中考数学专题复习训练线段角相交线及视图35
中考数学总复习考点:线段、角、相交线、平行线
中考数学总复习考点:线段、角、相交线、平行线2019中考数学总复习考点:线段、角、相交线、平行线?一、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两方无限延伸”。
二、直线的性质:经过两点有一条直线,并且只有一条直线,直线的这条性质是以公理的形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。
三、射线:1、射线的定义:直线上一点和它们的一旁的部分叫做射线。
2.射线的特征:“向一方无限延伸,它有一个端点。
”四、线段:1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。
2、线段的性质(公理):所有连接两点的线中,线段最短。
五、线段的中点:1、定义如图1一1中,点B把线段AC分成两条相等的线段,点B叫做线段图1-1AC的中点。
∴点B为AC的中点或∵AB=∴点B为AC的中点,或∵AC=2AB,∴点B为AC的中点反之也成立∵点B为AC的中点,∴AB=BC2、同角或等角的余角相等。
3、同角或等角的补角相等。
十一、相交线1、斜线:两条直线相交不成直角时,其中一条直线叫做另一条直线的斜线。
它们的交点叫做斜足。
2、两条直线互相垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。
3、垂线:当两条直线互相垂直时,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
4、垂线的性质(l)过一点有且只有一条直线与己知直线垂直。
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短。
简单说:垂线段最短。
十二、距离1、两点的距离:连结两点的线段的长度叫做两点的距离。
2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。
说明:点到直线的距离和平行线的距离实际上是两个特殊点之间的距离,它们与点到直线的垂线段是分不开的。
十三、平行线1、定义:在同一平面内,不相交的两条直线叫做平行线。
中考数学复习之线与角、平行线的性质及判定,考点过关与基础练习题
第二部分图形与几何19.线段、角、相交线与平行线知识过关1.直线、射线、线段(1)直线上一点和它____的部分叫做射线;直线上两点和它们____的部分叫做线段,这两点叫做线段的_______.(2)两点_____一条直线,两点之间线段最短,两点之间_____的长度,叫做两点间的距离.(3)线段的中点把线段_______等分.2.角(1)角:有_____端点的两条射线组成的图形叫做角,角也可以看作由一条_____绕着它的端点旋转而形成的图形.(2)余角:如果两个角的和等于_____,那么就说这两个角互为余角._____或等角的余角相等.(3)补角:如果两个角的和等于_____,那么就说这两个角互为补角._____或等角的补角相等.(4)一条射线把一个角分成两个______的角,这条射线叫做这个角的平分线.3.相交线(1)对顶角:如果一个角的两边分别是另一个角的两边的_____延长线,则称这两个角是对顶角,对顶角______.(2)垂直:在同一平面内,两条直线相交成90,叫做两条直线相互垂直,其中一条叫做另一条的垂线.(3)垂直的性质:同一平面内,过一点_____一条直线与已知直线垂直,直线外一点和直线上所有点的连接中,_______最短.(4)点到直线的距离:从直线外一点到这条直线的_____的长度,叫做点到直线的距离.4.平行线(1)平行线:平面内,_______的两条直线叫做平行线.(2)平面内两条直线的位置关系:_________和_________.(3)平行公理:过直线外一点,有且______一条直线与已知直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相______.(4)平行线的性质:如果两条直线平行,那么同位角相等,_____相等,同旁内角_______.(5)平行线的判定:如果同位角相等,或______或______互补,那么两直线平行.5.命题的概念(1)命题:______的语句叫做命题.(2)命题的组成:命题由______和______两部分组成.(3)命题的形成:命题可以写成“如果.......,那么.......”的形式,以如果开头的部分是_____,以那么开头的部分是________.(4)命题的真假:_______的命题叫做真命题,______的命题叫做假命题.6.尺规作图(1)在几何里,把用没有刻度的____和____这两种工具作几何图形的方法称为尺规作图.(2)常见的五种基本作图:①作一条线段等于已知线段;①作一个角等于已知角;①作一个角的平分线;①过一个点作已知直线的垂线;①作线段的垂直平分线.➢考点过关考点1 线段长度的有关计算例1已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,则线段DC=.考点2对顶角、邻补角的相关计算如图,点O为直线AB上一点,OC平分∠AOD,∠BOD=3∠BOE,若∠AOC=α,则∠COE 的度数为()A.3αB.120°−43αC.90°D.120°−13α考点3平行线的性质例3如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=54°,则∠2等于()A.108°B.117°C.126°D.54°考点4平行线的判定与性质综合例4如图1,直线HD∥GE,点A是直线HD上一点,点C是直线GE上一点,点B是直线HD、GE之间的一点.(1)过点B作BF∥GE,试说明:∠ABC=∠HAB+∠BCG;(2)如图2,RC平分∠BCG,BM∥CR,BN平分∠ABC,当∠HAB=40°时,点C在直线AB右侧运动的过程中,∠NBM的度数是否不变,若是,求出该度数;若不是,请说明理由.考点5命题的真假例5下列结论中,正确的有①对顶角相等;②两直线平行,同旁内角相等;③面积相等的两个三角形全等;④有两边和一个角分别对应相等的两个三角形全等;⑤钝角三角形三条高所在的直线交于一点,且这点在钝角三角形外部.()A.2个B.3个C.4个D.5个考点6尺规作图例6如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.➢真题演练1.如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.∠AOB=110°,∠BOC=60°,则∠MON的度数为()A.50°B.75°C.60°D.55°2.如图,OC、OD为∠AOB内的两条射线,OC平分∠AOB,∠BOD=3∠COD,若∠COD =10°,则∠AOB的度数是()A.30°B.40°C.60°D.80°3.如图,已知ON,OM分别平分∠AOC和∠BON.若∠MON=20°,∠AOM=35°,则∠AOB的度数为()A.15°B.35°C.40°D.55°4.