高考数学易错点

合集下载

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳高考数学是高中阶段各科中相对较难的一门科目,考试难度也相对较高,很容易让考生犯错,导致分数损失。

本文将总结高考数学易错点及重要知识点,并提供相应的解题技巧,希望考生能够避免犯错,取得好成绩。

一、易错点1.符号混淆这是数学中比较普遍的一个易错点,包括加减号、乘号、除号、左右括号等符号的混淆。

一旦出现符号混淆,就会直接导致答案错误或提高解题难度。

因此,考生在做题时要非常注意符号的正确使用。

2.大意误解有些考生在做题时,阅读理解出现失误,对题目的意思产生误解,从而造成答案错误。

所以一定要认真读题理解,分析问题。

尤其是碰到长篇阅读理解时,要先明确大意。

3.计算错误在数学中,很多题目难度相对较低,但往往因为一些简单的计算错误而导致错误答案。

这种错误需要我们在平时做题中多加注意和练习,对于那些需要计算的题目尤其重要。

4.公式错误在解决复杂问题时,我们往往会用到一些公式,不过使用公式时也有可能写错或理解不正确,导致答案错误。

因此,我们必须学会正确地运用公式。

5.转化错误在一些题目中,需要把题目中的信息转化为数学式子,但转化时有可能出现问题。

转化错误的解题方法很难想,因此,要认真仔细看题,并多加练习。

二、重要知识点1.根式根式是数学中常见的一类表达式,在高考数学中也经常出现。

根式的运算和化简需要考生细心认真对待。

2.平面几何平面几何中涉及到的知识点非常多,包括图形的基本性质、相邻角、对顶角、内角和、外角和、周长与面积等等。

考生需要熟记这些知识点,并掌握相应的解题技巧。

3.立体几何立体几何是高考数学中比较难的部分,需要考生掌握图形的三维空间形态,涉及到的知识点包括图形的表面积、体积、棱长、斜高等。

4.导数导数是高中数学中非常重要的一个概念,在高考数学中占有很大的分值和比重。

考生需要明确掌握导数的定义、运算法则等知识点,能够熟练地运用这些知识解决问题。

5.函数函数在高考数学中出现得非常频繁,考生需要掌握函数的概念、性质和运算法则,将它们应用到相应的问题中,解题思路要清晰、技巧到位。

高考数学科目最容易出错的知识点

高考数学科目最容易出错的知识点

高考数学科目最容易出错的知识点x高考数学科目易错知识点数学是所有科学的基础。

数学网推荐了高考数学科目容易出错的知识点。

请仔细阅读,希望你喜欢。

集合和简单逻辑1.遗忘空集合导致的错误错误分析:因为空集是任何非空集的适当子集,对于集合B,有三种情况:B=A,B,B,如果在解题时考虑不够仔细,可能会忽略B的这种情况,导致解题结果错误。

特别是在求解带参数的集合问题时,更要注意当参数在一定范围内时,给定集合可能为空的情况。

空集是一种特殊的集合。

由于思维定势,考生在解题时往往会忘记这一套,导致解题错误或不完整。

2.忽略集合元素的三个特征会导致错误。

错误分析:一个集合中的元素是确定的、无序的、相互不同的。

集合元素的三个性质中,互差对解题影响很大,尤其是带字母参数的集合,实际上隐含了对字母参数的一些要求。

解题时也可以先确定字母参数的范围,再具体解题。

3.四个命题的结构不明,造成错误。

错误分析:如果原命题是如果a是b,那么这个命题的逆命题是如果b是a,无命题是如果A那么B,而逆无命题是如果B那么a。

有两组等价命题,即原命题与其逆无命题等价,反无命题与其逆命题等价。

在求解一个命题所写的其他形式的命题时,必须搞清楚四个命题的结构及其等价关系。

另外,在否定一个命题时,要注意全称命题的否定是一个特殊命题,而特殊命题的否定是一个全称命题。

如果a和b是偶数,那么否定应该是a和b不是偶数,而不是a和b是奇数。

4.充分必要条件颠倒引起的误差错误分析:对于A和B两个条件,如果A=B成立,那么A是B and B的充分条件是A的必要条件;如果B=A成立,那么A是B的必要条件,B是A的充分条件;如果是AB,那么a和b是相互充分必要条件。

在解决问题时,X因为颠倒了充分性和必要性而容易出错,所以在解决这类问题时,需要根据充分必要条件的概念做出准确的判断。

5.不允许对逻辑连词有误解错误分析:用逻辑连词判断命题时,由于理解不准确,容易出错。

下面我们给出一些常见的判断方法,希望对大家有所帮助:P=p真或q真,P=p假和q假(总结为一真一真);Pq真,p真和q真,Pq假p假或q假(总结为一个假或假);p真p假,p假p真(概括为一真一假)。

