明确题意,会求一组数据的极差和划分相应的组数.三、解答题1、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐.【分析】(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可.【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,∴a=2182302+=224,177人的有3天,天数最多,∴b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,∴c=290-120=170;∵20-3-7-4=6,∴补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600×211400=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐.【点睛】本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键.2、(1)90,90;(2)小明平时成绩的方差5;(3)小明本学期的综合成绩是93.5分.解题过程见解析.【分析】(1)根据众数和中位线的概念求解即可;(2)先求出平时成绩的平均数,然后根据方差的计算公式代入求解即可;(3)根据加权平均数的计算方法求解即可.【详解】解:(1)由表格可知,出现次数最多的90,∴小明6次成绩的众数是90分;把这6次成绩按从小到大排列为:86,88,90,90,92,96,∴中间两个数为90,90, ∴中位数为:9090=902+, 故答案为:90,90;(2)平均分86889092894+++==, 小明平时成绩的方差()()()()22221868988899089928954⎡⎤=⨯-+-+-+-=⎣⎦; (3)8910%9030%9660%93.5⨯+⨯+⨯=,∴小明本学期的综合成绩是93.5分.【点睛】此题考查了平均数,中位数,众数,方差的计算等知识,解题的关键是熟练掌握平均数,中位数,众数,方差的计算方法.3、(1)400人;(2)画图见解析;(3)500人【分析】(1)由喜欢足球的有100人,占比25%,列式10025%,再计算即可得到答案; (2)分别求解喜欢排球的占比为:10%, 喜欢篮球的占比为:25%, 喜欢篮球的人数为:40025%100⨯=人,喜欢乒乓球的人数有:40040%160⨯=人,再补全图形即可;(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.【详解】解:(1)由喜欢足球的有100人,占比25%,可得:本次调查的学生共有100400 25%=人,(2)喜欢排球的占比为:40100%10%, 400⨯=所以喜欢篮球的占比为:140%25%10%25%,---=喜欢篮球的人数为:40025%100⨯=人,喜欢乒乓球的人数有:40040%160⨯=人,所以补全图形如下:(3)该学校共有学生2000人,则选择足球运动的同学有:200025%500⨯=人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.4、(1)7.3、7.5、8;(2)A小区测试成绩波动幅度小;建议:加强对B小区保护生态环境意识(答案不唯一).【分析】(1)根据平均数、众数和中位数的定义求解即可;(2)根据平均数、中位数、方差的意义求解即可.【详解】解:(1)A 小区20位居民的测试成绩中8分出现次数最多,有5次,∴A 小区的众数c =8,有统计图数据可知B 小区20位居民的测试成绩的平均数a =24351647385921020⨯+⨯+⨯+⨯+⨯+⨯+⨯=7.3, ∵B 小区一共有20位居民参加测试,∴B 小区20位居民的测试成绩的中位数为第10位和第11位成绩的平均数,而第10位的成绩为7,第11位的成绩为8,∴B 小区20位居民的测试成绩的中位数b =782+=7.5, 故答案为:7.3、7.5、8;(2)比较A 、B 小区20位居民的测试成绩知,两小区居民测试成绩的平均数、中位数均相等,而A 小区测试成绩的方差小于B 小区,∴A 小区测试成绩波动幅度小;建议:加强对B 小区保护生态环境意识(答案不唯一).【点睛】本题主要考查了求平均数,中位数和众数,以及平均数,中位数,众数和方差的意义,熟知相关知识是解题的关键.5、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:110×(10×4+8×2+7+9×3)=9,则方差是:110×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1 n[(x1−x)2+(x2−x)2+…+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.。

基础强化京改版八年级数学下册第十七章方差与频数分布专项练习试题(含答案及详细解析)

基础强化京改版八年级数学下册第十七章方差与频数分布专项练习试题(含答案及详细解析)