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中不正确的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=12CD•OE5.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.一个角的补角一定是钝角6.下列说法错误的是()A.在同一平面内,没有公共点的两条直线是平行线B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.经过直线外一点有且只有一条直线与该直线平行D.在同一平面内,不相交的两条线段是平行线7.如图所示,C为线段AB的中点,D在线段CB上,DA=6cm,DB=4cm,则CD的长度为______cm.8.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,观察图中尺规作图的痕迹,则AD的长是.9.如图,C是线段AB上一点,D,E分别是线段AC,BC的中点,若AB=10,则DE=.10.如图,C,D为线段AB上两点,AB=7cm,AD=1.5cm,D为线段AC的中点,则线段CB=cm.11.(1)已知:如图1,AB∥CD,求证:∠B+∠D=∠BED;(2)已知:如图2,AB∥CD,试探求∠B、∠D与∠E之间的数量关系,并说明理由.拓展提升:如图3,已知AB∥DE,BF,EF分别平分∠ABC与∠CED,若∠BCE=140°,求∠BFE的度数.12.如图,AB∥CD,点P为平面内一点.(1)如图①,当点P在AB与CD之间时,若∠A=20°,∠C=45°,则∠P=°;(2)如图②,当点P在点B右上方时,∠ABP、∠CDP、∠BPD之间存在怎样的数量关系?请给出证明;(不需要写出推理依据)(3)如图③,EB平分∠PEG,FP平分∠GFD,若∠PFD=40°,则∠G+∠P=°.➢课后练习1.如图,已知AB∥DF,DE和AC分别平分∠CDF和∠BAE,若∠DEA=46°,∠ACD=56°,则∠CDF的度数为()A.22°B.33°C.44°D.55°2.如图,直线CE∥DF,∠CAB=135°,∠ABD=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°3.如图,已知a∥b,则∠ACD的度数是()A.45°B.60°C.73°D.90°4.如图所示,直线a∥b,∠2=31°,∠A=28°,则∠1=()A.61°B.60°C.59°D.58°5.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C .两点确定一条直线D .过一点有且只有一条直线与已知直线平行6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法中错误的是( )A .过一点有且只有一条直线与已知直线平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线相交,有且只有一个交点D .若两条直线相交成直角,则这两条直线互相垂直8.下列说法正确的是( )A .过直线上一点有且只有一条直线与已知直线平行B .不相交的两条直线叫做平行线C .直线外一点到该直线的所有线段中垂线最短D .过直线外一点有且只有一条直线与已知直线平行9.如图,在△ABC 中,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若△CDB 的面积为12,△ADE 的面积为9,则四边形EDBC 的面积为( )A .15B .16C .18D .2010.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD =∠DAB 的依据是( )A .SASB .ASAC .AASD .SSS11.如图,点A 、B 、C 在同一条直线上,点D 为BC 的中点,点P 为AC 延长线上一动点(AD ≠DP ),点E 为AP 的中点,则AC−BP DE 的值是 .12.如图,点D是线段AB上一点,点C是线段BD的中点,AB=8,CD=3,则线段AD长为.13.如图1,已知∠BOC=40°,OE平分∠AOC,OF平分∠BOC.(1)若AO⊥BO,则∠EOF是多少度?(2)如图2,若角平分线OE的位置在射线OB和射线OF之间(包括重合),请说明∠AOC的度数应控制在什么范围.14.如图,已知∠1=∠2,∠C=∠D.(1)求证:AC∥DF;(2)如果∠DEC=105°,求∠C的度数.15.如图,已知BC⊥AE,DE⊥AE,∠2+∠3=180°.(1)请你判断CF与BD的位置关系,并证明你的结论;(2)若∠1=70°,BC平分∠ABD,试求∠ACF的度数.➢冲击A+在半径为5的⊙O中,AB是直径,点C是直径AB上方半圆上一动点,连接AC、BC.(1)如图1,则△ABC面积的最大值是;(2)如图2,如果AC=8,①则BC=;②作∠ACB的平分线CP交⊙O于点P,求长CP的长.(3)如图3,连接AP并保持CP平分∠ACB,D为线段BC的中点,过点D作DH⊥AP,在C点运动过程中,请直接写出DH长的最大值.。
中考数学复习学练测 23.线段、角、相交线课件 浙教版
类型之一 直线、线段和射线的概念与计算
如图23-2,C、D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是
AC的中点,则AC的长等于
(B )
A.3 cm C.11 cm
B.6 cm D.14 cm
【解析】 本题中已明确点C、D在线段AB上,可以求得DC=3 cm.由D为线段AC的 【点悟】针对线段的和、差关系以及涉及线段的中点问题,需要结合图形, 认真观察.若已知线段上给出的点来明确其位置,还需要分类讨论,千万不 要漏解.中点可知AC=2DC=6 cm.故选B.
角 的 度 量:(1)1周角= 2 平角= 4 直角= 360°; (2)1°= 60′ ,1′= 60″ .
角的大小比较:(1)数值法:利用量角器量出角的度数,再按度数的 大小进行比较;
(2)叠合法.
5.角的运算 方 法:角的运算包括角的和、差、倍、分的计算,这些计算实际上
等于它们的度数的和、差、倍、分.进行角度的计算时要注意 进制为 60进制 . 6.余角与补角 定 义:如果两个角的和是 直角 ,那么称这两个角互为余角,其中一 个角是另一个角的余角;如果两个角的和是 平角 ,那么称这 两个角互为补角,其中一个角是另一个角的补角. 性 质:(1)同角或等角的余角相等; (2)同角或等角的补角相等. 7.角的平分线 定 义:在角的内部,从角的顶点引出的一条射线,把这个角分成两个 相等 的角,这条射线叫做这个角的平分线.
第七单元线段、角、相交线与平行线 第23课时线段、角、相交线
复习指南[学生用书P24]
本课时复习主要解决下列问题. 1.直线、线段、射线的相关性质以及线段中点及两点间距离的意义 此内容为本课时的重点.为此设计了[归类探究]中的例1;[限时集训] 中的第4,5,11,15,16,17题. 2.角的有关概念及计算 此内容为本课时的重点.为此设计了[归类探究]中的例2;[限时集训] 中的第3,7,8,13,14题. 3.余角、补角、对顶角的概念与性质 此内容为本课时的重点.为此设计了[归类探究]中的例3;[限时集训] 中的第1,2,6,9,10,12题.