高中数学易错题大汇总及其解析

高中数学易错题大汇总及其解析

【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。

而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。

本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。

二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。

解析:首先利用已知条件列方程,得到三元一次方程组。

然后利用切线的斜率性质,得到关于a和b的关系式。

最后代入已知条件解方程组即可求得a、b、c的值。

(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。

解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。

2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。

解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。

(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。

解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。

3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。

解析:利用向量的夹角公式求出a与b的夹角。

(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。

解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。

高考数学出错知识点

高考数学出错知识点

高考数学出错知识点近年来,随着高考数学难度的增加,考生对于数学出错知识点的关注也越来越高。

本文将详细介绍高考数学中常见的出错知识点,帮助广大考生避免犯错,取得好成绩。

一、函数知识点容易出错1.函数概念混淆:有些考生经常将函数的自变量和因变量搞混,这是一个常见的错误。

函数的自变量是指函数中的变量,而因变量则是由自变量决定的变量。

2.函数运算错误:在进行函数的加、减、乘、除等运算时,考生容易出错。

在进行函数运算时,需要正确对函数进行合并、分解等操作。

3.反函数的理解不准确:有关反函数的相关概念,考生容易混淆。

反函数是指一个函数f的逆函数,记为f的倒数。

考生在使用反函数时,需要注意区分正函数和反函数之间的关系。

二、概率与统计中容易出错的知识点1.概率的计算错误:在计算概率时,考生容易犯错。

计算概率时,需要根据事件的样本空间和样本点进行确定,而不是随意计算。

2.核心概念混淆:在统计学中,考生容易混淆样本均值和总体均值、样本方差和总体方差等概念。

考生需要明确这些概念的含义和计算方法。

3.抽样调查错误:在进行抽样调查时,考生经常犯错。

抽样调查需要满足一定的条件,而不是随意进行,否则会导致结果的不准确。

三、函数与方程中容易出错的知识点1.解方程错误:在解方程时,考生容易漏项、错项或者运算错误。

在解方程的过程中,要仔细检查每一步是否正确,保证解答的准确性。

2.函数的性质混淆:在讨论函数的增减性、单调性和最值等性质时,考生容易混淆。

对于函数的性质要有清晰的理解,并运用正确的方法来推导和分析。

3.函数图像认知错误:在绘制函数图像时,考生容易出错。

对于不同函数类型,考生应该熟悉其图像特点,并正确绘制。

四、几何中常见的出错知识点1.平行线与垂直线的判断错误:在判断平行线和垂直线时,考生容易混淆。

考生需要掌握判断平行线和垂直线的准确方法。

2.图形对称性分析错误:在分析图形的对称性时,考生容易出错。

对于不同类型的对称图形,考生需要准确判断其对称轴和对称点。

高考数学函数知识点总结与易错点

高考数学函数知识点总结与易错点

高考数学函数知识点总结与易错点函数是高考数学中的重点和难点,在历年高考中都占据着重要的地位。

为了帮助同学们更好地掌握函数相关知识,提高解题能力,本文将对高考数学中函数的知识点进行总结,并指出常见的易错点。

一、函数的定义函数是一种特殊的对应关系,给定一个非空数集 A,对于集合 A 中的任意一个数 x,按照某种确定的对应关系 f,在另一个非空数集 B 中都有唯一确定的数 y 与之对应,就称 f 是集合 A 到集合 B 的一个函数。

需要注意的是,函数的定义中强调了“唯一性”,即对于集合 A 中的每一个 x,在集合 B 中都有唯一的 y 与之对应。

二、函数的三要素1、定义域定义域是指函数中自变量 x 的取值范围。

在求函数定义域时,需要考虑以下几种情况:(1)分式中分母不为零;(2)偶次根式中被开方数大于等于零;(3)对数函数的真数大于零;(4)实际问题中要考虑自变量的实际意义。

值域是函数值 y 的取值范围。

求函数值域的方法有很多,常见的有观察法、配方法、换元法、判别式法等。

3、对应法则对应法则是函数的核心,它决定了如何将自变量x 映射到函数值y。

三、函数的性质1、单调性(1)增函数:对于定义域内的任意两个自变量 x1、x2,当 x1 <x2 时,都有 f(x1) < f(x2),则函数 f(x)在该区间上是增函数。

(2)减函数:对于定义域内的任意两个自变量 x1、x2,当 x1 <x2 时,都有 f(x1) > f(x2),则函数 f(x)在该区间上是减函数。

判断函数单调性的方法有定义法、导数法等。

2、奇偶性(1)奇函数:对于定义域内的任意 x,都有 f(x) = f(x),则函数f(x)是奇函数,其图象关于原点对称。

(2)偶函数:对于定义域内的任意 x,都有 f(x) = f(x),则函数f(x)是偶函数,其图象关于 y 轴对称。

判断函数奇偶性的步骤通常为先判断定义域是否关于原点对称,若不对称,则函数非奇非偶;若对称,再判断 f(x) 与 f(x) 的关系。

备战2024年高考数学考试易错题专题03 不等式(3大易错点分析)(原卷版)

备战2024年高考数学考试易错题专题03 不等式(3大易错点分析)(原卷版)

专题03不等式易错点一:忽略不等式变号的前提条件(等式与不等式性质的应用)1.比较大小基本方法关系方法做差法与0比较做商法与1比较b a 0 b a )0(1 b a b a ,或)0(1 b a b a ,b a 0 b a )0(1 b baba 0b a )0(1 b a b a ,或)0(1 b a ba ,2..等式的性质(1)基本性质性质性质内容对称性ab b a a b b a ;传递性c a c b b a c a c b b a ,;,可加性cb c a b a 可乘性b ac c b a bc ac c b a 00,;,同向可加性db c a d c c a ,同向同正可乘性bdac d c b a 00,可乘方性nn b a N n b a *0,类型1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.类型2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.易错提醒:(1)一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.(2)不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.A .若a b ,则20242024a bB .若a b ,则20242024a bC .若20242024ax bx ,则a bD .若a b ,则20242024ax bx ,b ,,若,则下列不等式成立的是()A .11a bB .3311a bC .2222a bc cD .22ac bc 2.若0b a ,则下列结论不正确的是()A .11a bB .2ab a C .33a bD .a b a b3.已知a b ,c d ,则下列不等式一定成立的是()A .ac bdB .e e c da b C .e e e e a c b d D . ln ln a c d b c d 4.若110a b,则下列不等式中正确的是()A .a b B .a b C .a b ab D .2b a a b5.若a 、b 、c R ,且a b ,则下列不等式一定成立的是()A .a c b cB . 2a b c C .ac bcD .2c a b6.下列命题中正确的是()A .若a b ,则22ac bc B .若a b ,c d ,则a b c dC .若a b ,c d ,则a c b dD .若0ab ,a b ,则11a b7.设x R ,则“1x ”是“x x ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件集问题)解一元二次不等式的步骤:第一步:将二次项系数化为正数;第二步:解相应的一元二次方程;第三步:根据一元二次方程的根,结合不等号的方向画图;第四步:写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.对含参的不等式,应对参数进行分类讨论具体模型解题方案:1、已知关于x 的不等式02 c bx ax 的解集为)(n m ,(其中0 mn ),解关于x 的不等式02 a bx cx .由02 c bx ax 的解集为)(n m ,,得:01)1(2 c x b x a 的解集为)11(m n ,,即关于x 的不等式02 a bx cx 的解集为11(mn ,.已知关于x 的不等式02 c bx ax 的解集为)(n m ,,解关于x 的不等式02 a bx cx .由02 c bx ax 的解集为)(n m ,,得:011(2 c x b x a 的解集为)1[]1( ,,m n 即关于x 的不等式02 a bx cx 的解集为)1[]1( ,,mn .2、已知关于x 的不等式02 c bx ax 的解集为)(n m ,(其中0 m n ),解关于x 的不等式02 a bx cx .由02 c bx ax 的解集为)(n m ,,得:01)1(2 c x b x a 的解集为11(n m ,即关于x 的不等式02 a bx cx 的解集为)11(nm,.3.已知关于x 的不等式02 c bx ax 的解集为)(n m ,,解关于x 的不等式02 a bx cx .由02 c bx ax 的解集为)(n m ,,得:01)1(2 c x b x a 的解集为)1[1( ,,nm 即关于x 的不等式02 a bx cx 的解集为)1[]1(,,nm ,以此类推.4、已知关于x 的一元二次不等式02 c bx ax 的解集为R ,则一定满足00a ;5、已知关于x 的一元二次不等式02 c bx ax 的解集为 ,则一定满足00a ;6、已知关于x 的一元二次不等式02 c bx ax 的解集为R ,则一定满足00a ;7、已知关于x 的一元二次不等式02 c bx ax 的解集为 ,则一定满足0a .易错提醒:一元二次不等式一元二次不等式20(0)ax bx c a ,其中24b ac ,12,x x 是方程20(0)ax bx c a 的两个根,且12x x (1)当0a 时,二次函数图象开口向上.(2)①若0 ,解集为21|x x x x x 或.②若0 ,解集为|2b x x R x a且.③若0 ,解集为R .(2)当0a 时,二次函数图象开口向下.①若0 ,解集为 12|x x x x ②若0 ,解集为 。

