2015年全国中考数学试卷解析分类汇编 专题38 方案设计
全国各地中考数学试卷解析分类汇编(第1期)专题18 图形的展开与叠折
图形的展开与叠折一、选择题1.(2015•江苏无锡,第9题2分)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .考点: 几何体的展开图.分析: 根据正方体的表面展开图进行分析解答即可.解答: 解:根据正方体的表面展开图,两条黑线在一列,故A 错误,且两条相邻成直角,故B 错误,间相隔一个正方形,故C 错误,只有D 选项符合条件, 故选D点评: 本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2015湖北荆州第8题3分)如图所示,将正方形纸片三次对折后,沿图中AB 线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A .B .C .D .考点: 剪纸问题.分析: 根据题意直接动手操作得出即可.解答: 解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.点评:本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.3.(2015湖北鄂州第8题3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF =()A.B.C.D.【答案】D.考点:翻折问题.4.(2015•四川资阳,第9题3分)如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是 A .13cmB.CD.考点:平面展开-最短路径问题..分析:将容器侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求. 解答:解:如图:∵高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,∴A ′D =5cm ,BD =12﹣3+AE =12cm ,∴将容器侧面展开,作A 关于EF 的对称点A ′, 连接A ′B ,则A ′B 即为最短距离,A ′B ===13(Cm ).故选:A .点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.5、(2015•四川自贡,第10题4分) 如图,在矩形ABCD 中,AB 4AD 6==,,E 是AB 边的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△'EB F ,连接'B D ‘,则'B D ‘的最小值是 ( )A. 2 B .6 C.2 D .4图5EB考点:矩形的性质、翻折(轴对称)、勾股定理、最值.分析:连接EA 后抓住△DEB 中两边一定,要使'DB 的长度最小即要使'DEB ∠最小(也就是使其角度为0°),此时点'B 落在DE 上, 此时''D B D E EB =-略解:∵E 是AB 边的中点,AB 4= ∴1AE EB AB 22===∵四边形ABCD 矩形 ∴A 90∠=o∴在Rt △DAE 根据勾股定理可知:222DE AE AD =+又∵AD 6= ∴ED =根据翻折对称的性质可知'EB EB 2==∵△DEB 中两边一定,要使'DB 的长度最小即要使'DEB ∠最小(也就是使其角度为0°),此时点'B 落在DE 上(如图所示). ∴''DB DE EB 2=-= ∴'DB 的长度最小值为2. 故选A6. (2015•绵阳第12题,3分)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =( )A .B .C .D . 考点: 翻折变换(折叠问题)..分析: 借助翻折变换的性质得到DE =CE ;设AB =3k ,CE =x ,则AE =3k ﹣x ;根据余弦定理分别求出CE 、CF 的长即可解决问题. 解答: 解:设AD =k ,则DB =2k ; ∵△ABC 为等边三角形,EB∴AB=AC=3k,∠A=60°;设CE=x,则AE=3k﹣x;由题意知:EF⊥CD,且EF平分CD,∴CE=DE=x;由余弦定理得:DE2=AE2+AD2﹣2AE•AD•cos60°即x2=(3k﹣x)2+k2﹣2k(3k﹣x)cos60°,整理得:x=,同理可求:CF=,∴CE:CF=4:5.故选:B.点评:主要考查了翻折变换的性质及其应用问题;解题的关键是借助余弦定理分别求出CE、CF的长度(用含有k的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.7. (2015•浙江省台州市,第8题)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cmB.C.5.5cmD.1cm8.(2015·贵州六盘水,第4题3分)如图2是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对 B.相邻 C.相隔 D.重合考点:专题:正方体相对两个面上的文字..分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面, “我”与“祖”是相对面, “爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻. 故选B . 点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. (2015•浙江宁波,第10题4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若1h =1,则2015h 的值为【 】A . 201521B . 201421C .2015211-D .2014212-【答案】D . 【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质,DE 是△ABC 的中位线,D 1E 1是△A D 1E 1的中位线,D 2E 2是△A 2D 2E 1的中位线,…∴21111122h =+=-,32211111222h =++=-,42331111112222h =+++=-,…20152201420141111112222h =+++⋅⋅⋅+=-.故选D .10.(2015•江苏泰州,第4题3分)一个几何体的表面展开图如图所示, 则这个几何体是A .四棱锥B .四棱柱C .三棱锥D .三棱柱【答案】A . 【解析】试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A .考点:几何体的展开图.11. (2015•四川广安,第4题3分)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是( )A . 全B . 明C . 城D . 国考点: 专题:正方体相对两个面上的文字..分析: 正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.故选:C.点评:此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.12. (2015•浙江金华,第9题3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线,互相平行的是【】A. 如图1,展开后,测得∠1=∠2B. 如图2,展开后,测得∠1=∠2,且∠3=∠4C. 如图3,测得∠1=∠2D. 如图4,展开后,再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD【答案】C.【考点】折叠问题;平行的判定;对顶角的性质;全等三角形的判定和性质.【分析】根据平行的判定逐一分析作出判断:A. 如图1,由∠1=∠2,根据“内错角相等,两直线平行”的判定可判定纸带两条边线,互相平行;B. 如图2,由∠1=∠2和∠3=∠4,根据平角定义可得∠1=∠2=∠3=∠4=90°,从而根据“内错角相等,两直线平行”或“同旁内角互补,两直线平行”的判定可判定纸带两条边线,互相平行;C. 如图3,由∠1=∠2不一定得到内错角相等或同位角相等或同旁内角互补,故不一定能判定纸带两条边线,互相平行;D. 如图4,由OA=OB,OC=OD,得到,从而得到,进而根据“内错角相等,两直线平行”的判定可判定纸带两条边线,互相平行.故选C.13. (2015•山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2 B.cm2 C.cm2 D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD= x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD= x,∴DE=6﹣2 x,∴纸盒侧面积=3x(6﹣2 x)=﹣6 x2+18x,=﹣6 (x﹣)2+ ,∴当x= 时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.二、填空题1. (2015•浙江嘉兴,第14题5分)如图,一张三角形纸片ABC,AB=AC=5.折叠该纸片使点A落在边BC的中点上,折痕经过AC上的点E,则线段AE的长为____▲____.考点:翻折变换(折叠问题)..分析:如图,D为BC的中点,AD⊥BC,因为折叠该纸片使点A落在BC的中点D上,所以折痕EF垂直平分AD,根据平行线等分线段定理,易知E是AC的中点,故AE=2.5.解答:解:如图所示,∵D为BC的中点,AB=AC,∴AD⊥BC,∵折叠该纸片使点A落在BC的中点D上,∴折痕EF垂直平分AD,∴E是AC的中点,∵AC=5∴AE=2.5.故答案为:2.5.点评:本题考查了折叠的性质,等腰三角形的性质以及平行线等分线段定理,意识到折痕EF垂直平分AD,是解决问题的关键.2. (2015•四川省内江市,第14题,5分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.考点:翻折变换(折叠问题)..分析:先根据折叠的性质得DE=EF,CE=EF,AF=AD=2,BF=CB=3,则DC=2EF,AB=5,再作AH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ADCH为矩形,所以AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,然后在Rt△ABH中,利用勾股定理计算出AH=2,所以EF=.解答:解∵分别以AE,BE为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB 边的点F处,∴DE=EF,CE=EF,AF=AD=2,BF=CB=3,∴DC=2EF,AB=5,作AH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ADCH为矩形,∴AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,在Rt△ABH中,AH==2,∴EF=.故答案为:.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.3. (2015•浙江滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE 折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .【答案】(10,3)考点:折叠的性质,勾股定理4. (2015•浙江杭州,第16题4分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD=_______________________________【答案】24+【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD中,∠A=∠C=90°,∠B=150°,∴∠C=30°.如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形:如答图1,剪痕BM、BN,过点N作NH⊥BM于点H,第16题A易证四边形BMDN 是菱形,且∠MBN =∠C =30°.设BN =DN =x ,则NH =12x.根据题意,得1222x x x ⋅=⇒=,∴BN =DN =2, NH =1.易证四边形BHNC 是矩形,∴BC =NH =1. ∴在Rt BCN ∆中,CN∴CD=2+如答图2,剪痕AE 、CE ,过点B 作BH ⊥CE 于点H ,易证四边形BAEC 是菱形,且∠BCH =30°.设BC =CE =x ,则BH =12x.根据题意,得1222x x x ⋅=⇒=,∴BC =CE =2, BH =1.在Rt BCH ∆中,CHEH=2.易证BCD EHB ∆∆∽,∴CD BC HB EH =,即1CD =∴224CD +==+.综上所述,CD =2+4+5. (2015•四川省宜宾市,第15题,3分)如图, 一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB .若C (32,32),则该一次幽数的解析式为 .y =+yxCBAO三、解答题1. (2015•浙江金华,第23题10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A 'GC 和往墙面BB'C'C 爬行的最近路线A 'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D 'C '相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。
2015年全国中考数学试卷解析分类汇编二次函数
二次函数一.选择题1.(2015•山东莱芜,第9题3分)二次函数的图象如图所示,则一次函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】试题分析:先根据二次函数的图象与系数的关系,又开口方向得a>0,由对称轴x=<0可得b>0,所以一次函数y=bx+a的图象经过第一、二、三象限,不经过第四象限.故选D考点:二次函数的图象与系数的关系,一次函数的性质2.(2015·湖南省益阳市,第8题5分)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0考点:二次函数的性质.分析:利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答: 解:由y =(x ﹣m )2+(m +1)=x 2﹣2mx +(m 2+m +1),根据题意,,解不等式(1),得m >0, 解不等式(2),得m >﹣1; 所以不等式组的解集为m >0. 故选B .点评: 本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大3.(2015•江苏苏州,第8题3分)若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=【难度】★★【考点分析】二次函数与一元二次方程综合,考察二次函数的图像性质及解一元二次方程。
是中考常考题型,难度不大。
【解析】由题意得:二次函数的对称轴为直线:x 2,所以由对称轴公式得:,即:b=-4;代入一元二次方程易得:。
故选D 。
4.(2015•广东梅州,第10题4分)对于二次函数y =﹣x 2+2x .有下列四个结论:①它的对称轴是直线x =1;②设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x <2时,y >0.其中正确的结论的个数为()A. 1 B. 2 C. 3 D. 4考点:二次函数的性质.分析:利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.解答:解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.点评:此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.5. (2015•四川乐山,第6题3分)二次函数的最大值为()A.3 B.4 C.5 D.6【答案】C.【解析】试题分析:,∵<0,∴当x=1时,y有最大值,最大值为5.故选C.考点:二次函数的最值.6.(2015湖北荆州第4题3分)将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+6考点:二次函数图象与几何变换.分析:根据函数图象向上平移加,向右平移减,可得函数解析式.解答:解:将y=x2﹣2x+3化为顶点式,得y=(x﹣1)2+2.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x﹣4)2+4,故选:B.点评:本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.7.(2015•福建泉州第7题3分)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴y=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.8. (2015•四川乐山,第9题3分)已知二次函数的图象如图所示,记,.则下列选项正确的是()A.B.C.D.m、n的大小关系不能确定【答案】A.考点:二次函数图象与系数的关系.9. (2015•浙江嘉兴,第10题4分)如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(B,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+ x2>2,则y1> y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是(▲)(A)①(B)②(C)③(D)④考点:二次函数综合题..分析:①根据二次函数所过象限,判断出y的符号;②根据A、B关于对称轴对称,求出b的值;③根据>1,得到x1<1<x2,从而得到Q点距离对称轴较远,进而判断出y1>y2;④作D关于y轴的对称点D′,E关于x轴的对称点E′,连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.求出D、E、D′、E′的坐标即可解答.解答:解:①当x>0时,函数图象过二四象限,当0<x<b时,y>0;当x>b时,y<0,故本选项错误;②二次函数对称轴为x=﹣=1,当a=﹣1时有=1,解得b=3,故本选项错误;③∵x1+x2>2,∴>1,又∵x1<1<x2,∴Q 点距离对称轴较远,∴y 1>y 2,故本选项正确;④如图,作D 关于y 轴的对称点D ′,E 关于x 轴的对称点E ′,连接D ′E ′,D ′E ′与DE 的和即为四边形EDFG 周长的最小值.当m =2时,二次函数为y =﹣x 2+2x +3,顶点纵坐标为y =﹣1+2+3=4,D 为(1,4),则D ′为(﹣1,4);C 点坐标为C (0,3);则E 为(2,3),E ′为(2,﹣3);则DE ==;D ′E ′==;∴四边形EDFG 周长的最小值为+,故本选项错误.故选C .点评:本题考查了二次函数综合题,涉及函数与不等式的关系、二次函数的对称轴、函数图象上点的坐标特征、轴对称﹣﹣最短路径问题等,值得关注.10. (2015•浙江宁波,第11题4分)二次函数)0(4)4(2≠--=a x a y 的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为【 】A . 1B . -1C . 2D . -2【答案】A .