中考数学常考易错点 角、相交线与平行线 专题练习试题合集(含答案解析)
中考数学常考易错点角、相交线与平行线专题练习试题合集(含答案解析)易错清单1.平行线的性质.【例1】(2014·湖北襄阳)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于().A.35°B.45°C.55°D.65°【解析】利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠A=35°.【答案】∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.【误区纠错】本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.【例2】(2014·广东梅州)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是().A.15°B.20°C.25°D.30°【解析】根据两直线平行,内错角相等求出∠3,再求解即可.【答案】∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°.∴∠2=45°-20°=25°.【误区纠错】误认为∠1与∠2是内错角来解题.【例3】(2014·湖北孝感)如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数().A.46°B.44°C.36°D.22°【解析】根据两直线平行,内错角相等可得∠3=∠1,再根据直角三角形两锐角互余列式计算即可得解.【答案】∵l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∴∠2=90°-∠3=90°-44°=46°.故选A.【误区纠错】本题考查了平行线的性质,垂线的定义,要熟记性质并准确识图.例外识别∠3与∠1是同位角很重要.2.平行线的判定.【例4】(2014·湖南湘潭)如图,直线a,b被直线c所截,若满足,则a,b平行.【解析】根据同位角相等两直线平行可得∠1=∠2时,a∥b.其他合理答案亦可.【答案】∵∠1=∠2,∴a∥b(同位角相等两直线平行).故可填∠1=∠2.【误区纠错】分不清三线八角,以及平行线的判定方法是解题的误区,本题属条件开放性题.名师点拨1.能记住点、线、面的概念.2.能利用角的概念判断角的大小及角的表示方法;会进行角的换算;能正确区分角的大小;会进行角的和、差运算.3.能区分补角、余角的概念,记住补角、余角的性质.4.掌握角平分线定理和线段垂直平分线定理并能正确使用.5.会画直线的垂线;能区分垂线、垂线段的联系与区别.6.掌握平行的概念,会进行平行线的判断.7.能利用直尺画直线的平行线;会作两平行线间的距离;能确定并准确度量两平行线间的距离.提分策略1.直线平行与垂直的判定及简单应用.计算角度问题时,要注意挖掘图形中的隐含条件(三角形内角和、互为余角或补角、平行性质、垂直)及角平分线知识的应用.【例1】如图,△ABC中,∠A=90°,点D在边AC上,DE∥BC.若∠1=155°,则∠B的度数为.【解析】由∠1=155°,可求得∠BCD=∠CDE=25°,最后求∠B=65°.【答案】65°2.平行线的性质和判定的应用.主要理解和掌握:(1)平行线的性质;(2)平行线的判定.【例2】如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得到的关系中任选一个加以证明.【解析】①∠APC=∠PAB+∠PCD;②∠APC=360°-(∠PAB+∠PCD);③∠APC=∠PAB-∠PCD;④∠APC=∠PCD-∠PAB.如证明①∠APC=∠PAB+∠PCD.证明:过点P作PE∥AB,所以∠A=∠APE.又因为AB∥CD,所以PE∥CD.所以∠C=∠CPE.所以∠A+∠C=∠APE+∠CPE.所以∠APC=∠PAB+∠PCD.同理可证明其他的结论.专项训练一、选择题1.(2014·四川峨眉山二模)如图,已知直线AB,CD相交于点O,OE平分∠CPB.若∠BOD=70°,则∠COE的度数是().A.45°B.70°C.55°D.110°(第1题)(第2题)2.(2014·北京平谷区模拟)如图,AB∥CD,O为CD上一点,且∠AOB=90°.若∠B=33°,则∠AOC的度数是().A.33°B.60°C.67°D.57°3.(2014·山东日照模拟)将一副三角板按图中的方式叠放,则∠α等于().A.75°B.60°C.45°D.30°(第3题)(第4题)4.(2013·广东广州海珠区毕业班综合调研)如图,∠1与∠2是同位角,若∠2=65°,则∠1的大小是().A.25°B.65°C.115°D.不能确定5.(2013·浙江温州一模)如图,在△ABC中,DE∥BC,AD=2,AB=6,DE=3,则BC的长为().A.9B.6C.4D.3(第5题)(第6题)6.(2012·湖北荆门东宝区模拟)如图,已知直线a∥b,∠1=40°,∠2=60°.则∠3等于().A.100°B.60°C.40°D.20°二、填空题7.(2014·广东模拟)将三角板ABC按下图放置,使其三个顶点分别落在三条平行直线上,其中∠CAB=90°,且CF恰好平分∠ACB.若∠CBA=40°,则∠DAC的度数是.(第7题)(第8题)8.(2014·河南鹿邑一模)如图,∠1=∠2,∠3=40°.则∠4= .9.(2014·湖北鄂州二模)如图AB∥CD,∠1=50°,∠2=110°,则∠3= .(第9题)(第10题)10.(2013·湖北孝感模拟)如图,直线AB,CD相交于点E,EF⊥AB于点E,若∠CEF=59°,则∠AED的度数为.三、解答题11.(2014·河南安阳模拟)已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图(1),当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图(2),当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图(3),当∠ACB变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的∠ACB的度数.(第11题)参考答案与解析1.C[解析]2.D[解析]∠AOC=90°-33°=57°.3.A[解析]∠α=45°+(90°-60°)=75°.4.D[解析]两直线平行同位角相等,如果不能确定两直线是平行线则不能确定同位角之间的关系.5.A[解析]首先利用平行线判定两三角形相似,然后利用相似三角形对应边的比等于相似比求得线段BC的长即可.6.A[解析]∠3=∠1+∠2=100°.8.140°[解析]∠4=180°-∠3=140°.9.60°[解析]∠3=180°-(∠1+180°-∠2)=60°.10.149°[解析]∵EF⊥AB于点E,∠CEF=59°,∴∠AEC=90°-∠CEF=90°-59°=31°.∴∠AED=180°-∠AEC=180°-31°=149°.11.(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE.∴CD=ED,∠CDE=60°,AE=CB=a.∴△CDE为等边三角形.∴CE=CD.如图(1),当点E,A,C不在一条直线上时,有CD=CE<AE+AC=a+b;如图(2),当点E,A,C在一条直线上时,CD有最大值,CD=CD=a+b.此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°.因此当∠ACB=120°时,CD有最大值a+b.(第11题)。
中考数学复习考点知识讲解与专题训练14---线、角、相交线与平行线
中考数学复习考点知识讲解与专题训练第14讲 线、角、相交线与平行线知识梳理1. 线段和直线(1) 直线公理: 经过两点有且只有一条直线.(2) 线段公理: 两点之间,线段最短.连接两点的__线段的长度__叫做这两点间的距离.(3) 直线、射线、线段的主要区别:(4) 线段的中点:若点C 是线段AB 的中点,则AB BC AC 21==;AB =2AC =2B C .2.对顶角一个角的两边是另一个角的两边的反向延长线,则称这两个角是对顶角,对顶角相等.3.角及其平分线(1) 定义:有公共端点的两条射线组成的图形叫做角.角的分类:①角按大小可以分为周角、平角、钝角、直角、锐角.②1周角=2平角=4直角;1°=60′;1′=60″.1;∠AOB=2(2) 角的平分线:若OC平分∠AOB,则AOB∠=AOC∠∠BOC=2∠AOC=2∠BOC.4.余角、补角及性质:5. 相交线①.对顶角与邻补角:②. 垂线及性质:6. 平行线7.命题、定理5年真题命题点1 余角与补角1.(3分)(2017•广东)已知∠A=70°,则∠A的补角为(A)A.110°B.70°C.30°D.20°命题点2平行线的性质及判定(4分)(2019•广东)如图,已知a∥b,∠1=75°,则∠2=105°.2.3.(3分)(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是(B)A.30° B.40°C.50°D.60°3年模拟1.(2020•禅城区一模)如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是(B)A.