易错点01 集合-备战2023年高考数学考试易错题(原卷版)(全国通用)

易错点01 集合-备战2023年高考数学考试易错题(原卷版)(全国通用)

易错点01 集合易错点【01】对描述法表示集合的理解不透彻而出错用描述法表示集合,一定要注意两点:1、一定要清楚符号“{x|x的属性}”表示的是具有某种属性的x的全体,而不是部分;2、一定要从代表元素入手,弄清代表元素是什么。

易错点【02】混淆数集和点集的表示使用特征法表示集合时,首先要明确集合中的代表元素是什么,比如,①{y|y=x2+1};②{(x,y)|y=x2+1},这两个集合中的代表元素的属性表达式都和y=x2+1有关,但由于代表元素符号形式不同,因而表示的集合也不一样。

①代表的数集,②代表的是点集。

易错点【03】忽视集合中元素的互异性在学习集合的相关概念时,对含有参数的集合问题都容易出错,尽管知道集合众元素是互异的,也不会写出{3,3}这样的形式,但当字母x出现时,就会忽略x=3的情况,导致集合中出现相同元素。

易错点【04】忽略空集的存在空集是一个特殊而又重要的结,它不含任何元素,记为∅。

在解隐含有空集参与的集合问题时,非常容易忽略空集的特殊性而出错。

特别是在求参数问题时,会进行分类讨论,讨论过程中非常容易忘记空集的存在,导致最终答案出错。

易错点【05】利用数轴求参数时忽略端点值在求集合中参数的取值范围时,要特别注意该参数在取值范围的边界处能否取等号,最稳妥的办法就是把端点值带入原式,看是否符合题目要求。

要注意两点:1、参数值代入原集合中看是否满足集合的互异性;2、所求参数能否取到端点值。

易错点【06】混淆子集和真子集而错集合之间的关系类问题涉及到参数时,需要分类讨论,分类讨论时非常容易忽略两个集合完全相等这种情况,认为子集就是真子集,最终导致参数求错或者集合的关系表达不准确。