【考点】二次函数的性质;解一元一次不等式组;特殊元素法的应用.【分析】∵二次函数2(4)4(0)y a x a =--≠的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,∴当52x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的下方;当132x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的上方.∴22165<(4)4<0161692<<1316259(4)4>0>225a a a a a ⎧⎧--⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪--⎪⎪⎩⎩.∴a 的值为1.故选A .11. (2015•四川凉山州,第12题4分)二次函数()的图象如图所示,下列说法:①,②当时,,③若(,)、(,)在函数图象上,当时,,④,其中正确的是( )A.①②④B.①④C.①②③D.③④【答案】B.③∵抛物线的对称轴为x=1,开口方向向上,∴若(,)、(,)在函数图象上,当时,;当时,;故③错误;④∵二次函数的图象过点(3,0),∴x=3时,y=0,即,故④正确.故选B.考点:1.二次函数图象与系数的关系;2.二次函数图象上点的坐标特征.12.(2015·贵州六盘水,第10题3分)如图5,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2[C.64m2D.66m2考点:二次函数的应用..专题:应用题.分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式,利用二次函数性质求出面积最大值即可.解答:解:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为ym2,根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,当x=8m时,y max=64m2,则所围成矩形ABCD的最大面积是64m2.故选C.点评:此题考查了二次函数的应用,熟练掌握二次函数性质是解本题的关键.13.(2015•山东临沂,第13题3分)要将抛物线平移后得到抛物线,下列平移方法正确的是()(A) 向左平移1个单位,再向上平移2个单位.(B) 向左平移1个单位,再向下平移2个单位.(C) 向右平移1个单位,再向上平移2个单位.(D) 向右平移1个单位,再向下平移2个单位.【答案】D考点:二次函数的平移14.(2015•山东日照,第12题4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤考点:二次函数图象与系数的关系;抛物线与x轴的交点..专题:数形结合.分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评:本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.15.(2015·四川甘孜、阿坝,第9题4分)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2考点:二次函数的性质..分析:直接利用抛物线的对称轴公式代入求出即可.解答:解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评:此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.16.(2015•四川广安,第10题3分)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3考点:二次函数图象与系数的关系..分析:利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a ﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.解答:解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.点评:此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a与b的关系,以及当x=1时a+b+c=P是解决问题的关键.17.(2015·山东潍坊第12 题3分)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 4考点:二次函数图象与系数的关系..分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4ac=0.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=0,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.解答:解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4ac=0,∴结论②正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=0,∴4a2﹣4ac=0,∴a=c,∵c>0,∴a>0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).18.(2015·山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2 C.cm2 D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt △AOD ≌Rt △AOK (HL ). ∴∠OAD =∠OAK =30°.设OD =x ,则AO =2x ,由勾股定理就可以求出AD =x ,∴DE =6﹣2x ,∴纸盒侧面积=3x (6﹣2x )=﹣6x 2+18x ,=﹣6(x ﹣)2+,∴当x =时,纸盒侧面积最大为. 故选C .点评: 本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.19.(2015•安徽省,第10题,4分)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )考点:二次函数的图象;正比例函数的图象..P Q OOO OO yyyyyxxxxxA .B .C .D .第10题图分析:由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b ﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.解答:解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,∵方程ax2+(b﹣1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=﹣>0,∴﹣>0,∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∵a>0,开口向上,∴A符合条件,故选A.点评:本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.20.(2015•山东日照,第12题4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤考点:二次函数图象与系数的关系;抛物线与x轴的交点..专题:数形结合.分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评:本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.21.(2015·四川甘孜、阿坝,第9题4分)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2考点:二次函数的性质..分析:直接利用抛物线的对称轴公式代入求出即可.解答:解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评:此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.22.(2015•四川广安,第10题3分)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3考点:二次函数图象与系数的关系..分析:利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a ﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.解答:解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.点评:此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a与b的关系,以及当x=1时a+b+c=P是解决问题的关键.23.(2015·山东潍坊第12 题3分)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 4考点:二次函数图象与系数的关系..分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4ac=0.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=0,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.解答:解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4ac=0,∴结论②正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=0,∴4a2﹣4ac=0,∴a=c,∵c>0,∴a>0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.(2015·山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2 C.cm2 D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.二填空题1.(2015•山东临沂,第19题3分)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1﹤x2时,都有y1﹤y2,称该函数为增函数. 根据以上定义,可以判断下面所给的函数中,是增函数的有______________(填上所有正确答案的序号).①y = 2x;②y =x+1;③y = x2 (x>0);④.【答案】①③考点:函数的图像与性质2.(2015上海,第12题4分)如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是_______________.【答案】【解析】抛物线方程配方,得:y=(x+1)2-2,向上平移,得:y=(x+1)2+c,经过点A(0,3),则:3=1+c,c=2,所以,新抛物线的表达式是:y=(x+1)2+2=x2+2x+3。
最新陕西15年中考数学试题及评析(精品)
7.(3分)(2015•陕西)不等式组
的最大整数解为( ) A. 8 B. 6 解答: 解:
C. 5
D. 4
∵解不等式①得:x≥﹣8, 解不等式②得:x<6, ∴不等式组的解集为﹣8≤x<6, ∴不等式组的最大整数解为5, 故选C. 8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2 平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是( ) A.将l1向右平移3个单位长度 C. 将l1向上平移2个单位长度 解答: B. 将l1向右平移6个单位长度 D.将l1向上平移4个单位长度
3
4
5
6
(1,1)(1,2)(1,3)(1,4) (1,5) (1,6) (2,1)(2,2)(2,3)(2,4) (2,5) (2,6) (3,1)(3,2)(3,3)(3,4) (3,5) (3,6) (4,1)(4,2)(4,3)(4,4) (4,5) (4,6) (5,1)(5,2)(5,3)(5,4) (5,5) (5,6)
班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者 参赛). 规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向 上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽 胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止. 如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题: (1)小亮掷得向上一面的点数为奇数的概率是多少? (2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子: 六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体) 解 解:(1)∵向上一面的点数为奇数有3种情况, 答: ∴小亮掷得向上一面的点数为奇数的概率是: . (2)填表如下: 1 2 1 2 3 4 5
安徽省2015年中考数学试题解析
安徽省2015年中考数学试题解析安徽省2015年中考数学试卷注意事项: 1.你拿到的试卷满分为150分,考试时间为120分钟. 2.本卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请你“答题卷”上答题,在“试题卷”上答题是无效的. 4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的). 1.在-4,2,-1,3这四个数中,比-2小的数是() A.-4 B.2 C.-1 D.3 考点:有理数大小比较.. 分析:根据有理数大小比较的法则直接求得结果,再判定正确选项.解答:解:∵正数和0大于负数,∴排除2和3.∵|�2|=2,|�1|=1,|�4|=4,∴4>2>1,即|�4|>|�2|>|�1|,∴�4<�2<�1.故选:A.点评:考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小. 2.计算8×2的结果是() A.10 B.4 C.6 D.2 考点:二次根式的乘除法.. 分析:直接利用二次根式的乘法运算法则求出即可.解答:解:× = =4.故选:B.点评:此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键. 3.移动互联已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为() A.1.62×104 B.1.62×106 C.1.62×108 D.0.162×109 考点:科学记数法―表示较大的数.. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1.62亿用科学记数法表示为1.62×108.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列几何体中,俯视图是矩形的是()考点:简单几何体的三视图.. 分析:根据简单和几何体的三视图判断方法,判断圆柱、圆锥、三棱柱、球的俯视图,即可解答.解答:解:A、俯视图为圆,故错误; B、俯视图为矩形,正确; C、俯视图为三角形,故错误;D、俯视图为圆,故错误;故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键. 5.与1+5最接近的整数是() A.4 B.3 C.2 D.1 考点:估算无理数的大小.. 分析:由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+ 最接近的整数即可求解.解答:解:∵4<5<9,∴2<<3.又5和4比较接近,∴ 最接近的整数是2,∴与1+ 最接近的整数是3,故选:B.点评:此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法. 6.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是() A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5 C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5 考点:由实际问题抽象出一元二次方程.. 专题:增长率问题.分析:根据题意可得等量关系:2013年的快递业务量×(1+增长率)2=2015年的快递业务量,根据等量关系列出方程即可.解答:解:设2014年与2013年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.点评:此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b. 7.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数(人) 2 5 6 6 8 7 6 根据上表中的信息判断,下列结论中错误的是() A.该班一共有40名同学 B.该班学生这次考试成绩的众数是45分 C.该班学生这次考试成绩的中位数是45分 D.该班学生这次考试成绩的平均数是45分考点:众数;统计表;加权平均数;中位数.. 分析:结合表格根据众数、平均数、中位数的概念求解.解答:解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为: =44.425.故错误的为D.故选D.点评:本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键. 8.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有() A.∠ADE=20° B.∠ADE=30° C.∠ADE =1 2∠ADC D.∠ADE=1 3∠ADC 考点:多边形内角与外角;三角形内角和定理.. 分析:利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C,根据∠A=∠B=∠C,得到∠ADE= ∠EDC,因为∠ADC=∠ADE+∠EDC= ∠EDC+∠EDC= ∠EDC,所以∠ADC= ∠ADC,即可解答.解答:解:如图,在△AED中,∠AED=60°,∴∠A=180°�∠AED�∠ADE=120°�∠ADE,在四边形DEBC中,∠DEB=180°�∠AED=180°�60°=120°,∴∠B=∠C=(360°�∠DEB�∠EDC)÷2=120°�∠EDC,∵∠A=∠B=∠C,∴120°�∠ADE=120°�∠EDC,∴∠ADE= ∠EDC,∵∠ADC=∠ADE+∠EDC= ∠EDC+∠EDC= ∠EDC,∴∠ADE= ∠ADC,故选:D.点评:本题考查了多边形的内角和,解决本题的关键是根据利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C. 9.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是[()] A.25 B.35 C.5 D.6 考点:菱形的性质;矩形的性质.. 