2013-2014新人教版八年级下平行四边形的判定测试题

合集下载

人教版八年级初二数学第二学期平行四边形单元测试综合卷检测试卷

人教版八年级初二数学第二学期平行四边形单元测试综合卷检测试卷

人教版八年级初二数学第二学期平行四边形单元测试综合卷检测试卷一、选择题1.如图,ABCD □中,4,60AB BC A ==∠=︒,连接BD ,将BCD 绕点B 旋转,当BD (即BD ')与AD 交于一点E ,BC (即BC ')与CD 交于一点F 时,给出以下结论:①AE DF =;②60BEF ∠=︒;③DEB DFB ∠=∠;④DEF 的周长的最小值是423+.其中正确的是( )A .①②③B .①②④C .②③④D .①③④2.如图,在平面直角坐标系中,正方形ABCD 的顶点A 落在y 轴上,点C 落在x 轴上,随着顶点C 由原点O 向x 轴正半轴方向运动,顶点A 沿y 轴负半轴方向运动到终点O ,在运动过程中OD 的长度变化情况是( )A .一直增大B .一直减小C .先减小后增大D .先增大后减少3.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有( )A .2个B .3个C .4个D .5个4.如图,菱形ABCD 的周长为24,对角线AC 、BD 交于点O ,∠DAB =60°,作DH ⊥AB 于点H ,连接OH ,则OH 的长为( )A .2B .3C .23D .435.如图所示,E 为正方形ABCD 的边BC 延长线上一点,且CE =AC ,AE 交CD 于点F ,那么∠AFC 的度数为( )A .112.5°B .125°C .135°D .150°6.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是( )A .32B .1C .32D .237.如图,在矩形ABCD 中,AB =6,BC =8,E 是BC 边上一点,将矩形沿AE 折叠,点B 落在点B '处,当△B 'EC 是直角三角形时,BE 的长为( )A .2B .6C .3或6D .2或3或68.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有( )个.A .1B .2C .3D .49.如图,在正方形ABCD 中,AB =4,E 是CD 的中点,将BCE 沿BE 翻折至BFE ,连接DF ,则DF 的长度是( )A .55B .255C .355D .45510.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在点F 处,折痕为MN ,则折痕MN 的长是( )A .53cmB .55cmC .46cmD .45cm二、填空题11.在平行四边形ABCD 中,30,23,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.12.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.13.如图,菱形ABCD 的BC 边在x 轴上,顶点C 坐标为(3,0)-,顶点D 坐标为(0,4),点E 在y 轴上,线段//EF x 轴,且点F 坐标为(8,6),若菱形ABCD 沿x 轴左右运动,连接AE 、DF ,则运动过程中,四边形ADFE 周长的最小值是_______.14.如图,在矩形ABCD中,AB=2,AD=3,E为BC边上一动点,作EF⊥AE,且EF=AE.连接DF,AF.当DF⊥EF时,△ADF的面积为_____.15.如图,正方形ABCD的边长为6,点E、F分别在边AD、BC上.将该纸片沿EF折叠,使点A的对应点G落在边DC上,折痕EF与AG交于点Q,点K为GH的中点,则随着折痕EF位置的变化,△GQK周长的最小值为____.16.如图,在平面直角坐标系中,直线112y x=+与x轴、y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD,则D点坐标是_______;在y轴上有一个动点M,当MDC△的周长值最小时,则这个最小值是_______.17.如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD 的最小值等于______.18.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于__度.19.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,,E F 分别是,AB AC 边上的点,且DE DF ⊥,若12BE =,5CF =,求线段EF 的长.22.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.23.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).24.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.25.如图,在平行四边形ABCD 中,AB ⊥AC ,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC ,AD 于点E ,F ,连接BF .(1)如图1,在旋转的过程中,求证:OE =OF ;(2)如图2,当旋转至90°时,判断四边形ABEF 的形状,并证明你的结论; (3)若AB =1,BC 5BF =DF ,求旋转角度α的大小.26.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.27.已知,如图,在三角形ABC ∆中,20AB AC cm ==,BD AC ⊥于D ,且16BD cm =.点M 从点A 出发,沿AC 方向匀速运动,速度为4/cm s ;同时点P 由B 点出发,沿BA 方向匀速运动,速度为1/cm s ,过点P 的动直线//PQ AC ,交BC 于点Q ,连结PM ,设运动时间为()t s ()05t <<,解答下列问题:(1)线段AD =_________cm ;(2)求证:PB PQ =;(3)当t 为何值时,以P Q D M 、、、为顶点的四边形为平行四边形?28.(1)问题探究:如图①,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 是∠BAD 的平分线,则线段AB ,AD ,DC 之间的等量关系为 ;(2)方法迁移:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,E 是BC 的中点,AE 是∠BAF 的平分线,试探究线段AB ,AF ,CF 之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB ∥CF ,E 是BC 的中点,点D 在线段AE 上,∠EDF =∠BAE ,试探究线段AB ,DF ,CF 之间的数量关系,并证明你的结论.29.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.30.(问题情境)在△ABC 中,AB=AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE=CF .图① 图② 图③证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE=CF .(不要证明)(变式探究)当点P 在CB 延长线上时,其余条件不变(如图3).试探索PD 、PE 、CF 之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l1:y=443x-+与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【详解】解:∵AB=BC=CD=AD=4,∠A=∠C=60°∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°,∵将△BCD绕点B旋转到△BC'D'位置,∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',∴△ABE≌△BFD,∴AE=DF,BE=BF,∠AEB=∠BFD,∴∠BED+∠BFD=180°,故①正确,③错误;∵∠ABD=60°,∠ABE=∠DBF,∴∠EBF=60°,故②正确∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,∴当EF最小时,∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,∴EF=BE,∴当BE⊥AD时,BE长度最小,即EF长度最小,∵AB=4,∠A=60°,BE⊥AD,∴EB=∴△DEF的周长最小值为4+故④正确,综上所述:①②④说法正确,故选:B.【点睛】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.2.D解析:D【分析】根据运动开始,OD是正方形的边长CD,运动过程中B与O点重合时,OD是对角线,在运动A与O点重合,OD是边长AD,可得答案.【详解】从C离开O点到B到O点,OD由边长到对角线在增大,由B离开O点到A到O点,OD由正方形的对角线减少到正方形的边长.故选D.【点睛】本题考查了正方形的性质,OD由正方形的边长到正方形的对角线,再由正方形的对角线到正方形的边长.3.C解析:C【分析】根据题意,连接CF,由正方形的性质,可以得到△ABF≌△CBF,则AF=CF,∠BAF=∠BCF,由∠BAF=∠FGC=∠BCF,得到AF=CF=FG,故①正确;连接AC,与BD相交于点O,由正方形性质和等腰直角三角形性质,证明△AOF≌△FHG,即可得到EH=AO,则③正确;把△ADE顺时针旋转90°,得到△ABM,则证明△MAG≌△EAG,得到MG=EG,即可得到EG=DE+BG ,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF ,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O .∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM ,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE= DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN , 则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.4.B解析:B【解析】【分析】由菱形四边形相等、OD=OB ,且每边长为6,再有∠DAB =60°,说明△DAB 为等边三角形,由DH ⊥AB ,可得AH=HB (等腰三角形三线合一),可得OH 就是AD 的一半,即可完成解答。

人教版八年级数学下册平行四边形的判定练习题

人教版八年级数学下册平行四边形的判定练习题

平行四边形的判定1.能判定一个四边形是平行四边形的条件是( ). (A)一组对边平行,另一组对边相等 (B)一组对边平行,一组对角互补 (C)一组对角相等,一组邻角互补 (D)一组对角相等,另一组对角互补 2.能判定四边形ABCD 是平行四边形的题设是( ). (A)AD =BC ,AB ∥CD (B)∠A =∠B ,∠C =∠D (C)AB =BC ,AD =DC (D)AB ∥CD ,CD =AB3.能判定四边形ABCD 是平行四边形的条件是:∠A ∶∠B ∶∠C ∶∠D 的值为( ). (A)1∶2∶3∶4 (B)1∶4∶2∶3 (C)1∶2∶2∶1 (D)1∶2∶1∶24.如图,E 、F 分别是□ABCD 的边AB 、CD 的中点,则图中平行四边形的个数共有( ).(A)2个 (B)3个 (C)4个 (D)5个5、已知:四边形ABCD 中,AD ∥BC ,要使四边形ABCD 为平行四边形, 需要增加条件 .(只需填上一个你认为正确的即可).6、已知四边形边长依次为bd ac d c b a d c b a 22,,,,2222+=+++且,则四边形为 。

7、(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________ 8、已知:三角形的各边分别为8cm 、10cm 和12cm ,求连结各边中点所成三角形的周长___9、如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,A ′、B ′、C ′分别为EF 、EG 、GF 的中点,△A ′B ′C ′的周长为_________.如果△ABC 、△EFG 、△A ′B ′C ′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是__________________.10、已知:如图所示,在ABCD 中,E 、F 分别为AB 、CD 的中点,求证四边形AECF 是平行四边形.11、如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.12、已知在△ABC中,AB=AC,D为BC上任意一点,DE平行于AC交AB于E,DF平行于AB 交AC于F,求证:DE+DF=AC13、已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.14、已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.15、如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.AE FB D C16、已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .17、已知:如图,在四边形ABCD 中,AD =BC ,E 、F 分别是DC 、AB 边的中点,FE 的延长线分别与AD 、BC 的延长线交于H 、G 点.求证:∠AHF =∠BGF .18、已知:如下图, ABCD 的对角AC ,BD 交与点O.E ,F 分别是OA 、OC 的中点。

