厦门事业单位行测资料分析解题技巧:黑板上的排列组合
行测逻辑判断篇组合排列解题方法
行政能力测验技巧系列之逻辑判断篇组合排列解题方法卓丽沙在历年的国家公务员考试中,行政职业能力测试分为五大模块,判断推理作为五大模块之一,近年来一直稳定在图形推理、逻辑判断(演绎推理)、类比推理和定义判断这四种题型,共35道题。
其中,逻辑判断往往是很多考生认为比较难做的。
作为一名培训师,笔者将针在对历年真题进行剖析的基础之上,为考生提供一个行之有效的解题方法。
逻辑判断也叫演绎推理,共十题,其中,有一类型我们可称其为组合排列。
所谓组合排列,就是题中给出一组对象(如甲、乙、丙、丁),再给出两种以上信息(如年龄、性别、身高、职业、专业等),最后需要考生对各种信息进行一一匹配。
例1:有三个小孩分别叫蓝蓝(女),红红(女)和虎虎。
孩子妈妈是卫国珍、姜家英、申仁丽。
邻居李奶奶说:冯一中和姜家英的孩子都参加了少年女子舞蹈队,陈二国的女儿不是红红,楚三仁、申仁丽不是一家人。
因此可以推断出下列为一家人的是: A.陈二国姜家英和红红,楚三仁卫国珍和蓝蓝B.楚三仁卫国珍和虎虎,冯一中申仁丽和红红C.陈二国申仁丽和红红,楚三仁姜家英和虎虎D.楚三仁申仁丽和红红,冯一中卫国珍和虎虎上面试一道典型的组合排列题,对于这样的题目,很多考生都无从下手,笔者在授课的过程中发现,一些考生只是将题中给出的信息一一罗列出来,之后完全没有一个正确的解题思路。
事实上,根据对真题的研究,我们发现,对于做组合排列型题目,首选的方法应该是排除法,有一些组合排列型的题目只看题干是没有办法选出答案的,因为一些题干中给出的信息较少,无法完成一一对应。
下面我们具体解答一下这道题目:[答案]B[解析]本题采用的是排除法,题中说到“陈二国的女儿不是红红”,因此,可以排除选项A、C;又因为“楚三仁、申仁丽不是一家人”,可排除选项D,因此,正确答案为B。
行测数学秒杀技巧资料分析排列组合
排列组合基本知识点回顾:1、排列:从N不同元素中,任取M个元素(被取元素各不相同)按照一定的顺序排成一列,叫做从N个不同元素中取出M个元素的一个排列。
2、组合:从N个不同元素中取出M个元素并成一组,叫做从N个不同元素中取出M个元素的一个组合(不考虑元素顺序)3、分步计数原理(也称乘法原理):完成一件事,需要分成n个步骤,做第1步有ml种不同的方法,做第2步有m2种不同的方法… 做第n步有mn种不同的方法。
那么完成这件事共有N二m1*m2*…*mn种不同的方法。
4、分类计数原理:完成一件事有n类办法,在第一类办法中有ml种不同的方法,在第二类办法中有m2种不同的方法…… 在第n类办法中有mn种不同的方法,那么完成这件事共有N二ml + m2 +・・・+mn 种不同的方法。
解题技巧:首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下儿种常用的解题方法: 一、特殊兀素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般米取特殊兀素(位置)优先安排的方法。
例1 . 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
元素分析法:因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上, 有120种站法,故站法共有:480 (种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有6 * 5 * 4 * 3 * 2种,然后女生内部再进行排列,有6种,所以排法共有:4320 (种)。
省考行测 排列组合解题技巧
2014年省考行测 排列组合解题技巧华图教育中心 杜志英排列组合一直是各类公务员考试、事业单位考的热点、难点,近年的考题也是变化多端,那么针对排列组合的复习就变得尤为重要,华图教研中心就排列组合考生常出现的错误进行研究发现,考生容易混淆排列组合的概念,本讲就排列组合的概念进行小小的总结,希望可以帮助到广大考生判别排列组合题型。
排列:与顺序有关,如果在题目中发现题干的情况是与顺序有关的,那么这类题目肯定是排列问题,比如:从5个人里面选取2个人进行排队,那么前面是高的,后面是矮的,与前面是矮的,后面是高的是两组不同的站队方式。
组合:与顺序是无关,如果题目中发现不同的情况之中有两种或者是多种讲的或者是做的是同一件事情,此时它与顺序时候无关的,属于组合问题。
比如:从5个人里面选出2个人去干活,这个时候选出的是AB 两人,那么先选出A ,在选出B ;与先选出B ,在选出A ,这两种情况是完全一样的,要看成一种情况,这就是组合问题。
【例1】甲、乙、丙三个人到旅店住店,旅店里只有三个房间,恰好每个房间住一个人,问一共有( )住法。