京改版八年级数学下册第十七章方差与频数分布专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知数据1x ,2x ,3x 的平均数 5x =,方差23S =,则数据12x ,22x ,32x 的平均数和方差分别为( ) A .5,12B .5,6C .10,12D .10,62、已知一组数据的方差s 2=15[(6﹣7)2+(10﹣7)2+(a ﹣7)2+(b ﹣7)2+(8﹣7)2](a ,b 为常数),则a +b 的值为( ) A .5B .7C .10D .113、下列一组数据:-2、-1、0、1、2的平均数和方差分别是( )A .0和2B .0C .0和1D .0和04、在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75,成绩最稳定的是( ) A .甲.B .乙C .丙D .丁5、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为2206S =甲,2198S =乙,2156S =丙,则成绩波动最小的班级( )A .甲B .乙C .丙D .无法确定6、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.下图是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( )A .由这两个统计图可知喜欢“科普常识”的学生有90人B .若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个C .由这两个统计图不能确定喜欢“小说”的人数D .在扇形统计图中,“漫画”所在扇形的圆心角为72︒7、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有( ) A .32人B .40人C .48人D .50人8、下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在3638x ≤<小组,而不在3436x ≤<小组),根据图形提供的信息,下列说法中错误的是( )A .该学校教职工总人数是50人B .年龄在4042x ≤<小组的教职工人数占总人数的20%C .某教师40岁,则全校恰有10名教职工比他年轻D .教职工年龄分布最集中的在3840x ≤<这一组9、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( ). A .4B .5C .6D .710、甲、乙两位同学连续五次的数学成绩如下图所示:下列说法正确的是( ) A .甲的平均数是70 B .乙的平均数是80 C .S 2甲>S 2乙D .S 2甲=S 2乙第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两射击运动员10次射击训练的平均成绩恰好都是8.5环,方差分别是20.85S =甲,21.45S =乙则在本次测试中,_______运动员的成绩更稳定(填“甲”或“乙”).2、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为 13x =甲, 13x =乙,2 4s =甲,2 3.8s =乙则小麦长势比较整齐的试验田是__________. 3、某舞蹈队8名队员的身高(单位:厘米)如下:163,164,164,165,165,166,166,167.计算这些队员的身高的方差记为S 12,这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,再次计算所得身高的方差记为S 22.则S 12与S 22的大小关系是___(选填“>”“<”或“=”).4、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_____.5、已知一组数据a 、b 、c 、d 、e 的方差为1.2,则新的数据2a ﹣1、2b ﹣1、2c ﹣1、2d ﹣1、2e ﹣1的方差是 ______.三、解答题(5小题,每小题10分,共计50分)1、实行垃圾分类是保护生态环境的有效措施.为了解社区居民掌握垃圾分类知识的情况,增强居民环保意识,某校环境保护兴趣小组从A 、B 两个小区各随机抽取20位居民进行垃圾分类知识测试(测试满分为10分),现将测试成绩进行整理、描述和分析如下:A 小区20位居民的测试成绩如下:6,7,7,4,8,10,9,9,7.6,8,6,5,8,8,9,9,7,8,5B 小区20位居民测试成绩的条形统计图如下:A、B小区抽取的居民测试成绩统计表如下:根据以上信息,回答下列问题:(1)填空:a=,b=,c=;(2)请结合数据,分析本次测试中两个小区居民对垃圾分类知识的了解情况,并提出一条合理化建议.2、为了让青少年学生走向操场,走进自然,走到阳光下,积极参加体育锻炼.我校启动了“学生阳光体育短跑运动”,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格:(2)请写出小明的成绩的中位数和众数,小亮成绩的中位数;(3)分别计算他们成绩的平均数和方差,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?3、某校为了增强学生的疫情防控意识,组织全校600名学生进行了疫情防控知识竞赛.