点动成线B.两点确定一条直线C.垂线段最短 D.两点之间,线段最短2.(2020•白云区一模)一个角是60°,则它的余角度数为(A)A.30° B.40°C.90°D.120°3.(2019•金平区一模)已知∠A与∠B的和是90°,∠C与∠B互为补角,则∠C比∠A大(C)A.180°B.135° C.90°D.45°(2020•福田区模拟)如图,下列条件中,能判定DE∥AC的是(C)4.A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4 D.∠1=∠25.(2020•英德市一模)如图,∠1=∠2,∠D=50°,则∠B的度数为(D)A.50° B.40°C.100° D.130°6.(2019•花都区一模)如图,直线a∥b,点A、B分别在直线a、b上,∠1=45°,若点C在直线b上,∠BAC=105°,且直线a和b的距离为3,则线段AC的长度为(D)A.3√2B.3√3C.3 D.67.(2020•深圳模拟)下列命题正确的是(C)A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的平行四边形是正方形C.16的平方根是±4D.有两条边对应相等的两个直角三角形全等8.(2019•顺德区三模)计算:18°30′=18.5 °.9.(2020•金平区模拟)如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠1=∠2,那么∠1的度数为60°.10.(2020•靖江市一模)命题“对顶角相等”的逆命题是假命题(填“真”或“假”).。
中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)
中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)命题点分类集训命题点1 线段【命题规律】主要考查:①两点之间线段最短;②两点确定一条直线这两个基本事实.【命题预测】与图形的变换中立体图形的侧面展开结合,求两点之间的最短距离,另外也会与对称性结合,考查两线段和的最小值.1. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短1. D第1题图第2题图2. 如图,AB⊥AC,AD⊥BC,垂足分别为A,D.则图中能表示点到直线距离的线段共有( )A. 2条B. 3条C. 4条D. 5条2. D【解析】AD是点A到直线BC的距离;BA是点B到直线AC的距离;BD是点B到直线AD的距离;CA是点C到直线AB的距离;CD是点C到直线AD的距离,共5条,故答案为D.命题点2 角、余角、补角及角平分线【命题规律】主要考查:①角度的计算(度分秒之间的互化);②余角、补角的计算;③角平分线的性质.【命题预测】角、余角、补角及角平分线等基本概念是图形认识的基础,应给予重视.3. 下列各图中,∠1与∠2互为余角的是( )3. B4. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.4. 3【解析】如解图,过点P作PD⊥OA于点D,∵OP为∠AOB的平分线,PC⊥OB于点C,∴PD=PC,∵PC=3,∴PD=3,即点P到点OA的距离为3.5. 1.45°=________′.5. 87【解析】∵1°=60′,∴0.45°=27′,∴1.45°=87′.6. 已知∠A=100°,那么∠A的补角为________度.6. 80【解析】用180度减去已知角,就得这个角的补角.即∠A的补角为:180°-100°=80°.命题点3 相交线与平行线【命题规律】考查形式:①三线八角中同位角、内错角、同旁内角的识别或计算,有时综合对顶角、邻补角求角度;②综合角平分线、垂线求角度;③综合三角形的相关知识求角度;④根据角的关系判断两直线的关系.【命题预测】平行线性质是认识图形的基础知识,也是全国命题的潮流和方向.7. 如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角7. B【解析】根据相交线的性质及角的定义可知∠1与∠2的位置关系为内错角,故选B.第7题图第8题图第9题图8. 如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于( )A. 50°B. 70°C. 90°D. 110°8. B【解析】如解图,∵a∥b,∴∠3+∠4=180°,∵c∥d,∴∠2=∠4,∵∠1=∠3,∴∠2=180°-∠1=70°,故本题选B.9. 如图,在下列条件中,不能..判定直线a与b平行的是( )A. ∠1=∠2B. ∠2=∠3C. ∠3=∠5D. ∠3+∠4=180°9. C【解析】逐项分析如下:选项逐项分析正误A∵∠1=∠2,即同位角相等,两直线平行,∴a∥b √B∵∠2=∠3,即内错角相等,两直线平行,∴a∥b √∵∠3、∠5既不是a与b被第三直线所截的同位角,也不是内错角,×C∴∠3=∠5,不能够判定a与b平行D∵∠3+∠4=180°,即同旁内角互补,两直线平行,∴a∥b √10. 如图,将一块直角三角板的直角顶点放在直尺的一边上,如果∠1=50°,那么∠2的度数是( )A. 30°B. 40°C. 50°D. 60°10. B 【解析】如解图,∠1+∠3=90°,∴∠3=90°-∠1=90°-50°=40°,由平行线性质得∠2=∠3=40°.11. 如图所示,AB ∥CD ,EF ⊥BD ,垂足为E ,∠1=50°,则∠2的度数为( )A . 50°B . 40°C . 45°D . 25°11. B 【解析】∵EF ⊥BD ,∠1=50°,∴∠D =90°-50°=40°,∵AB ∥CD ,∴∠2=∠D =40°.第10题图 第11题图 第12题图 第13题图12. 如图,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A . ∠EMB =∠END B . ∠BMN =∠MNC C . ∠CNH =∠BPGD . ∠DNG =∠AME12. D 【解析】A.两直线平行,同位角相等,∴∠EMB =∠END ;B.两直线平行,内错角相等,∴∠BMN =∠MNC ;C.两直线平行,同位角相等,∴∠CNH =∠APH ,又∠BPG =∠APH ,∴∠CNH =∠BPG ;D.∠DNG 和∠AME 无法推导数量关系,故不一定相等,答案为D.13. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=________°.13. 75 【解析】如解图,过点P 作PH ∥a ∥b ,∴∠FPH =∠1,∠EPH =∠2,又∵∠1=45°,∠2=30°,∴∠EPF =∠EPH +∠HPF =30°+45°=75°.命题点4 命 题【命题概况】命题考查的知识点比较多,一般几个知识点结合考查,考查形式有:①下面说法错误(正确)的是;②写出命题…的逆命题;③能说明…是假命题的反例.【命题趋势】命题为新课标新增内容,考查知识比较综合,是全国命题点之一.14. (2016宁波)能说明命题“对于任何实数a ,|a|>-a”是假命题的一个反例可以是( )A . a =-2B . a =13C . a =1D . a = 214. A 【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a =13,1,2时,|a |>-a 总是成立,当a =-2时,|-2|=2=-(-2),此时|a |=-a ,故本题选A.15. 写出命题“如果a =b ,那么3a =3b”的逆命题...:________________________. 15. 如果3a =3b ,那么a =b 【解析】命题由条件和结论构成,则其逆命题只需将原来命题的条件和结论互换即可,即将结论作为条件,将条件作为结论. ∵命题“如果a =b ,那么3a =3b ,”中条件为“如果a =b ”,结论为“那么3a =3b ”,∴其逆命题为“如果3a =3b ,那么a =b ”.中考冲刺集训一、选择题1. 如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为( )A. 65°B. 55°C. 45°D. 35°第1题图第2题图第3题图2. 如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=( )A. 65°B. 115°C. 125°D. 130°3. 如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )A.75°36′B.75°12′C.74°36′D.74°12′二、填空题4. 如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________.第4题图第5题图第6题图5. 如图,直线CD∥EF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=________.6. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM等于________度.7. 如图,直线AB∥CD,BC平分∠ABD.若∠1=54°,则∠2=________°.