A.5B.6C.7D.8【解析】旅店的房间是有编号的,是三间不同的房间,需要甲乙丙三个人入住,这时好比排队一样,因为甲在第一间与乙在第一间是完全不相同的两种住法,所以住房子是与顺序有关的问题,属于排列问题,那么3个人进行排队633=A 种,选择B【例2】某铁路线上有25个大小车站,那么应该为这条路线准备( )种不同的车票。
A.625B.600C.300D.450【解析】任意的两个车站就可以组成1张票是本题的前提,需要注意的是如果是AB 两地,从A 地到B 地是一张车票,那么从B 地到A 地是另一张车票,车票是与顺序有关,那么是排列问题,所以由600225=A ,选择B【例3】参加会议的人两两都彼此握手,有人统计共握手36次,到会共有( )人。
A.9B.10C.11D.12【解析】看两次情况一不一样,甲乙握与乙甲握是完全一样的,都属于36次里面的,是与顺序完全无关,属于组合问题,所以362=n C ,直接代入选择A【例4】在一条线段中间另有6个点,则这8个点可以构成多少条线段?( )A.15B.21C.28D.36【解析】线段是有两个顶点,这两个顶点不管谁在前谁在后都是这条线段,那么与顺序是无关的,所以由2828=C ,选择C总结:对于排列组合问题,要判定是否与顺序有关,判定的方式是:看两次发生的情况是否完全一致,一致的就是组合,不一致就是组合。
排列组合问题的基本类型及解题方法
排列组合问题的基本类型及解题方法解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。
其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。
加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。
分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类。
以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。
(一)特殊元素的“优先安排法”对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。
在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。
例1: 0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?解法一:(元素优先)分两类:第一类,含0,0在个位有24A 种,0在十位有1123A A 种;第二类,不含0,有1223A A 种。
故共有2111242323(A A A )+A A 30+=种。
注:在考虑每一类时,又要优先考虑个位。
解法二:(位置优先)分两类:第一类,0在个位有24A 种;第二类,0不在个位,先从两个偶数中选一个放个位,再选一个放百位,最后考虑十位,有111233A A A 种。
故共有21114233A +A A A =30(二)总体淘汰法对于含有否定词语的问题,还可以从总体中把不符合要求的除去,此时应注意既不能多减也不能少减,例如在例1中也可以用此法解答:5个数字组成三位数的全排列为35A ,排好后发现0不能在首位,而且3和5不能排在末尾,这两种不合题意的排法要除去,故有30个偶数.(三)合理分类与准确分步解含有约束条件的排列组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分布层次清楚,不重不漏.例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有 解:由题意,可先安排甲,并按其进行分类讨论:(1)若甲在第二个位置上,则剩下的四人可自由安排,有44A 种方法;(2)若甲在第三个或第四个位置上,则根据分布计数原理不同的站法有113333A A A 种站法;再根据分类计数原理,不同的站法共有:21134333A A A A 78+=种.(四)相邻问题:捆绑法对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。
行测考试中排列组合题的解题好方法
行测考试中排列组合题的解题好方法在公职考试的行测试卷中,排列组合类问题是考查得较为频繁的一类题型。
对于解决行测排列组合问题,常用的方法包括优限法、捆绑法、插空法等等,而插板法常被考生遗忘,其实这也是一种需要大家掌握的便捷方法。
在此,教育专家就同大家一起来研究下这种方法。
对于插板法,它的实质就是解决相同元素的不同分堆问题,题目中往往会出现“……至少……,……个相同的……分给……”这样的字眼,因此,大家要注意插板法的适用环境相当严格,必须同时满足以下三个条件:要分堆的元素必须完全相同;要分的元素必须分完,决不允许有剩余;每个对象至少分1个,决不允许出现分不到元素的对象。