分析:连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO= AC=2 ,根据△AOE∽△ABC,即可得到结果.解答:解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD 是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC= =4 ,∴AO= AC=2 ,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴ ,∴ ,∴AE=5.故选C.点评:本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键. 10.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()考点:二次函数的图象;正比例函数的图象.. 分析:由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b�1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b�1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b�1)x+c 的对称轴x=�>0,即可进行判断.解答:解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b�1)x+c=0有两个不相等的根,∴函数y=ax2+(b�1)x+c与x轴有两个交点,∵方程ax2+(b�1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=�>0,∴�>0,∴函数y=ax2+(b�1)x+c的对称轴x=�>0,∵a>0,开口向上,∴A符合条件,故选A.点评:本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分) 11.-64的立方根是.考点:立方根.. 分析:根据立方根的定义求解即可.解答:解:∵(�4)3=�64,∴�64的立方根是�4.故答案为�4.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同. 12.如图,点A、B、C在半径为9的⊙O上,AB⌒的长为,则∠ACB的大小是.考点:弧长的计算;圆周角定理.. 分析:连结OA、OB.先由的长为2π,利用弧长计算公式求出∠AOB=40°,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得到∠ACB= ∠AOB=20°.解答:解:连结OA、OB.设∠AOB=n°.∵ 的长为2π,∴ =2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°.故答案为20°.点评:本题考查了弧长公式:l= (弧长为l,圆心角度数为n,圆的半径为R),同时考查了圆周角定理.13.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.考点:规律型:数字的变化类.. 分析:首项判断出这列数中,2的指数各项依次为 1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.解答:解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.点评:此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征. 14.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则 1 a+ 1 b=1;②若a=3,则b+c=9;③若a=b =c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是 (把所有正确结论的序号都选上).考点:分式的混合运算;解一元一次方程.. 分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a+b=ab≠0,∴ + =1,此选项正确;②∵a=3,则3+b=3b,b= ,c= ,∴b+c= + =6,此选项错误;③∵a=b=c,则2a=a2=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=a2,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8,此选项正确.其中正确的是①④.故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:a2 a�D1 +1 1�Da • 1 a ,其中a=- 1 2.考点:分式的化简求值.. 专题:计算题.分析:原式括号中第二项变形后,利用同分母分式的减法法则计算,约分得到最简结果,把a 的值代入计算即可求出值.解答:解:原式=(�)• = • = ,当a=�时,原式=�1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 16.解不等式: x 3>1- x-3 6.考点:解一元一次不等式.. 分析:先去分母,然后移项并合并同类项,最后系数化为1即可求出不等式的解集.解答:解:去分母,得2x >6�x+3,移项,得2x+x>6+3,合并,得3x>9,系数化为1,得x>3.点评:本题考查了一元一次不等式的解法,解答本题的关键是熟练掌握解不等式的方法步骤,此题比较简单.四、(本大题共2小题,每小题8分,满分16分) 17.如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点). (1)请画出△ABC关于直线l对称的△A1B1C1; (2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C3B2.考点:作图-轴对称变换;作图-平移变换.. 分析:(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键. 18.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).考点:解直角三角形的应用-仰角俯角问题.. 分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.解答:解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥A C,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE= ,∴BE=CE•cot30°=12× =12 .在Rt△BDE中,由∠DBE=45°,得DE=BE=12 .∴CD=CE+DE=12( +1)≈32.4.答:楼房CD的高度约为32.4m.点评:考查了解直角三角形的应用�仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.五、(本大题共2小题,每小题10分,满分20分) 19.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B手中的概率; (2)求三次传球后,球恰在A手中的概率.考点:列表法与树状图法..分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.解答:解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为: = .点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 20.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ. (1)如图1,当PQ∥AB时,求PQ的长度; (2)如图2,当点P在BC上移动时,求PQ长的最大值.考点:圆周角定理;勾股定理;解直角三角形.. 专题:计算题.分析:(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,在Rt△OBP中,利用正切定义可计算出OP=3tan30°= ,然后在Rt△OPQ中利用勾股定理可计算出PQ= ;(2)连结OQ,如图2,在Rt△OPQ中,根据勾股定理得到PQ= ,则当OP的长最小时,PQ的长最大,根据垂线段最短得到OP⊥BC,则OP= OB= ,所以PQ长的最大值= .解答:解:(1)连结OQ,如图1,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan∠B= ,∴OP=3tan30°= ,在Rt△OPQ中,∵OP= ,OQ=3,∴PQ= = ;(2)连结OQ,如图2,在Rt△OPQ中,PQ= = ,当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP= OB= ,∴PQ长的最大值为 = .点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了勾股定理和解直角三角形.六、(本题满分12分)21.如图,已知反比例函数y= k1 x与一次函数y=k2x+b的图象交于点A(1,8)、B(-4,m). (1)求k1、k2、b的值; (2)求△AOB 的面积; (3)若M(x1,y1)、N(x2,y2)是比例函数y= k1 x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.考点:反比例函数与一次函数的交点问题.. 分析:(1)先把A点坐标代入y= 可求得k1=8,则可得到反比例函数解析式,再把B(�4,m)代入反比例函数求得m,得到B点坐标,然后利用待定系数法确定一次函数解析式即可求得结果;(2)由(1)知一次函数y=k2x+b 的图象与y轴的交点坐标为(0,6),可求S△AOB= ×6×2+ ×6×1=9;(3)根据反比例函数的性质即可得到结果.解答:解:(1)∵反比例函数y= 与一次函数y=k2x+b的图象交于点A(1,8)、B(�4,m),∴k1=8,B(�4,�2),解,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),∴S△AOB= ×6×2+ ×6×1=9;(3)∵比例函数y= 的图象位于一、三象限,∴在每个象限内,y 随x的增大而减小,∵x1<x2,y1<y2,∴M,N在不同的象限,∴M (x1,y1)在第三象限,N(x2,y2)在第一象限.点评:本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.七、(本题满分12分) 22.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2. (1)求y与x之间的函数关系式,并注明自变量x的取值范围; (2)x为何值时,y有最大值?最大值是多少?考点:二次函数的应用.. 专题:应用题.分析:(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y 与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.解答:解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,∴8a+2x=80,∴a=�x+10,2a=�x+20,∴y=(� x+20)x+(� x+10)x=� x2+30x,∵a=� x+10>0,∴x<40,则y=�x2+30x(0<x<40);(2)∵y=�x2+30x=�(x�20)2+300(0<x<40),且二次项系数为�<0,∴当x=20时,y有最大值,最大值为300平方米.点评:此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.八、(本题满分14分) 23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC. (1)求证:AD=BC; (2)求证:△AGD∽△EGF; (3)如图2,若AD、BC所在直线互相垂直,求 AD EF的值.考点:相似形综合题.. 分析:(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE= ∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.解答:(1)证明:∵GE 是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC 中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴ ,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGE=∠AHB=90°,∴∠AGE=∠AGB=45°,∴ ,又∵△AGD∽△EGF,∴ = = .点评:本题是相似形综合题目,考查了线段垂直平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、三角函数等知识;本题难度较大,综合性强,特别是(3)中,需要通过作辅助线综合运用(1)(2)的结论和三角函数才能得出结果.。
历年中考真题分类汇编(数学)
第一篇基础知识梳理第一章数与式§1.1 实数A组2015年全国中考题组一、选择题1.(2015·,1,3分)-5的绝对值是( )A.-5 B.5 C.-15D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·,1,4分)计算2-3的结果为( ) A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·,1,4分)计算(-1)×3的结果是( ) A.-3 B.-2 C.2 D.3解析(-1)×3=-3,故选A.答案 A4.(2015·,3,3分)4的算术平方根是( ) A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为( )A.0.6×1013元B.60×1011元C.6×1012元D.6×1013元解析6万亿=60 000×100 000 000=6×104×108=6×1012,故选C.答案 C6.(2015·,5,2分)估计5-12介于( )A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·,2,3分)下列计算正确的是( ) A.23+26=29B.23-26=2-3C.26×23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·,6,3分)若k<90<k+1(k是整数),则k=( ) A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是( )A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·,13,4分)实数8的立方根是________.解析 ∵23=8,∴8的立方根是2. 答案 211.(2015·,11,4分)计算:23×⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·,20,3分)定义:a 是不为1的有理数,我们把11-a 称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4=-12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案23三、解答题13.(2015·,17(1),4分)计算:|-5|+4×2-1. 解 原式=5+2×12=5+1=6.14.(2015·,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·,17(1),5分)计算:2 0150+12+2×⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·,1,3分)-2的相反数是 ( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2×(-12)=1,∴-2的倒数是-12.答案 A4.(2013·,1,4分)计算:(-2)×3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)×3=-2×3=-6.故选A. 答案 A5.(2014·,1,4分)比较-3,1,-2的大小,正确的是( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·,2,4分)轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为( )A .253.7×108B .25.37×109C .2.537 ×1010D .2.537 ×1011解析 253.7亿=253.7×108=2.537 ×1010,故选C. 答案 C8.(2014·,1,3分)在数23,1,-3,0中,最大的数是( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B.答案 B9.★(2013·,1,3分)下列计算正确的是 ( )A.⎝ ⎛⎭⎪⎫13-2=9B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8×10-4. 答案 8×10-413.(2014·,18,3分)若实数m,n满足||m-2+(n-2 014)2=0,则m-1+n0=________.解析∵||m-2+(n-2 014)2=0,∴m-2=0,n-2 014=0,即m=2,n=2 014.∴m-1+n0=2-1+2 0140=12+1=32.故答案为32.答案3 2三、解答题14.(2014·,17,6分)计算:8-4cos 45°+(12)-1+||-2.解8-4cos 45°+(12)-1+||-2=22-4×22+2+2=22-22+4=4.15.(2014·,17,6分)计算:(-3)2+||-4×2-1-(2-1)0.解原式=3+4×12-1=3+2-1=4.16.★(2013·滨州,20,7分)(计算时不能使用计算器)计算:33-(3)2+(π+3)0-27+|3-2|.解原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A组2015年全国中考题组一、选择题1.(2015·,3,3分)下列运算正确的是( )A.a3+a3=2a6B.(x2)3=x5C.2a4÷a3=2a2D.x3·x2=x5解析A.a3+a3=2a3;B.(x2)3=x6;C.2a4÷a3=2a,故选D.答案 D2.(2015·,2,3分)化简-16(x-0.5)的结果是( ) A.-16x-0.5 B.16x+0.5C.16x-8 D.-16x+8解析计算-16(x-0.5)=-16x+8.所以D项正确.答案 D3.(2015·,4,3分)若单项式2x2y a+b与-13x a-b y4是同类项,则a,b的值分别为( )A.a=3,b=1 B.a=-3,b=1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·,5,3分)计算3x 3·2x 2的结果为 ( ) A .5x 5B .6x 5C .6x 6D .6x 9解析 属于单项式乘单项式,结果为:6x 5,故B 项正确. 答案 B6.(2015·,6,3分)计算a ·a -1的结果为 ( ) A .