从中随机抽取了n 名学生的竞赛成绩(满分100分,每名学生的成绩记为x 分),分成四组:A 组6070x ≤<;B 组7080x ≤<;C 组8090x ≤<;D 组90100x ≤≤,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)求n 的值.(2)补全频数分布直方图.(3)若规定学生竞赛成绩90x ≥为优秀,请估计全校竞赛成绩达到优秀的学生人数. 4、九(1)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):(1)甲队成绩的中位数是 分,乙队成绩的众数是 分; (2)计算乙队成绩的平均数和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是 队.5、随着经济的发展,我们身边的环境受到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:(1)这50名学生平均每人收集废旧电池多少节? (2)这组废旧电池节数的中位数,众数分别是多少?(3)根据统计发现,本次收集的各种废旧电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?-参考答案-一、单选题 1、C 【分析】将所求数据的平均值和方差按照相关公式列出,找出与已知数据平均数和方差的关系,代入计算即可. 【详解】解:∵数据1x ,2x ,3x 的平均数5x =即:123++53x x x =∴数据12x ,22x ,32x 的平均数为1231232+222()1033x x x x x x +++==又∵数据1x ,2x ,3x 的方差23S =即:()()()22212355533x x x -+-+-=∴数据12x ,22x ,32x 的方差为()()()()()()222222123123210210210454545=431233x x x x x x -+-+--+-+-=⨯=故选:C 【点睛】本题考查平均数和方查的计算,根据题意找出两组数据的联系是解题的关键. 2、D 【分析】根据方差的定义得出这组数据为6,10,a ,b ,8,其平均数为7,再利用平均数的概念求解可得. 【详解】解:由题意知,这组数据为6,10,a ,b ,8,其平均数为7,则15×(6+10+a +b +8)=7, ∴a +b =11, 故选:D . 【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数. 3、A 【分析】根据平均数公式与方差公式计算即可. 【详解】 解:()12101205x =--+++=, ()()222222112101210255S ⎡⎤=-+-+++=⨯=⎣⎦.故选择A . 【点睛】本题考查平均数与方差,掌握平均数与方差公式是解题关键. 4、A 【分析】根据方差的意义,即可求解. 【详解】解:∵S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75∴2222甲乙丁丙<<<S S S S∴成绩最稳定的是甲 故选A 【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键. 5、C 【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵2206S =甲,2198S =乙,2156S =丙,∴222S S S >>甲乙丙,∴成绩波动最小的班级是:丙班. 故选:C . 【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键. 6、C 【分析】根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A 选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B 选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C 选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D 选项. 【详解】A .喜欢“科普常识”的学生有30÷10%×30%=90人,正确,不符合题意;B .若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,正确,不符合题意;C .喜欢“小说”的人数为30÷10%-60-90-30=120人,错误,故本选项符合题意.D .在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,正确,不符合题意; 故选C. 【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7、D【分析】根据频率=频数÷总数,求解即可.【详解】解:根据频率=频数÷总数,即总数=频数÷频率,则参加比赛的同学共有40÷0.8=50(人),故选:D .