核心公式:把n个相同元素分给m个不同的对象,每个对象至少1个元素,总的分法数为种。
在考试过程中,往往会遇到题干难以满足插板模型的第3个条件,但我们可以通过转换使之满足。
先来看下题干满足插板模型所有条件情况下的简单应用:【例1】有10个相同的篮球,分给7个班,每班至少一个,有多少种分配方案?A. 36B.64C.84D.210【答案】C【解析】此题满足插板模型的所有条件,直接套用公式,共有种分配方案。
但是考试题中往往会出现题干并不满足插板模型的第3个条件的情况,接下来我们看下插板模型的两种变形:【例2】某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。
问一共有多少种不同的发放方法?( )A.7B.9C.10D.12【答案】C【解析】从题干条件不难看出,这里的30份学习材料代表30个相同的元素,发放给3个部门,每个部门至少发放9份材料,那么我们可以把它转化成给3个部门至少发1份材料。
如何转化呢?可以先给这三个部门每个部门分发8份材料,这样就只需要再给这三个部门分发一份材料就能满足题目要求。
30份材料分发给3个部门各8份材料,还剩下6份材料,则问题转化为对剩下的6份材料分堆,利用插板法可得,【例3】有5个相同的篮球,分给3个班,总共有多少种分配方案?A. 10B. 28C. 56D.60【答案】B【解析】从题干不难看出,没有“至少一个”的要求,因此并不符合插板法的第三个要求,那么我们可以想办法凑第3个条件,我们可以从3个班中先各借一个篮球,就可以把问题转化为8个篮球分给3个班,且每个班至少发一个,再依据所给公式,总的分配方案为结合教育专家以上列举的两道题目不难发现,在考试过程中一般不会考查完全符合插板法三个条件的题目,往往不符合插板法第3个条件,因此考试时考生要灵活应对。
银行校招笔试行测数量关系:排列组合解题技巧
银行校招笔试行测数量关系:排列组合解题技巧
一、计数原理
1.加法原理:分类要相加;
2.乘法原理:分步要相乘。
对于排列组合的题目,我们首先需要考虑的就是计数原理,即完成这件事需要分类还是分步。
【例1】某班有5个男生4个女生,现要从中选出两人,如果要求恰好一男一女,有多少种不同的选法?
答案:20种。
要想完成选出一男一女这件事情,可以分成两步,一步选男生,一步选女生。
首先从5个男生中选出1个男生有5种选法,其次从4个女生中选出1个女生有4种选法,分步要相乘,则共有种选法。
二、计数方法
排列和组合是在计数原理的基础之上来使用的,即在分类分步的基础之上,遇到复杂计数,如果任取的元素有顺序要求,用排列来计数;如果没有顺序要求,则用组合来计数。
【例2】某班有5个男生4个女生,现要从中选出5人,如果要求3个男生2个女生,则有多少种不同的选法?
【例3】某班有5个男生4个女生,现要从中选出两人,如果要求至少有1个女生,则有多少种不同的选法?。
职测考试排列组合提分技巧
职测考试排列组合提分技巧
在准备职测考试中的排列组合问题时,以下是一些提分的技巧:
1.理解基本概念:排列和组合是解决这类问题的基石。
理解两者的定义和计算方法是解题
的关键。
2.优限法:对于有限制条件的元素(或位置),在解题时优先考虑这些元素(或位置),
再去解决其他元素(或位置)。
3.捆绑法:在解决对于某几个元素要求相邻的问题时,先相邻元素视作一个大元素进行排
序,然后再考虑大元素内部各元素间顺序的解题策略。
4.插空法:先将其他元素排好,再要求不相邻的元素插入它们的间隙或两端位置。
5.排除法:对于一些涉及“至多”、“至少”等有否定意义的排列组合问题,可以通过排除法
来解题。
6.分步乘法计数原理:如果一个事件可以分成几个连续的步骤完成,那么这个事件的总的
完成方式就是各个步骤的完成方式的乘积。
7.分类加法计数原理:如果一个事件可以分成几个互斥的子事件,那么这个事件的总的完
成方式就是各个子事件完成方式的和。
8.合理使用间接法:对于一些不易看出顺序的排列组合问题,可以通过间接法来解题。
9.练习与反思:大量的练习是必要的,但更重要的是对错误答案的反思。
通过反思找出自
己的弱点和理解上的误区,然后针对性地加强练习。
10.熟悉常见题型和解题模式:对常见题型和解题模式进行归纳总结,有助于快速识别和解
决问题。
行测排列组合技巧
行测排列组合技巧在行测中,排列组合是一个重要的数学知识点,也是考生们经常会遇到的题型。
掌握好排列组合技巧,可以帮助我们更快更准确地解题,提高做题效率。
下面将介绍一些行测中常用的排列组合技巧,希望对大家备考有所帮助。
首先,我们来了解一下排列和组合的概念。