第7题图第8题图第9题图8. 如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=________.9.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.答案与解析:1. B【解析】∵DA⊥AC,∠ADC=35°,∴∠ACD=90°-∠ADC=90°-35°=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.2. B【解析】∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=130°,∵AE平分∠CAB,∴∠EAB=12∠CAB=65°.又∵AB∥CD,∴∠AED+∠EAB=180°,∴∠AED=180°-∠EAB=180°-65°=115°.3. B【解析】根据平面镜反射原理可知,∠ADC=∠ODE,∵DC∥OB,∴∠ADC=∠AOE,∴∠ODE=∠AOE=37°36′,∴∠DEB=∠ODE+∠AOE=37°36′+37°36′=75°12′,故选B.4. 50°5. 30°6. 307. 72【解析】∵CD∥AB,∴∠CBA=∠1=54°,∠ABD+∠CDB=180°,∵CB平分∠ABD,∴∠DBC=∠CBA=54°,∴∠CDB=180°-54°-54°=72°,∴∠2=∠CDB=72°.8. 15°【解析】由两直线平行,内错角相等,可得∠A=∠AFE=30°,∠C=∠CFE,由∠AFC=15°,可得∠CFE=∠C=∠AFE-∠AFC=15°.第9题解图9. 2【解析】如解图,过点P作PE⊥OB于点E,∵OP平分∠AOB,∴PD=PE,∠AOB=2∠AOP=30°,∵PC∥OA,∴∠ECP=∠AOB=30°,∴PE=12PC=2,∴PD=PE=2.。
九年级中考数学复习专题---线段 角与相交线
2题图线段,角与相交线一、选择题1、(2013安徽芜湖一模)下面四个图形中,∠1=∠2一定成立的是 ( ).答案:B2、(2013江苏扬州弘扬中学二模)如图,直线a ,b 被c 所截,a ∥b ,若∠1=35°,则∠2的大小为( )A . 35°B . 145° C. 135° D. 125°答案:B3、(2013·湖州市中考模拟试卷3)如果50α∠= ,那么α∠的补角等于 .答案:1304、(广东省2013初中学业水平模拟六)若α∠补角是α∠余角的3倍,则α∠= . 答案:45度5、(广东省2013初中学业水平模拟一)如图1,AOC ∠和BOD ∠都是直角,且︒=∠30DOC ,则=∠AOB ( ). A .︒30 B .︒60 C .︒120 D .︒150 答案:D6、(广东省2013初中学业水平模拟一)︒28的补角是( ). A .︒58 B .︒72 C .︒62D .︒152答案:C7、(广州海珠区2013毕业班综合调研)如图,∠1与∠2是同位角,若∠2=65°,则∠1的大小是( )A .25°B .65°C .115°D .不能确定答案:D8、(2013湛江调研测试)∠A=20°,则∠A 的余角为A .20°B .70°C .80°D .160°A O DC B图1第4题图21答案:B二、填空题1、(广州海珠区2013毕业班综合调研)如图,AB 为⊙O 的直径,点C 在⊙O 上,若︒=∠20C ,则=∠BOC °.答案:40°2、(2013广西钦州市模拟)如图,点B 是线段AC 上的点, 点D 是线段BC 的中点,若AB=4cm ,AC =10cm ,则CD= ▲ cm . 第1题 答案:33、(2013年孝感模拟)如图, 直线AB 、CD 相交于点E ,EF ⊥AB 于E ,若∠CEF =59°,则∠AED 的度数为 .答案: ︒1494、(2013年孝感模拟)在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B C 、两地相距 m .答案: 2005、(2013年犍为县五校联考)某同学在纸上画了四个点,如果把这四个点彼此连接,连成第1题图BOCAABCD一个图形,则这个图形中会有 个三角形出现。
中考数学典型题型专题讲解系列5---线段角与相交线
考点:时间单位的换算.
3.计算 108°- 56°23′ =____________________.
【答案】51°37′
【解析】
试题分析:108°- 56°23′ =107°60′- 56°23′ =51°37′.
考点:角的度数计算.
考点典例三、角平分线的性质与应用
【例 3】如图所示,∠AOB=156°,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线,那么∠DOE 等
3 / 13
C、24°24′24″=24.44°,错误;
D、41.25°=41°15′,正确.
故选 D.
考点:度分秒的换算.
2. 2700 秒 = ___来自_____度. 3【答案】 4
【解析】 试题分析:1o = 60 ' = 3600",所以 2700" = ( 2700)o = ( 3)o .
形的内角和定理或特殊三角形的性质结合在一起考查.
【举一反三】
如图,OM 平分 ∠AOB ,ON 平分∠BOC , ∠AOC = 120° ,则 ∠MON =
.
【答案】60°
考点:角平分线的性质
考点典例四、余角与补角
【例 3】已知∠α=35°,那么∠α的余角等于( )
A、35°
B、55°
C、65°
D、145°
考点:角平分线的性质 课时作业☆能力提升 一、选择题 1.将一副三角尺按如图方式进行摆放 ,∠1、∠2 不一定互补的是( )
【答案】D 【解析】 试题分析:根据互余、互补的定义结合图形判断 A 中∠1 与∠2 互补;根据互补的定义和平行 线的性质可得 B 中,∠1 与∠2 互补;根据直角三角形的性质和四边形的内角和可得 C 中∠1 与∠2 互补;根据图形可知∠1 与∠2 都是小于直角的锐角,所有 D 中的∠1 与∠2 一定不互 补,故选:D. 考点:互补. 2.如图,C、D 是线段 AB 上的两点,且 D 是线段 AC 的中点,若 AB=10cm,BC=4cm,则 AD 的长 为( )
中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)
几何初步、相交线、平行线知识点梳理考点01 几何图形一、几何图形(一)几何图形的概念和分类1.定义:把从实物中抽象出的各种图形统称为几何图形.2.几何图形的分类:立体图形和平面图形。
(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,例如:长方体、圆柱、圆锥、球等。
立体图形按形状可分为:球、柱体(圆柱、棱柱)、椎体(圆锥、棱锥)、台体(圆台、棱台).按围成立体图形的面是平面或曲面可以分为:多面体(有平面围成的立体图形)、曲面体(围成立体图形中的面中有曲面)。
(2)平面图形:有些几何图形(如线段、角、三角形、圆、四边形等)的各部分都在同一平面内,称为平面图形.常见的平面图形有圆和多边形(三角形、四边形、五边形、六边形等)。
(二)从不同方向看立体图形:从正面看:正视图.从左面看:侧视图.从上面看:俯视图。
(三)立体图形的展开图:1.有些立体图形是由一些平面图形围成,把他们的表面沿着边剪开,可以展开形成平面图形。
2.立体图形的展开图的注意事项:(1)不是所有的立体图形都可以展开形成平面图形,例如:球不能展开形成平面图形. (2)不同的立体图形可展开形成不同的平面图形,同一个立体图形,沿不同的棱剪开,也可得到不同的平面图形。
(四)正方体的平面展开图正方体的展开图由6个小正方形组成,把正方体各种展开图分类如下:二、点、线、面、体1.体:长方体、正方体、圆柱体、圆锥体、球、棱锥、棱柱等都是几何体,几何体也简称体。
2.面:包围着体的是面,面有平的面和曲的面两种.3.线:面和面相交的地方形成线,线也分为直线和曲线两种.4.点:线和线相交的地方形成点。
5.所有的几何图形都是由点、线、面、体组成的,从运动的角度来看,点动成线,线动成面,面动成体。
考点02 直线、射线、线段一、直线1.直线的表示方法:(1)可以用直线上表示两个点的大写英文字母表示,可表示为直线AB或直线BA.(2)也可以用一个小写英文字母表示,例如直线m等.2.直线的基本性质:经过两点有一条直线,并且只有1条直线.简称:两点确定一条直线。
中考数学一轮复习《线段、角、相交线与平行线》知识梳理及典型例题讲解课件
C.AB∥CD→∠ABC+∠C=180°
D.∠1=∠2→AD∥BC
B
知识点5 命题
命题
判断一件事情的语句叫做命题,命题有题设和结论两部分
真命题
如果题设成立,那么结论一定成立的命题
假命题
如果题设成立,不能保证结论一定成立的命题
互逆命题
在两个命题中,如果一个命题的题设和结论分别是另一个命题的结论和题设,那么这两个命题称为互逆命题,其中一个命题是另一个命题的逆命题
A.39°
B.40°
C.41°
D.42°
B
4.如图,m∥n,其中∠1=40°,则∠2的度数为( B )
A.130°
B.140°
C.150°
D.160°
B
5.如图,∠1+∠2=180°,∠3=104°,则∠4的度数是( B )
A.74°
B.76°
C.84°
58
10
48
27
19
12
22.25
53.21
4.如图,两块三角板的直角顶点O重合在一起,∠BOD=35°,则∠AOC的度数为 35° .