-1B .0C .0D .-a解析 a ·a -1=1,故A 正确. 答案 A 二、填空题7.(2015·,12,4分)计算(x -1)(x +2)的结果是________. 解析 由多项式乘以多项式的法则可知:(x -1)(x +2)=x 2+x -2. 答案 x 2+x -28.(2015·,9,3分)计算:3a 3·a 2-2a 7÷a 2=________.解析 本题属于同底数幂的乘除,和合并同类项,3a 3·a 2-2a 7÷a 2=3a 5-2a 5=a5. 答案a59.(2015·,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2 .解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B组2014~2011年全国中考题组一、选择题1.(2014·,13,3分)若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是( )A.2 B.0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( )A .6B .4C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·,2,3分)下列计算正确的是 ( ) A .a 2+a 2=a 4 B .2a -a =2 C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a2b2,故本选项正确;D.(a2)3=a6,故本选项错误.故选C.答案 C5.★(2013·湘西,7,3分)下列运算正确的是( ) A.a2·a4=a8B.(x-2)(x+3)=x2-6C.(x-2)2=x2-4 D.2a+3a=5a解析A中,a2·a4=a6,∴A错误;B中,(x-2)(x+3)=x2+x-6,∴B错误;C中,(x-2)2=x2-4x+4,∴C错误;D中,2a+3a=(2+3)a=5a,∴D正确.故选D.答案 D二、填空题6.(2013·,11,5分)计算:x5÷x3=________.解析根据同底数幂除法法则,∴x5÷x3=x5-3=x2.答案x27.(2013·义乌,12,4分)计算:3a·a2+a3=________.解析3a·a2+a3=3a3+a3=4a3.答案4a38.(2013·,14,4分)已知实数a、b满足:a+b=2,a-b=5,则(a+b)3·(a -b)3的值是________.解析法一∵a+b=2,a-b=5,∴原式=23×53=103=1 000.法二原式=[(a+b)(a-b)]3=103=1 000.答案 1 000三、解答题9.(2013·,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12).整理得:8x 2=24, 解得x =± 3.∵x >0,∴正方形边长为 3.10.(2014·,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时,原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解(x+5)(x-1)+(x-2)2=x2+4x-5+x2-4x+4=2x2-1.当x=-2时,原式=2×(-2)2-1=8-1=7.§1.3 因式分解A组2015年全国中考题组一、选择题1.(2015·,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是( )A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2,故D正确.答案 D2.(2015·,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是( ) A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是( ) A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)25.(2015·,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·,7,3分)下列因式分解正确的是( ) A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·,4,3分)下列因式分解正确的是( ) A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D 错误.故选A.答案 A3.(2014·威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是( )A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x-2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·,5,4分)把a2-4a多项式分解因式,结果正确的是( )A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·,3,3分)下列各式能用完全平方公式进行分解因式的是( ) A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n+1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4 分式A 组 2015年全国中考题组一、选择题1.(2015·,4,3分)分式-11-x可变形为 ( ) A .-1x -1B.11+xC .-11+xD.1x -1解析 由分式的性质可得:-11-x =1x -1. 答案 D2.(2015·,3,3分)化简m 2m -3-9m -3的结果是( )A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b的结果是 ( )A.a a -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1B.1x +1C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A 二、填空题5.(2015·,13,4分)计算:1a -1+a1-a的结果是________. 解析1a -1+a 1-a =1-a a -1=-1. 答案 -16.(2015·,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________.解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1.答案 m m +17.(2015·,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n=________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n +n 2n ·n n 2-1=n 2+2n +1n ·n n 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1.答案n +1n -18.(2015·,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________.解析 (a +b )2a 2+b 2-2ab a 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1.答案 1 三、解答题9.(2015·,19,5分)先化简:x 2+x x 2-2x +1÷⎝⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的围选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组一、选择题1.(2014·,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( )A .x ≠2B .x ≠-1C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w =1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D. 答案 D3.(2013·,2,2分)计算a 3·⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A.答案 A4.(2013·,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是 ( )A.1a -1B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2×a -1a +1 =1a -1,故选A.答案 A5.(2013·,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A.k>2 B.1<k<2C.12<k<1 D.0<k<12解析甲图中阴影部分面积是:a2-b2,乙图中阴影部分的面积是a2-ab,∴k=a2-b2a2-ab=(a+b)(a-b)a(a-b)=a+ba=1+ba.∵a>b>0,∴0<ba<1.∴1<1+ba<2.答案 B 二、填空题6.(2011·,11,4分)当x________时,分式13-x有意义.解析要使分式13-x有意义,必须3-x≠0,即x≠3.答案≠37.(2012·,12,4分)化简m2-163m-12得________;当m=-1时,原式的值为________.解析m2-163m-12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1. 答案m +4318.(2014·,13,4分)计算:1a -1+a 1-a的结果是________. 解析 1a -1+a 1-a =1a -1-a a -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎨⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x +2y =3×(-1)+2×3+2×(-1)=1. 答案 110.(2014·,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2n x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·,17,5分)化简:ba 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b .解 原式=b(a +b )(a -b )÷⎝ ⎛⎭⎪⎫a +b a +b -a a +b=b(a +b )(a -b )·a +b b =1a -b. 13.(2013·,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ·x 2x (x -2)+1=x -22+1=x2.当x=1时,原式=1 2 .14.(2014·,21,8分)先化简x-4x2-9÷⎝⎛⎭⎪⎫1-1x-3,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.解原式=x-4(x+3)(x-3)÷x-3-1x-3=x-4(x+3)(x-3)·x-3x-4=1x+3.解不等式2x-3<7,得x<5.取x=0时,原式=1 3 .(本题最后答案不唯一,x≠±3,x≠4即可)§1.5 二次根式A组2015年全国中考题组一、选择题1.(2015·,3,3分)化简12的结果是( ) A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·,3,3分)要使二次根式x-2有意义,x必须满足( ) A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·,4,3分)下列式子为最简二次根式的是( )A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是( ) A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·,11,4分)27+3=________.解析原式=33+3=4 3.答案4 36.(2015·,12,3分)计算5×153的结果是________.解析5×153=5×5=5.答案 57.(2015·,12,3分)计算:18-212等于________.解析原式=32-2=2 2.答案2 2三、解答题8.(2015·凉山州,19,5分)计算:-32+3×1tan 60°+|2-3|.解-32+3×1tan 60°+|2-3|=-9+3×13+3-2=-5- 2.9. (2015·,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用1 5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解 第1个数,当n =1时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎝ ⎛⎭⎪⎫1+52-1-52 =15×5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52 =15×1×5=1. B 组 2014~2011年全国中考题组一、选择题1.(2013·,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22×5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·,2,3分)下列计算正确的是( )A .43-33=1 B.2+3= 5 C .212= 2D .3+22=5 2解析 43-33=3,∴A 错误;∵2与3被开方数不同,不能合并,∴B 错误;212=2×22=2,∴C 正确;3和22一个是有理数,一个是无理数,不能合并,∴D 错误.综上所述,选C. 答案 C4.(2013·,5,3分)计算48-913的结果是 ( )A .- 3 B. 3 C .-1133D.1133 解析 48-913=43-33= 3. 答案 B5.(2014·,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②a b·ba=1,③ab÷ab=-b,其中正确的是( )A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=ab.等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab=ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·,11,4分)二次根式x-3中,x的取值围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案x≥37.(2014·,13,4分)计算:(2+1)(2-1)=________.解析由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1.答案 18.(2013·,22,3分)化简:3(2-3)-24-︱6-3︱=________.解析原式=3×2-(3)2-26-3+6=6-3-26-3+6=-6.答案-69.(2012·,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值围是________. 解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2.解 1x -y ÷⎝ ⎛⎭⎪⎫1y -1x =1x -y ·xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章 方程(组)与不等式(组)§2.1 一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为( )A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为: 2-(x+2)=3(x-1),故D正确.答案 D2.(2015·,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程( ) A.54-x=20%×108 B.54-x=20%(108+x)C.54+x=20%×162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·,5,3分)若代数式4x-5与2x-12的值相等,则x的值是( )A.1 B.32C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·,5,3分)方程x2-1x+1=0的解是( )A.1或-1 B.-1 C.0 D.1解析去分母得:x2-1=0,即x2=1,解得:x=1或x=-1,经检验x=-1是增根,分式方程的解为x=1.答案 D5.(2015·,6,3分)分式方程2x-2+3x2-x=1的解为( )A.1 B.2 C.13D.0解析去分母得:2-3x=x-2,解得:x=1,经检验x=1是分式方程的解.答案 A二、填空题6.(2015·,14,3分)分式方程3x+2=2x的解x=________.解析去分母得:3x=2x+4,解得:x=4.经检验x=4是原分式方程的解.答案 47. (2015·,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm.解析第一种情况,甲比乙高0.5 cm,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm且甲的水位不变,时间为3320分钟;第三种情况,乙达到5 cm后,乙比甲高0.5 cm,时间为17140分钟.答案35或3320或171408.(2015·,13,3分)分式方程1x-5-10x2-10x+25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·,22,7分)下表为市居民每月用水收费标准(单位:元/m3).(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x-22)×(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·,19,4分)解方程:1-xx-2=x2x-4-1.解化为整式方程得:2-2x=x-2x+4,解得:x=-2.经检验x=-2是分式方程的解.12.(2015·,18,8分)解方程:x2x-3+53x-2=4.解 去分母得:3x 2-2x +10x -15=4(2x -3)(3x -2),整理得:3x 2-2x +10x -15=24x 2-52x +24,即7x 2-20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·,22,8分)某工厂计划在规定时间生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x=24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5×20×(1+20%)×2 400y +2 400×(10-2)=24 000.解得y =480.经检验y =480是原方程的根,且符合题意.答:原计划安排工人人数为480人.B 组 2014~2011年全国中考题组一、选择题1.