在数学中,排列是指从n个不同元素中取出m个元素,按照一定顺序排列的方式。
排列通常用P(n,m)来表示。
组合是指从n个不同元素中取出m个元素,不考虑顺序的方式。
组合通常用C(n,m)来表示。
在行测中,排列组合常用的技巧有以下几点:1. 确定排列组合的题目类型:在做题时,首先要明确题目中是考察排列还是组合,根据题目要求来确定解题思路。
排列题目一般要求考生考虑元素的顺序,组合题目则不考虑元素的顺序。
2. 排列的计算方法:在排列中,当元素没有重复时,排列的计算方法为P(n,m) = n!/(n-m)!,其中n表示总的元素个数,m表示取出的元素个数,!表示阶乘。
如果元素有重复的情况,需要根据重复元素的个数进行调整。
3. 组合的计算方法:在组合中,组合的计算方法为C(n,m) = n!/(m!(n-m)!),其中n表示总的元素个数,m表示取出的元素个数,!表示阶乘。
组合题目中一般要求考生不考虑元素的排列顺序。
4. 排列组合的应用:在实际题目中,排列组合常常和概率、数列等知识点结合,需要考生综合运用多种技巧来解题。
在做题时,要注意题目中的条件,灵活运用排列组合知识,找到合适的解题方法。
5. 多做练习:排列组合是一个需要大量练习的知识点,只有通过不断的练习,才能熟练掌握排列组合的技巧。
建议考生多做排列组合的题目,提高解题能力。
总的来说,排列组合是行测中常见的数学题型,掌握好排列组合的技巧,可以帮助我们更好地解题,提高解题效率。
希望以上介绍的排列组合技巧对大家有所帮助,祝大家在行测中取得好成绩!。
行测答题技巧:巧解排列组合题
行测答题技巧:巧解排列组合题排列:排列的字母表示是A(m,n),表达的意思是从n个元素中取出m个元素,进行全排列(对m个元素进行排序)。
组合:组合的字母表示是C(m,n),表达的意思是从n个元素中取m个元素,不进行排列(对m个元素不进行排序)。
排列与元素的顺序有关,组合与顺序无关。
如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。
一、捆绑法与插空法【例1】某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?【分析】连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。
另外没有命中的之间没有区别,不必计数。
即在四发空枪之间形成的5个空中选出2个的排列,即A(5,2)。
【例2】马路上有编号为l,2,3,……10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?【分析】即关掉的灯不能相邻,也不能在两端。
又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。
共C(3,6)=20种方法。
二、特殊优先法特殊元素,优先处理;特殊位置,优先考虑。
【例】六人站成一排,求:(1)甲不在排头,乙不在排尾的排列数;(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数。
【分析】(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。
第一类:乙在排头,有A(5,5)种站法;第二类:乙不在排头,当然他也不能在排尾,有44A(4,4)种站法;更多信息关注内蒙古人事考试信息网。
行政职业能力测试答题技巧:排列组合题解题宝典
行政职业能力测试答题技巧:排列组合题解题宝典
秘籍一:乘法原理
完成一件事需要两个步骤(第1步方法的选取不会影响第2步方法的选取)。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有m×n种不同的方法。
【例】从A到B有3条不同的道路,从B到C有2条不同的道路,则从A经B到C的道路数n=3×2=6。
秘籍二:加法原理
完成一件事有两类不同方案(其中的方法互不相同)。
在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有m+n种不同的方法。
【例】小华正准备出国留学,不是去A国,就是去B国。
其中A国有4所大学向他发出了录取通知,而B国则有5所大学向他发出了入学邀请。
故小华共有9所大学可以选择,即共有9种留学方案。
P.S:排列组合题公式
排列公式:
组合公式:。
行测排列组合经典解题方法
行测排列组合经典解题方法
排列组合是数学中非常重要的一个概念,广泛应用于各个领域。
在行测中,也经常会涉及到排列组合的问题。
下面是一些经典的解题方法:
1. 计算排列数:
排列数表示从n个元素中选取m个元素进行排列的方法数。
记作A(n,m)。
A(n,m) = n! / (n-m)!