八年级数学下册《平行四边形的判定》练习题及答案

八年级数学下册《平行四边形的判定》练习题及答案

八年级数学下册《平行四边形的判定》练习题及答案一 单选题1.如图 在△ABC 中 AB =10 BC =6 点D 为AB 上一点 BC =BD BE ⊥CD 于点E 点F 为AC 的中点 连接EF 则EF 的长为( )A .1B .2C .3D .42.如图的ABC ∆中 AB AC BC >>且D 为BC 上一点.今打算在AB 上找一点P 在AC 上找一点Q 使得APQ ∆与PDQ ∆全等 以下是甲 乙两人的作法:(甲)连接AD 作AD 的中垂线分别交AB AC 于P 点 Q 点 则P Q 两点即为所求(乙)过D 作与AC 平行的直线交AB 于P 点 过D 作与AB 平行的直线交AC 于Q 点 则P Q 两点即为所求对于甲 乙两人的作法 下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确 乙错误D .甲错误 乙正确3.为了测量水池的宽AB 在水池外找一点P 点C D 分别为PA PB 的中点 测得8=CD m 则水池的宽AB 为( )A .16mB .14mC .12mD .10m4.如图 在▱ABCD 中 已知AD =8cm AB =6cm DE 平分∠ADC 交BC 边于点E 则BE 等于( )A .2cmB .4cmC .6cmD .8cm5.如图 △ABC 的周长为8cm 以它的三边中点为顶点组成一个新的三角形 这个新三角形的周长是( )A .6B .5C .4D .26.如图 四边形ABCD 的对角线AC BD 交于点O 则添加下列条件 一定可使四边形ABCD 成为平行四边形的是( )A .AC =BDB .AB ∥CD AD =BCC .AC 平分BD D .AD ∥BC OA =OC7.下列给出的条件中 不能判定四边形ABCD 是平行四边形的是( )A .AB=CD,AD=BCB .AD∥BC ∠A=∠BC .AD∥BC ∠A=∠CD .AD∥BC AB∥CD8.已知四边形ABCD 是平行四边形 对角线AC BD 交于点O E 是BC 的中点 以下说法错误的是( )A .2OE DC =B . OA OC = C .BOE OBA ∠=∠D .OBE OCE ∠=∠9.如图 在Rt ABC △中90C ∠=︒ 3AC = 4BC = D E 分别是边AC BC 的中点 则DE 的长为( )A .1.5B .2C .2.5D .510.下列能判定一个四边形是平行四边形的是( )A .对角线相等 且一组对角相等的四边形是平行四边形B .一对邻角的和为180°的四边形是平行四边形C .两条对角线相互垂直的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形11.如图 四边形ABCD 的对角线AC 和BD 相交于点O 下列不能判定四边形ABCD 为平行四边形的条件是( )A .OA OC OB OD ==, B .OA OC AB DC =,∥C .ABD ADB BAO DCO ∠=∠∠=∠, D .AB DC AD BC ==,12.一个三角形的周长是36cm 以这个三角形各边中点为顶点的三角形的周长是( )A .18cmB .15cmC .12cmD .8cm二 填空题13.平行四边形的判定方法有:从边的条件有:①两组对边_________的四边形是平行四边形;②两组对边_________的四边形是平行四边形;③一组对边_________的四边形是平行四边形从对角线的条件有:④两条对角线_________的四边形是平行四边形.从角的条件有:⑤两组对角_________的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形_________是平行四边形(填“一定”或“不一定”).14.如图 A B 、两点被一座山隔开 M N 、分别是AC BC 、中点 测量MN 的长度为30米 那么AB 的长度为_______米.15.等腰三角形的两条中位线分别为3和5 则等腰三角形的周长为_____.16.如图 剪两张对边平行的纸条 随意交叉叠放在一起 重合部分构成了一个四边形ABCD 当线段AD =3时 线段BC 的长为__________.17.为了更好开展劳动教育 实现五育并举 某校开设了劳动实践课程:该校的某劳动实践小组协助公园园区工人测量人工湖湖辟A B 两点之间的距离 如图 是该实践小组所画的示意图 先在湖边地面上确定点O 再用卷尺分别确定OA OB 的中点C D 最后用卷尺量出10CD =m 则AB 之间的距离是______m .18.如图 点E F 在ABCD 的对角线AC 上 连接BE DE DF BF 请添加一个条件使四边形BEDF 是平行四边形 那么需要添加的条件是______.(只填一个即可)19.如图四边形ABCD中AD∥BC添加一个条件使得△ADB≌△CBD添加的条件是_____.20.如图△ABC的周长为26 点D E都在边BC上∠ABC的平分线垂直于AE垂足为Q∠ACB的平分线垂直于AD垂足为P.若BC=10 则PQ的长是_________.三解答题21.如图在线段AD上有两点E F且AE=DF过点E F分别作AD的垂线BE和CF连接AB CD BF CE且AB//CD.求证:四边形BECF是平行四边形.22.如图在四边形ABCD中点P是对角线BD的中点点E F分别是AB CD的中点AD BC=30∠=︒°求PFEPEF∠的度数.23.如图在△ABC中已知∠BDC=∠EFD∠AED=∠ACB.(1)试判断∠DEF与∠B的大小关系并说明理由;(2)若D E F分别是AB AC CD边上的中点S△DEF=4 S△ABC=24.判断命题“一组对边平行另一组对边相等的四边形是平行四边形”真假 若是真命题 请给出证明;若是假命题 请修改其中一个条件使其变成真命题(一个即可)并请写出证明过程.(要求:画出图形 写出已知 求证和证明过程)25.在平行四边形ABCD 中 对角线AC BD 相交于点O CA AB ⊥ BE DF 分别平分∠ABC 和∠ADC 交对角线AC 于点E F .(1)若28EBC ∠=︒ 求∠CAD 的度数;(2)求证:EO FO =.参考答案1.【答案】B2.【答案】A3.【答案】A4.【答案】A5.【答案】C6.【答案】D7.【答案】B8.【答案】D9.【答案】C10.【答案】D11.【答案】C12.【答案】A13.【答案】分别平行 分别相等平行且相等 互相平分 分别相等不一定 14.【答案】6015.【答案】22或26.16.【答案】317.【答案】2018.【答案】AF CE =(答案不唯一)19.【答案】AD=BC(符合要求的其它条件均可以)20.【答案】321.【答案】四边形BECF 是平行四边形.22.【答案】30︒23.【答案】(1)∠DEF=∠B (2)3224.【答案】假命题 详见解析25.【答案】(1)34 (2)EO =FO 。

新人教版2013-2014学年度八年级下期半期考试题(二次根式勾股定理平行四边形)(经典)参考答案

新人教版2013-2014学年度八年级下期半期考试题(二次根式勾股定理平行四边形)(经典)参考答案

2013-2014学年度2015级八年级下期半期考试数学试题参考答案考试时间:120分钟 试卷满分:150分 (试题范围:二次根式、勾股定理、平行四边形)一、选择题(共12小题,每小题4分,共48分)1、 A2、B3、A4、D5、 C6、 D7、 A8、 D9、B 10、A 11、 D 12、D 二、填空题(共6小题,每小题4分,共24分) 13、 4 ±5 14、.1,2≠-≥x x且 15、33+16、-1 17、30° 18、15 三、解答题(共2小题,每小题7分,共14分)19、-71220、(1) ∠2 =60°,∠3=60°(2) S 长方形ABCD =3 3四、解答题(共4小题,每小题10分,共40分)21、原式 = 2)1(1--x =31-22、 解:(1)△ABD ≌△CDB ,△ABE ≌△CDF ,△ADE ≌△CBF . (2)补全图形略.证明:由(1)知△ADE ≌△CBF ,∴∠DAE=∠BCF ,∠ADE=∠CBF . ∴∠CFE=∠AEF .∴AE ∥CF .∴AG ∥CH .又AD ∥BC ,∴AH ∥CG . ∴四边形AGCH 是平行四边形 23、解:(1)∵D 、E 、F 分别是BC 、AC 、AB 的中点, ∴DE ∥AB ,EF ∥BC,∴四边形BDEF 是平行四边形.又∵DE =21AB ,EF =21BC ,且AB = BC∴DE = EF ∴四边形BDEF 是菱形; (2)∵AB =cm 12,F 为AB 中点,∴BF = cm 6, ∴菱形BDEF 的周长为cm 2446=⨯GH24、解:⑴ 证明:∵ 四边形ABCD 是矩形, ∴ ∠CDB+∠DBC=90°.∵ CE ⊥BD , ∴ ∠DBC+∠ECB=90°. ∴ ∠ECB =∠CDB .……………………2分 又∵∠DCF=∠ECF ,∴ ∠CFB=∠CDB+∠DCF=∠ECB+∠ECF=∠BCF . ∴ BF=BC . … 5分⑵ 在Rt △ABD 中,由勾股定理得BD=22AD AB +=2243+=5.又∵ DC BC CE BD ⋅=⋅,∴512543=⨯=⋅=BD DC BC CE . ……… 7分∴ 22225123⎪⎭⎫ ⎝⎛-=-=CE BC BE =59.∴56593=-=-=BE BF EF .9分 ∴ 556512562222=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=EF CE CF .… 10分五、解答题(共2小题,每小题12分,共24分)25.解:(1)证明:在△ABC 和△AEP 中 ∵∠ABC =∠AEP ,∠BAC =∠EAP ∴∠ACB =∠APE在△ABC 中,AB =BC ∴∠ACB =∠BAC∴∠EAP =∠EPA 4分(2)答:□APCD 是矩形 5分 ∵四边形APCD 是平行四边形∴AC =2AE ,PD =2PE∵由(1)知∠EPA =∠EAP ∴AE =PE ,∴AC =PD ∴□APCD 是矩形 8分(3)答:EM =EN 9分 ∵AE =PE ,∴∠EAP =∠EPA =90°-21α∴∠EAM =180°-∠EAPA BC DEFGC BA D P E 图1C BADP E图2NM F=180°-( 90°-21α )=90°+21α由(2)知∠CPB =90°,F 是BC 的中点,∴FP =FB ∴∠FPB =∠ABC =α∴∠EPN =∠EPA+∠APN =∠EPA+∠FPB =90°-21α+α=90°+21α∴∠EAM =∠EPN∵∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN ∴∠AEP =∠MEN∴∠AEP -∠AEN =∠MEN -∠AEN ,即∠MEA =∠NEP ∴△EAM ≌△EPN ∴EM =EN 12分 26、解:(1)证明:∵四边形ABCD 是正方形, ∴DC=DA ,∠DCE=∠DAG=90°。

人教版初中数学八年级数学下册第三单元《平行四边形》检测卷(答案解析)

人教版初中数学八年级数学下册第三单元《平行四边形》检测卷(答案解析)

C.四边形PECF 的周长是8D. -BD^EF<AB-X 选择题1. 如图,RlAABC 中,ZBAC = 90°, AB = AC, AD 丄 BC 于点 £>, ZABC 的平分线 分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连 DM ,下列结论:①DF = DN ;②zXDA/N 为等腰三角形:③DM 平分ZBMN :④AE = NC,其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个2. 图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD.已知图甲中,ZF = 45°> ZH = 15°,图乙中MN = 2.则图2中正方形的对角线AC 长为()A. 2迈B. 2>/3C. 2苗+1D. 2血+23. 如图,已知正方形ABCD 的边长为4,点P 是对角线BD±一动点(不与D, B 重合),PF 丄CD 于点F, PE 丄BC 于点E,连接AP, EF ・则下列结论错误的是()B. AP = EF 且 AP 丄D图1 图2A. PD = 2EC4・下列命题中,错误的是()A.有一个角是直角的平行四边形是正方形:B.对角线相等的菱形是正方形:C.对角线互相垂直的矩形是正方形:D. 一组邻边相等的矩形是正方形.5.如果平行四边形ABCD的对角线相交于点0,那么在下列条件中,能判断平行四边形ABCD为菱形的是()A. ZOAB = ZOBA:B. ZOAB = ZOBC:C. ZOAB = Z0CD ;D・ZOAB = ZOAD ・6.四边形ABCD中,对角线AC、BD交于点0・给出下列四组条件:①43 II CD, AD ll BC;②AB = CD, AD = BC;®AO = CO, BO = DO : @AB n CD,AD = BC.其中一左能判泄这个四边形是平行四边形的条件共有()A. 1 组:B. 2 组:C. 3 组:D. 4 组.7.如图.己知四边形&BCD是平行四边形,下列说法正确的是()••AA.若AB = AD,则平行四边形43CD是矩形B.若= 则平行四边形&BCD是正方形C.若4B丄BC,则平行四边形ABCD是矩形D.若AC丄BD,则平行四边形ABCD是正方形&下列结论中,菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对边相等且平行9.如图,在平行四边形ABCD中,DE平分N4DC, AD = 6, BE = 2、则平行四边形ABCD的周长是()C. 20D. 2410.如图,正方形ABCD的对角线相交于点O,正方形OMN0与ABCD的边长均为a, OM与CD相交于点E,与BC相交于点F,且满足DE = CF,则两个正方形重合部分的面积为()长比△AOB 的周长大10,则A3的长为()・12.如图,矩形纸片ABCD 中,43 = 4, AD = 3,折叠纸片使AD 边与对角线3D 重C. 2二.填空题13.如图,在RtA ABC 中,ZACB = 90。

八年级数学下册平行四边形的判定练习题

八年级数学下册平行四边形的判定练习题

BDCAO图1FEDCBA图2F E D CBA HG FEOAB C DOM ABCD图1FE DCB A4321图3F ED CBA H G 图2F E DCB A八年级数学下册平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵ , ∴四边形ABCD 是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.5)定理:两组对角分别相等的四边形是平行四边形∵∴四边形ABCD 是平行四边形. 二、平行四边形性质与判定的综合应用例1: 如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。

求证:四边形BFDE 是平行四边形变式一:在□ABCD 中,E ,F 为AC 上两点,BE//DF .求证:四边形BEDF 为平行四边形.变式二:在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F.求证:四边形BEDF 为平行四边形想一想:在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以证明四边形 BEDF 是平行四边形吗?例2:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。

求证:EG 和HF 互相平分。

练习1、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC:1、以不在同一直线上的三点为顶点作平行四边形,最多能作( )A 、4个B 、3个C 、2个D 、1个 2、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC = 6cm ,P ,Q 分别从A ,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形ABQP 成为平行四边形?1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试(包含答案解析)(4)

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试(包含答案解析)(4)