(2014·,2,3分)方程x +2=1的解是 ( ) A .3B .-3C .1D .-1解析 x +2=1,移项得:x =1-2,x =-1.故选D. 答案 D2.(2014·,7,3分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是( )A .1-2x =3B .x -1-2x =3C .1+2x =3D .x -1+2x =3解析 两边同时乘以(x -1),得x -1-2x =3,故选B. 答案 B3.(2014·枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A .350元B .400元C .450元D .500元解析 设这批服装的标价为x 元,得0.6x -200200=20%,解得x =400,故选B.答案 B4.(2013·宿迁,6,3分)方程2x x -1=1+1x -1的解是( )A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·,14,4分)方程xx-2=12-x的根x=________.解析去分母,两边同乘以x-2,得x=-1,经检验x=-1是原方程的根,故答案为-1.答案-16.(2013·,12,4分)分式方程1x-2=0的解是________.解析去分母得1-2x=0,解得x=12.经检验,x=12是原方程的解.答案x=1 27.★(2013·,16,3分)若关于x的分式方程xx-1=3a2x-2-2有非负数解,则a的取值围是________.解析去分母,得2x=3a-2(2x-2),解得x=3a+4 6.∵有非负数解,∴3a+4≥0,即a≥-4 3 .又∵x-1≠0,即x≠1,∴3a +4≠6,解得a ≠23.∴a ≥-43且a ≠23.答案 a ≥-43且a ≠238.(2013·,15,4分)到的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由到的行驶时间缩短了3小时,则可列方程为________.解析 动车从到以平均速度为x 千米/时行完全程所需时间为1 487x小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x-1 487x +70=3. 答案1 487x-1 487x +70=3 三、解答题9.(2014·,18,8分)解方程:1x -1-3x 2-1=0.解 方程两边同乘x 2-1,得:x +1-3=0. ∴x =2.经检验,x =2是原方程的根.10.(2014·,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19硬纸板,裁剪时x 用A 方法,其余用B 方法. (1)用x 的代数式分别表示裁剪出的侧面和底面的个数; (2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子? 解 (1)裁剪出的侧面个数为6x +4(19-x )=(2x +76)个, 裁剪出的底面个数为5(19-x )=(-5x +95)个. (2)由题意,得2x +763=-5x +952,∴x =7.当x =7时,2x +763=30. ∴能做30个盒子.§2.2 一元二次方程A组2015年全国中考题组一、选择题1.(2015·,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1·x2的值是( ) A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( ) A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为 ( ) A .13B .15C .18D .13或18解析 解方程x 2-13x +36=0得,x =9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13. 答案 A4.(2015·,5,3分)关于x 的一元二次方程(m -2)x 2+(2m +1)x +m -2=0有两个不相等的正实数根,则m 的取值围是( )A .m >34B .m >34且m ≠2C .-12<m <2D.34<m <2 解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值围为34<m <2.答案 D 二、填空题5.(2015·,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值围是________.解析有题意得:Δ=9-4b>0,解得b<9 4 .答案b<9 47.(2015·,15,3分)设x1,x2是一元二次方程x2-5x-1=0的两实数根,则x21+x22的值为________.解析∵x1,x2是一元二次方程x2-5x-1=0的两实数根,∴x1+x2=5,x1x2=-1,∴x21+x22=(x1+x2)2-2x1x2=25+2=27.答案278.(2015·,11,3分)关于x的一元二次方程x2-x+m=0没有实数根,则m的取值围是________.解析由题意得(-1)2-4×1×m<0解之即可.答案m>1 49.(2015·,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为________.解析先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)2=7 600三、解答题10.(2015·,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4×2×(-m)>0,∴m>-98,即m的取值围是m>-98.11.(2015·,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n2+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( )A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为( ) A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a×(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·,2,3分)方程x(x-1)=0的解是( ) A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为( ) A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定解析∵b2-4ac=4(k+1)2-4×(-k2+2k-1)=8k2+8>0,∴这个方程有两个不相等的实数根,故选C.答案 C5.(2013·,10,4分)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次降价a%后售价下调到每斤5元,下列所列的方程中正确的是( ) A.12(1+a%)2=5 B.12(1-a%)2=5C.12(1-2a%)=5 D.12(1-a2%)=5解析第一次降价后的价格为12(1-a%)元,第二次降价后的价格为12(1-a %)2元,∴所列方程为12(1-a %)2=5,故选B. 答案 B6.(2013·黄冈,6,3分)已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( )A .2B .3C .4D .8解析 把x =2代入方程,得22-6×2+c =0,解得c =8,把c =8代入原方程得x 2-6x +8=0,解得x 1=2,x 2=4.故选C. 答案 C7.(2013·日照,8,3分)已知一元二次方程x 2-x -3=0的较小根为x 1,则下面对x 1的估计正确的是 ( )A .-32<x 1<-1B .-3<x 1<-2C .2<x 1<3D .-1<x 1<0解析 在x 2-x -3=0中,b 2-4ac =(-1)2-4×1×(-3)=13>0,∴x =1±132×1=1±132,∴x 1=1-132.∵3<13<4,∴-32<1-132<-1.故选A. 答案 A 二、填空题8.(2013·,17,4分)若|b -1|+a -4=0,且一元二次方程kx 2+ax +b =0有实数根,则k 的取值围是________.解析 ∵|b -1|≥0,a -4≥0,|b -1|+a -4=0,∴b -1=0,a -4=0,即b =1,a =4.∴原方程为kx 2+4x +1=0.∵一元二次方程kx 2+4x +1=0有实数根,∴42-4k ≥0且k ≠0,即k ≤4且k ≠0.。
2015年中考真题精品解析 数学(河北卷)精编word版(原卷版)
15.如图,点 A,B 为定点,定直线 l//AB,P 是 l 上一动点.点 M,N 分别为 PA,PB 的中点,对于下列各值:
①线段 MN 的长;②△PAB 的周长;③△PMN 的面积;④直线 MN,AB 之间的距离;⑤∠APB 的大小.
其中会随点 P 的移动而变化的是
24.(本小题满分 11 分) 某厂生产 A,B 两种产品其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如 下统计表及不完整的折线图: A,B 产品单价变化统计表
第一次 A 产品单价 (元/件) B 产品单价 (元/件) 6 3.5
第二次 5.2 4
第三次 6.5 3
全卷 共 8 页
A.②③
B.②⑤
C.①③④
D.④⑤
16.图是甲,乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正 方形, 则 A.甲、乙都可以 C. 甲不可以,乙可以 B.甲、乙都不可以 D.甲可以,乙不可以
卷Ⅱ(非选择题,共 78 分) 注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚 2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上. 二、填空题(本大题共 4 个小题,每小题 3 分,共 12 分.把答案写在题中横线上) 17.若|a|=20150,则 a=____.
A.
B.
[来源:学#科#网
]
C.
D.
10.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间 x(年)成反比例关系,当 x=2 时,y=20.则 y 与 x 的函数图象大致是
A.
B.
C.
D.
11.利用加减消元法解方程组
2015年全国中考数学试卷解析分类汇编(第三期)专题20 三角形的边与角
三角形的边与角一、选择题1.(2015,广西柳州,10,3分)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:由三角形的外角性质得,∠1=130°﹣60°=70°.故选D.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.2. (2015•北海,第3题3分)已知∠A=40°,则它的余角为()A.40° B.50° C.130° D.140°考点:余角和补角.分析:根据余角定义直接解答.解答:解:∠A的余角等于90°﹣40°=50°.故选:B.点评:本题比较容易,考查互余角的数量关系.根据余角的定义可得∠A的余角等于90°﹣40°=50度.3. (2015•北海,第6题3分)三角形三条中线的交点叫做三角形的()A.内心B.外心C.中心D.重心考点:三角形的重心.分析:根据三角形的重心概念作出回答,结合选项得出结果.解答:解:三角形的重心是三角形三条中线的交点.故选D.点评:考查了三角形的重心的概念.三角形的外心是三角形的三条垂直平分线的交点;三角形的内心是三角形的三条角平分线的交点.4. (2015•河北,第8题3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120° B.130° C.140° D.150°考点:平行线的性质;垂线.分析:如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.解答:解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.点评:该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.5. (2015•河北,第15题2分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.6. (2015•青海,第14题3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B. 6 C. 12 D. 16考点:三角形三边关系.分析:设第三边的长为x,再由三角形的三边关系即可得出结论.解答:解:设第三边的长为x,∵三角形两边的长分别是4和10,∴10﹣4<x<10+4,即6<x<14.故选C.点评:本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7. (2015•山西,第4题3分)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.解答:解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.8. (2015•山西,第6题3分)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°考点:平行线的性质.分析:如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.解答:解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,故选C.点评:该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.9. (2015•黑龙江省大庆,第4题3分)正n边形每个内角的大小都为108°,则n=()A. 5 B. 6 C.7 D.8考点:多边形内角与外角.分析:利用正多边形的性质得出其外角,进而得出多边形的边数.解答:解:∵正n边形每个内角的大小都为108°,∴每个外角为:72°,则n==5.故选:A.点评:此题主要考查了多边形内角与外角,正确得出其外角度数是解题关键.二、填空题1.(4分)(2015•广东东莞16,4分)如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.考点:三角形的面积.分析:根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.解答:解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为4.点评:根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.2. (2015•齐齐哈尔,第14题3分)△ABC的两边长分别为2和3,第三边的长是方程x2﹣8x+15=0的根,则△ABC的周长是8.考点:解一元二次方程-因式分解法;三角形三边关系.分析:先求得方程的根,再根据三角形三边关系判断出第三边的长,可求得三角形的周长.解答:解:解方程x2﹣8x+15=0可得x=3或x=5,∴△ABC的第三边为3或5,但当第三边为5时,2+3=5,不满足三角形三边关系,∴△ABC的第三边长为3,∴△ABC的周长为2+3+3=8,故答案为:8.点评:本题主要考查三角形三边关系和一元二次方程的解法,利用三角形三边关系进行验证是解题的关键.3. (2015•辽宁省朝阳,第12题3分)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为8.考点:三角形三边关系.分析:首先设第三边长为x,根据三角形的三边关系可得3﹣2<x<3+2,然后再确定x的值,进而可得周长.解答:解:设第三边长为x,∵两边长分别是2和3,∴3﹣2<x<3+2,即:1<x<5,∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8,故答案为:8.点评:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.三、解答题1.。
2015年北京中考数学试卷解析
2015年北京市高级中等学校招生考试数学试卷逐题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个符合题意的•1. 截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140 000立方米,将140 000用科学记数法表示应为A. 14X 104B.1.4 X 105C.1.4 X 106D.0.14 X 106【答案】B【解析】难度:★本题考查了有理数的基础一科学计数法.难度易.2. 实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A. aB.bC.cD.d【答案】A【解析】难度:★本题考查了有理数的基础数轴的认识以及绝对值的几何意义;3. 一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为D.【答案】B【解析】难度:★本题考查了概率问题,难度易4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为C.B.A.【答案】D【解析】难度:★本题考查了轴对称图形的判断;难度易5.如图,直线1 1,1 2,1 3交于一点,直线14 // 1/仁124°,/ 2=88°,则/ 3的度数为1114若A.26B.36°C.46°【答案】B【解析】难度:★D.56°本题考查了相交线平行线中角度关系的考查,难度易6. 如图,公路AC, BC互相垂直,公路AB的中A点M和点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为A.0.5kmB.0.6kmC.0.9kmD.1.2km【答案】D【解析】难度:★本题考查了直角三角形斜边中线等于斜边一半的性质,难度易7. 某市6月份的平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是A.21,21B.21,21.5C.21,22D.22,22【答案】C【解析】难度:★ 本题考查了中位数,众数的求法,难度易;8. 右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东,正北方向为x轴,y轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是A. 景仁宫(4,2)B. 养心殿(-2,3)C. 保和殿(1,0)B M CD. 武英殿(-3.5 , -4) 【答案】B 【解析】难度:★本题考查了平面直角坐标系点的坐标的确定,难度易;会员年卡类型办卡费用(元)每次游泳收费(元)A 类 50 25B 类 200 20C 类40015例如,购买A 类会员年卡,一年内游泳20次,消费50+25X 20=550元,若一年 内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为 A.购买A 类会员年卡 B.购买B 类会员年卡 C.购买C 类会员年卡 D.不购买会员年卡【答案】C【解析】难度:★★本题考查了方案讨论问题,难度中•10. 