易错点【07】求参数问题时,忘记检验而出错根据条件求集合的中的参数时,一定要带入检验,看是否满足集合的“三性”中互异性,同时还要检验是否满足题干中的其他条件。

1.设集合{}12A x x =∈-<≤N ,{}1B x x =≤,则A B =( ) A .{}0,1 B .{}11x x -<≤ C .{}0,1,2 D .{}01x x <≤2.已知集合{}22(,)4A x y x y =+=,(){},4B x y y ==+,则A B 中元素的个数为( )A .0B .1C .2D .3 3.已知集合{}{}0,11A x R x B x R x =∈≤=∈-≤≤,则()A B =R ( ) A .(,0)-∞ B .[1,0]- C .[0,1] D .(1,)+∞ 4.已知集合{}{}33,ln(1)A x x B x y x =∈-<<==+Z ,则A B =( ) A .{1,0,1,2}- B .(1,3)- C .{0,1,2} D .(1,)-+∞ 5.已知集合{(2)0}A x x x =->∣,{12}B x x =-<<∣,则()R A B =( ) A .[1,2]- B .(1,2]-C .(1,)-+∞D .(,2)-∞1.若集合[)12A B Z =-=,,,则A B =( )A .{}21,0,1--,B .{}1,0,1-C .{}1,0-D .{}1- 2.已知集合{}ln 1A x x +=∈≥N ,{}240B x x x +=∈-<N ,则A B =( )A .{}3B .{}1,2,3C .{}3,4D .∅ 3.已知集合()(){}N 1270A x x x =∈+-≤,{}2B y y =≤,则A B =( ) A .∅ B .{}1,0- C .{}0,1,2 D .1,0,1,24.设集合{}{}220,1,1,2,3A x N x x B =∈--≤=-,则A B =( ) A .{1,0}- B .{1,2} C .{1,2,3} D .{0,1,2,3} 5.已知集合{}|21,A x x k k ==+∈Z ,{}|44B x x =-≤≤,则A B =( ) A .[]3,3- B .[]4,4- C .{}1,3 D .{}3,1,1,3--1.记集合 {}24M x x =>,{}240N x x x =-≤, 则M N =( ) A .{}24x x <≤ B .{0x x ≥或}2x <- C .{}02x x ≤< D .{}24x x -<≤ 2.设集合{}1,0,1,2,3A =-,{}2log 1B x x =<,则A B =( ) A .{}1,0,1- B .1,0,1,2 C .{}1,2 D .{}1 3.已知全集U Z =,集合{3A x Z x =∈≥或2}x ,{}0,2,3B =,则()U A B =( )A .{}0,2B .{}0,1,2,3C .{}2,1,0,1,2,3--D .{}1,0,1,2,3- 4.已知集合{1,2,3,4}A =,{}2log B x x =∈N ∣,则A B =( ) A .{1,2} B .{2,4} C .{1,2,4} D .{3} 5.设集合{}12A x Z x =∈-<≤,{}1B x x =≤,则A B =( ) A .{}0,1 B .{}11x x -<≤ C .{}0,1,2 D .{}01x x <≤ 6.已知集合(){}2log 21A x x =-<,{}223B x x x =-<,则A B =( )A .{}14x x -<<B .{}13x x -<<C .{}24x x <<D .{}23x x <<7.已知集合6|,A x N N x ⎧⎫=∈∈⎨⎬⎩⎭{}27100B x x x =-+≤,则A B =( ) A .{}2,3 B .{}2,5 C .{}25x x ≤< D .{}25x x ≤≤8.{1,2,3}A =,{}28x B x =<,则A B ⋃=( ) A .{1,2,3} B .(,3]-∞ C .{1,2} D .(3),-∞ 9.已知集合{}{}Z 33,2e x A x x B y y =∈-<<==-,则A B =( ) A .{2,1,0,1,2}-- B .(,2)-∞ C .{2,1,0,1}-- D .(3,2)- 10.已知集合{}2|2M y Z y x x =∈=-,(){}ln N x y x ==-,则M N =( )A .∅B .{}1-C .(){}1,1-D .[)1,0-。