2. 计算组合数:
组合数表示从n个元素中选取m个元素进行组合的方法数。
记作C(n,m)。
C(n,m) = n! / (m! * (n-m)!)
3. 递归法:
当问题可以分解成多个子问题时,可以使用递归法求解。
比如,在一个班级中,选取若干名学生进行组合考试,求解不同人数下的组合方法数。
4. 动态规划法:
动态规划法常用于求解排列组合的问题。
一般来说,动态规划法需要确定状态和状态转移方程。
比如,在一条街道上有n个不同的房子,要求选取其中k个房子进行参观,使得相邻的房子不被选中。
可以定义dp[i][j]表
示前i个房子选取j个的方案数,然后通过状态转移方程计算
dp[i][j]。
5. 利用数学知识简化问题:
有些排列组合的问题,可以通过数学定理或性质进行简化。
比如,在一个圆桌上有n个不同的人,要求选取其中k个人进行座位安排,使得相邻的人不能是同一种颜色。
可以先将问题化简为从n个不同的人中选取k个人进行座位安排,然后再乘以座位上颜色的选择数。
以上是一些经典的排列组合解题方法,实际解题过程中可以选择适合自己的方法进行求解。
当然,在行测中可能还会遇到其他类型的排列组合问题,需要根据具体情况进行灵活应用。
如何突破行测排列组合难题
如何突破行测排列组合难题公务员行测常识判断题一般来说考的几率非常大,但是许多考生还是容易丢分,这可能是平时知识点积累的太少了,下面由小编为你精心准备了“如何突破行测排列组合难题”,持续关注本站将可以持续获取更多的考试资讯!如何突破行测排列组合难题在做排列组合这一类题的时候,大部分人会有很多疑惑。
学了等于没学;什么时候用排列来计数,什么时候用组合来计数,好像仍然一头雾水;只要遇到稍微难一点的题目时,无从下手,好像学习过的四种常用方法没有什么用,等等……那么,今天就通过一个例题,以一个正常人的视角或者思维来探讨和交流,排列组合的题目还可以如何入手。
如果你对排列组合知识掌握不是很透彻,你可以根据题干进行分组吗?那如果对于排列组合的知识掌握不是很透彻或者没有学过排列组合的知识,能不能把分组分好呢?很显然,答案是肯定的。
那么接下来我们就来探讨一下如何以常人思维来分组。
分组:①只选一门课程,4种;②如果选两门课程,有A课程的情况下,C课/D课程选一门,2种选法;有B课程的情况下,C课/D课程选一门,2种选法;如果不选A也不选B课程,只能同时选择C,D课程,1种选法;共5种选法;③如果选三门课程,课程组合为ACD或者BCD,共2种选法;④四门课程都选的情况不满足要求,0种选法。
所以根据题干可以分为:4+5+2=11种选法,也就是可以分为11组。
很显然,这样更接近与我们的普通思维。
那我可不可以还能这样来考虑呢?① 在只含A课程的情况下:选一门课程,1种选法;选两门课程,不能选B课程,只能从C/D种选一门课程与A课程组合,2种选法;选3门课程,只能为ACD课程组合,1种选法;4门课程的选法不存在。
所以共1+2+1=4种选法。
② 同理,在只含B课程的情况下,同样是4种选法。
③ 在既没有A课程又没有B课程的情况下:选一门,只能从C/D 中选,2种选法;选两门课程时,只能同时选C,D课程,1种选法;选三门或者四门课程的情况不存在,此时共有2+1=3种选法。
2018厦门公务员考试行测备考技巧排列组合方法
2018厦门公务员考试行测备考技巧排列组合方法
在公务员书面考试考试中,数量联系是重要的组成部分之一。
数量联系调查的知识点较多,也较为全面。
而关于大多数考生来说,关于排列组合题型的求解一直是难点。
因而,咱们必须要针对不同的排列组合题型特征,在有限的考试时刻范围内快速选用恰当的求解办法予以解题。
在此,中公教育专家向广大考生介绍求解排列组合常见题型中几种常用办法的运用。
这几种常用办法分别是:优限法、绑缚法、插空法、间接法。
一、优限法
当题干中呈现特定元素有绝对性方位约束的要求时,可以对其进行优先满意。
以此作为解题突破口,再考虑其他元素的排列组合情况。
【例题1】有8人要在某学术陈述会上作陈述,其间张和李期望被安排在前三个作陈述,王期望最终一个作陈述,赵不期望在前三个作陈述,其他4人没有要求。
假如安排作陈述顺序时要满意所有人的要求,则共有多少种可能的陈述序列?