35°
5.如图,O是直线AB上一点,OD是∠AOC的平分线,已知∠COD=35°,则∠BOD的度数为 145° ;若DE⊥OA于点E,且DE=3,则点D到OC的距离为 3 .
145°
3
知识点3 相交线
1.三线八角
对顶角
性质:对顶角⑦ 相等 .如图,∠1与∠3,∠2与∠4,∠5与∠7,∠6与∠8
邻补角
性质:邻补角之和等于180°.如图,∠1与∠4,∠2与∠3,∠5与∠8,∠6与∠7
同位角
如图,∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8
2024成都中考数学复习专题 线、角、相交线与平行线(含命题) (含答案)
2024成都中考数学复习专题线、角、相交线与平行线(含命题)基础题1. (2022柳州)如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是()A. ①B. ②C. ③D. ④第1题图2. 如图,点P在△ABC的AB边上从点A向点B移动,当S△APC=S△BPC时,则CP是△ABC 的()第2题图A. 高B. 角平分线C. 中线D. 中位线3. (2023兰州改编)如图,直线AB与CD相交于点O,则∠BOD=()第3题图A. 40°B. 50°C. 55°D. 60°4. (2023临沂)在同一平面内,过直线l外一点P作l的垂线m,再过P作m的垂线n,则直线l与n的位置关系是()A. 相交B. 相交且垂直C. 平行D. 不能确定5. (2023广西)如图,一条公路两次转弯后又回到与原来相同的方向,∠A=130°,那么∠B的度数是( )第5题图A. 160°B. 150°C. 140°D. 130°6. 已知m +2n n =157(mn ≠0),则n m值为( ) A. 2 B. 5 C. 7 D. 277. 如图,AB ∥CD ,E 是直线AB 上一点,且∠DEF =150°,若∠BEF =4∠BED ,则∠D 的度数为( )A. 28°B. 30°C. 35°D. 25°第7题图8. (2023金华)如图,已知∠1=∠2=∠3=50°,则∠4的度数是( )第8题图A. 120°B. 125°C. 130°D. 135°9. (2023绥化)将一副三角板按下图所示摆放在一组平行线内,∠1=25°,∠2=30°,则∠3的度数为( )第9题图A. 55°B. 65°C. 70°D. 75°10. (2023恩施州)将含60°角的直角三角板按如图方式摆放,已知m ∥n ,∠1=20°,则∠2=( )A. 40°B. 30°C. 20°D. 15°第10题图11. (2023深圳改编)如图为商场某品牌椅子的侧面图,∠DEF=120°,DE与地面平行,∠ABD =50°,则∠ACB=()第11题图A. 70°B. 65°C. 60°D. 50°12. 如图,在△ABC中,D,E,F分别是AB,AC,BC上的点,且DE∥BC,EF∥AB,若BF∶FC=2∶3,AB=15,则BD=()A. 6B. 9C. 10D. 12第12题图13. (2023达州改编)命题“到一条线段两个端点距离相等的点,在这条线段的垂直平分线上”是________命题(填“真”或“假”).14. (2023烟台)一杆古秤在称物时的状态如图所示,已知∠1=102°,则∠2的度数为________.第14题图15. (2023乐山)如图,点O在直线AB上,OD是∠BOC的平分线,若∠AOC=140°,则∠BOD 的度数为________.第15题图16. 如图,已知直线l1∥l2,点A,B分别在直线l1,l2上,点P是直线l1,l2间一点,连接P A,PB. 若∠1=∠2=130°,则∠APB=________°.第16题图17. (2023北京)如图,直线AD,BC交于点O,AB∥EF∥C D.若AO=2,OF=1,FD=2,则BEEC的值为________.第17题图18. (2023台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为________.第18题图拔高题19. (2023徐州)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C=________°.第19题图20. (2023达州)如图,乐器上的一根弦AB=80 cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为______cm.(结果保留根号)第20题图参考答案与解析1. B2. C3. B 【解析】由题图可得∠AOC =50°,∴∠BOD =50°.4. C 【解析】∵l ⊥m ,n ⊥m ,∴l ∥n .5. D 【解析】∵公路两次转弯后又回到与原来相同的方向,∴AC ∥BD ,∴∠B =∠A =130°.6. C 【解析】∵m +2n n =157 ,∴7m +14n =15n ,∴7m =n ,∴n m=7. 7. B 【解析】∵∠BEF =4∠BED ,∴5∠BED =∠DEF =150°,∴∠BED =30°.∵AB ∥CD ,∴∠D =∠BED =30°.8. C 【解析】如解图,∵∠1=∠3=50°,∴a ∥b .∵∠2=50°,∴∠2=∠5=50°,∴∠4=180°-∠5=130°.第8题解图9. C 【解析】∵两条直线平行,∠1=25°,∴∠3+45°=∠1+90°,∴∠3=45°+∠1=45°+25°=70°.10. A 【解析】如解图,作l ∥m ,∵m ∥n ,∴l ∥m ∥n ,∴∠2=∠3,∠1=∠4,∴∠1+∠2=∠4+∠3=60°,∴∠2=60°-20°=40°.第10题解图11. A 【解析】∵DE ∥AB ,∠ABD =50°,∴∠D =∠ABD =50°.∵∠DEF =120°,且∠DEF 是△DCE 的外角,∴∠DCE =∠DEF -∠D =70°,∴∠ACB =∠DCE =70°.12. B 【解析】∵EF ∥AB ,BF ∶FC =2∶3,∴BF FC =AE EC =23 ,∴AC EC =53.∵DE ∥BC ,∴AB BD =AC EC ,∴15BD =53,∴BD =9. 13. 真14. 78° 【解析】如解图,由题意得AB ∥CD ,∴∠2=∠BCD .∵∠1=102°,∴∠BCD =78°,∴∠2=78°.第14题解图15. 20° 【解析】∵点O 在直线AB 上,∴∠AOC +∠BOC =180°,∴∠BOC =180°-∠AOC=180°-140°=40°.∵OD 为∠BOC 的平分线,∴∠BOD =12 ∠BOC =12×40°=20°,∴∠BOD =20°.16. 100 【解析】如解图,过点P 作l 1的平行线PQ ,∵l 1∥l 2∥PQ ,则∠1+∠APQ =∠2+∠QPB =180°,∵∠1=∠2=130°,∴∠APQ =∠QPB =180°-130°=50°,∴∠APB =∠APQ +∠QPB =50°+50°=100°.第16题解图17. 32 【解析】∵AB ∥EF ∥CD ,∴BE EC =AF FD =AO +OF FD.