【点睛】本题考查了频数与频率,记住公式:频率=频数÷总数是解题的关键.8、C【分析】各组的频数的和就是总人数,再根据百分比、众数、中位数的定义逐一解题.【详解】解:A. 该学校教职工总人数是4+6+11+10+9+6+4=50人,正确,故A 不符合题意;B. 年龄在4042x ≤<小组的教职工人数占总人数的10100%50⨯=20%,正确,故B 不符合题意; C. 教职工年龄的中位数在4042x ≤<这一组,某教师40岁,则全校恰有10名教职工比他年轻说法是错误的,故C 符合题意;D. 教职工年龄分布最集中的在3840x ≤<这一组,正确,故D 不符合题意,故选:C .【点睛】本题考查频数分布直方图,是重要考点,从图中获取正确信息是解题关键.9、C【分析】根据组数=(最大值-最小值)÷组距计算即可.【详解】解:∵在样本数据中最大值与最小值的差为35-15=20,又∵组距为4,∵20÷4=5,∴应该分成5+1=6组.故选:C .【点睛】本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.10、D【分析】根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案【详解】 由条形统计图可知,甲的平均数是()16070706080=685++++,故A 选项不正确; 乙的平均数是()17080807090=785++++,故B 选项不正确; 甲的方差为()()()2221260682706880685⎡⎤-+-+-⎣⎦56=, 乙的方差为()()()222127078280789078565⎡⎤-+-+-=⎣⎦, 故C 选项不正确,D 选项正确;故选D .【点睛】本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.二、填空题1、甲【分析】先根据甲的方差比乙的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵20.85S =甲,21.45S =乙∴22S S <甲乙,∴甲运动员比乙运动员的成绩稳定;故答案为:甲.【点睛】本题考查了方差的意义,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2、乙【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.【详解】 解:∵13x =甲,13x =乙, ∴x x =甲乙,∵3.8<4,∴S 乙2<S 甲2,∴小麦长势比较整齐的试验田是乙试验田.故答案为:乙.【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.3、=【分析】根据方差的计算公式分别求出S12,S22,再比较即可.【详解】解:舞蹈队8名队员身高的平均数为:18×(163+164×2+165×2+166×2+167)=165,S12=18×[(163−165)2+2×(164−165)2+2×(165−165)2+2×(166−165)2+(167−165)2]=1.5;这些队员统一穿上可使身高增加3厘米的某品牌舞鞋后重新测量身高,所得数据为:166,167,167,168,168,169,169,170,这组新数据的平均数为:18×(166+167×2+168×2+169×2+170)=168,S22=18×[(166−168)2+2×(167−168)2+2×(168−168)2+2×(169−168)2+(170−168)2]=1.5;∴S12=S22,故答案为:=.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【分析】先求出第四小组的频数,再根据频率=频数÷样本容量计算即可;【详解】由题可知:第四小组的频数()502815520=-+++=,频率=频数÷样本容量20500.4=÷=;故答案是0.4.【点睛】本题主要考查了频率和频数的计算,准确分析计算是解题的关键.5、4.8【分析】根据方差的变化规律即可得出答案,即当数据都减去一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.【详解】解:∵数据a 、b 、c 、d 、e 的方差是1.2,∴数据2a −1、2b −1、2c −1、2d −1、2e −1的方差是22×1.2=4.8.故答案为:4.8.【点睛】本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.三、解答题1、(1)7.3、7.5、8;(2)A 小区测试成绩波动幅度小;建议:加强对B 小区保护生态环境意识(答案不唯一).(1)根据平均数、众数和中位数的定义求解即可;(2)根据平均数、中位数、方差的意义求解即可.