新高考专用备战2024年高考数学易错题专题14二项式定理复数学生版

新高考专用备战2024年高考数学易错题专题14二项式定理复数学生版

专题14二项式定理、复数易错点一:忽略了二项式中的负号而致错((a-b)n 化解问题)Ⅰ:二项式定理一般地,对于任意正整数n ,都有:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N ,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做n b a )( 的二项展开式.式中的r n r r n C a b 做二项展开式的通项,用1r T 表示,即通项为展开式的第1r 项:1r n r r r n T C a b ,其中的系数r n C (r =0,1,2,…,n )叫做二项式系数,Ⅱ:二项式()n a b 的展开式的特点:①项数:共有1n 项,比二项式的次数大1;②二项式系数:第1r 项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r n n n n n nC C C C C ,,,,,,,项的系数是a 与b 的系数(包括二项式系数).Ⅲ:两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b (*N n )②122(1)1n r r nn n n x C x C x C x xⅣ:二项展开式的通项公式二项展开式的通项:1r n r rr n T C a b0,1,2,3,,r n 公式特点:①它表示二项展开式的第1r 项,该项的二项式系数是r n C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n .注意:①二项式()n a b 的二项展开式的第r +1项rn rr n C ab 和()n b a 的二项展开式的第r +1项r n r r n C b a 是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b 这个标准形式下而言的,如()n a b 的二项展开式的通项是1(1)r r n r rr n T C a b (只需把b 看成b 代入二项式定理).易错提醒:在二项式定理()n a b 的问题要注意b 的系数为1 ,在展开求解时不要忽略.例、已知5的展开式中含32x 的项的系数为30,则 a ()B.C.6D.6变式1:在5223x x的展开式中,x 的系数是.变式2:621x x展开式的常数项为.变式3:612x x的展开式中4x 的系数为.1.712x x的二项式展开式中x 的系数为()易错点二:三项式转化不合理导致计算麻烦失误(三项展开式的问题)求三项展开式式中某些特定项的系数的方法第一步:通过变形先把三项式转化为二项式,再用二项式定理求解第二步:两次利用二项式定理的通项公式求解第三步:由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量易错提醒:对于三项式的展开问题,一般采取转化为二项式再展开的办法进行求解,但在转化为二项式的时候,又有不同的处理策略:一是如果三项式能够化为完全平方的形式,或者能够进行因式分解,则可通过对分解出来的两个二项展开式分别进行分析,进而解决问题(如本例中的解法二);二是不能化为完全平方的形式,也不能进行因式分解时,可直接将三项式加括号变为二项式,套用通项公式展开后对其中的二项式再利用通项展开并进行分析求解,但要结合要求解的问题进行合理的变形,以利于求解.例、 5232x x 的展开式中,x 的一次项的系数为()A.120B.240C.320D.480变式1:在 523a b c 的展开式中,含22a b c 的系数为.变式2: 521x y 展开式中24x y 的系数为(用数字作答).变式3:在5(2)x y z 的展开式中,形如3(,)m n x y z m n N 的所有项系数之和是.1.811x的展开式中的常数项为()Ⅰ:二项式展开式中的最值问题1.二项式系数的性质①每一行两端都是1,即0n n n C C ;其余每个数都等于它“肩上”两个数的和,即11m m mn n n C C C .②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即m n m n nC C .③二项式系数和令1a b ,则二项式系数的和为0122r n n n n n n n C C C C C ,变形式1221r n n n n n n C C C C .④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ,,则0123(1)(11)0n n n n n n n n C C C C C ,从而得到:0242132111222r r nn nn n n n n n C C C C C C C .⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12n T 的二项式系数2nnC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T ,112n T 的二项式系数12n nC,12n nC相等且最大.2.系数的最大项求()n a bx 展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A ,,,,设第1r 项系数最大,应有112r rr r A A A A ,从而解出r 来.Ⅱ:二项式展开式中系数和有关问题常用赋值举例:(1)设 011222nn n n r n r r n n n nn n n a b C a C a b C a b C a b C b ,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令1a b ,可得:012n nn n nC C C ②令11a b ,,可得: 012301nn n n n n n C C C C C ,即:02131n n n n n n n n C C C C C C (假设n 为偶数),再结合①可得:0213112n n n n n n n n n C C C C C C .(2)若121210()n n n n n n f x a x a x a x a x a ,则①常数项:令0x ,得0(0)a f .②各项系数和:令1x ,得0121(1)n n f a a a a a .注意:常见的赋值为令0x ,1x 或1x ,然后通过加减运算即可得到相应的结果.易错提醒:二项式定理()n a b 的问题要注意:项的系数与二项式系数的区别与联系(求所有项的系数只要令字母值为1).例、设(n x 的展开式中,第三项的系数为36,试求含2x 的项.变式1:求5的展开式中第3项的系数和二项式系数.变式2:计算 92x y 的展开式中第5项的系数和二项式系数.变式3:求6的展开式中常数项的值和对应的二项式系数.1.在二项式612x 的展开式中,二项式系数最大的是()易错点四:混淆虚部定义致错(求复数虚部)Ⅰ:复数的概念①复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,a ,b 分别是它的实部和虚部,i 叫虚数单位,满足21i (1)当且仅当b =0时,a +b i 为实数;(2)当b ≠0时,a +b i 为虚数;(3)当a =0且b ≠0时,a +b i 为纯虚数.其中,两个实部相等,虚部互为相反数的复数互为共轭复数.②两个复数,(,,,)a bi c di a b c d R 相等a cb d(两复数对应同一点)③复数的模:复数(,)a bi a b R的模,其计算公式||||z a bi Ⅱ:复数的加、减、乘、除的运算法则1、复数运算(1)()()()()i a bi c di a c b d (2)()()()()a bi c di ac bd ad bc i 22222()()z z ||||)2a bi a bi a b z z z z z a(注意其中||z z 的模;z a bi 是z a bi 的共轭复数(,)a b R .(3)2222()()()()(0)()()a bi a bi c di ac bd bc ad i c d c di c di c di c d.实数的全部运算律(加法和乘法的交换律、结合律、分配律及整数指数幂运算法则)都适用于复数.2、复数的几何意义(1)复数(,)z a bi a b R 对应平面内的点(,)z a b ;(2)复数(,)z a bi a b R 对应平面向量OZ ;(3)复平面内实轴上的点表示实数,除原点外虚轴上的点表示虚数,各象限内的点都表示复数.(4)复数(,)z a bi a b R 的模||z 表示复平面内的点(,)z a b 到原点的距离.易错提醒:1、求一个复数的实部与虚部,只需将已知的复数化为代数形式z =a +b i(a ,b ∈R ),则该复数的③z 是纯虚数⇔z 2<0例、复数113i的虚部是()A.110iB.110C.310D.310i 变式1:已知复数1i2i z(i 为虚数单位),则z 的虚部为()A.35-B.3i5C.35D.35i变式2:已知i 是虚数单位,则复数12i1i的虚部是()A.12B.12C.32D.32变式3:已知复数 2i 1i z ,则复数z 的虚部为,z.1.5(2i)(12i)i的虚部为()复数的模:复数(,)a bi a b R 的模,其计算公式||||z a bi 易错提醒:复数与复平面内的点、平面向量存在一一对应关系,两个复数差的模可以理解为两点之间的距离.例、若z C ,且22i 1z ,则22i z 的最小值为()A.2B.3C.4D.5变式1:已知复数z 满足1i z ,z 为z 的共轭复数,则z z 的最大值为.变式2:已知i 为虚数单位,且2i 1z ,则z 的最大值是.变式3:已知复数z 满足|2|2|2i |z z ,则||z 的最大值为.1.设复数z 满足|2i |z z 在复平面内对应的点为(,)x y ,则()。

高中数学易错点总结

高中数学易错点总结
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法
11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
50.三种圆锥曲线的定义、图形、标准方程、几何性质,、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
七.立体几何
56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

高考数学知识点总结大全

高考数学知识点总结大全

高考数学知识点总结大全高考数学知识点总结易错点1 遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

易错点2 忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再具体解决问题。

易错点3 四种命题的结构不明致误错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。

在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对“a,b都是偶数”的否定应该是“a,b 不都是偶数”,而不应该是“a ,b都是奇数”。

易错点4 充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x 的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。

高考集合知识点易错点

高考集合知识点易错点

高考集合知识点易错点一、数学1. 平方根的概念和性质平方根是数学中常见的一个概念,指的是一个数的平方等于被开方数。

在高考中,经常考查平方根的性质和运算。

学生容易犯错的地方包括:- 混淆正负平方根:记住正平方根和负平方根的定义及性质,避免混淆。

- 忘记求平方根的方法:例如使用因式分解、配方法等求平方根时,要熟练掌握相应的计算方法。

2. 几何图形的性质和计算在高考数学中,几何图形的性质和计算是一个重要的考点。

学生容易犯错的地方包括:- 对比不同几何图形的性质:例如圆的周长和面积的计算,矩形和正方形的区别等。

- 忽略几何图形的特殊性质:在解题过程中,要注意对几何图形的特殊性质进行分析,例如等腰三角形的性质、垂直平分线的性质等。

3. 数据统计和概率数据统计和概率是高考数学中的一个考点,常涉及到数据的收集、整理和分析以及概率的计算。

学生容易犯错的地方包括:- 忘记统计学中的基本概念和方法:例如平均数、中位数、众数的定义和计算方法。

- 直接使用直观的概率计算方法:在解决概率问题时,要使用正确的概率计算方法,避免使用直观的方法导致答案错误。

二、物理1. 力学力学是物理学中的一个重要分支,包括力、运动和能量等内容。

学生容易犯错的地方包括:- 忘记牛顿定律:应该记住牛顿第一、二、三定律的表述和应用范围,避免在解题过程中忽略这些定律。

- 混淆功和能量:在能量转化和守恒问题中,要注意功和能量的区别和联系,避免混淆概念。

2. 电学电学是物理学中的一个重要分支,包括电流、电压和电阻等内容。

学生容易犯错的地方包括:- 遗忘基本电路的知识:例如串联和并联电路的特点和计算公式,电阻和电流的关系等。

- 忽略安全用电知识:在解决电路问题时,要注意安全用电知识,避免导电材料接触到水等导致安全事故的情况发生。

三、化学1. 化学反应化学反应是化学中的一个重要概念,学生容易犯错的地方包括:- 混淆化学方程式和化学方程式的平衡:学生在写化学方程式时,要注意平衡反应物和生成物的数量,避免忽略这一点。