∵AO =2,OF =1,FD =2,∴BE EC =2+12 =32. 18. 140° 【解析】如解图,由折叠的性质得∠1=∠3=20°,由题意得AB ∥CD ,∴∠4=∠1+∠3=40°,∴∠2=180°-∠4=140°.第18题解图19. 55 【解析】∵DE ∥BC ,∠BDE =120°,∴∠B =180°-∠BDE =60°,同理∠A =65°.∵∠A +∠B +∠C =180°,∴∠C =180°-∠A -∠B =55°. 20. (805 -160) 【解析】由题得,弦AB =80 cm ,点C 是靠近点B 的黄金分割点,设BC=x ,则AC =80-x ,∴80-x 80 =5-12,解得x =120-405 .∵点D 是靠近点A 的黄金分割点,∴设AD =y ,则BD =80-y ,∴80-y 80 =5-12,解得y =120-405 ,∴支撑点C ,D 之间的距离为80-x -y =80-120+405 -120+405 =(805 -160)cm.。
线段 角 相交线 平行线中考复习
平行性质: 两直线平行 内错角相等。(公理) 两直线平行 同位角相等。(公理)
两直线平行 同旁内角互补。(公理) 平行线等分线段定理,平行线分线段成比例定
理 平行线弦所夹圆弧相等。 平行线的一组同位角(内错角)的角分线互相
平行,同旁内角的角分线互相垂直。 两边互相平行的两个角相等或互补;两边互相
垂直的两个角相等பைடு நூலகம்互补。
中垂线(垂直平分线) :垂直平分线上点到线段两 端距离相等,到线段两端距离相等的点在垂直平分线 上。(尺规作图) (等腰三角形,矩形、菱形、正方 形、圆径定理,轴对称里面涉及)
(3)平行:
过直线外一点有且只有一条直线和已知直线平行。(公理)
判定: 内错角相等,两直线平行。(公理) 同位角相等,两直线平行。(公理) 同旁内角互补,两直线平行。(公理) 平行于同一条直线的两条直线互相平行。 垂直于同一条直线的两条直线互相平行。 中位线平行于第三边,等于第三边的一半。
边的比。 角分线上点到角两边距离相等,到角两边距离相
等的点在角平分线上。 一分钟时针旋转0.5度,一分钟分针旋转6度 ,1
分钟秒针旋转360度。
初中所学的距离:
点到点(线段长度) 点到线(垂线段长度) 两平行线间距离。
定义、命题、定理、公理(公理化思想 欧氏 几何 )
判断一件事情的语句叫做命题。 命题组成:题设(如果、条件)、结论。 命题分类:真、假命题。 原命题 逆命题。 证明假命题的办法:举反例。 反证法。 欧几里得《几何原本 》,明朝科学家徐光启 和意大利传教士利玛窦翻译前6卷,后九卷由李 善兰和英国人伟烈亚力翻译引入中国。
2.两点之间线段最短(公理) 线:直线、线段、射线 线段中点: 线段AB 中点C则有AC=BC=1/2AB。
中考数学考点18线段角相交线与平行线总复习(解析版)
线段、角、相交线与平行线【命题趋势】在中考中.直线与线段主要以选择题和填空题形式考查;角及角平分线主要在选择题中考查;平行线常与角度结合考查.以选择题和填空题形式为主。
【中考考查重点】一、角的识别及余角、补角的计算二、平行线的判定三、平行线的性质求角度四、命题考点一:直线和线段 1.(2021春•自贡期末)在墙上要钉牢一根木条.至少要钉两颗钉子.能解释这一实际应用的数学知识是( )A .两点之间线段最短B .两点确定一条直线C .直线比线段长D .两条直线相交.只有一个交点【答案】B【解答】解:在墙上固定一根木条.至少需要钉两颗钉子.能解释这一实际应用的数学知识是两点确定一条直线.故选:B .2.(2021春•拱墅区月考)在同一平面内.不重合的三条直线的交点有( )个. 两个基本事实1. 线段的基本事实:两点确定一条直线2. 线段的基本事实:两点间线段最短 两点间的距离连接两点间的线段的长度 线段的和与差如图.在线段AC 上取一点B.则有AC=AB+BC ;AB=AC -BC; BC=AC -AB 线段的中点如图.M 是线段AB 的中点.即有AM=BM=AB 21A.1或2B.2或3C.1或3D.0或1或2或3【答案】D【解答】解:因为三条直线位置不明确.所以分情况讨论:①三条直线互相平行.有0个交点;②一条直线与两平行线相交.有2个交点;③三条直线都不平行.有1个或3个交点;所以交点的个数可能为0个或1个或2个或3个.故选:D.3.(2021春•白碱滩区期末)直线l外有一点P.直线l上有三点A、B、C.若P A=4cm.PB =2cm.PC=3cm.那么点P到直线l的距离()A.不小于2cm B.大于2cm C.不大于2cm D.小于2cm【答案】C【解答】解:∵P A=4cm.PB=2cm.PC=3cm.∴PB最短.∵直线外一点与直线上点的连线中.垂线段最短.∴P到直线l的距离不大于2cm.故选:C.4.如图.线段AB=12.点C是它的中点.则AC的长为()A.2B.4C.6D.8【答案】C【解答】解:∵线段AB=12.点C是它的中点.∴AC=AB=6.故选:C.度分秒的换算1周角=360°.1平角=180°.1°=60′.1′=60″角的度分秒的进制是60角的分类按大小分:周角(360°)>平角(180°)>直角(90°)>锐角2.余角、补角、角平分线 5.(2021秋•洪山区期末)若一个角比它的余角大30°.则这个角等于( )A .30°B .60°C .105°D .120°【答案】B【解答】解:设这个角为x .则x ﹣(90°﹣x )=30°.解得x =60°.故选:B .6.(2021秋•盐池县期末)若∠α的补角是125°24′.则∠α的余角是( )A .90°B .54°36′C .36°24′D .35°24′ 【答案】D【解答】解:∵∠α的补角是125°24′.∴∠α=180°﹣125°24′=54°36′.∴∠α的余角是90°﹣54°36′=35°24′.故选:D .7.(2021秋•龙江县期末)已知∠AOB =100°.过点O 作射线OC 、OM .使∠AOC =20°、OM 是∠BOC 的平分线.则∠BOM 的度数为( )A .60°B .60°或40°C .120°或80°D .40° 【答案】B【解答】解:如图1.当OC 在∠AOB 内部时.∵∠AOB =100°.∠AOC =20°.∴∠BOC =80°.∵OM 是∠BOC 的平分线.∴∠BOM =40°; 余角1. 概念:如若两个角之和=90°.那么这两个角互为余角;2. 性质:同角(等角)的余角相等 补角3. 1.概念:如若两个角之和=180°.那么这两个角互为补角;性质:同角(等角)的补角相等角平分线1. 性质:角平分线上的点到角两边的距离相等2. 逆定理:在角的内部.到角两边距离相等的点在角平分线上如图2.当OC在∠AOB外部时.∵∠AOB=100°.∠AOC=20°.∴∠BOC=120°.∵OM是∠BOC的平分线.∴∠BOM=60°;综上所述:∠BOM的度数为40°或60°.故选:B.8.(2021秋•江汉区期末)如图.在观测站O发现客轮A、货轮B分别在它北偏西50°、西南方向.