一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的 AB,BC,CA, OA,OB,O (组成,为记录寻宝者的行进路线,在 BC 的中点M 处放置了一台定位仪 器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为 y ,若寻宝者匀速 行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可 能为A.A — O^BB.B —A ^CC.B — OXD.C — B —O【答案】C【解析】难度:★★本题考查了动点函数图像与路径问题,难度中二、填空题(本题共18分,每小题3 分)11. ________________________________ 分解因式:5x 3 - 10x 2 + 5x = 【答案】5x(x-1)2 【解析】难度:★本题考查了因式分解的计算,难度易12. 右图是由射线AB, BC,CD,DE,EA 组成的平面图形,则/ 1+Z 2+Z 3+Z 4+ / 5= _______ . 【答案】360°【解析】难度:★本题考查了多边形的外角和为360°,难度易;13. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术,正负术和方程术, 其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛 五,羊二,直金十两;牛二,羊五,直金八两.问:牛,羊各直金几何?” 译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问: 每头牛,每只羊各值多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 _________【解析】难度:★★本题考查了简单的二元一次方程组的应用问题, 但是阅读量较大,需要学生迅速【答案】6x + 2y=10 ?2x + 5y= 8 D2B1A4E53 C提取有用信息,难度中14. 关于x 的一元二次方程ax 2 + bx + - = 0有两个相等的实数根,写出一组满足条4 件的实数a,b 的值:a= ________ b = _______ . 【答案】a=4,b=2(答案不唯一,满足a b 2) 【解析】难度:★本题考查了根据一元二次方程根的情况求参数值的问题,难度易;15. 北京市2009~2014年轨道交通日均客运量统计 如图所示,根据统计图中提供的信息,预估 2015 年北京市轨道交通日均客运量约为 _________ 人 次,你的预估理由是 ____________________________ 【答案】1038 根据2009〜2014年平均增长率.【解析】难度:★ 本题考查了根据图像求平均增长率问题,难度易16. 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线, 已知:线段AB,I卜m“川"H JJ L 111求作:线段AB 的垂直平分线.小芸的作法如下:【解析】难度:★本题考查了垂直平分线的画图依据,难度易;三、解答题(本题共72分,第17〜26题每小题5分,第27题7分,第28题7 分,第29题8 分)217•计算:-43 2 4s in 60o.2【答案】5 ,3【解析】难度:★解:原式=4-1+2- 3 +2 :. 3=5+ ,3本题考查了实数,零指数幕,负整数幕,特殊角的三角函数值的运算,二次根式的化简.综合考查了实数的混合运算.解决此类问题的关键是熟练记住三角函数值,掌握实数,零指数幕,负整数幕的运算及二次根式的化简•难度易•18. 已知2a23a 6 0,求代数式3a 2a 1 2a 1 2a 1的值.【答案】7【解析】难度:★★解:原式=6a23a 4a21=6a23a 4a21=2a23a 1••• 2a2 +3a- 6 = 02a23a 6原式=6+1=7本题考查了整式的混合运算与化简求值,注意先化简,再整体代入求值.难度中.4x1 7x 1019.解不等式组 x 8,并写出它的所有非负整数解 x 5 ----------3【答案】解集为2 x 7;非负整数解:x=0, 1, 2, 3 2解:解①得:x 2 解②得:x —2原不等式的解集为 2 x -2它的所有非负整数解为x=0,1, 2,3本题考查了一元一次不等式的解法及把解集在数轴上表示出来,解答这类问题 学生往往会在解题时不注意移项时”变号“而出现错误 .重点掌握不等式的基本 性质,难度易•20. 如图,在△ ABC 中, ABAC, AD 是BC 边上的中线,BE 丄AC 于点E , 求证: CBE BAD【答案】证明见解析 【解析】难度:★★ 证明:T AB= ACABC 是等腰三角形T AD 是BC 边上中线【解析】 难度: 7x 10①BAD CADADB ADC 90o••• BE A ACBEA 90oAEB ADB•••DAOB二DAEB+DEADAOB EBC ADBCBE BAD本题考查了等腰三角形的概念及”三线合一“的性质,八字模型的运用•难度中•21. 为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市 民使用.到2013年底,全市已有公租自行车25 000辆,租赁600个.预计到2015 年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量 是2013年底平均每个租赁点的公租自行车数量的 1.2倍.预计到2015年底,全 市将有租赁点多少个?【答案】1000个【解析】难度:★★解:设2015年底,全市将有租赁点解得:x=1000经检验:x=1000是原分式方程的解 答:预计到2015年底,全市将有租赁点1000个• 本题考查了分式方程的应用,找出题目中蕴含的数量关系,列出方程解出即可 难度中.22. 在YU 中,过点D 作DEL AB 于点E ,点F 在边CD 上,DF=BE,连接AF, BF.(1) 求证:四边形BFDE 是矩形;(2) 若 CF=3,BF=4,DF=5,求证:AF 平分 DAB .【答案】证明见解析;【解析】难度:★★(1)证明:•••四边形ABCD1平行四边形 DF// BEV DF=BE四边形DEBF 是平行四边形根据题意得:50000 x600•••DE丄ABDEB 90°四边形BFDE是矩形(2)证明:Q四边形BFDE是矩形BFD 90°BFC 90°在Rt△ BFC中, CF=3, BF=4BC . BF2 CF232 42 5••四边形ABCD!平行四边形BC=AD=5, DFA FAB• DF=5AD=DFDAF DFADAF FABAF平分DAB本题考查了平行四边形的性质,矩形的判定及性质•等腰三角的定义及性质运用,主要考查了平时所讲到的”角平分线+平行必出等腰的模型•难度中•23. 在平面直角坐标系xOy中,直线y kx b(k 0)与双曲线y 8的一个交点x为P(2, m),与x轴、y轴分别交于点A, B.(1)求m的值;(2)若PA=2AB,求k的值.【答案】(1)4(2) 1 或3【解析】难度:★★★解:(1)v p是直线与双曲线的交点,P在双曲线y 8上.xm=4(2)<方法一代入法>由(1)知,P(2,4)代入直线y=kx+b得:4=2k+bb=4-2 kv直线交x轴、y轴于A、B两点4 2kA ,0 ,B 0,4 2kkPA j2 A 4222k又v PA=2ABk=1 或k=3k的值为1或3(2)<方法二几何法>此题分情况讨论①若k>0且P、A分别在点B的两侧如图①01■■ \r\ns_亠■'4'加i<il/ \ r »:AB4 2k424 2k 4 2k 2/ \ *jT \/ \ 1图①•••PA=2ABB为PA中点OB为中位线B (0,2 )y kx 2(k 0)4=2k+2k=1②若k>0且P、B分别在点A的两侧如图②【解析】难度:★★本题考察了反比例函数和一次函数的基本性质;两点之间坐标距离公式;分类讨论;相似.难度中•本题可用两种方法解决:第一种可利用两点之间坐标距离公式计算得出答案,虽然比较好思考,计算量却很大;第二种利用几何法画图求相似的方法,分类讨论一次函数中k的取值范围画出不同情况的图形解决问题•24. 如图,AB是。
2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究
精心整理操作探究一、选择题1.(2015?浙江宁波,第12题4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长A.b,②③-①将a+将2c∴故选A.2.(2015?浙江省绍兴市,第10题,4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。
如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒 考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1第2第3第4第5第6故选二.1.(中CD =_______________________________【答案】2或4+第16题【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C =30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况H ,设∴设在Rt 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即1CD =∴224CD +==+综上所述,CD =2或4+2.(2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。
小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。
如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.∴△∴3.(t、t1等边三角型的边长为a≈2,等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.故答案为:t2>t3>t1.点评:本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(A与点出=2,则∴,∴=故=.故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT△AOE∽RT△ABC,利用相似三角形的性质得出OE的长.三.解答题1.(2015?浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且段(3D(4,△和△H 是2.(的顶点形所(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式。
【9份】2015年全国各地中考数学试题(真题)分类汇编(精品推荐)
二、填空题
1.(2015•南京)若式子 在实数范围内有意义,则x的取值范围是.
2.(2015•南京)计算 的结果是.
3.(2015•四川自贡)化简: =.
考点:绝对值、无理数、二次根式
分析:本题关键是判断出 值得正负,再根据绝对值的意义化简.
略解:∵ ∴ ∴ ;故应填 .
4.(2015•四川自贡)若两个连续整数 满足 ,则 的值是.
A.x≤2 B. x≥2 C. x<2 D.x>2
6.(2015•浙江杭州)若 k<<k+1(k是整数),则k=( )
A. 6B.7C. 8D. 9
【答案】D.
【考点】估计无理数的大小.
【分析】∵ ,
∴k=9. B. C. D.
8.(2015•重庆B)计算 的值是()
考点:无理数、二次根式、求代数式的值.
分析:本题关键是判断出 值是在哪两个连续整数之间.
略解:∵ ∴ ∴ ∴ ;故应填7.
5.(2015•四川资阳)已知: ,则 的值为_________.
三.解答题
1.(2015•江苏苏州)计算: .
【考点分析】考察实数计算,中考必考题型。难度很小。
【详细分析】解:原式=3+5-1=7.
涉及的公式为:金额=单价×数量
金额
单价
数量
乒乓球
1.5×20=30
1.5
20
球拍
22
将相关数据代入①即可解得:
解:设购买球拍 个,依题意得:
解之得:
由于 取整数,故 的最大值为7。
6.(山东菏泽)13.不等式组 的解集是__________-1≤x<3
7.(云南)已知不等式组 ,其解集在数轴上表示正确的是( )
2015年全国中考数学试卷解析分类汇编专题28
2015年全国中考数学试卷解析分类汇编专题28+解直角三角形一.选择题1.(2015•衡阳,第12题3分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51 C.50+1 D.1012.(2015•聊城,第10题3分)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为()A. 34米B. 38米C. 45米D. 50米3. (2015•温州第8题4分)如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C 作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=B. y=C. y=2D. y=34.(2015•甘肃天水,第8题,4分)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A. 2 B.3 C. 4 D.55.(2015•山东泰安,第14题3分)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.海里D.海里6.(2015•长沙,第11题3分)如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米D.30cosα米二.填空题1.(3分)(2015•宁夏)(第16题)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为.2.(2015•青海西宁第18题2分)某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在点A 处测得蒲宁之珠最高点C 的仰角为45°,再往蒲宁之珠方向前进至点B 处测得最高点C 的仰角为56°,AB=62m ,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD 约为 ______ m .(sin56°≈0.83,tan56°≈1.49,结果保留整数)3.(2015•宁夏第16题3分)如图,港口A 在观测站O 的正东方向,OA=4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为_______.4.(2015年重庆B 第18题4分)如图,AC 是矩形ABCD 的对角线,AB=2,BC=,点E 、F 分别是线段AB ,AD 上的点,连接CE ,CF ,当∠BCE=∠ACF ,且CE=CF 时,AE+AF=______.5.(2015•营口,第14题3分)圆内接正六边形的边心距为2,则这个正六边形的面积为 cm 2.2318题图E6.(2015•营口,第17题3分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为.7.(2015•山东德州,第16题4分)如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度均为m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)9.(2015•滨州,第14题4分)如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.10.(2015•东营,第14题3分)4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是200+200米.11. (2015年陕西省,13,3分)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).12.(2015江苏常州第16题2分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是_______________.三.解答题1.(2015•湖北,第22题6分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.2.(2015•安徽,第18题8分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).m)3.(2015•鄂州,第21题9分)如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)4.(2015•海南,第22题9分)如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)5.(2015•湘潭,第19题6分)“东方之星”客船失事之后,本着“关爱生命,救人第一”的宗旨.搜救部门紧急派遣直升机到失事地点进行搜救,搜救过程中,假设直升机飞到A处时,发现前方江面上B处有一漂浮物,从A测得B处的俯角为30°,已知该直升机一直保持在距江面100米高度飞行搜索,飞行速度为10米每秒,求该直升机沿直线方向朝漂浮物飞行多少秒可到达漂浮物的正上方?(结果精确到0.1,≈1.73)6.(2015•聊城,第24题10分)如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE 垂直于PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E .(1)求证:AB=BE ;(2)若PA=2,cosB=,求⊙O 半径的长.7. (2015江苏常州第25题8分)如图,在四边形ABCD 中,∠A =∠C =45°,∠ADB =∠ABC =105°.⑴若AD =2,求AB ;⑵若AB +CD =23+2,求AB .8.(2015年四川省达州市中考,21,7分)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB ,其测量步骤如下:(1)在中心广场测点C 处安置测倾器,测得此时山顶A 的仰角∠AFH=30°;C(2)在测点C 与山脚B 之间的D 处安置测倾器(C 、D 与B 在同一直线上,且C 、D 之间的距离可以直接测得),测得此时山顶上红军亭顶部E 的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得CD 之间的距离为288米;已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB .(取1.732,结果保留整数)9.(2015年四川省广元市中考,20,8分)某学校体育看台的侧面如图中阴影部分所示,看台有四级高度相等的小台阶,已知看台高为1.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长度均为0.8米的不锈钢架杆AD 和BC (杆子的低端分别为D 、C ),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l (即AD+AB+BC 的长).10.(2015年浙江省义乌市中考,20,8分)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°。
2015年安徽省中考数学试卷解析
∴∠A=180°﹣∠AED﹣∠ADE=120°﹣∠ADE,
在四边形DEBC中,∠DEB=180°﹣∠AED=180°﹣60°=120°,
∴∠B=∠C=(360°﹣∠DEB﹣∠EDC)÷2=120°﹣ ∠EDC,
∵∠A=∠B=∠C,
∴120°﹣∠ADE=120°﹣ ∠EDC,
解答:解:连结OA、OB.设∠AOB=n°.