2024年高考数学数列易错知识点总结

2024年高考数学数列易错知识点总结

2024年高考数学数列易错知识点总结在2024年高考中,数学数列是一个常见的考点,也是一道容易出错的题型。

为了帮助考生顺利应对数列相关的考试题目,下面总结了一些常见的易错知识点。

一、等差数列的通项公式:等差数列是指数列中任意两项之间的差相等的数列。

它的通项公式为:$a_n = a_1 + (n-1)d$。

对于等差数列来说,考生容易犯的错误有:1. 弄混公差和公比。

公差指的是等差数列中任意两项之间的差,公比指的是等比数列中任意两项之间的比值。

考生在计算等差数列的时候,应该注意区分这两个概念。

2. 弄混首项和通项。

首项指的是数列中的第一项,通项指的是数列中第n项的表达式。

在计算等差数列的时候,考生应该注意首项和通项的区别。

3. 对于计算等差数列的题目,考生有时会直接套用公式,而忽略对问题的分析和推理。

在解题过程中,不应只关注于公式的使用,还应注重思考问题的本质,并结合实际情况进行合理的推理和分析。

二、等差数列的前n项和公式:等差数列的前n项和公式为:$S_n = \\frac{n}{2}(a_1 +a_n)$。

在计算等差数列前n项和的过程中,考生容易犯的错误有:1. 弄混首项和末项。

求前n项和的公式中,首项$a_1$和末项$a_n$都是需要用到的。

考生容易弄混这两个项,在计算过程中应该注意清楚。

2. 计算公式时漏写除以2。

前n项和的公式是$\\frac{n}{2}(a_1 + a_n)$,但考生在计算的时候经常漏写除以2的操作,导致结果错误。

3. 求前n项和时,考生有时对问题的理解不准确。

在一些应用题中,需要根据题目给出的条件和要求来求解前n项和。

考生如果对问题的理解不准确,很容易在计算过程中出错。

三、等比数列的通项公式:等比数列是指数列中任意两项之间的比值相等的数列。

它的通项公式为:$a_n = a_1 \\times q^{(n-1)}$。

对于等比数列来说,考生容易犯的错误有:1. 弄混公比和公差。

备战2024年高考数学考试易错题专题06 解三角形及应用(3大易错点分析)(解析版)

备战2024年高考数学考试易错题专题06 解三角形及应用(3大易错点分析)(解析版)

专题06解三角形及应用易错点一:易忽视三角形解的个数(解三角形多解情况)1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式sin a b Asin b A a ba b a b a b解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C .技巧:正弦定理和余弦定理是解三角形的两个重要工具,它沟通了三角形中的边角之间的内在联系,正弦定理能够解决两类问题问题1:已知两角及其一边,求其它的边和角。

这时有且只有一解。

问题2:已知两边和其中一边的对角,求其它的边和角,这是由于正弦函数在在区间 0, 内不严格格单调,此时三角形解的情况可能是无解、一解、两解,可通过几何法来作出判断三角形解的个数。

题设三角形中,已知一个角A 和两个边b a ,,判断三角形个数,遵循以下步骤第一步:先画一个角并标上字母A 第二步:标斜边(非对角边)b 第三步:画角的高,然后观察(A b a sin ,)易错提醒:利用正弦定理解三角形时,若已知三角形的两边及其一边的对角解三角形时,易忽视三角形解的个数.故选:ABD变式2.在ABC 中,内角,A A .若A B ,则cos A B .若2BC BA AB ,则角1.在ABC 中,已知3cos 5A ,sinB a ,若cosC 有唯一值,则实数a 的取值范围为()由BD DC ,可得OD OBOC 由2cos OB AB O OC AB B P 可得cos AB DP OP OD AB B sin2A =sin2B 《正弦定理》①正弦定理:R CcB b A a 2sin sin sin ②变形:acA C c b CB b a B A sin sin ,sin sin ,sin sin ③变形:C B A c b a sin :sin :sin :: ④变形:CcB b A aC B A c b a sin sin sin sin sin sin⑤变形:B c C b A c C a A b B a sin sin ,sin sin ,sin sin 《余弦定理》①余弦定理:Cab c b a B ac b c a A bc a c b cos 2,cos 2,cos 2222222222②变形:abc b a C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222核心问题:什么情况下角化边什么情况下边化角?⑴当每一项都有边且次数一样时,采用边化角⑵当每一项都有角《sin 》且次数一样时,采用角化边⑶当每一项都是边时,直接采用边处理问题⑷当每一项都有角《sin 》及边且次数一样时,采用角化边或变化角均可三角形面积公式①A bc S B ac S C ab S ABC ABC ABC sin 21,sin 21,sin 21 ② rl c b a r S ABC2121 其中l r ,分别为ABC 内切圆半径及ABC 的周长推导:将ABC 分为三个分别以ABC 的边长为底,内切圆与边相交的半径为高的三角形,利用等面积法即可得到上述公式③RabcC B A R S ABC 4sin sin sin 22(R 为ABC 外接圆的半径)推导:将A R a sin 2 代入ACB a S ABCsin sin sin 212可得C B A R S ABC sin sin sin 22 将C R c B R b A R a sin 2sin 2,sin 2 ,代入CB A R S ABC sin sin sin 22 可得RabcS ABC 4④CBA c SBC A b S A C B a S ABC ABC ABC sin sin sin 21,sin sin sin 21,sin sin sin 21222 ⑤海伦公式 c p b p a p p S ABC (其中 c b a p 21)推导:根据余弦定理的推论ab c b a C 2cos 222222222121cos 121sin 21ab c b a ab C ab C ab S ABCc b a b a c a c b c b a c b a ab 4124122222令 c b a p 21,整理得c p b p a p p S ABC 正规方法:面积公式+基本不等式① C c ab ab c C ab b a C ab c b a C ab S cos 122cos 2cos 2sin 212222222② B b ac ac b B ac c a B ac b c a B ac S cos 122cos 2cos 2sin 212222222③ A a bc bc a A bc c b Abc a c b A bc S cos 122cos 2cos 2sin 212222222易错提醒:当解题过程中出现类似于sin2A =sin2B 这样的情况要注意结合三角形内角范围进行讨论,另外当题设中出现锐角三角形时一定要注意条件之间的相互“限制”1.在ABC 中,sin sin 2,2B A c a ,则()A .B 为直角B .B 为钝角C .C 为直角D .C 为钝角易错点三:实际问题中题意不明致误(利用解三角形知识解决实际问题)解三角形的实际应用问题的类型及解题策略1、求距离、高度问题(1)选定或确定要创建的三角形,要先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的量.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.2、求角度问题(1)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步,画图时,要明确仰角、俯角、方位角以及方向角的含义,并能准确找到这些角.(2)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的综合应用.易错提醒:实际问题应用中有关名词、术语也是容易忽视和混淆的。