则∠AOB的度数是()A.80°B.85°C.90°D.95°【答案】B【解答】解:由题意得:∠AOB=180°﹣(45°+50°)=85°.故选:B.9.(2021秋•锦江区校级期末)如图.一副三角板(直角顶点重合)摆放在桌面上.若∠BOC=20°.则∠AOD等于()A.160°B.140°C.130°D.110°【答案】A【解答】解:∵∠AOB=∠COD=90°.∠BOC=20°.∴∠AOD=∠AOB+∠COD﹣∠BOC=90°+90°﹣20°=160°.故选:A.10.(2021秋•南岗区期末)下列四幅图中.∠1和∠2是对顶角的为()A.B.C.D.【答案】B【解答】解:由对顶角的定义可知.选项B中的∠1与∠2是对顶角.故选:B.11.(2021秋•临江市期末)如图.直线AB、CD相交于点O.OA平分∠EOC.∠EOC=70°.则∠BOE的度数等于()图示对顶角性质:对顶角相等如图.∠1与∠3.∠与∠4.∠5与∠7.∠6与∠8邻补角性质:邻补角之和等于180°如图.∠1与∠4.∠2与∠3.∠5与∠8.∠6与∠7 同位角如图。
中考数学专题复习训练线段、角、相交线及视图(无答案)
OEDCBA线段、角、相交线及视图一、选择题1.如图,直线AB与直线CD 相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45,则∠COE的度数是( )(A)125°(B)135°(C)145°(D)155°2.下面四个图形中,能判断∠1>∠2的是( )A. B. C. D.3.如果60α∠=,那么α∠的余角的度数是()(A)30°(B)60°(C)90° (D)120°4.如右下图,是由4个大小相同的正方体搭成的几何体,其俯视图是()5.如图,直线l1与l2相交于点O,1OM l⊥,若44α∠=︒,则β∠等于()A.56︒ B.46︒ C.45︒ D.44︒正面题图6A B C DOl2l1βα第3题6.如图l 1∥l 2,l 3⊥l 4,∠1=42°,那么∠2的度数为( )A.48°B.42° C.38° D.21°7.如图,点O 在直线AB 上,且OC ⊥OD ,若∠COA=36°,则∠DOB 的大小为( ) A .36° B .54°C .64°D .72°8.如图1,点A 、B 、C 是直线l 上的三个点,图中共有线段条数是( ) A .1条 B .2条 C .3条 D .4条9.30°角的补角是( )A 。
30°角 B. 60°角 C. 90°角 D. 150°角 10.从3时到6时,钟表的时针旋转角的度数是( )A .300B .600C .900D .120011.已知∠1=35°,则∠1的余角的度数是( ) A. 55° B。
65° C。
135 ° D. 145° 12.已知∠A=37°,则∠A 的余角等于( )A. 37° B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个点 .
6.把一块直角三角板的直角顶点放在直尺的一边上,
如果∠ 1= 35°,那么∠2 是 _______°.
2 1
7.若
=36°,则∠ 的余角为 ______度.
8.直线 AB、 CD相交于点 O, OE平分∠ AOD,若∠ BOD=100°,则∠ AOE=_____.
C
A
E O
B
D
βO
α
l1
l2 第 3题
A. 56
B . 46
C . 45
D . 44
6.如图 l 1∥l2,l 3⊥l4, ∠1=42°, 那么∠2 的度数为 ( )
A. 48°
B. 42°
C. 38°
D. 21°
7.如图,点 O在直线 AB 上,且 OC⊥ OD,若∠ COA=36°,则∠ DOB的大小为 ( )
A. 36°
B. 54°
C. 64°
D. 72°
8.如图 1,点 A、 B、 C是直线 l 上的三个点,图中共有线段条数是
A .1 条 B .2 条
C .3 条
D .4 条
()
A
B
C
l
9. 30°角的补角是 ( )
A.30 °角
B. 60
°角
C. 90
°角
10.从 3 时到 6 时,钟表的时针旋转角的度数是(
C
A.
B
.
C
.
3.如果
60 ,那么
的余角的度数是 ( )
( A) 30°
(B) 60°
(C) 90°
(D) 120°
4.如右下图,是由 4 个大小相同的正方体搭成的几何体,其俯视图是
D
.
(
)
A
B
C
D
正面
6题图
5.如图,直线 l 1 与 l 2 相交于点 O, OM l1 ,若
44 ,则 等于 ( )
。
2. 8 点 30 分时,钟表的时针与分针的夹角为
°.
3.若 A 35 , 则 A 的余角等于
度.
4.如图, O为直线 AB上一点 COB 26 30' ,则∠ 1=
度.
1
C
A
O
B
5.直线上有 2010 个点 , 我们进行如下操作: 在每相邻两点间插入 1 个点 , 经过 3 次这样的操
作后 , 直线上共有
)
A.
B.
C.
D.
17 .如图,是有几个相同的小正方体搭成的几何体的三种视图,
正方体的个数是(
)
A. 3 个 B. 4
个 C. 5
个 D. 6 个
则搭成这个几何体的小
18.如图所示的几何体的俯视图是(
).
A. 19.如图
B.
C.
D.
是一个三视图,则此三视图所对应的直观图是(
)
第 2 题图
(A)
( B)
A. 300
B
. 600
C
. 900
11.已知∠ 1=35°,则∠1 的余角的度数是(
)
A. 55 ° B. 65 ° C.135 ° D. 145 °
12.已知∠ A=37°, 则∠A 的余角等于(
)
A. 37 ° B. 53 ° C. 63 ° D. 143 °
13.一个几何体的三视图如图所示,那么这个几何体是(
( C)
20.如图 , 是由四个相同的小正方体组成的立体图形 , 它的俯视图是 ( )
(D)
A.
B.
C.
21.(如下左图所示的几何体的主视图是(
D. )
主视方向
A.
B.
C.
D.
22.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是(
)
A.
B.
C.
D.
二、填空题
1.如图, O是直线 l 上一点,∠ AOB=100°,则∠ 1 + ∠ 2 =
线段、角、相交线及视图
一、选择题
1.如图,直线 AB与直线 CD相交于点 O, E 是∠ AOD内一点,已知 OE⊥ AB,∠ BOD= 45 ,
则∠ COE的度数是 ()
(A)125 ° (B)135
°
(C)145
°
(D)155
°
E D
2.下面四个图形中,能判断∠ 1>∠ 2 的是 ( )
A
O
B
D. 150 )
D
)
°角 . 1200
A. B . C . D . 14.已知一个几何体的三种视图如右图所示,则这个
A.圆柱 B .圆锥 C .球体 D .正方体
几何体是(
)
15.下列四个几何体中,主视图、左视图、俯视图完全相同的是(
)
A.圆锥
B .圆柱
C .球
D .三棱柱
16.如图所示的一组几何体的俯视图是(