【详解】解:(1)A 小区20位居民的测试成绩中8分出现次数最多,有5次,∴A 小区的众数c =8,有统计图数据可知B 小区20位居民的测试成绩的平均数a =24351647385921020⨯+⨯+⨯+⨯+⨯+⨯+⨯=7.3, ∵B 小区一共有20位居民参加测试,∴B 小区20位居民的测试成绩的中位数为第10位和第11位成绩的平均数,而第10位的成绩为7,第11位的成绩为8,∴B 小区20位居民的测试成绩的中位数b =782+=7.5, 故答案为:7.3、7.5、8;(2)比较A 、B 小区20位居民的测试成绩知,两小区居民测试成绩的平均数、中位数均相等,而A 小区测试成绩的方差小于B 小区,∴A 小区测试成绩波动幅度小;建议:加强对B 小区保护生态环境意识(答案不唯一).【点睛】本题主要考查了求平均数,中位数和众数,以及平均数,中位数,众数和方差的意义,熟知相关知识是解题的关键.2、(1)13.2,13.4;(2)小明:中位数13.3,众数13.3,小亮:中位数13.3;(3)小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.【分析】(1)从统计图中可得到每次百米训练的成绩,从而填入表格即可;(2)根据中位数、众数的意义求出结果即可;(3)计算两人的平均数、方差,再比较得出结论.【详解】解:(1)从统计图可知,小明第4次的成绩为13.2,小亮第2次的成绩为13.4,故答案为:13.2,13.4;补全的表格如下:(2)小明5次成绩的中位数是13.3,众数为13.3;小亮5次成绩的中位数是13.3;(3)x 小明13.213.3313.413.35+⨯+== x 小亮13.113.213.313.413.513.35++++== ∴2S 小明()()()()()22222113.213.313.313.313.313.313.313.313.413.35⎡⎤=-+-+-+-+-⎣⎦ 0.004=2S 小亮()()()()()22222113.113.313.213.313.313.313.413.313.513.35⎡⎤=-+-+-+-+-⎣⎦ 0.02=∵x 小明x =小亮∴2S 小明2S <小亮∴小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩.【点睛】本题考查折线统计图、加权平均数、中位数、众数以及方差的意义和计算方法,明确各个统计量的意义是正确解答的前提.3、(1)50;(2)见解析;(3)180人【分析】(1)根据B组的频数和所占的百分比,可以求得n的值;(2)根据(1)中n的值和频数分布直方图中的数据,可以计算出D组的频数,从而可以将频数分布直方图补充完整;(3)根据直方图中的数据,可以计算出全校成绩达到优秀的人数.【详解】解:(1)1224%50n=÷=;(2)D组学生有:505121815---=(人),补全的频数分布直方图如图所示;(3)1560018050⨯=(人),答:估算全校成绩达到优秀的有180人.【点睛】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确统计图的特点和中位数的含义,利用数形结合的思想解答.4、(1)9.5,10;(2)平均成绩为9分,方差为1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:110×(10×4+8×2+7+9×3)=9, 则方差是:110[4×(10-9)2+2×(8-9)2+(7-9)2+3×(9-9)2]=1; (3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差(2222121[()())n S x x x x x x n ⎤=-+-++-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5、(1)4.8节;(2)众数为4个,中位数为4.5节;(3)本次活动可减少受浸染的水3200000吨.【分析】(1)求出50名学生收集废旧电池的总数,再求平均数即可;(2)从统计表格即可求得众数为5,然后按从大到小给所有数据排序,求出中位数即可;(3)先求出这些电池可污染的水的数量即可解决问题.【详解】解:(1)50名学生平均每人收集废旧电池的节数=(10×3+15×4+12×5+7×6+6×8)÷50=4.8(节);(2)从统计表格得,众数为4节;由于收集3节和4节电池的人数有25个人,收集5节的人有12人,所以中位数=(4+5)÷2=4.5(节);(3)样本中电池总数4.8×50=240,由于本次收集的各种电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3, 故可得出手机电池、7号电池、5号电池、1号电池与总数的比值分别为:22343+++,32343+++,42343+++,32343+++,即212,312,412,312, 由于各种电池1节能污染水的量的比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,故可得手机电池、5号电池、1号电池一节分别能污染水的吨数为500×6,500×2,500×3,故在50名学生收集的废电池可少受污染水的吨数为324050062405002405002240500312321142212⨯⨯⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯ =320000(吨)320000÷50×500=3200000吨,答:本次活动可减少受浸染的水3200000吨.