一、选择题1.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .152.如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M 所代表的正方形面积可表示为( )A .40064-B .2240064-C .2240064-D .40064+ 3.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对4.如图,点D 和点E 分别是BC 和BA 的中点,已知AC =4,则DE 为( )A .1B .2C .4D .85.如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4,BC CF =四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .6B .8C .3D .46.如图,在正方形 ABCD 内有一个四边形AECF ,AE EF ⊥, CF EF ⊥且8AE CF ==,12EF =,则图中阴影分的面积为( )A .100B .104C .152D .3047.在平面直角坐标系中,点A ,B ,C 的坐标分别为()5,0,()1,3--,()2,5-,当四边形ABCD 是平行四边形时,点D 的坐标为( )A .()8,2-B .()7,3-C .()8,3-D .()14,0 8.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .209.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .2410.如图,在矩形ABCD 中,3AB =,4=AD ,ABC ∠的平分线BE 交AD 于点E .点F ,G 分别是BC ,BE 的中点,则FG 的长为( )A .2B .52C .102D .32211.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A .3B .423C .2D .35212.如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或14二、填空题13.点O 是平行四边形ABCD 的对称中心,AD AB >,E 、F 分别是AB 边上的点,且12EF AB =;G 、H 分别是BC 边上的点,且13GH BC =;若1S ,2S 分别表示EOF 和GOH 的面积,则1S ,2S 之间的等量关系是1S =__________2S .14.生活中,有人喜欢把传送的便条折成形状,折叠过程如图所示(阴影部分表示纸条的反面):已知由信纸折成的长方形纸条(图①)长为25cm ,宽为cm x .如果能折成图④的形状,且为了美观,纸条两端超出点P 的长度相等,即最终图形是轴对称图形,则在开始折叠时起点M 与点A 的距离(用x 表示)为______cm .15.如图,先将正方形纸片对折,折痕为MN ,再把点B 折叠到折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,则ABH ∠=______°.16.如图,在ABCD 中,AC 与BD 相交于点O ,(1)若18cm,24cm AC BD ==,则AO =_______,BO =_______.又若13AB =厘米,则COD △的周长为________.(2)若AOB 的周长为30cm ,12cm AB =,则对角线AC 与BD 的和是________. 17.如图,B ,E ,F ,D 四点在一条直线上,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为___cm .18.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.19.如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE =BF ;分别以E ,F 为圆心,以大于12EF 的长为半径作弧,两弧在∠ABD 内交于点G ,作射线BG 交AD 于点P ,若AP =3,则点P 到BD 的距离为_______.20.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.三、解答题21.如图,在ABCD 中,AP 、BP 分别是DAB ∠和CBA ∠的角平分线,已知5AD =.(1)求线段AB 的长; (2)延长AP ,交BC 的延长线于点Q .①请在答卷上补全图形;②若6BP =,求ABQ △的周长.22.如图,在ABC 中,AB AC =,10BC =.(1)尺规作图:(要求:保留作图痕迹,不写作法)①作BAC ∠的平分线交BC 于点D ;②作边AC 的中点E ,连接DE ;(2)在(1)所作的图中,若12AD =,则DE 的长为__________.23.如图,CD 是线段AB 的垂直平分线,M 是AC 延长线上一点.(1)在图中补充完整以下作图,保留作图痕迹:作∠BCM 的角平分线CN ,过点B 作CN 的垂线,垂足为E ;(2)求证:四边形BECD 是矩形;(3)AB 与AC 满足怎样的数量关系时,四边形BECD 是正方形?证明你的结论. 24.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案25.如图,菱形ABCD 的边长为2.2BD =,E ,F 分别是边AD ,CD 上的两个动点,且满足2AE CF +=.(1)求证:BDE BCF △≌△;(2)判断BEF 的形状,并说明理由.26.正方形ABCD 中,点E 是BD 上一点,过点E 作EF AE ⊥交射线CB 于点F ,连结CE .(1)若AB BE =,求DAE ∠度数;(2)求证:CE EF =【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.2.A解析:A【分析】要求图中字母所代表的正方形的面积,根据面积=边长×边长=边长的平方,设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,已知斜边和一直角边的平方,由勾股定理即可求出2a ,即可得到答案.【详解】设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,如图所示,在该直角三角形中,由勾股定理得:22240064a c b =-=-,故选:A .【点睛】本题主要考查勾股定理的应用和正方形的面积公式,解题的关键在于熟练运用勾股定理求出正方形的边长的平方.3.C解析:C【分析】因为图形对折,所以首先△CDB ≌△ABD ,由于四边形是长方形,进而可得△ABE ≌△CDE ,如此答案可得.【详解】解:∵△BDC 是将长方形纸片ABCD 沿BD 折叠得到的,∴CD=AB ,AD=BC ,∵BD=BD ,∴△CDB ≌△ABD (SSS ),∴∠CBD=∠ADB∴EB=ED∴CE=AE又AB=CD∴△ABE≌△CDE,∴图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.4.B解析:B【分析】根据三角形中位线定理解答即可.【详解】解:∵点D和点E分别是BC和BA的中点,∴DE是△ABC的中位线,∴DE=12AC=124=2,故选:B.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.5.A解析:A【分析】想办法证明S阴=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解决问题;【详解】解:如图连接AF、EC.∵BC=4CF,S△ABC=24,∴S△ACF= 14×24=6,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S 阴=S △ADE +S △DEC =S △AEC ,∵EF ∥AC ,∴S △AEC =S △ACF =6,∴S 阴=6.故选:A .【点睛】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.6.B解析:B【分析】由题意可证四边形AECF 是平行四边形,可得AO =CO ,EO =FO =12EF =6,由勾股定理可求AO =10,可得AC =20,由阴影分的面积=S 正方形ABCD -S ▱AECF 可求解.【详解】解:连接AC ,∵AE ⊥EF ,CF ⊥EF ,∴AE ∥CF ,且AE =CF ,∴四边形AECF 是平行四边形,∴AO =CO ,EO =FO =12EF =6, ∴AO 22AE EO +10,∴AC =20, ∴阴影分的面积=S 正方形ABCD -S ▱AECF =20202⨯-8×12=104, 故选:B .【点睛】本题考查了正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.7.A解析:A【分析】以AC 为对角线,可得AD ∥BC ,AD=BC ;以AB 为对角线,可得AD ∥BC ,AD=BC ;以AD 为对角线,可得AB ∥CD ,AB=CD .【详解】解:①以AD 为对角线时,可得AB ∥CD ,AB =CD ,∴A 点向左平移6个单位,再向下平移3个单位得B 点,∴C 点向左平移6个单位,再向下平移3个单位得D₁(-4,-8);②以AC 为对角线时,可得AD ∥BC ,AD=BC ,∴B 点向右平移6个单位,再向上平移3个单位得B 点,∴C 点向右平移6个单位,再向上平移3个单位得D₂(8,-2);③以AB 为对角线时,可得AD ∥BC ,AD=BC ,∴C 点向右平移3个单位,再向上平移5个单位得A ,∴B 点向右平移3个单位,再向上平移5个单位得D₃(2,2);综上可知,D 点的坐标可能为:D₁(-4,-8)、D₂(8,-2)、D₃(2,2),故选:A .【点睛】本题考查了坐标与图形的性质,利用平行四边形的判定:对边平行且相等的四边形是平行四边形,要分类讨论,以防遗漏.8.C解析:C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.9.C解析:C【分析】根据角平分线的性质以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出平行四边形ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵在平行四边形ABCD 中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴平行四边形ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形的性质,角平分线的性质,准确识图并熟练掌握性质是解题的关键.10.C解析:C【分析】连接CE ,由矩形的性质和角平分线的性质可得AB=AE=3,可得ED=1,由勾股定理可求CE 的长,由三角形中位线定理可求FG 的长;【详解】连接CE ,如图所示:∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠D=90°,AB=CD=3,AD=BC=4,AD∥BC,∴∠CBE=∠AEB,∵BE平分∠ABC.∴∠ABE=∠CBE=45°,∴∠ABE=∠AEB=45°,∴AB=AE=3,∴ED=AD-AE=4-3=1,在Rt△CDE中=∵点F、G分别为BC、BE的中点,∴FG是△CBE的中位线,FG=12故选:C【点睛】本题考查了矩形的性质,勾股定理,等腰直角三角形的判定与性质,三角形中位线的定理等知识;熟练掌握矩形的性质和三角形中位线定理,求出EC的长度是解题的关键. 11.D解析:D【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A′B的长,然后由勾股定理可得方程:x2+22=(4-x)2,解此方程即可求得AG 的长,继而求得答案.【详解】解:设AG=x,∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=3,∴BD5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∠DA′G=∠A=90°,∴∠BA′G=90°,BG=AB-AG=4-x,A′B=BD-A′D=5-3=2,∵在Rt△A′BG中,A′G2+A′B2=BG2,∴x2+22=(4-x)2,解得:x=32,∴AG=32,∴在Rt△ADG中,DG=.故选:D.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.12.C解析:C【分析】根据平行四边形的性质可得BO=DO,再根据AOD△与AOB的周长相差3,可分情况得出结果.【详解】解:∵四边形ABCD是平行四边形,∴BO=DO,AO=AO,∵AOD△与AOB的周长相差3,∴AB-AD=3,或AD-AB=3,∵AB=8,∴AD的长为5或11,故选C.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形对角线互相平分.二、填空题13.【分析】如图连接OAOBOC设平行四边形的面积为4S求出S1S2(用s表示)即可解决问题【详解】解:如图连接OAOBOC设平行四边形的面积为4S∵点O是平行四边形ABCD的对称中心∴S△AOB=S△解析:3 2【分析】如图,连接OA,OB,OC.设平行四边形的面积为4S.求出S1,S2(用s表示)即可解决问题.【详解】解:如图,连接OA,OB,OC.设平行四边形的面积为4S.∵点O 是平行四边形ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD =S , ∵EF=12AB ,GH=13BC , ∴S 1=12S ,S 2=13S , ∴12132123S S S S ==, ∴1232S S =; 故答案为:32. 【点睛】本题考查中心对称,平行四边形的性质,三角形的面积等知识,解题的关键是学会利用参数解决问题,属于中考常考题型. 14.【分析】按图中方式折叠后可得到除去两端纸条使用的长度为5个宽由此解题即可【详解】解:根据折叠的过程发现中间的长度有5个宽则在开始折叠时起点与点的距离为:故答案为:【点睛】本题考查翻折变换(折叠问题) 解析:2552x - 【分析】按图中方式折叠后,可得到除去两端,纸条使用的长度为5个宽,由此解题即可.【详解】解:根据折叠的过程,发现中间的长度有5个宽,则在开始折叠时起点M 与点A 的距离为:2552x -, 故答案为:2552x -. 【点睛】本题考查翻折变换(折叠问题),是重要考点,难度较易,掌握相关知识是解题关键.15.75【分析】由将正方形纸片对折折痕为MN 可得MA=MD=由折叠得AB=AH 由四边形ABCD 是正方形得AD=AB 可推出AH=AD=2AM 可求∠AHM=30°利用平行线性质可求∠BAH=30°在△AHB解析:75.【分析】由将正方形纸片对折,折痕为MN ,可得MA=MD=1AD 2,由折叠得AB=AH 由四边形ABCD 是正方形得AD=AB ,可推出AH=AD=2AM ,可求∠AHM=30°,利用平行线性质可求∠BAH=30°,在△AHB 中,AH=AB 由内角和可求∠ABH=75︒即可.【详解】解:∵正方形纸片对折,折痕为MN ,∴MN 是AD 的垂直平分线 ,∴MA=MD=1AD 2, ∵把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,∴AB=AH ,∵四边形ABCD 是正方形 ,∴AD=AB ,∴AH=AD=2AM ,∵∠AMH=90°,AM=1AH 2, ∴∠AHM=30°,∵MN ∥AB ,∴∠BAH=30°,在△AHB 中,AH=AB , ∴∠ABH=()()11180BAH 180307522︒-∠=︒-︒=︒. 故答案为:75.【点睛】 本题考查正方形折叠问题,涉及垂直平分线,正方形性质,等腰三角形性质,三角形内角和,关键是30°角所对直角边等于斜边一半逆用求角度.16.9cm12cm34cm36cm 【分析】(1)根据平行四边形对角线互相平分对边相等可得结果;(2)根据△AOB 的周长和AB 的长度得到AO+BO 从而得到AC+BD 【详解】解:(1)在平行四边形ABCD 中解析:9cm 12cm 34cm 36cm【分析】(1)根据平行四边形对角线互相平分,对边相等可得结果;(2)根据△AOB 的周长和AB 的长度,得到AO+BO ,从而得到AC+BD .【详解】解:(1)在平行四边形ABCD中,∵AC=18cm,BD=24cm,∴AO=12AC=9cm=CO,BO=12BD=12cm=DO,∵AB=13cm,∴CD=13cm,∴COD△的周长为CO+DO+CD=9+12+13=34cm,故答案为:9cm,12cm,34cm;(2)∵△AOB的周长为30cm,∴AB+AO+BO=30cm,∵AB=12cm,∴AO+BO=30-12=18cm,∴AC+BD=2AO+2BO=36cm.【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分,平行四边形的对边相等.17.13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD交于点O∵四边形ABCD是菱形∴AC⊥BDAO=COBO=DO∵正方形AECF的面积为50cm2∴AC2=50∴AC=1解析:13【分析】根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC,BD交于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵正方形AECF的面积为50cm2,∴12AC2=50,∴AC=10cm,∴AO=CO=5cm,∵菱形ABCD的面积为120cm2,∴12×AC×BD=120,∴BD=24cm,∴BO=DO=12cm,∴AB,故答案为13.【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答.18.【分析】由四边形ABCD是平行四边形得到∠ABC=∠D=102°再AD=AE=BE 得出∠EAB=∠EBA∠BEC=∠BCA继而得到∠ACB=2∠BAC再根据∠BAC+∠ACB=3∠BAC=180°-解析:26︒【分析】由四边形ABCD是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE,得出∠EAB=∠EBA,∠BEC=∠BCA,继而得到∠ACB=2∠BAC,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC求解即可.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,∠ABC=∠D=102°,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠BCA,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠BAC,∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,∴3∠BAC=78°,即∠BAC=26°,故答案为:26°.【点睛】本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.19.3【分析】首先结合作图的过程确定BP是∠ABD的平分线然后根据角平分线的性质求得点P到BD的距离即可【详解】结合作图的过程知:BP平分∠ABD∵∠A=90°AP=3∴点P到BD的距离等于AP的长为3解析:3【分析】首先结合作图的过程确定BP是∠ABD的平分线,然后根据角平分线的性质求得点P到BD 的距离即可.【详解】结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.【点睛】考查了尺规作图的知识及角平分线的性质、矩形的性质等知识,解题的关键是根据图形确定BP平分∠ABD.20.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB得出AF=AB=8同理可得DE=DC=8再由EF的长即可求出BC的长【详解】解:∵四边形ABCD是平行四边形∴AD∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=8,同理可得DE=DC=8,再由EF的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=8,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.三、解答题21.(1)10;(2)①见解析;②36【分析】(1)依据平行线的性质以及角平分线的定义即可得到DP=AD=5,CP=BC=5,进而得出AB的长;(2)①根据题意画出图形;②依据平行线的性质以及角平分线的定义即可得到AB=QB,再根据BP平分∠ABQ,即可得出BP⊥AQ,AP=QP,依据勾股定理得出AP的长,进而得到△ABQ的周长.【详解】解:(1)∵在□ABCD中,AD=5,∴BC=5,∵AB∥CD,∴∠BAP=∠DPA,∵AP平分∠BAD,∴∠BAP=∠DAP,∴∠DAP=∠DPA,∴DP=AD=5,同理可得,CP=BC=5,∴CD=10,∴AB=10;(2)①如图所示:②∵AD∥BQ,∴∠Q=∠DAP,又∵∠DAP=∠BAP,∴∠Q=∠BAP,∴AB=QB=10,又∵BP平分∠ABQ,∴BP⊥AQ,AP=QP,∴Rt△ABP中,22AB BP-,∴AQ=16,∴△ABQ的周长为:16+10+10=36.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,解题时注意:平行四边形的对边平行,对边相等.22.(1)①见解析;②见解析;(2)6.5【分析】(1)①以A为圆心,小于AB的长度为半径画圆,交AB、AC于两个点,再分别以这两个点为圆心,一样的半径画弧,交于一点,连接这个点与点A,即可得到BAC∠的平分线,再画出它与BC的交点D;②作线段AC的垂直平分线,即可找到线段AC的中点E,连接DE;(2)由等腰三角形“三线合一”的性质得152BD BC==,AD BC⊥,用勾股定理求出AB的长,再根据中位线的性质得到DE的长.【详解】解:(1)①如图所示:②如图所示:(2)∵AB AC =,AD 平分BAC ∠, ∴152BD BC ==,AD BC ⊥, 在Rt ABD △中,2213AB AD BD =+=, ∵E 、D 分别是AC 和BC 的中点, ∴1 6.52DE AB ==, 故答案是:6.5.【点睛】 本题考查等腰三角形的性质,中位线的定理,以及角平分线和垂直平分线的作法,解题的关键是熟练掌握这些几何的性质定理以及作图方法.23.(1)如图所示,见解析;(2)见解析;(3)当AB 2AC 时,矩形BECD 是正方形,证明见解析.【分析】(1)根据角平分线及垂线的作图方法依次作图;(2)根据CD 是AB 的垂直平分线,推出∠CDB =90°,AC =BC ,利用CN 平分∠BCM 求出∠DCN =∠DCB +∠BCN =90°,由BE ⊥CN 求得∠BEC =90°,即可得到结论;(3)当AB 2时,矩形BECD 是正方形,由AD =BD ,AB 2AC ,求得BD 2AC ,根据AD ⊥CD ,∠CDB =90°,推出BD =CD ,由此得到矩形BECD 是正方形.【详解】(1)解:如图所示,(2)证明:∵ CD 是AB 的垂直平分线,∴ CD ⊥BD ,AD =BD ,∴ ∠CDB =90°,AC =BC ,∴ ∠DCB =12∠ACB , ∵ CN 平分∠BCM , ∴∠BCN =12∠BCM , ∵∠ACB +∠BCM =180°, ∴∠DCN =∠DCB +∠BCN =12(∠ACB +∠BCM )=90°, ∵ BE ⊥CN ,∴ ∠BEC =90°,∴ 四边形BECD 是矩形;(3)当AB 2时,矩形BECD 是正方形∵ AD =BD ,AB 2AC ,∴ BD 2, ∵ AD ⊥CD ,∠CDB =90°,∴ BD =CD ,∴ 矩形BECD 是正方形.【点睛】此题考查作图—角平分线、垂线,矩形的判定定理,正方形的判定定理,正确作图及熟练掌握矩形和正方形的判定定理是解题的关键.24.(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-, ∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.25.(1)见解析;(2)等边三角形,理由见解析【分析】(1)由菱形ABCD 边长与对角线都是2,知ABD △和BCD △都是等边三角形.可得60BDE BCF ∠=∠=︒,BD BC =,可证BDE BCF △≌△;(2)由BDE BCF △≌△,得DBE CBF ∠=∠,BE BF =,利用=60DBF DBE DBF CBF ∠+∠=∠+∠︒.可证BEF 为等边三角形.【详解】(1)证明:∵菱形ABCD 的边长为2,2BD =,∴ABD △和BCD △都是等边三角形.∴60BDE BCF ∠=∠=︒,BD BC =,∵2AE DE AD +==,而2AE CF +=,∴DE CF =,∴BDE BCF △≌△;(2)解:BEF 为等边三角形.理由如下:∵BDE BCF △≌△,∴DBE CBF ∠=∠,BE BF =,∵60DBC DBF CBF ∠=∠+∠=︒°,∴60DBF DBE ∠+∠=︒.即60EBF ∠=︒.∴BEF 为等边三角形.【点睛】 本题考查菱形的性质,等边三角形的判定与性质,三角形全等判定与性质,掌握菱形的性质,等边三角形的判定与性质,三角形全等判定与性质是解题解题关键.26.(1)22.5︒;(2)见解析.【分析】(1)用正方形对角线平分对角,等腰三角形性质计算即可;(2)借助正方形的性质,证明三角形全等,运用等角对等边证明即可.【详解】(1)∵ABCD 为正方形,∴45ABE ∠=︒.又∵AB BE =, ∴()11804567.52BAE ∠=⨯︒-︒=︒. ∴9067.522.5DAE ∠=︒-︒=︒(2)证明:∵正方形ABCD 关于BD 对称,∴ABE CBE △△≌,∴BAE BCE ∠=∠.又∵90ABC AEF ∠=∠=︒,∴BAE EFC ∠=∠,∴BCE EFC ∠=∠,∴CE EF =.【点睛】本题考查了正方形的性质,等腰三角形的性质,三角形的全等,等腰三角形的判定,运用正方形的性质,证明三角形的全等是解题的关键.。