高考数学知识点总结精选15篇

高考数学知识点总结精选15篇

高考数学知识点总结高考数学知识点总结精选15篇总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以促使我们思考,因此我们需要回头归纳,写一份总结了。

总结怎么写才不会千篇一律呢?以下是小编收集整理的高考数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

高考数学知识点总结1易错点1 遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B 高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

易错点2 忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再具体解决问题。

易错点3 四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。

在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。

易错点4 充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。

高中数学易错点总结

高中数学易错点总结

高中数学易错点总结高中数学易错点总结高考数学易错、易混、易忘备忘录整理202204041.在应用条件A∪B=BA∩B=AAB时,易忽略A是空集Φ的情况2.求解与函数有关的问题易忽略定义域优先的原则3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称4求反函数时,易忽略求反函数的定义域5函数与其反函数之间的一个有用的结论:f1(b)af(a)b6原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数yf1(某)也单调递增;但一个函数存在反函数,此函数不一定单调例如:y1某7根据定义证明函数的单调性时,规范格式是什么?(取值,作差,判正负) 8用均值定理求最值(或值域)时,易忽略验证“一正二定三等”这一条件bbb9你知道函数ya某(a0,b0)的单调区间吗?(该函数在(,]和[,)上某aa单调递增;在[bb,0)和(0,]上单调递减)这可是一个应用广泛的函数!(其在第aa一象限的图像就象“√”,特命名为:对勾函数)是奇函数,图像关于原点对称.b而函数ya某(a0,b0)的单调区间:在(,0)和(0,)上单调递增;是奇函数,某图像关于原点对称.10解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀11用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0尤其是直线与圆锥曲线相交时更易忽略12等差数列中的重要性质:若m+n=p+q,则amanapaq;(反之不成立)等比数列中的重要性质:若m+n=p+q,则amanapaq(反之不成立)13用等比数列求和公式求和时,易忽略公比q=1的情况14已知Sn求an时,易忽略n=1的情况15等差数列的一个性质:设Sn是数列{an}的前n项和,{an}为等差数列的充要条件是:Snan2bn(a,b为常数)其公差是2a16你知道怎样的数列求和时要用“错位相减”法吗?(若cnanbn其中{an}是等差数列,{bn}是等比数列,求{cn}的前n项的和)17你还记得裂项求和吗?(如111)n(n1)nn118在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?19你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角异角化同角,异名化同名,高次化低次)120你还记得在弧度制下弧长公式和扇形面积公式吗?(l||r,S扇形lr) 221在三角中,你知道1等于什么吗?(1sin2cos2sec2tan2tancottan4sin2cos0这些统称为1的代换)常数“1”的种种代换有着广泛的应用220与实数0有区别,0的模为数0,它不是没有方向,而是方向不定0可以看成与任意向量平行,但与任意向量都不垂直23a0,则ab0,但ab0不能得到a0或b0ab有ab024ab时,有acbc反之acbc不能推出ab25一般地a(bc)(ab)c26在ABC中,ABsinAsinB27使用正弦定理时易忘比值还等于2Ra:b:csinA:sinB:sinC28两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o1111,a<b<oabab29分式不等式的一般解题思路是什么?(移项通分、零点分段)30解指对不等式应该注意什么问题?(指数函数与对数函数的单调性,对数的真数大于零)31在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是常用放缩技巧:2nn1n(n1)nn(n1)n1nk1k1k1k12k1k1kk1k33解析几何的主要思想:用代数的方法研究图形的性质主要方法:坐标法34用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况35直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,]236函数的图象的平移、方程的平移以及点的平移公式易混:①ysin某ysin(某)沿某轴向右平移33某某yy2②ysin某y2sin某,即ysin某2沿y轴向上平移23某2某③ysin某ysin2某1沿某轴缩短到原来的21④ysin某ysin某21某某2沿某轴伸长到原来的2倍1⑤ysin某2ysin某,即ysin某1沿y 轴缩短到原来的22y2y1⑥ysin某ysin某,即y2sin某2⑦点的平移公式:点P(某,y)按向量a=(h,k)平移到点P/(某/,y/),则某/=某+h,y/=1yy2沿y轴伸长到原来的2倍y+k37定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清)38对不重合的两条直线,,有;率k和截距b)39直线在坐标轴上的截距可正,可负,也可为0(在解题时,讨论k后利用斜40处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式一般来说,前者更简捷41处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系42在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形43还记得圆锥曲线的两种定义吗?解有关题是否会联想到这两个定义?ca2b2b244还记得圆锥曲线方程中的a,b,c,p,,,,的意义吗?acca45离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少?46在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式都在的限制(求交点,弦长,中点,斜率,对称,存在性问题下进行)47椭圆中,注意焦点、中心、短轴端点所组成的直角三角形(a,b,c)48通径是抛物线的所有焦点弦中最短的弦(想一想在双曲线中的结论?及长度的表示)49你知道椭圆、双曲线标准方程中a,b,c之间关系的差异吗?50如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点此时两个方程联立,消元后为一次方程51经纬度定义易混52求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法53线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大54作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见55求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法)56求多面体体积的常规方法是什么?(割补法、等积变换法)57两条异面直线所成的角的范围:0°扩展阅读:高中数学知识易错点总结选校网高考频道专业大全历年分数线上万张大学图片大学视频院校库高中数学知识易错点梳理一、集合、简易逻辑、函数1.研究集合必须注意集合元素的特征即三性(确定,互异,无序);已知集合A={某,某y,lg某y},集合B={0,|某|,y},且A=B,则某+y=22.研究集合,首先必须弄清代表元素,才能理解集合的意义。