【点睛】本题考查了从统计图中获取信息的能力;对平均数、中位数和众数等概念的掌握程度.同时通过此题倡导学生参加义务收集废旧电池活动中来.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学复习教材回归知识讲解+例题解析+强化训练方差与频率分布◆知识讲解 1.方差的定义在一组数据x 1,x 2,…,x n 中,各数据与它们的平均数x 的差的平方的平均数,•叫做这组数据的方差.通常用“S 2”表示,即S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 2.方差的计算 (1)基本公式 S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)简化计算公式(Ⅰ) S 2=1n [(x 12+x 22+…+x n 2)-n x 2],也可写成S 2=1n(x 12+x 22+…+x n 2)-x 2,此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方. (3)简化计算公式(Ⅱ) S 2=1n[(x`12+x`22+…+x`n 2)-nx x `2]. 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组数据x`1=x 1-a ,x`2=x 2-a ,…x`n =x n -a ,•那么S 2=1n [(x`12+x`22+…+x`n 2)-n x `2],也可写成S 2=1n(x`12+x`22+…+x`n 2)-x `2.记忆方法是:•方差等于新数据平方的平均数减去新数据平均数的平方. 3.标准差的定义和计算方差的算术平方根叫做这组数据的标准差,用“S”表示,即(n x +- 4.方差和标准差的意义方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的权是这两组数据的个数相等、平均数相等或比较接近时的情况. 方差较大的数据波动较大,方差较小的数据波动较小. 5.频率分布的意义前面学习的平均数与方差,反映了样本和总体的两个特征:平均水平和波动大小.但是在许多问题中,只知道这些还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布.6.研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤:①计算极差(最大值与最小值的差);②决定组距与组数;③决定分点;④列频率分布表;⑤画出频率分布直方图.(2)频率分布的有关概念:①极差:最大值与最小值的差;②频数:落在各个小组内的数据的个数;③频率:每一小组的频数与数据总体(样本容量n•)的比值叫做这一小组的频率.(3)几个重要的结论:①各小组的频数之和等于数据总数;②各小组的频率之和等于1;③频率分布直方图中,各小长方形的面积等于相应各组的频率,各小长方形面积之和等于1;④各小长方形的高与该组频数成正比.◆例题解析例1 甲、乙两个学习小组各4名学生的数学测验成绩如下(•单位:分)甲组:86 82 87 85 乙组:85 81 85 89(1)分别计算这两组数据的平均数;(2)分别计算这两组数据的方差;(3)哪个学习小组学生的成绩比较整齐?【分析】应用平均数计算公式和方差的计算公式求平均数和方差.【解答】(1)x甲=14(6+2+7+5)+80=85,x乙=14(5+1+5+9)+80=85.(2)S甲2=14[(86-85)2+(82-85)2+(87-85)2+(85-85)2]=3.5,S乙2=14[(85-85)2+(81-85)2+(85-85)2+(89-85)2]=8.(3)∵S乙2>S甲2,∴甲组学习成绩较稳定.【点评】方差是反映一组数据波动大小的量.例2 为了迎接全市体育中考,•某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的500名男生中随机抽取了部分男生的测试成绩(单位:m,精确到0.01m)作为样本进行分析,绘制了如图所示的频率分布直方图(•每组含最低值,不含最高值).已知图中从左到右每个小长方形的高比依次为2:4:6:•5:3,其中1.80~2.00这一小组的频数为8,请根据有关信息解答下列问题:(1)这次调查的样本容量为______,2.40~2.60这一小组的频率为_____.(2)请指出样本成绩的中位数落在哪一小组内,并说明理由;(3)样本中男生立定跳远的人均成绩不低于多少米?(4)请估计该校初三男生立定跳远成绩在2.00m以上(包括2.00m)•的约有多少人?【分析】样本容量是样本数据,不带单位,确定中位数时,首先将样本数据按大小排序后再求出,然后分析落在哪个小组.【解答】(1)由于1.80~2.00小组的频数为8,占总份数中的4份,总份数是20•分,故样本容量为:8÷420=40.2.40~2.60这个小组的频率为3÷20=0.15.(2)由于样本容量是40,则中位数是第20人和第21人成绩的平均数,而第20•人和第21人的成绩均在2.00~2.20这个小组,则中位数落在2.00~2.20这个小组.