八年级数学下册平行四边形的判定练习题

八年级数学下册平行四边形的判定练习题

BDCAO图1FEDCBA图2F E D CBA HG FEOAB C DOM ABCD图1FE DCB A4321图3F ED CBA H G 图2F E DCB A八年级数学下册平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵ , ∴四边形ABCD 是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.5)定理:两组对角分别相等的四边形是平行四边形∵∴四边形ABCD 是平行四边形. 二、平行四边形性质与判定的综合应用例1: 如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。

求证:四边形BFDE 是平行四边形变式一:在□ABCD 中,E ,F 为AC 上两点,BE//DF .求证:四边形BEDF 为平行四边形.变式二:在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F.求证:四边形BEDF 为平行四边形想一想:在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以证明四边形 BEDF 是平行四边形吗?例2:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。

求证:EG 和HF 互相平分。

练习1、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC:1、以不在同一直线上的三点为顶点作平行四边形,最多能作( )A 、4个B 、3个C 、2个D 、1个 2、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC = 6cm ,P ,Q 分别从A ,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形ABQP 成为平行四边形?1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。

人教版八年级数学下册19.1.2《平行四边形的判定》练习及答案.docx

人教版八年级数学下册19.1.2《平行四边形的判定》练习及答案.docx

19.1.2平行四边形的判定5 分钟训练 ( 预习类训练,可用于课前)1.(2010福建晋江模拟,16)不能判断四边形ABCD是平行四边形的是A.AB=CD,AD=BCB.AB=CD,AB∥CDC.AB=CD,AD∥BCD.AB∥CD,AD∥BC()答案 : C2.下列给出的条件中,能判定四边形ABCD是平行四边形的是 ( )A.AB∥CD, AD=BCB.AB=AD, CB=CDC.AB=CD, AD=BCD.∠B=∠C,∠ A=∠D答案 : C3. 如图 , 已知AD∥BC,要使四边形ABCD为平行四边形, 需添加一个条件为______________.答案 : 提示:添加AB∥DC,AD=BC等都可以 .4. 如图 , 在△ ABC中, D、 E 分别是 AB、AC边的中点,且DE=6 cm,则BC=____________.解析:根据三角形的中位线平行于第三边,并且等于第三边的一半,可知BC=2DE=12 cm.答案 : 12 cm10 分钟训练 ( 强化类训练,可用于课中)1. 如图 , 在 ABCD中,对角线 AC、 BD相交于点 O,E、F 是对角线 AC上的两点,当 E、F 满足下列哪个条件时,四边形 DEBF不一定是平行四边形 ( )A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB解析:当 E、F 满足 AE=CF时,由平行四边形的对角线相等知故 OE=OF.可知四边形DEBF是平行四边形 .当 E、 F 满足∠ ADE=∠CBF 时,因为AD∥BC,所以∠ DAE=∠BCF.又 AD=BC,可证出△ ADE≌△ CBF,所以 DE=BF,∠ DEA=∠BFC.故∠ DEF=∠BFE.因此 DE∥BF,可知四边形DEBF是平行四边形 . 类似地可说明答案 : B2. 如图 ,AB DC, DC=EF=10, DE=CF=8,则图中的平行四边形有OB=OD,OA=OC,D 也可以 ._________________ ,理由分别是 _________________、 ____________________.解析:因为 AB DC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF,DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形.答案 : 四边形 ABCD,四边形 CDEF 一组对边平行且相等的四边形是平行四边形别相等的四边形是平行四边形3. 如图 ,E 、F 是平行四边形ABCD对角线 BD上的两点,请你添加一个适当的条件使四边形AECF是平行四边形 .两组对边分:__________,解析:根据平行四边形的定义和判定方法可填BE=DF;∠ BAE=∠CDF 等.答案 : BE=DF或∠ BAE=∠CDF 等任何一个均可4.(2010四川攀枝花模拟,12) 如图 ,AD=BC,要使四边形ABCD是平行四边形, 还需补充的一个条件是:___________________________.解析:根据平行四边形的判定定理, 知可填①AD∥BC,②AB=CD,③∠ A+∠B=180°, ④∠ C+∠D=180°等.答案 : 不唯一 , 以上几个均可.5.如图 , 在 ABCD中 , 已知 M和 N 分别是边 AB、DC的中点 , 试说明四边形 BMDN也是平行四边形.答案:证明:∵ABCD,∴AB CD.∵M、 N 是中点 ,∴BM=1AB,DN=1CD.22∴BM DN.∴四边形BMDN也是平行四边形.30 分钟训练 ( 巩固类训练,可用于课后)1. 以不在同一直线上的三个点为顶点作平行四边形最多能作A.4 个B.3个C.2个解析:要求最多能作几个,只要连结起三个顶点后构成三角形,另两边作为平行四边形的邻边作图,即可得出三种.答案 : B( )D.1个分别以其中一边作为对角线,2. 下面给出了四边形ABCD中∠ A、B、∠C、∠D 的度数之比,其中能判定四边形ABCD是∠平行四边形的是( )A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶3∶2D.2∶3∶2∶3解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD是平行四边形需满足∠ A=∠C,∠ B=∠D,因此∠A与∠ C,∠B 与∠D所占的份数分别相等.答案 : D3.九根火柴棒排成如右图形状 , 图中 _______ 个平行四边形 , 你判断的根据是________________.答案:有 3两组对边分别相等的四边形是平行四边形4.已知四边形 ABCD的对角线 AC、 BD相交于点 O,给出下列 5 个条件 : ①AB∥CD;② OA=OC;③AB=CD;④∠ BAD=∠DCB;⑤ AD∥BC.(1) 从以上 5 个条件中任意选取 2 个条件,能推出四边形ABCD是平行四边形的有( 用序号表示):_____________________________;(2) 对由以上 5 个条件中任意选取 2 个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.解析:本题是条件开放性试题,要使四边形ABCD是平行四边形,从边、角、对角线上考虑共有 5 种判定方法,因此只需将任意两个条件组合加以评砼卸?答案 : (1) ①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD是平行四边形 .如图, AB=CD且 AD∥BC,而四边形 ABCD不是平行四边形.5.若三条线段的长分别为 20 cm,14 cm,16 cm, 以其中两条为对角线 , 另一条为一边 , 是否可以画平行四边形 ?解析:由平行四边形对角线互相平分, 能否画平行四边形, 应以任两条的一半和第三边为三边,看是否能构成三角形即可.20,16 或 20,14 为对角线 , 另一条为一边可画平行四边形.6. 如图 ,E 、F 是四边形ABCD的对角线 AC上的两点, AF=CE, DF=BE,DF∥BE.求证 :(1) △AFD≌△ CEB;(2)四边形 ABCD是平行四边形 .答案 : 证明: (1) ∵DF∥BE,∴∠ AFD=∠CEB.又∵ AF=CE, DF=BE,∴△ AFD≌△ CEB.(2)由(1) △AFD≌△ CEB 知 AD=BC,∠DAF=∠BCE,∴AD∥BC.∴四边形ABCD是平行四边形 .7. 如图 , 已知 DC∥AB,且 DC=1AB, E 为 AB 的中点 .2(1)求证 : △AED≌△ EBC;(2)观察图形,在不添加辅助线的情况下,除△ EBC外,请再写出两个与△ AED 的面积相等的三角形( 直接写出结果,不要求证明):______________________________.答案 : 证明: (1) ∵E为 AB的中点,∴A E=EB=1AB.21∵DC=AB,DC∥AB,∴AE DC, EB DC.∴四边形AECD和四边形 EBCD都是平行四边形.∴AD=EC, ED=BC.又∵ AE=BE,∴△ AED≌△ EBC.(2)△ACD,△ ACE,△ CDE(写出其中两个三角形即可)8. 如图 , 已知ABCD中 DE⊥AC,BF⊥AC,证明四边形DEBF为平行四边形 .答案 : 证明:在ABCD中,AD=BC,AD∥BC,∴∠ DAC=∠BCA.又∵∠ DEA=∠BFC=90°,∴R t△ADE≌Rt△CBF.∴D E=BF.同理 , 可证 DF=BE.∴四边形DEBF为平行四边形 .9.(2010江苏南京模拟,19)如图,已知ABCD中 ,E 、 F 分别是 AB、 CD的中点 . 求证 :(1)△AFD≌△ CEB;(2)四边形 AECF是平行四边形 .答案 : 证明: (1) 在ABCD中,AD=CB,AB=CD,∠D=∠B.∵E、 F 分别是 AB、 CD的中点 ,1 1∴D F= CD,BE= AB.2 2∴D F=BE.∴△ AFD≌△ CEB.(2) 在ABCD中,AB=CD,AB∥CD.由(1) 得 BE=DF,∴AE=CF.∴四边形AECF是平行四边形 .。

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试题(有答案解析)(4)

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试题(有答案解析)(4)