高考数学易错知识点77条

高考数学易错知识点77条

高考数学易错知识点77条数学作为高考必考科目之一,是很多学生最头疼的科目之一。

在备考过程中,有些知识点常常容易出错,给学生带来很大的困扰。

本文总结了高考数学中的77个易错知识点,希望能够帮助同学们避免在考试中犯这些常见错误。

1. 几何中,不等式符号颠倒易错,例如:两个角度相等,结果却写成大于等于。

2. 不等式两边开根号时,符号方向要重新判断,不可直接套用。

3. 列方程时,变量的取值范围要根据实际情况来判断。

4. 对数运算中,底数小于等于1时,要特别注意题目给出的取值范围。

5. 使用二项式定理时,注意多项式的展开与合并,以及次数对应正确。

6. 高斯消元法的使用,要注意每一步运算的正确性,避免漏操作。

7. 复数运算时,虚数单位$i$的运算性质要熟练掌握,不能混淆。

8. 幂运算的注意力易集中在后面的指数运算上,前面的系数往往容易忘记运算。

9. 函数的最值问题,要考虑函数的定义域和导数的变化。

10. 斜率的计算中,经常容易将坐标差值写错,导致结果错误。

11. 弧长角度的转换问题,要根据圆周角等于360度的性质来计算。

12. 选用不同坐标系时,要小心坐标的转换和计算错误。

13. 有些二次函数问题中,关于对称轴和顶点的求解容易出错,需要重点关注。

14. 空间几何中的计算容易出现错误,要多进行图形辅助分析。

15. 根据题目给出的条件来选择有关三角函数的公式,不能一概而论。

16. 正弦定理和余弦定理的使用要谨慎,要注意选择正确的比例关系。

17. 分数的运算中,一定要注意约分和通分,避免结果不准确。

18. 在融合物理与数学的题目中,要注意单位的换算和计算。

19. 单位根的运算需要分类讨论,不能忽略各种情况的比较。

20. 复合函数求导时,要小心使用链式法则,不要漏掉中间步骤。

21. 不等式的证明题中,要明确所使用的定理,步骤合理且清晰。

22. 在几何变换中,不同变换的性质要熟记,不能搞混。

23. 数据统计中,要注意选择正确的统计指标和统计方法。

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳高考数学知识点总结一遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,φ≠B高三经典纠错笔记:数学A,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

高考数学知识点总结二忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再具体解决问题。

高考数学知识点总结三四种命题的结构不明致误错因分析:如果原命题是“若 A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。

在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。

高考数学知识点总结四充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B 的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

高考数学易错点逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,命题p∨q假<=>p 假且q假(概括为一真即真);命题p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p 假<=>p真(概括为一真一假)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、集合与函数
1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,
不要忘记了借助数轴和文氏图进行求解。

2、在应用条件时,易忽略是空集的情况。

3、你知道“否命题”与“命题的否定形式”的区别吗?
4、求解与函数有关的问题易忽略定义域优先的原则。

5、判断函数的奇偶性时,易忽略检验函数定义域是否关于原点对称。

6、你熟练地掌握了函数单调性的证明方法吗?定义法(取值、作差、
判正负)和导数法。

7、解对数函数问题时,你注意到真数与底数的限制条件了吗?
8、求函数的值域必须先求函数的定义域。

二、不等式
9、绝对值不等式的解法及其几何意义是什么?
10、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”
11、两个不等式相乘时,必须注意同向同正时才能相乘。

三、数列
12、解决一些等比数列的前n项和问题,你注意到要对公比的两种情况进行讨论了吗?
13、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的取值是不连续的)
四、三角函数
14、在解三角问题时,你注意到正切函数的定义域了吗?注意到正弦函数、余弦函数的有界性了吗?
15、你还记得某些特殊角的三角函数值吗?
16、掌握正弦函数、余弦函数及正切函数的图像和性质。

你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?
五、平面向量
17、0的模为数0,它不是没有方向,而是方向不定。

可以看成与任意向量平行,但与任意向量都不垂直。

18、数量积与两个实数乘积的区别你记住了吗?
六、解析几何
19、在用点斜式、斜截式求解直线方程时,你是否考虑了斜率不存在的情况?
20、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
21、圆和椭圆的参数方程是怎样的?
22、解析几何问题的求解时,题目中是否已经有坐标系了,是否需要建立直角坐标系?
七、立体几何
23、你掌握了空间图形在平面上的直观画法吗?(斜二测画法)
24、三垂线定理及其逆定理你记住了吗?
25、求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法,就是证明它们垂直即可。

26、棱柱及其性质、平行六面体与长方体及其性质,你掌握了吗?
八、排列、组合和概率
27、求分布列的解答题你能把步骤写全吗?
28、你还记得一般正态总体如何化为标准正态总体吗?
九、导数及其应用
29、你知道“函数在某点处可导”是“函数在某点处连续”的什么条件吗?
30、在某点处可导的定义你还记得吗?它的几何意义和物理意义分别是什么?。

相关文档
最新文档