(3)因为第一组到第五组人数依次为4人,8人,12人,10人,6人,•则可求得样本中男生立定跳远的人均成绩不低于2.03m.(4)初中男生立定跳远成绩在2.00m以上的约有2540×500=350(人).【点评】频率分布直方图中各小组频率之和为1,掌握它是解题的关键.◆强化训练一、填空题1.(2005,荆门市)已知数据:1,2,1,0,-1,-2,0,-1,这组数据的方差为______.2.(2005,宜昌市)甲、乙、丙三台包装机同时分装质量为400g的茶叶,从它们各自分装的茶叶中分别随机抽取了10盒,得到它们的实际质量的方差如下表所示.根据表中数据,可以认为三台包装机中,______包装机包装的茶叶质量稳定.3.2005年沈阳市春季房交会期间,某公司对参加本次房交会的消费者进行了随机的问卷调查,共发放1000份调查问卷,并全部收回.根据调查问卷,将消费者年收入情况整理后,制成表1;将消费者打算购买住房的面积的情况整理后,制成表2,并作出部分频率分布直方图(如图).表1 被调查的消费者年收入情况表2 被调查的消费者打算购买住房的面积的情况注:住房面积取整数请你根据以上信息,回答下列问题:(1)根据表1可得,被调查的消费者平均年收入为______万元;被调查的消费者年收入的中位数是______万元;在平均数,中位数这两个数中,更能反映出被调查的消费者年收入的一般水平;(2)根据表2可得,打算购买100.5~120.5m2房子的人数是_____人;打算购买住房面积不超过100m2的消费者的人数占被调查人数的百分数是____;(3)在下图中补全这个频率分布直方图.4.青少年视力水平的下降已经引起全社会的关注,某校为了了解初中毕业年级500名学生的视力情况,从中抽查了一部分学生视力,通过数据处理,得到如下频率分布表和频率分布直方图.请你根据给出的图表回答:(1)填写频率分布表中未完成部分的数据.(2)在这个问题中,总体是________,样本容量是________.(3)在频率分布直方图中,梯形ABCD的面积是______.(4)请你用样本估计总体,可以得到哪些信息(写一条即可):________.5.甲,乙两种产品进行对比试验,•得知乙产品比甲产品的性能更稳定,如果甲,乙两种产品抽样数据的方差分别是S甲2与S乙2,•则它们的方差的大小关系是_______.6.已知:一组数据-1,x,1,2,0•的平均数是0,•这组数据的方差是_____.7.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的标准差是_______.8.若已知一组数据:x1,x2,…,x n的平均数为x,方差为S2,那么另一组数据:3x1-2,•3x2-2,…,3x n-2的平均数为______,方差为______.二、选择题9.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7 乙:7 10 9 9 10 则这次练习中,甲,乙两人方差的大小是()A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定10.已知甲,乙两组数据的平均数相等,•若甲组数据的方差S甲2=0.055,乙组数据的方差S乙2=0.105,则()A.甲组数据比乙组数据波动大B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D.甲,乙两组数据的波动大小不能比较11.(2005,宜昌市)衡量样本和总体的波动大小的特征数是()A.平均数B.众数C.标准差D.中位数12.某少年军校准备从甲,乙,丙三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,射靶十次的平均环数是x甲=x乙=x丙=8.3,方差分别是S甲2=1.5,S乙2=2.8,S丙2=3.2.那么,根据以上提供的信息,•你认为应该推荐参加全市射击比赛的同学是()A.甲B.乙C.丙D.不能确定13.(2005,广州市)甲,乙两人在相同情况下,各射靶10次,•两人命中环数的平均数是x甲=x乙=7,方差S甲2=1.0,S乙2=1.2,则射击成绩较稳定的是()A.甲B.乙C.一样D.不能确定14.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如表所示:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,•其中说法正确的是( )A .甲的方差大于乙的方差,所以甲的成绩比较稳定B .甲的方差小于乙的方差,所以甲的成绩比较稳定C .乙的方差小于甲的方差,所以乙的成绩比较稳定D .乙的方差大于甲的方差,所以乙的成绩比较稳定15.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S 乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;•④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有(• )A .2种B .3种C .4种D .5种16.