一、选择题1.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣22B .32﹣4C .1D .22.如图,E 是直线CD 上的一点,且12CE CD =.已知ABCD 的面积为252cm ,则ACE △的面积为( )A .52B .26C .13D .39 3.在ABCD 中AB BC ≠.F 是BC 上一点,AE 平分FAD ∠,且E 是CD 的中点,则下列结论:①AB BF =;②AF CF CD =+;③AF CF AD =+;④AE EF ⊥,其中正确的是( )A .①②B .②④C .③④D .①②④ 4.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 5.顺次连接菱形四边中点得到的四边形一定是( )A .矩形B .平行四边形C .菱形D .正方形6.下列条件中不能判定一定是平行四边形的有( )A .一组对角相等,一组邻角互补B .一组对边平行,另一组对边相等C .两组对边相等D .一组对边平行,且另一组对边也平行7.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠. 8.如图,ABE 、BCF 、CDG 、DAH 是四个全等的直角三角形,其中,AE =5,AB =13,则EG 的长是( )A .72B .62C .7D .739.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③10.如图,长方形纸片ABCD ,点E ,M ,N 分别在边AB ,BC ,AD 上,将纸片分别沿EN ,EM 对折,使点A 落在点'A 处,点B 落在点'B 处,若''30A EB ∠=︒,则NEM ∠的度数为( )A .70︒B .75︒C .80︒D .85︒11.如图,已知平行四边形ABCD 中,4B A ∠=∠,则C ∠=( )A .18°B .36°C .72°D .144°12.如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或14二、填空题13.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,点E 、F 分别在AC 、BC 上,将CEF △沿EF 翻折,使C 与AB 的中点M 重合,则CF 的长为______.14.如图,在平行四边形ABCD 中,BE 平分ABC ∠,CF BE ⊥,连接AE ,G 是AB 的中点,连接GF ,若4AE =,则GF =_____.15.如图,点E 是长方形纸片DC 上的中点,将C ∠过E 点折起一个角,折痕为EF ,再将D ∠过点E 折起,折痕为GE ,且C ,D 均落在GF 上的一点H 处.若1649'∠=︒,则CEF ∠=_______.16.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.17.如图,边长分别为4和2的两个正方形ABCD 和CEFG 并排放在一起,连结EG 并延长交BD 于点N ,交AD 于点M .则线段MN 的长是__________.18.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.19.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上,连接DF ,点H 为DF 的中点,若20AB =,12BC =,则CH 的长为__________.20.如图,正方形ABCD 中,点E ,F 分别在BC 和AB 上,BE=2,AF=2,BF=4,将△BEF 绕点E 顺时针旋转,得到△GEH ,当点H 落在CD 边上时,F ,H 两点之间的距离为______.三、解答题21.如图,过ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC .CD 、DA 于点P 、M 、Q 、N .(1)求证:PBE QDE ≅△△;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.22.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN .(1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.23.已知:AB ⊥CD 于点O ,AB=AC=CD ,点I 是∠BAC ,∠ACD 的平分线的交点,连接IB ,ID(1)求证:IA ID =且IA ID ⊥;(2)填空:①∠AIC+∠BID=_________度;②S IBD ∆______S AIC ∆(填“﹥”“﹤”“=”)(3)将(2)小题中的第②结论加以证明.24.已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得到GFC .(1)求证:BE DG =(2)若四边形ABFG 是菱形,且60B ︒∠=,求:AB BC 的值.25.如图,将矩形ABCD 沿DE 折叠,连接CE 使得点A 的对应点F 落在CE 上.(1)求证:CEB DCF ≅;(2)若2AB BC =,求CDE ∠的度数.26.如图,四边形ABCD 是平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)若BF 恰好平分∠ABE ,连接AC 、DE ,求证:四边形ACED 是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD =DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于倍计算即可得解.斜边的2【详解】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=∴BE=BD﹣DE=﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF×(﹣4)=4﹣.故选:A.【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.2.C解析:C【分析】设平行四边形AB边上的高为h,分别表示出△ACE的面积和平行四边形ABCD的面积,从而求出结果.解:∵四边形ABCD 是平行四边形,12CE CD =, 设平行四边形AB 边上的高为h ,∴△ACE 的面积为:12CE h ⋅,平行四边形ABCD 的面积为2CE h ⋅, ∴△ACE 的面积为平行四边形ABCD 的面积的14, 又∵□ABCD 的面积为52cm 2,∴△ACE 的面积为13cm 2.故选C .【点睛】 本题考查平行四边形的性质,比较简单,解答本题的关键是根据图形的形状得出△ACE 的面积为平行四边形ABCD 的面积的14. 3.C解析:C【分析】首先延长AD ,交FE 的延长线于点M ,易证得△DEM ≌△CEF ,即可得EM =EF ,又由AE 平分∠FAD ,即可判定△AEM 是等腰三角形,由三线合一的知识,可得AE ⊥EF ,进而可对各选项进行判断.【详解】解:延长AD ,交FE 的延长线于点M ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠M =∠EFC ,∵E 是CD 的中点,∴DE =CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEM ≌△CEF (AAS ),∴EM =EF ,∵AE 平分∠FAD ,∴AM =AF ,AE ⊥EF .即AF =AD +DM =CF +AD ;故③,④正确,②错误.∵AF 不一定是∠BAD 的角平分线,∴AB 不一定等于BF ,故①错误.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.B解析:B【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可.【详解】,解:A、∵AE CF∴AO=CO,由于四边形ABCD是平行四边形,则BO=DO,∴四边形DEBF是平行四边形;B、不能证明四边形DEBF是平行四边形;C、∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,又∠ADE=∠CBF,∴△DAE≌△BCF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;D、同C可证:△ABE≌△CDF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;故选:B.【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.5.A解析:A【分析】画出图形,根据菱形的性质得到AC⊥BD,根据三角形中位线定理、矩形的判定定理证明结论.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵E,F,G,H是菱形各边的中点,∴EF∥BD,FG∥AC,∴EF⊥FG,同理:FG⊥HG,GH⊥EH,HE⊥EF,∴四边形EFGH是矩形.故选:A.【点睛】本题考查的是中点四边形,掌握菱形的性质定理、矩形的判定定理以及三角形的中位线定理是解题的关键.6.B解析:B【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定逐一验证.【详解】A、能用两组对角相等的四边形是平行四边形判定平行四边形;B、不能判定平行四边形,如等腰梯形;C、能用两组对边相等的四边形是平行四边形判定平行四边形;D、能用两组对边分别平行的四边形是平行四边形判定平行四边形;故选:B.【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.7.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:D.【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.8.A解析:A【分析】根据勾股定理求出BE ,证明四边形EFGH 为正方形,根据正方形的性质、勾股定理计算,得到答案.【详解】解:在Rt △ABE 中,AE =5,AB =13,由勾股定理得,BE 22AB AE -22135-12,∵△ABE 、△BCF 、△CDG 、△DAH 是四个全等的直角三角形,∴∠AEB =∠BFC =∠CGD =90°,BF =CG =DH =AE =5,∴∠FEB =∠EFC =∠FGD =90°,EF =EH =12﹣5=7,∴四边形EFGH 为正方形,∴EG 2277+2,故选:A .【点睛】本题考查的是全等三角形的应用,掌握全等三角形的对应边相等、对应角相等是解题的关键.9.D解析:D【分析】①设∠EDC=x ,则∠DEF=90°-x 从而可得到∠DBE=∠DEB=180°-(90°-x )-45°=45°+x ,∠DBM=∠DBE-∠MBE=45°+x-45°=x ,从而可得到∠DBM=∠CDE ;③由△BDM ≌△DEF ,可知DF=BM ,由直角三角形斜边上的中线的性质可知BM=12AC ; ④可证明△BDM ≌△DEF ,然后可证明:△DNB 的面积=四边形NMFE 的面积,所以△DNB 的面积+△BNE 的面积=四边形NMFE 的面积+△BNE 的面积;【详解】解:①设∠EDC=x ,则∠DEF=90°-x ,∵BD=DE ,∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∴∠DBM=∠DBE-∠MBE=45°+x-45°=x .∴∠DBM=∠CDE ,故①正确;②由①得∠DBM=∠CDE ,如果BN=DN ,则∠DBM=∠BDN ,∴∠BDN=∠CDE ,∴DE 为∠BDC 的平分线,∴△BDE ≌△FDE ,∴EB ⊥DB ,已知条件∠ABC=90°,∴②错误的;③在△BDM 和△DEF 中,DBM CDE DMB DFE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDM ≌△DEF (AAS ),∴BM=DF ,∵∠ABC=90°,M 是AC 的中点,∴BM=12AC , ∴DF=12AC , 即AC=2DF ;故③正确.④由③知△BDM ≌△DEF (AAS )∴S △BDM =S △DEF ,∴S △BDM -S △DMN =S △DEF -S △DMN ,即S △DBN =S 四边形MNEF .∴S △DBN +S △BNE =S 四边形MNEF +S △BNE ,∴S △BDE =S 四边形BMFE ,故④错误;故选D .【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质,利用面积法证明S △BDE =S 四边形BMFE 是解题的关键.10.B解析:B【分析】先由翻折的性质得到'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图可得''''A EN B EM NEM A EB ∠+∠=∠+∠,然后根据180AEN NEM MEB ∠+∠+∠=︒,得到2''180NEM A EB ∠+∠=︒,进而可求出NEM ∠的度数.【详解】由翻折的性质可知:'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图知:''''A EN B EM NEM A EB ∠+∠=∠+∠,又∵180AEN NEM MEB ∠+∠+∠=︒,∴''180A EN B EM NEM ∠+∠+∠=︒,∴2''180NEM A EB ∠+∠=︒,又∵''30A EB ∠=︒,∴75NEM ∠=︒.故选:B .【点睛】本题主要考查的是翻折的性质,掌握翻折的性质是解题的关键.11.B解析:B【分析】利用平行四边形的性质解决问题即可【详解】解:在平行四边形ABCD 中,∵BC ∥AD ,∴∠A+∠B=180°,∵∠B=4∠A ,∴∠A=36°,∴∠C=∠A=36°,故选:B .【点睛】本题考查平行四边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 12.C解析:C【分析】根据平行四边形的性质可得BO=DO ,再根据AOD △与AOB 的周长相差3,可分情况得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=AO ,∵AOD △与AOB 的周长相差3,∴AB-AD=3,或AD-AB=3,∵AB=8,∴AD 的长为5或11,故选C .【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形对角线互相平分.二、填空题13.【分析】过点M 作于N 则可得MN 是的中位线利用三角形中位线定理可得MN=AC=3BN=CN=BC=4设CF=x 则NF=4-x 由折叠的性质可得MF=CF 在中利用勾股定理即可求解【详解】解:过点M 作于N ∵ 解析:258 【分析】过点M 作MN BC ⊥于N ,则//MN AC ,可得MN 是Rt ABC △的中位线,利用三角形中位线定理可得MN=12AC=3,BN=CN=12BC=4,设CF=x ,则NF=4-x ,由折叠的性质可得MF=CF ,在Rt MNF △中,利用勾股定理即可求解.