∵ 的长为2π,
∴ =2π,
∴n=40,
∴∠AOB=40°,
∴∠ACB= ∠AOB=20°.
故答案为20°.
点评:本题考查了弧长公式:l= (弧长为l,圆心角度数为n,圆的半径为R),同时考查了圆周角定理.
13、考点:规律型:数字的变化类..
分析:首项判断出这列数中,2的指数各项依次为1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.
∴三次传球后,球恰在A手中的概率为: = .
点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
20、考点:圆周角定理;勾股定理;解直角三角ቤተ መጻሕፍቲ ባይዱ..
专题:计算题.
分析:(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,在Rt△OBP中,利用正切定义可计算出OP=3tan30°= ,然后在Rt△OPQ中利用勾股定理可计算出PQ= ;
在Rt△OPQ中,∵OP= ,OQ=3,
∴PQ= = ;
(2)连结OQ,如图2,
在Rt△OPQ中,PQ= = ,
当OP的长最小时,PQ的长最大,
此时OP⊥BC,则OP= OB= ,
全国各地2015年中考数学试卷解析分类汇编(第1期)专题36-规律探索
规律探索选择题1.(2015湖南邵阳第10题3分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()考点:旋转的性质;弧长的计算..专题:规律型.分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.解答:解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:+2π=6π,2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键.2.(2015湖北荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2015是第=1008个数,设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,即≥1008,解得:n≥,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(+1)=47个数.故A2015=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.3.(2015湖北鄂州第10题3分)在平面直角坐标系中,正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1B1C1D1 的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()A. B. C. D.【答案】D.考点:1.正方形的性质;2.解直角三角形.4. (2015•山东威海,第12 题3分)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()A .B .C .D .考点: 正多边形和圆..专题: 规律型.分析: 连结OE 1,OD 1,OD 2,如图,根据正六边形的性质得∠E 1OD 1=60°,则△E 1OD 1为等边三角形,再根据切线的性质得OD 2⊥E 1D 1,于是可得OD 2=E 1D 1=×2,利用正六边形的边长等于它的半径得到正六边形A 2B 2C 2D 2E 2F 2的边长=×2,同理可得正六边形A 3B 3C 3D 3E 3F 3的边长=()2×2,依此规律可得正六边形A 10B 10C 10D 10E 10F 10的边长=()9×2,然后化简即可.解答: 解:连结OE 1,OD 1,OD 2,如图, ∵六边形A 1B 1C 1D 1E 1F 1为正六边形, ∴∠E 1OD 1=60°,∴△E 1OD 1为等边三角形,∵正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切, ∴OD 2⊥E 1D 1, ∴OD 2=E 1D 1=×2,∴正六边形A 2B 2C 2D 2E 2F 2的边长=×2,同理可得正六边形A 3B 3C 3D 3E 3F 3的边长=()2×2,则正六边形A 10B 10C 10D 10E 10F 10的边长=()9×2=.故选D .点评: 本题考查了正多边形与圆的关系:把一个圆分成n (n 是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径. 5.(2015•山东日照 ,第11题3分)观察下列各式及其展开式:(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5…请你猜想(a +b )10的展开式第三项的系数是( ) A . 36 B . 45 C . 55 D . 66 考点: 完全平方公式.. 专题: 规律型.分析: 归纳总结得到展开式中第三项系数即可.解答: 解:解:(a +b )2=a 22+2ab +b 2;(a +b )3=a 3+3a 2b +3ab 2+b 3;(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4;(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6;(a +b )7=a 7+7a 6b +21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1, 则(a +b )10的展开式第三项的系数为45. 故选B .点:此题考查了完全平方公式,熟练掌握公式是解本题的关键6 , (2015•山东临沂,第11题3分)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,….按照上述规律,第2015个单项式是( )(A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015. 【答案】C 【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n -1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是,所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为.故选C考点:探索规律7.(2015·河南,第8题3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,-1)C . (2015,1)D . (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索. ∵半圆的半径r =1,∴半圆长度=π,∴第2015秒点P 运动的路径长为:2π×2015,∵2π×2015÷π=1007…1,∴点P 位于第1008个半圆的中点上,且这个半圆在x 轴的下方.∴此时点P 的横坐标为:1008×2-1=2015,纵坐标为-1,∴点P (2015,-1) .图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n =( )A . 14B . 15C . 16D . 17考点: 规律型:图形的变化类..分析: 分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n 个图形中小圆的个数为n (n ﹣1)+5.据此可以再求得“龟图”中有245个“○”是n 的值. 解答: 解:第一个图形有:5个○, 第二个图形有:2×1+5=7个○, 第三个图形有:3×2+5=11个○, 第四个图形有:4×3+5=17个○,由此可得第n 个图形有:[n (n ﹣1)+5]个○, 则可得方程:[n (n ﹣1)+5]=245 解得:n 1=16,n 2=﹣15(舍去). 故选:C .点评: 此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.8. (2015•四川省宜宾市,第7题,3分)如图,以点O 为圆心的20个同心圆,它们的半第8题径从小到大依次是1、2、3、4、……、20,阴影部分是由第l 个圆和第2个圆,第3个圆和第4个圆,……,第l 9个圆和第20个圆形成的所有圆环,则阴影部分的面积为( B )A .231πB .210πC .190πD .171π9. (2015•浙江宁波,第10题4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若1h =1,则2015h 的值为【 】A . 201521B . 201421C .2015211-D .2014212-【答案】D .【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理. 【分析】根据题意和折叠对称的性质,DE 是△ABC 的中位线,D 1E 1是△A D 1E 1的中位线,D 2E 2是△A 2D 2E 1的中位线,…∴21111122h =+=-,32211111222h =++=-,42331111112222h =+++=-,…20152201420141111112222h =+++⋅⋅⋅+=-.故选D .二.填空题 1.(2015•甘肃武威,第18题3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是 45 ,2016是第 63 个三角形数.2. (2015•浙江衢州,第15题4分)已知,正六边形在直角坐标系的位置如图所示,,点在原点,把正六边形沿轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点的坐标是 ▲ .【答案】.【考点】探索规律题(图形的变化类----循环问题);正六边形的性质;含30度角角三角形的性质.【分析】如答图,根据翻转的性质,每6次为一个循环组依次循环.∵,∴经过2015次翻转之后,为第336个循环组的第5步.∵,∴在中,.∴.∴在中,.∴.∴的横坐标为,纵坐标为.∴经过2015次翻转之后,点的坐标是.3. (2015•浙江湖州,第16题4分)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推…,若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是__________________________【答案】.考点:正方形的性质;相似三角形的判定及性质;规律探究题.4. (2015•四川省内江市,第16题,5分)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);…n=n时,根数为:2n(n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.(2015·深圳,第15题分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳。
最新中考数学必备-2015年全国中考数学试卷解析分类汇编 专题38 方案设计
方案设计1. (2015•四川广安,第24题8分)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)考点:作图—应用与设计作图..分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.解答:解:根据分析,可得.(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).点评:(1)此题主要考查了作图﹣应用与设计作图问题,要熟练掌握,解答此题的关键是结合正方形的性质和基本作图的方法作图.(2)此题还考查了三角形的面积的求法,要熟练掌握.2.(2015·贵州六盘水,第21题10分)联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种。
2012年全国中考数学试题分类解析汇编专题:38等腰(边)三角形
2012年全国中考数学试题分类解析汇编(159套63专题)专题:38等腰(边)三角形一、选择题1. (2012宁夏区3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是【】A.13 B.17 C.22 D.17或22【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形:①若4为腰长,9为底边长,由于4+4<9,则三角形不存在;②9为腰长,则符合三角形的两边之和大于第三边。
∴这个三角形的周长为9+9+4=22。
故选C。
2. (2012广东肇庆3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为【】A.16 B.18 C.20 D.16或20【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意。
∴此三角形的周长=8+8+4=20。
故选C。
3. (2012江苏常州2分)已知三角形三边的长分别为4,9,则这个等腰三角形的周长为【】A.13B.17C.22D.17或22【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】由三角形三边的长分别为4,9,知三角形三边的长分别为4,4,9或4,9,9,但由于4,4,9与三角形的构成条件“两边之和大于第三边,两边之差小于第三边”不符,因此,三角形三边的长只能分别为4,9,9 ,周长为22。
故选C。
4. (2012江苏徐州3分)如果等腰三角形的两边长分别为2和5,则它的周长为【】A.9 B.7 C.12D.9或12【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】根据等腰三角形的性质,如果等腰三角形的两边长分别为2和5,则另一边可能是2或5。
2015年全国中考数学试卷分类汇编专题1 有理数