A.441
B.484
C.529
D.576
【答案】D。
公考行测: 数学运算解题方法之排列组合问题
公考行测:数学运算解题方法之排列组合问题
排列组合问题是公务员考试当中必考题型,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。
那首先什么排列、组合呢?
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。
下面介绍几种常用的解题方法和策略。
解决排列组合问题有几种相对比较特殊的方法。
下面通过例题逐个掌握:
一、相邻问题---捆绑法不邻问题---插空法
对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
2招搞定事业单位考试中的排列组合
2招搞定事业单位考试中的排列组合在事业单位考试中涉及到计算的部分基本上就是行测了,在行测这版块中,排列组合可以说是经常出现,并且是大家的丢分点。
一是它的思维逻辑能力要求比较高,二是大家得对相应的方法熟练于心。
那么如何快捷的解出一道排列组合的题目呢?下面小编给大家介绍两个非常好用的方法!一、捆绑法1.应用环境:出现元素相邻的时候2.使用步骤:①将相邻元素捆绑起来,与其他元素一起作为一个大整体,进行排序。
②将捆绑的元素内部进行排序。
根据乘法原理①×②就是结果。
给大家举个例子:【例1】这一周要安排3所小学去博物馆参观,博物馆周一到周六开放,除其中一所人数较多小学需要连续参观两天外,其它小学参观一天即可,有几种安排方式?A.6B.24C.36D.60【答案:D】【解析】本题目标在于安排参观时间,如果从人来考虑,要连续参观两天的学校无疑是有特殊要求的,需要优先考虑,周一到周六连续两天的可能性有5种,即这个学校的安排有5种,其余两所学校没有要求,从余下4天任意安排两天即可,有A(2,4)=12A种,把两步结果相乘,最终有5A(2,4)=60种。
二、插空法1.应用环境:出现元素不相邻的时候2.使用步骤:①排列其他无关的元素;②选空;③排空。
根据乘法原理①×②×③就是结果。
给大家举个例子:【例2】我国将在10月1日晚上举行新中国成立70周年文艺晚会活动,呈报的节目主要包括“红色”歌舞2个,英雄事迹展现1个,军人本色小品3个,军体操1个。
按照领导要求:军人本色小品类节目不能连续表演,有多少种不同的方法?( )A.1200B.1440C.1760D.2880【解析】B。
因为军人本色小品类节目不能连续表演,所以需要插空安排。
其他节目无要求,全排列总共有A(4,4)=24种不同的方法,再插空安排军人本色小品类节目共有A(5,3)=60种不同方法,分步完成用乘法原理,故所求为24×60=1440种不同的方法。
行测技巧:教你六招攻破排列组合.doc
行测技巧:教你六招攻破排列组合任何一场考试取得成功都离不开每日点点滴滴的积累,下面由我为你精心准备了“行测技巧:教你六招攻破排列组合”,持续关注本站将可以持续获取更多的考试资讯!行测技巧:教你六招攻破排列组合行测中的排列组合题目在高中时候就学过,但很多同学对于这类题目还是感觉无从下手,或者直接放弃。
那么排列组合真的有想象中的那么困难吗?我在这里给大家六个妙招,让你看到排列组合题目不再发愁。
一、何为排列组合首先,我们先回顾一下排列与组合的基本概念以及在具体题目中如何快速识别。
比如,10个练习生,我们选3人组成一个组合出道,选择小A、小B、小C,和选择小B、小A、小C,结果都是ABC三个人组成一个组合,先选谁后选谁对结果没有影响。
二、解答排列组合六个妙招妙招一:优限法优限法,即对有特殊要求的位置或元素优先进行考虑。
例题:锅碗瓢盆缸5个人要排队照相留念,问锅和碗既不在排头也不在排尾的方式有几种?妙招二:捆绑法捆绑法,即将相邻元素捆绑在一起作为一个整体和其它元素进行排列与组合,这里要注意的是被捆绑的元组间的顺序。