【详解】解:过点M 作MN BC ⊥于N ,∵90ACB ∠=︒,MN BC ⊥,∴//MN AC ,∵M 是AB 的中点,∴MN 是Rt ABC △的中位线,∴MN=12AC=3,BN=CN=12BC=4, 设CF=x ,则NF=4-x ,∵将CEF △沿EF 翻折,使C 与AB 的中点M 重合,∴MF=CF=x ,在Rt MNF △中,222MN NF MF +=,∴()22234x x +-=,解得258x =,∴CF=258. 故答案为:258. 【点睛】本题考查折叠的性质,三角形的中位线定理,勾股定理等知识,熟练掌握三角形的中位线定理,利用勾股定理建立方程求解是解题的关键.14.2【分析】根据平行四边形的性质结合角平分线的定义可求解即可得利用等腰三角形的性质得到进而可得是的中位线根据三角形的中位线的性质可求解【详解】解:在平行四边形中∴∵平分∴∴∴∵∴∵是的中点∴是的中位线 解析:2【分析】根据平行四边形的性质结合角平分线的定义可求解CBE BEC ∠=∠,即可得CB CE =,利用等腰三角形的性质得到BF EF =,进而可得GF 是ABE △的中位线,根据三角形的中位线的性质可求解.【详解】解:在平行四边形ABCD 中,//AB CD ,∴ABE BEC ∠=∠,∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴CBE BEC ∠=∠,∴CB CE =,∵CF BE ⊥,∴BF EF =,∵G 是AB 的中点,∴GF 是ABE △的中位线, ∴12GF AE =∵4AE =, ∴2GF =;故答案为:2.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF 是ABE △的中位线是解题的关键.15.【分析】根据翻折的性质可得∠GEH=∠1∠HEF=∠CEF 从而可求出∠DEH ∠CEF 的度数【详解】解:∵∠GEH=∠1∴∠GEH=∴∠DEH=+=∴∠HEF=∠CEF=×(180°-)=故答案为:【 解析:2551'︒【分析】根据翻折的性质可得∠GEH=∠1,∠HEF=∠CEF,从而可求出∠DEH,∠CEF的度数.【详解】解:∵1649'∠=︒,∠GEH=∠1,∴∠GEH=649'︒,∴∠DEH =649'︒+649'︒=12818'︒,∴∠HEF=∠CEF=12×(180°-12818'︒)=2551'︒,故答案为:2551'︒.【点睛】本题考查了翻折变换的性质,熟练掌握折叠的性质找出相等的角是解题的关键.16.【分析】过点P作PG⊥CB交CB的延长线于点G过点Q作QF⊥CB运用AAS定理证明△QBF≌△BPG根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形利用勾股定理求得线段BC的长然后结合全解析:10【分析】过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB,运用AAS定理证明△QBF≌△BPG,根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形,利用勾股定理求得线段BC的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC 为等腰直角三角形∵AM ∥BC ,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP 为矩形,∴PG=AC=6,AP=CG在Rt △ABC 中,BC=228AB AC -=∴CF=BC-BF=BC-PG=8-6=2∵QF ⊥BC ,∠ECB=45°∴△CQF 是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键17.【分析】根据题意易证明和是等腰直角三角形再根据勾股定理即可求出MN 【详解】∵四边形ABCD 和CEFG 为正方形∴∴和是等腰直角三角形∴∴在中故答案为:【点睛】本题考查正方形和平行线的性质等腰直角三角形 2【分析】根据题意易证明MND 和MDG 是等腰直角三角形,2DM DC GC =-=.再根据勾股定理即可求出MN .【详解】∵四边形ABCD 和CEFG 为正方形,//AD BE .∴45DMG BEM MDN DGM ∠=∠=∠=∠=︒,∴MND 和MDG 是等腰直角三角形,∴422DG DM DC GC ==-=-=. ∴在Rt MND △中,2222MN MD === 2【点睛】本题考查正方形和平行线的性质,等腰直角三角形的判定和性质以及勾股定理.根据题意证明MND 是等腰直角三角形在结合勾股定理求解是解答本题的关键.18.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB 得出AF=AB=8同理可得DE=DC=8再由EF 的长即可求出BC 的长【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC ,则∠ABF=∠AFB ,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB 是解决问题的关键.19.【分析】连接并延长交于Q 由矩形的性质得出由平行线的性质得出由证得得出则是等腰直角三角形得出由直角三角形斜边上的中线性质即可得出结果【详解】如图所示:连接并延长交于Q ∵矩形全等于矩形∴∴∵点H 为的中点解析:【分析】连接GH 并延长GH 交CD 于Q ,由矩形的性质得出20AB CD BG ===,12BC FG ==,////,90FG AE CD GCQ ∠=,由平行线的性质得出HFG HDQ ∠=∠,由ASA 证得HFG HDQ ≌,得出12DQ FG ==,HG HQ =,8CG BG BC =-=,8CQ CD DQ =-=,则GCQ 是等腰直角三角形,得出GQ ==,由直角三角形斜边上的中线性质即可得出结果.【详解】如图所示:连接GH 并延长GH 交CD 于Q ,∵矩形ABCD 全等于矩形BEFG ,∴20AB CD BG ===,12BC FG ==,////FG AE CD ,90GCQ ∠=, ∴HFG HDQ ∠=∠,∵点H 为DF 的中点,∴HF HD =,在HFG 和HDQ 中,HFG HDQ HF HD GHF QHD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()HFG HDQ ASA ≌,∴12DQ FG ==,HG HQ =,20128CG BG BC =-=-=,20128CQ CD DQ =-=-=,∴GCQ 是等腰直角三角形, ∴282GQ CQ == 在Rt GCQ 中,HG HQ =, ∴11824222CH GQ ==⨯= 故答案为:2【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,通过作辅助线构建全等三角形是解题的关键.20.【分析】根据旋转的可证明△BEF ≌△CHE 作FM ⊥CD 于M 分别求出FMMH 的长利用勾股定理即可求解【详解】∵将△BEF 绕点E 顺时针旋转得到△GEH 点H 落在CD 边上∵BE=2AF=2BF=4∴GH=B 解析:10【分析】根据旋转的可证明△BEF ≌△CHE ,作FM ⊥CD 于M ,分别求出FM,MH 的长,利用勾股定理即可求解.【详解】∵将△BEF 绕点E 顺时针旋转,得到△GEH ,点H 落在CD 边上,∵BE=2,AF=2,BF=4∴GH=BF=EC=4,EH=EF=222425+=∴在Rt △HEC 中,CH=()222542-=∴BE=CH又∵∠B=∠C=90°,BF=CE=4∴△BEF ≌△CHE作FM ⊥CD 于M ,故四边形AFMD 是矩形,∴DM=AF=2,MH=CM-CH=2,FM=AD=6∴FH=2226210+=故答案为:210.【点睛】此题主要考查正方形的性质与全等三角形的判定与性质,解题的关键是熟知勾股定理、正方形的性质、矩形的性质及全等三角形的判定定理.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由ASA 证PBE QDE ≅△△即可;(2)由全等三角形的性质得出EP EQ =,同理可得EM EN =,根据对角线互相平分的四边形是平行四边形得四边形PMQN 是平行四边形,再由对角线互相垂直的平行四边形是菱形,即可得出结论.【详解】(1)证明:四边形ABCD 是平行四边形,EB ED ∴=,//AB CD ,EBP EDQ ∴∠=∠,在PBE △和QDE △中,EBP EDQ EB ED BEP DEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PBE QDE ASA ∴≅△△;(2)证明:如图所示:PBE QDE ≅△△,EP EQ ∴=,同理可得EM EN =,∴四边形PMQN 是平行四边形,PQ MN ⊥,∴四边形PMQN 是菱形.【点睛】本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.22.(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点, ∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD ,∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用.23.(1)证明见解析;(2)①180;②=;(3)证明见解析.【分析】(1)由角平分线的性质,解得ACI DCI ∠=∠,继而证明△ACI ≌△DCI(SAS),再根据全等三角形的性质可得IA=ID ,AIC DIC ∠=∠,由角平分线性质结合三角形内角和定理可得11=()904522CAI ACI CAO ACO ∠+∠∠+∠=⨯︒=︒,故135AIC DIC ∠=∠=︒,继而可证90AID ∠=︒据此解题;(2)①根据题意,由三线合一的性质可证,45AI ID AIH =∠=︒、CI IB =、45BIG CIG ∠=∠=︒,最后再计算+AIC BID ∠∠的值即可;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG S S S ==,再结合12BDI DIBG S S =即可解题; (3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG SS S ==,再结合12BDI DIBG S S =即可解题. 【详解】证明:(1)由点I 是∠BAC ,∠ACD 的平分线的交点ACI DCI ∴∠=∠在△ACI 和△DCI 中CI CI ACI DCI CA CD =⎧⎪∠=∠⎨⎪=⎩∴ △ACI ≌△DCI(SAS)IA ID ∴=由点I 是∠BAC ,∠ACD 的平分线的交点 11=()904522CAI ACI CAO ACO ∴∠+∠∠+∠=⨯︒=︒ 18045135=AIC DIC ∴∠=︒-︒=︒∠36013513590AID ∴∠=︒-︒-︒=︒即IA ID ⊥;(2)①如图,延长CI 交AD 于点H ,延长AI 交BC 于点GAI ID ⊥90AID DIG ∴∠=∠=︒AC CD CI =,平分ACD ∠,,CH AD AH DH ∴⊥=,45AI ID AIH ∴=∠=︒45CIG ∴∠=︒AC AB AI =,平分BAC ∠,,AG BC CG BG ∴⊥=CI IB ∴=45BIG CIG ∴∠=∠=︒13545180AIC BID ∴∠+∠=︒+︒=︒故答案为:180︒,=;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅ 12AIC GBI DIBG S S S ∴== 12BDI DIBG SS = AIC BDI S S ∴=故答案为:=;(3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅ 12AIC GBI DIBG SS S ∴== 12BDI DIBG SS = AIC BDI S S ∴=.【点睛】本题考查全等三角形的判定与性质、等腰三角形三线合一的性质、角平分线的性质等知识,是重要考点,作出正确的辅助线、掌握相关知识是解题关键.24.(1)见详解;(2)AB :BC=2:3.【分析】(1)根据平移的性质,可得:AE=CG ,再证明Rt △ABE ≌Rt △CDG 即可得到BE=DG ; (2)根据四边形ABFG 是菱形,得出AB=BF ;根据条件找到满足AB=BF 的AB 与BC 满足的数量关系即可.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD .∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成.∴CG ⊥AD .∴∠AEB=∠CGD=90°.∵AE=CG ,AB=CD ,∴Rt △ABE ≌Rt △CDG (HL ).∴BE=DG ;(2)∵四边形ABFG 是菱形∴AB ∥GF ,AG ∥BF ,∵Rt △ABE 中,∠B=60°,∴∠BAE=30°,∴BE=12AB .(直角三角形中30°所对直角边等于斜边的一半) ∵四边形ABFG 是菱形,∴AB=BF .∴BE=CF ,∴EF=12AB ,∴BC=3AB,2∴AB:BC=2:3.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等和平行四边形的性质以及菱形的性质.25.(1)见解析;(2)75°【分析】(1)由矩形的性质可得AD=BC,∠A=∠B=90°,CD∥AB,由折叠的性质可得AD=DF,∠A=∠DFE=90°,由“AAS”可证△CEB≌△DCF;(2)由直角三角形的性质可求∠DCF=30°,∠CDF=60°,由折叠的性质可得∠ADE=∠EDF=15°,即可求∠CDE的度数.【详解】解:(1)证明:∵四边形ABCD是矩形∴AD=BC,∠A=∠B=90°,CD∥AB,CD=AB,∴∠DCF=∠CEB,∵将矩形ABCD沿DE折叠,连接CE使得点A的对应点F落在CE上,∴AD=DF,∠A=∠DFE=90°,∴∠DFC=∠B=90°,DF=BC,∠DCE=∠CEB,∴△CEB≌△DCF(AAS).(2)∵AB=2BC,∴CD=2DF,且∠DFC=90°,∴∠DCF=30°,∴∠CDF=60°,∵∠ADF=∠ADC-∠CDF=30°,∵将矩形ABCD沿DE折叠,连接CE使得点A的对应点F落在CE上.∴∠ADE=∠EDF=15°,∴∠CDE=∠CDF+∠EDF=75°.【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练运用折叠的性质是本题的关键.26.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得到AB=CD,∠DAE=∠AEB,利用AE平分∠BAD,推出∠BAE=∠AEB,得到BE=AB,即可得到结论;(2)根据BE=AB,BF平分∠ABE,得到AF=EF,证明△ADF≌△ECF,推出DF=CF,即可得到结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠DAE =∠AEB ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴BE =AB ,∴BE=CD ;(2)∵BE =AB ,BF 平分∠ABE ,∴AF =EF ,在△ADF 和△ECF 中,DAE AEB AF EFAFD EFC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADF ≌△ECF ,∴DF =CF ,又∵AF =EF ,∴四边形ACED 是平行四边形.【点睛】此题考查平行四边形的判定及性质,全等三角形的判定及性质,等腰三角形三线合一的性质,熟记各知识点并应用解决问题是解题的关键.。