(2005,盐城市)如果将一组数据中的每一个数据都加上同一个非零常数, 那么这组数据的( )A .平均数和方差都不变B .平均数不变,方差改变 C.平均数改变,方差不变 D .平均和方差都改变 三、解答题17.某校初三(1)班,三(2)班各有49名学生,两班一次数学测验中的成绩统计如下表:(1)请你对下面的一段话给予简要分析:初三(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班上可算上游!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,•并提出教学建议.18.武汉市教育局在中学开展的“创新素质实践行”中,进行了小论文的评比.各校交论文的时间为5月1日至30日,•评委会把各校交的论文的件数按5天一组分组统计,绘制了频率分布直方图,•已知从左到右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题:(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?有多少篇?(3)经过评比,第四组和第六组分别有20篇,4篇论文获奖,•问这两组哪组获奖率较高?19.(2008,金华)九(3)班学生参加学校组织的“绿色奥运”知识竞赛活动,•老师将对学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数的分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表(1)频数分布表中a=_____,b=___;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元.已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.九(3)班“绿色奥运”知识竞赛成绩频数分布直方图20.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图6-28所示.(1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).21.在“3.15”消费者权益日的活动中,对甲、•乙两家商场售后服务的满意度进行了抽查.如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意四个等级,并依次为1分,2分,3分,4分.(1)请问:甲商场的用户满意度分数的众数为_____分;乙商品的用户满意度分数的众数为_______分.(2)分别求出甲、乙两商场的用户满意度分数的平均分.(精确到0.01)(3)请你根据所学统计知识,判断哪家商场的用户满意度较高,并简要说明理由.参考答案1.322.乙3.(1)2.39;1.8;中位数(2)240;52% (3)略4.(1)第二列从上至下两空分别填15,50;第三列从上至下两空分别填0.5,0.3 •(2)500名学生的视力情况;50 (3)0.8 (4)该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人;或该校初中毕业年级学生视力在5.15以上的与视力在4.25以下的人数基本相等,各有20人左右5.S乙2<S甲26.2 7.0 8.3x-2 9S29.A 10.B 11.C 12.A 13.A 14.C 15.D 16.C17.(1)从平均数,众数和中位数角度分析;(2)平均分,众数均相同,但三(1)班的成绩中位数高,表示三(1)班成绩比三(2)•班好,但三(2)班标准差比三(1)班小,表示三(2)班学生成绩较整齐.18.(1)本次活动共有120篇文章参评(2)第四组上交的论文数量最多,有36篇(3)第六组获奖率最高.19.(1)2 0.125 (2)图略(3)由题中表得,有29名同学获得一等奖或二等奖.设有x名同学获得一等奖,则有(29-x)名同学获得二等奖,根据题意得15x+10(29-x)=335.解得x=9.∴50x+30(29-x)=1050,所以他们得到的奖金是1050元.20.(1)如下表:(2)①∵平均数相同,S甲2<S乙2,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数.∴乙的成绩比甲好些.③∵平均数相同,命中9环以上的次数甲比乙少.∴乙的成绩比甲好些.④甲成绩在平均数上下波动,而乙处于上升势头,从第4•次以后就没有比甲少的情况发生,乙较有潜力.21.(1)3 3(2)甲商场抽查用户数为:500+1000+2000+1000=4500(户),乙商场抽查用户数为:100+900+2200+1300=4500(户).所以甲商场满意度分数的平均值=50011000220003100044500⨯+⨯+⨯+⨯≈2.78(分).乙商场满意度分数的平均值=1001900222003130044500⨯+⨯+⨯+⨯≈3.04(分)答:甲,乙两商场用户满意度分数的平均值分别为2.78分,3.04分.(3)因为乙商场用户满意度分数的平均值较高(或较满意和很满意的人数较多),所以乙商场的用户满意度较多.。

相关文档
最新文档