例题:锅碗瓢盆缸5个人要排队照相留念,锅和碗谈恋爱了,想站在一起,问有多少种排列方式?妙招三:插空法插空法,即元素要求不相邻,先考虑其它元素,再将不相邻的元素插入他们的间隙。
例题3:锅碗瓢盆缸5个人要排队照相留念,锅和碗吵架了,不愿意站在一起,问有多少种排列方式?【解析】和上一题不一样的是,这回锅和碗要求不相邻了,也就是说中间要隔有其他人,那么就涉及到隔1个还是2个还是3个,隔的是谁,而且锅和碗站的位置不同也有区别,这么一想的话就很复杂了,那我们不妨先把锅和碗放在一边,先排其他人,再让锅和碗去插空,这样就一定可以保证二者不相邻,并且包含隔1或2或3个人的情况了。
剩下的3 例题:把15个相同的礼品分给锅碗瓢盆缸5个小伙伴,每人至少分2个,问共有几种分法?【解析】我们学过的模型是至少分一个的问题,这道题里说的是至少分两个,那我妙招五:错位重排错位重排即所有元素都不在原来对应位置上,问题本身比较复杂,我们举个例子:现在有一封信A,有一个对应信封a,这种情况下,把信装入信封是不会装错的,也就是说装错的方法数位0;当有A、B两封信和a、b两个对应封信的情况下,装错的情况有1种,为:(用Dn表示n个元素错位重排的方法数。
行测排列组合七大解题方式精解
行测排列组合七大解题方式精解行测中的排列组合问题是历年务员考试中必考题型,而且随着最近几年公事员考试愈来愈热点,公考中这部份题型的难度也在慢慢的加大,解题方式也趋于多样化。
解答排列组合问题,必需认真审题,明确是属于排列问题仍是组合问题,或属于排列与组合的混合问题;同时要抓住问题的本质特点,灵活运用大体原理和公式进行分析,还要注意讲究一些策略和方式技术。
一、排列和组合的概念qZr公事员考试资料网排列:从n个不同元素中,任取m个元素(那个地址的被取元素各不相同)依照必然的顺序排成一列,叫做从n 个不同元素中掏出m个元素的一个排列。
qZr公事员考试资料网组合:从n个不同元素种掏出m个元素拼成一组,称为从n个不同元素掏出m个元素的一个组合。
qZr公事员考试资料网二、七大解题策略qZr公事员考试资料网1.间接法qZr公事员考试资料网即部份符合条件排除法,采纳正难那么反,等价转换的策略。
为求完成某件事的方式种数,若是咱们分步考虑时,会显现某一步的方式种数不确信或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手腕,而当正面分类情形种数较多时,那么就考虑用间接法计数.qZr公事员考试资料网例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?qZr公事员考试资料网公事员考试资料网正确答案【B】qZr公事员考试资料网解析:此题从正面考虑的话情形比较多,若是采纳间接法,男女至少各一人的反面确实是别离只选男生或女生,如此就能够够转变成C(11,4)-C(6,4)-C(5,4)=310。
qZr公事员考试资料网2.科学分类法qZr公事员考试资料网问题中既有元素的限制,又有排列的问题,一样是先元素(即组合)后排列。
qZr公事员考试资料网关于较复杂的排列组合问题,由于情形繁多,因此要对各类不同情形,进行科学分类,以便有条不紊地进行解答,幸免重复或遗漏现象发生。
同时明确分类后的各类情形符合加法原理,要做相加运算。
福建厦门事业单位行测排列组合
福建厦门翔安事业单位考试已经出了公告, 这里和分享些事业单 位行测复习资料:排列组合题中的不相邻问题。 (暑假期间,厦门中 公教育为广大考生准备了丰富多样的事业单位课程, 并匹配相应的团 报优惠活动,让你一步成“公” ,改变你的未来。 )ps:对蓝色字体右键
单击“打开超链接”
中公教育:给人改变未来的力量
一直被模仿 从未被超越源自公职类考试辅导首选品牌中公教育:给人改变未来的力量
一直被模仿 从未被超越