八年级数学下册《平行四边形》练习题与答案(人教版)

八年级数学下册《平行四边形》练习题与答案(人教版)

八年级数学下册《平行四边形》练习题与答案(人教版)一、选择题1.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO周长是( )A.10B.14C.20D.222.如图,在▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是( )A.16°B.22°C.32°D.68°3.下列条件中,不能判定四边形是平行四边形的是( )A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等4.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE度数为( )A.20°B.25°C.30°D.35°5.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC于点E,AD=6cm,则OE的长为( )A.6cmB.4cmC.3cmD.2cm6.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°7.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A.3a+2bB.3a+4bC.6a+2bD.6a+4b8.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是( )A.正方形B.矩形C.菱形D.都有可能9.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )A.2B. 3C. 2D.110.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D 恰好都落在点G处,已知BE=1,则EF的长为( )A.1.5B.2.5C.2.25D.311.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )A.AB∥DCB.AC=BDC.AC⊥BDD.AB=DC12.如图,在四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是( )①四边形A 4B 4C 4D 4是菱形;②四边形A 3B 3C 3D 3是矩形;③四边形A 7B 7C 7D 7的周长为a +b 8; ④四边形A n B n C n D n 的面积为ab 2n . A.①②③ B.②③④ C.①③④ D.①②③④二、填空题13.如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件 ,使四边形ABCD 是平行四边形(填一个即可).14.如图所示,已知▱ABCD ,下列条件:①AC =BD ,②AB =AD ,③∠1=∠2,④AB ⊥BC 中,能说明▱ABCD 是矩形的有(填写序号) .15.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是_________.16.如图,把矩形ABCD 绕着点A 逆时针旋转90°可以得到矩形AEFG ,则图中△AFC 是 三角形.17.如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,则∠BCE 的度数是 .18.如图,在矩形纸片ABCD中,AB=6,BC=10,BC边上有一点E,BE=4,将纸片折叠,使A点与E点重合,折痕MN交AD于M点,则线段AM的长是.三、解答题19.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有的等腰三角形.20.如图,已知在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE.(2)连结DE,线段DE与AB之间有怎样的位置关系和数量关系?请证明你的结论.21.如图,在△ABC中,∠A CB=90°,O,D分别是边AC,AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD 是菱形;(2)若四边形AECD 的面积为24,BC :AC =34,求BC 的长.22.如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA ⊥AF.求证:DE =BF.23.已知:如图1,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH(即四边形ABCD 的中点四边形).(1)四边形EFGH 的形状是 ,证明你的结论.(2)如图2,请连接四边形ABCD 的对角线AC 与BD ,当AC 与BD 满足 条件时,四边形EFGH 是矩形;证明你的结论.(3)你学过的哪种特殊四边形的中点四边形是矩形?说明理由.24.已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.参考答案1.B.2.C3.B4.C.5.C6.A.7.A.8.B.9.B10.B11.C12.B.13.答案为:AD=BC(答案不唯一).14.答案为:①④.15.答案为:AB=AD或AC⊥BD;16.答案为:等腰直角.17.答案为:22.5°.18.答案为13 2.19.证明:(1)如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD∵BE=DF∴OB﹣BE=OD﹣DF,即OE=OF∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD∴∠ABF=∠CDF=36°∴∠AFB=180°﹣108°﹣36°=36°∴AB=AF∵AF=EF∴△ABF 和△AFE 是等腰三角形同理△EFC 与△CDE 是等腰三角形.20.证明:(1)∵AB =AC∴∠B =∠ACB又∵AD 是BC 边上的中线∴AD ⊥BC ,即∠ADB =90°.∵AE ∥BC∴∠EAC =∠ACB∴∠B =∠EAC.∵CE ⊥AE ,所以∠CEA =90°∴∠ADB =∠CEA.又∵AB =CA∴△ABD ≌△CAE(AAS).(2)解:AB ∥DE 且AB =DE.证明:由△ABD ≌△CAE 可得AE =BD又∵AE ∥BD∴四边形ABDE 是平行四边形∴AB ∥DE 且AB =DE.21.(1)证明:∵点O 是AC 的中点∴OA =OC.∵CE ∥AB∴∠DAO =∠ECO.又∵∠AOD =∠COE∴△AOD ≌△COE(ASA)∴AD =CE∴四边形AECD 是平行四边形.又∵CD 是Rt △ABC 斜边AB 上的中线∴CD =AD =12AB∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形∴AC ⊥ED.在Rt △AOD 中 OD OA 34可设OD =3x ,OA =4x则ED =2OD =6x ,AC =2OA =8x.由题意可得12·6x ·8x =24 ∴x =1∴OD =3.∵O ,D 分别是AC ,AB 的中点∴OD 是△ABC 的中位线∴BC =2OD =6.22.证明:∵∠FAB +∠BAE =90°,∠DAE +∠BAE =90°∴∠FAB =∠DAE∵∠AB =AD ,∠ABF =∠ADE∴△AFB ≌△ADE∴DE =BF.23.解:(1)四边形EFGH 的形状是平行四边形.理由如下:如图1,连结BD . ∵E 、H 分别是AB 、AD 中点∴EH ∥BD ,EH =12BD同理FG ∥BD ,FG =12BD∴EH ∥FG ,EH =FG∴四边形EFGH 是平行四边形;(2)当四边形ABCD 的对角线满足互相垂直的条件时,四边形EFGH 是矩形.理由如下: 如图2,连结AC 、BD .∵E 、F 、G 、H 分别为四边形ABCD 四条边上的中点∴EH ∥BD ,HG ∥AC∵AC ⊥BD∴EH ⊥HG又∵四边形EFGH 是平行四边形∴平行四边形EFGH 是矩形;(3)菱形的中点四边形是矩形.理由如下:如图3,连结AC 、BD .∵E 、F 、G 、H 分别为四边形ABCD 四条边上的中点∴EH ∥BD ,HG ∥AC ,FG ∥BD ,EH =12BD ,FG =12BD∴EH ∥FG ,EH =FG∴四边形EFGH是平行四边形.∵四边形ABCD是菱形∴AC⊥BD∵EH∥BD,HG∥AC∴EH⊥HG∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直.24.解:(1)AF=CD+CF;(2)AF=CD+CF.。

新人教版八年级下平行四边形练习基础题

新人教版八年级下平行四边形练习基础题
考点:平行四边形的性质.
7.D.
【解析】
试题分析:根据平行四边形的性质(①平行四边形的对边平行且相等,②平行四边形的对角相等,③平行四边形的对角线互相平分)判断即可.
A、∵四边形ABCD是平行四边形,
∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;
B、∵四边形ABCD是平行四边形,
∴CD=AB,正确,不符合题意;
∵ ABCD中,AD∥BC,∴∠FDE=∠BEC,∠F=∠EBC。∴△FDE≌△BEC(AAS)。∴DF=CB。
∵DF=3,DE=2,∴ ABCD的周长为:4DE+2DF=14。故选D。
10.B
【解析】
试题分析:∵AE为∠ADB的平分线,∴∠DAE=∠BAE。
∵DC∥AB,∴∠BAE=∠DFA。∴∠DAE=∠DFA。∴AD=FD。
参考答案
1.D.
【解析】
试题分析:由平行四边形的性质可知:①边:平行四边形的对边相等②角:平行四边形的对角相等③对角线:平行四边形的对角线互相平分.
所以四个选项中D不正确,
故选D.
考点:平行四边形的性质.
2.C.
【解析】
试题分析:根据菱形、正方形、矩形、平行四边形的定义或判定定理进行判定即可得出答案.
B.一组对边平行一组对边相等的四边形是平行四边形
C.两条对角线相等的平行四边形是矩形
D.对角线互相垂直且相等的四边形是正方形
3.如图,在平行四边形 中,对角线 , 相交于点O,若 , 的和为18 cm, ,△AOB的周长为13 cm,那么BC的长是()
A.6 cmB.9 cm
C.3 cmD.12 cm
4.顺次连结任意四边形各边中点所得到的四边形一定是()
A.平行四边形B.菱形C.矩形D.正方形