2015年全国中考数学试卷解析分类汇编专题1 有理数一.选择题1.(2015•安徽, 第1题4分)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B. 2 C.﹣1D. 3 2.(2015•安徽, 第3题4分)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B. 1.62×106C. 1.62×108D.0.162×109 3.(2015•海南, 第1题3分)﹣2015的倒数是()A.﹣ B. C.﹣2015 D. 20154.(2015•海南,第6题3分)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是() A. 4 B. 5 C. 6 D. 75.(2015•鄂州, 第1题3分)﹣的倒数是()A. B. 3 C.﹣3 D.﹣6.(2015•鄂州, 第2题3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A. 3.9×104 B. 3.94×104 C.39.4×103 D. 4.0×1047.(2015•大连, 第1题3分)﹣2的绝对值是()A. 2 B.﹣2 C. D.8.(2015•湖北, 第2题3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A. 3.7×106 B. 3.7×105 C.37×104 D. 3.7×1049.(2015•宜昌,第3题3分)陆地上最高处是珠穆朗玛峰顶,高出海平面8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为4m记作+4m,那么向左运动4m记作()14. (2015江苏常州第1题2分)-3的绝对值是A .3B .-3C .31D .-31 15. (2015江苏淮安第1题)2的相反数是( )A 、21B 、21- C 、2 D 、-2 16. (2015江苏连云港第1题3分)-3的相反数是( )A .3B .-3C .13D .-1317. (2015江苏连云港第3题3分)2014年连云港高票当选全国“十大幸福城市”,在江苏十三个省辖市中居第一位,居民人均可支配收入约18 000元.其中“18 000”用科学记数法表示为( )A .0.18×105B .1.8×103C .1.8×104D .18×10318. (2015江苏扬州第2题3分)2015年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( )A 、71049.7⨯B 、61049.7⨯C 、6109.74⨯D 、710749.0⨯ 020、(2015年浙江省义乌市中考,1,4分)计算3)1(⨯-的结果是A. -3B. -2C. 2D. 321、(2015年浙江省义乌市中考,2,4分)据报道,2015年第一季度,义乌电商实现交易额约为26 000 000 000元,同比增长22%,将26 000 000 000用科学计数法表示为A. 2.6×1010B. 2.6×1011C. 26×1010D. 0.26×101122、(2015年浙江舟山1,3分) 计算23-的结果是【 】A. -1B. 2-C. 1D. 223、(2015年浙江舟山3,3分) 截至今年4月10日,舟山全市蓄水量为84 327000m 3,数据84 327 000用科学计数法表示为【 】A. 0.8437×108B. 8.437×107C. 8.437×108D. 8437×10324.(2015•东营,第1题3分)|﹣|的相反数是()A. B.﹣C. 3 D.﹣3A.﹣2 B. 2 C.﹣ D.27.(2015•云南,第4题3分) 2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104C. 1.758×105D.1.758×10428.(2015•山东德州,第1题3分) ||的值是()A.B.1/2 C.﹣2 D. 229.(2015•山东德州,第3题3分)2014年德州市农村中小学校含标准化工程开工学校项目356个,开工面积56.2万平方米,开式面积量创历年最高,56.2万平方米用科学记数法表示正确的是()A.5.62×104m2 B. 56.2×104m2C. 5.62×105m2D.0.562×104m2 30.(2015•山东德州,第4题3分)下列运算正确的是()A.﹣=B.b2•b3=b6C.4a﹣9a=﹣5 D.(ab2)2=a2b4 31.(2015•山东莱芜,第1题3分)﹣3的相反数是()A. 3 B.﹣3 C. D.﹣32.(2015•山东莱芜,第2题3分)将数字2.03×10﹣3化为小数是()A. 0.203 B. 0.0203 C. 0.00203 D. 0.00020333.(2015•山东莱芜,第3题3分)下列运算正确的是()A.(﹣a2)•a3=﹣a6 B. a6÷a3=a2 C. a2+a3=a5 D.(a3)2=a634.(2015•山东泰安,第1题3分)若()﹣(﹣2)=3,则括号内的数是()A.﹣1 B. 1 C. 5 D.﹣535.(2015•山东泰安,第2题3分)下列计算正确的是()A.a4+a4=a8B.(a3)4=a7C.12a6b4÷3a2b﹣2=4a4b2D.(﹣a3b)2=a6b236.(2015•山东泰安,第4题3分)地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B. 5.1×109C. 5.1×108D.0.51×10737.(2015•四川巴中,第1题3分)﹣2的倒数是()A. 2 B. 1/2 C.-1/2 D.﹣238.(2015•四川巴中,第2题3分)下列计算正确的是()A.(a3)3=a6B. a6÷a3=a2C. 2a+3b=5ab D.a2•a3=a5 39.(2015•四川巴中,第4题3分)若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A. a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1 40.(2015•四川成都,第1题3分)﹣3的倒数是()A.﹣1/3 B 1/3 C.﹣3 D.341.(2015•四川成都,第3题3分)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米,用科学记数法表示为()A.126×104B. 1.26×105C. 1.26×106D.1.26×10742.(2015•四川成都,第4题3分)下列计算正确的是()A.a2+a2=a4B. a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1 43.(2015•四川成都,第7题3分)实数a,b在数轴上对应的点的位置如图所示,计算|a﹣b|的结果为()A.a+b B. a﹣b C. b﹣a D.﹣a﹣b44.(2015•怀化,第1题4分)某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃ B. 10℃ C. 14℃ D.﹣14℃45.(2015•娄底,第1题3分)2015的倒数为()A.﹣2015 B. 2015 C.﹣ D.46.(2015•娄底,第2题3分)若|a﹣1|=a﹣1,则a的取值范围是() A.a≥1 B.a≤1 C. a<1 D. a>147.(2015•长沙,第3题3分)2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线每天承动力约为185000人次,则数据185000用科学记数法表示为()A. 1.85×105 B. 1.85×104 C. 1.8×105 D.18.5×104 48.(2015•本溪,第1题3分)实数﹣的相反数是()A.1/2 B.-1/2 ﹣C. 2 D.﹣249.(2015•昆明第1题,3分)﹣5的绝对值是()A.5 B.﹣5 C.1/5 D.±550.(2015•曲靖第1题,3分)﹣2的倒数是()A.﹣1/2 B.﹣2 C.1/2 D.251。
2015年河北省中考数学试卷与答案解析
2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()B=25.(3分)(2015•河北)如图所示的三视图所对应的几何体是()B6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年). B . C . D (y=,11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是,213.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点B的概率是:=14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()﹣﹣﹣x15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()MN=ABMN=16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()的正方形,图乙可以拼一个边长为二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a=±1.18.(3分)(2015•河北)若a=2b≠0,则的值为.==故答案为:19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.﹣﹣22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.,23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?,24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.产品第三次的单价比上一次的单价降低了=(=产品,这四次单价的中位数为;,×1=25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.,如图﹣﹣﹣OS==2=2﹣KO,在=,•RE=+,即,BQ=AF=AO=2﹣OS=,﹣,KO﹣====sin60的值为:或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案设计
1. (2015•四川广安,第24题8分)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)
考点:作图—应用与设计作图..
分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.
解答:解:根据分析,可得
.
(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:
(4÷2)×(4÷2)÷2
=2×2÷2
=2(cm2)
(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:
(4÷2)×(4÷2)÷2
=2×2÷2
=2(cm2)
(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:
(4÷2)×(4÷2)÷2
=2×2÷2
=2(cm2)
(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,
每个最小的等腰直角三角形的面积是:
(4÷2)×(4÷2)÷2÷2
=2×2÷2÷2
=1(cm2).
点评:(1)此题主要考查了作图﹣应用与设计作图问题,要熟练掌握,解答此题的关键是结合正方形的性质和基本作图的方法作图.
(2)此题还考查了三角形的面积的求法,要熟练掌握.
2.(2015·贵州六盘水,第21题10分)联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种。
设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.
(1)(4分)分别表示出y1与x,y2与x的函数关系式.
(2)(3分)月通话时间为多长时,A、B两种套餐收费一样?
(3)(3分)什么情况下A套餐更省钱?
考点:一次函数的应用..
分析:(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;
(2)根据两种收费相同列出方程,求解即可;
(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选
择A 套餐解答.
解答:解:(1)A 套餐的收费方式:y 1=0.1x +15;
B 套餐的收费方式:y 2=0.15x ;
(2)由0.1x +15=0.15x ,得到x =300,
答:当月通话时间是300分钟时,A 、B 两种套餐收费一样;
(3)当月通话时间多于300分钟时,A 套餐更省钱.
点评:本题考查了一次函数的应用,是典型的电话收费问题,求出两种收费相同的时间是确定选择不同的缴费方式的关键.
3. (2015·河南,第21题10分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
① 金卡售价600元/张,每次凭卡不再收费;
② 银卡售价150元/张,每次凭卡另收10元.
暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数. 设游泳x 次时,所需总费用为y 元.
(1)分别写出选择银卡、普通票消费时,y 与x 之间的函数关系式;
(2)在同一个坐标系中,若三种消费方式对应的函数图像如图所示,请求出点A 、B 、C 的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
(1)【分析】观察图象,结合题目中的信息,得到普通卡是正比例函数,分析次数x 与20的关系,银卡为一次函数,分析出次数x 与10的关系,从而即可求解
解:
O C D B A 600 x
y 第21题
(2)【分析】由(1)中银卡的函数关系式可得点A 的坐标,观察图形,联立普卡和银卡的函数关系式可求得点B 的坐标,再将y =600代入银卡的函数关系式即可求解
.
600
y
x D C B
O A
第21题解图
(3)【分析】观察图象,应从普卡、银卡和金卡三者图象的交点前后进行分段讨论,依次得到消费方案即可求解.
4.(2015·黑龙江绥化,第27题 分)某苹果生产基地,用30名工人进行采摘或加工苹果 ,每名工人只能做其中一项工作。
苹果的销售方式有两
种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售。
直接出售每吨获利4000元;加工成
罐头出售每吨获利10000元。
采摘的工人每人可以采摘苹果0.4吨 ;加工罐头的工人每
人可加工0.3吨。
设
有x 名工人进行苹果采摘 ,全部售出后 ,总利润为y 元 。
(1)求y 与x 的函数关系式。
(2)如何分配工人才能活力最大
考点:一次函数的应用..
分析:(1)根据题意可知进行加工的人数为(30﹣x )人,采摘的数量为0.4x 吨,加工的数量(9﹣0.3x )吨,直接出售的数量为0.4x ﹣(9﹣0.3x )=(0.7x ﹣9)吨,由此可得出y 与x 的关系式;
(2)先求出x 的取值范围,再由x 为整数即可得出结论.
解答:解:(1)根据题意得,进行加工的人数为(30﹣x )人,采摘的数量为0.4x 吨,加工的数量为(9﹣0.3x )吨,直接出售的数量为0.4x ﹣(9﹣0.3x )=(0.7x ﹣9)吨, y =4000×(0.7x ﹣9)+10000×(9﹣0.3x )=﹣200x +54000;
(2)根据题意得,0.4x ≥9﹣0.3x ,解得x ≥12,
∴x 的取值是12≤x ≤30的整数.
∵k =﹣200<0,
∴y 随x 的增大而减小,
∴当x =13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.
点评:本题考查的是一次函数的应用,根据题意列出关于x 、y 的关系式是解答此题的关键.
5. (2015•浙江省台州市,第24题)定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点
(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3求BN 的长;
(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,
连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点
(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)
(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND
和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由
6.(2015•江苏南京,第25题10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)
【答案】答案见试题解析.
【解析】
试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.
试题解析:满足条件的所有图形如图所示:
考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质.。