完整版人教版数学八年级下册平行四边形的判定练习题2

完整版人教版数学八年级下册平行四边形的判定练习题2

平行四边形习题一、选择题1. 以下条件中,能判断四边形是平行四边形的条件是( )A. 一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C. 一组对边平行,一组邻角互补D.一组对边相等,一组邻角相等2. 如图,EF 过□ABCD的对角线的交点O,交 AD于 E,交 BC 于 F,若 AB= 4,BC= 5, OE= 1.5 ,那么四边形EFCD的周长是 ()3. 两直角边不等的两个全等的直角三角形能拼成平行四边形的个数( )4、下边给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,此中能判断四边形ABCD是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2:3:2:3D.2:3:3:25. 过不在同向来线上的三点,可作平行四边形的个数是( )A.1 个个个 D.4 个7、在下边给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB=BC,AD=CDB.AB∥CD,AD=BCC.AB∥CD,∠B=∠DD.∠A=∠B,∠C=∠D8.以下结论正确的选项是 ( )A.对角线相等,且一组对角也相等的四边形是平行四边形B.一边长为 5cm,两条对角线分别是 4cm和 6cm 的四边形是平行四边形C.一组对边平行,且一组对角相等的四边形是平行四边形D.对角线相等的四边形是平行四边形11、下边说法正确的选项是( )A.一组对边相等且平行的四边形是平行四边形B.有两边相等的四边形是平行四边形.C.四个全等的三角形必定可构成一个平行四边形D.一组对边平行 , 另一组对边相等的四边形是平行四边形二、填空题10.一个四边形的边长挨次为a, b, c, d,且 a2+b2+c2+d2= 2ac+2bd ,则这个四边形是.11.□ABCD中,AB=2,BC=3,∠B,∠C的均分线交AD于E、F,则 EF=.12.□ABCD的周长为 80cm,对角线 AC、BD订交于 O,若△ OAB的周长比△ OBC的周长小 8cm,则 AB=cm.13. 用两个全等三角形拼成的四边形,有以下说法①必定是平行四边形,②可能是平行四边形,③必定不是平行四边形,此中正确的说法是.14. 已知四边形ABCD中, AD∥ BC,分别增添以下条件,①AB∥ CD,② AB= DC,③ AD=BC,④∠ A=∠ C,⑤∠ B=∠ C,能使四边形ABCD成为平行四边表的条件的序号是.以以以下图, DE是△ ABC的中位线, BC=8,则 DE=_______.14.以以以下图,在□ABCD中,对角线 AC,BD交于点 O,OE∥BC 交 CD?于 E,?若OE=3cm,则 AD的长为().A . 3cm B.6cm C.9cm D.12cm三、仔细解答,写出解答步骤。

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试题(含答案解析)(4)

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试题(含答案解析)(4)

一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠ 2.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B AG E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A .3100mB .4600mC .5500mD .6100m 3.如图,Rt ABC ∆中,90BAC AB AC AD BC ︒∠==⊥,,于点D ABC ∠,的平分线分别交AC AD 、于EF 、两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连DM ,下列结论:①DF DN =; ②DMN ∆为等腰三角形;③DM 平分BMN ∠;④AE NC =,其中正确结论的个数是( )A .1个B .2个C .3个D .4个4.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0) 5.下列说法正确的是( )A .有一个角是直角的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .有一组邻边相等的菱形是正方形D .各边都相等的四边形是正方形 6.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE 7.四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有( )A .1组;B .2组;C .3组;D .4组. 8.如图,点D 和点E 分别是BC 和BA 的中点,已知AC =4,则DE 为( )A .1B .2C .4D .89.如图,在123A A A △中,160A ∠=︒,230A ∠=︒,131A A =,3+n A 是1(1,2,3)n n A A n +=⋅⋅⋅的中点,则202120222023A A A △中最短边的长为( )A .100912B .101012 C .101112 D .10211210.如图,在Rt ABC 中,90C =∠,30A ∠=,D 是 AC 边的中点,DE AC ⊥于点D ,交AB 于点E ,若83AC =,则DE 的长是( )A .8B .6C .4D .211.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .2012.如图所示,已知Rt ABC 中,90B ︒∠=,3AB =,4BC =,D F 、分别为AB AC 、的中点,E 是BC 上动点,则DEF 周长的最小值为( )A .240+B .213+C 13D .6二、填空题13.如图,四边形ABCD 为菱形,以AD 为斜边的Rt AED △的面积为3,2DE =,点E ,C 在BD 的同侧,点P 是BD 上的一动点,则PE PC +的最小值是_____________.14.如图,在矩形ABCD 中,连接AC ,按以下步骤作图:分别以点A ,C 为圆心,以大于12AC 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN 交BC 于点E ,连接AE .若AB =1,BC =2,则BE =_____.15.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,还需添加一个条件,这个条件可以是__________.(只要填写一种情况)16.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.17.菱形有一个内角为120︒,较长的对角线长为63,则它的面积为__________. 18.如图,在ABC 中,45BAC ∠=︒,4AB AC ==,点D 是AB 上一动点,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是________.19.如图,点E 是矩形ABCD 的边AD 上的一点,且12DE AE =,连接BE 并延长交CD 的延长线于点F ,若4AB =,6BC =,则EDF 的周长为__________.20.在△ABC中,AD是BC边上的高线,CE是AB边上的中线,CD=AE,且CE<AC.若AD=6,AB=10,则CE=___________三、解答题21.如图,将长方形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AB=6,△ABF的面积是24,求DE的长.22.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且=.∠=∠,BE CFAC BD=,EBC FCB求证:四边形AFDE是平行四边形;23.如图,CD是线段AB的垂直平分线,M是AC延长线上一点.(1)在图中补充完整以下作图,保留作图痕迹:作∠BCM 的角平分线CN ,过点B 作CN 的垂线,垂足为E ;(2)求证:四边形BECD 是矩形;(3)AB 与AC 满足怎样的数量关系时,四边形BECD 是正方形?证明你的结论. 24.如图,菱形ABCD 的边长为2.2BD =,E ,F 分别是边AD ,CD 上的两个动点,且满足2AE CF +=.(1)求证:BDE BCF △≌△;(2)判断BEF 的形状,并说明理由.25.如图,在中,,D 为的中点,,,连接交于点O .(1)证明:四边形为菱形; (2)若,,求菱形的高.26.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】当BE 平分∠ABC 时,四边形DBFE 是菱形,可知先证明四边形BDEF 是平行四边形,再证明BD=DE 即可解决问题.【详解】解:当BE 平分∠ABC 时,四边形DBFE 是菱形,理由:∵DE ∥BC ,∴∠DEB=∠EBC ,∵∠EBC=∠EBD ,∴∠EBD=∠DEB ,∴BD=DE ,∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 是平行四边形,∵BD=DE ,∴四边形DBFE 是菱形.其余选项均无法判断四边形DBFE 是菱形,故选:D .【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.2.B解析:B【分析】连接CG ,由正方形的对称性,易知AG=CG ,由正方形的对角线互相平分一组对角,GE ⊥DC ,易得DE=GE .在矩形GECF 中,EF=CG .要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【详解】解:连接GC ,∵四边形ABCD 为正方形,所以AD=DC ,∠ADB=∠CDB=45°,∵∠CDB=45°,GE ⊥DC ,∴△DEG 是等腰直角三角形,∴DE=GE .在△AGD 和△GDC 中,AD CD ADG CDG DG DG ⎧⎪∠∠⎨⎪⎩===,∴△AGD ≌△GDC (SAS )∴AG=CG ,在矩形GECF 中,EF=CG ,∴EF=AG .∵BA+AD+DE+EF-BA-AG-GE ,=AD=1500m .∵小敏共走了3100m ,∴小聪行走的路程为3100+1500=4600(m ),故选:B .【点睛】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF ,DE=GE .3.D解析:D【分析】求出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,证明()FBD NAD ASA ≅即可判断①,证明()AFB CNA ASA ≅,推出CN AF AE ==即可判断④,证明()ABM NBM ASA ≅,得AM MN =,由直角三角形斜边的中线的性质推出AM DM MN ==,ADM ABM ∠=∠,即可判断③,根据三角形外角性质求出DNM ∠,证明MDN DNM ∠=∠,即可判断②.【详解】解:∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴45ABC C ∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,∴45BAD CAD ∠=︒=∠,∵BE 平分ABC ∠, ∴122.52ABE CBE ABC ∠=∠=∠=︒, ∴9022.567.5BFD AEB ∠=∠=︒-︒=︒,∴67.5AFE BFD AEB ∠=∠=∠=︒,∴AF AE =,AM BE ⊥,∴90AMF AME ∠=∠=︒,∴9067.522.5DAN MBN ∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()FBD NAD ASA ≅,∴DF DN =,故①正确;在AFB △和CNA 中,4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩, ∴()AFB CNA ASA ≅,∴AF CN =,∵AF AE =,∴AE CN =,故④正确;在ABM 和NBM 中,90ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴()ABM NBM ASA ≅,∴AM MN =,在Rt ADN △中,AM DM MN ==,∴22.5DAN ADM ABM ∠=∠=︒=∠,∴22.522.545DMN DAN ADM ∠=∠+∠=︒+︒=︒,∴DM 平分BMN ∠,故③正确;∵4522.567.5DNA C CAN ∠=∠+∠=︒+︒=︒,∴1804567.567.5MDN DNM ∠=︒-︒-︒=︒=∠,∴DM MN =,∴DMN 是等腰三角形,故②正确.故选:D .【点睛】 本题考查了全等三角形的性质与判断,三角形外角性质,三角形内角和定理,直角三角形斜边上中线的性质,等腰三角形的性质和判定,解题的关键是熟练掌握这些性质定理进行证明求解.4.D解析:D【分析】由于C 、D 是定点,则CD 是定值,如果△CDE 的周长最小,即DE +CE 有最小值.为此,作点D 关于x 轴的对称点D′,当点E 在线段CD′上时,△CDE 的周长最小.【详解】如图,作点D 关于x 轴的对称点D′,连接CD′与x 轴交于点E ,连接DE .若在边OA 上任取点E′与点E 不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E +CE =DE +CE ,∴△CDE 的周长最小.∵OB =4,D 为边OB 的中点,∴OD =2,∴D (0,2),∵在长方形OACB 中,OA =3,OB =4,D 为OB 的中点,∴BC =3,D′O =DO =2,D′B =6,∵OE ∥BC ,∴Rt △D′OE ∽Rt △D′BC , ∴OE D O BC D B='', 即:623OE =,即:OE =1, ∴点E 的坐标为(1,0)故选:D .【点睛】此题主要考查轴对称−−最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是:两点之间线段最短.5.B解析:B【分析】根据正方形的判定:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角进行分析即可.【详解】解:A.有一个角是直角的平行四边形是正方形,说法错误,应是矩形,不符合题意;B.对角线互相垂直的矩形是正方形,说法正确,符合题意;C.一组邻边相等的矩形是正方形,说法错误,不合题意;D.各边都相等的四边形是菱形,不是正方形,不合题意.故选B.【点睛】本题主要考查了正方形的判定,关键是掌握正方形的判定方法.6.B解析:B【分析】由折叠的性质和平行线的性质可得∠ADB=∠CBD,可得BE=DE,可证AE=CE,由“SAS”可证△ABE≌△CDE,即可求解.【详解】解:如图,∵把矩形纸片ABC'D沿对角线折叠,∴∠CBD=∠DBC',CD=C'D=AB ,AD=BC=BC',∵AD ∥BC',∴∠EDB=∠DBC',∴∠EDB=∠EBD ,故选项C 正确;∴BE=DE ,∵AD=BC ,∴AE=CE ,故选项A 正确;在△ABE 和△CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键. 7.C解析:C【分析】根据平行四边形的判定方法对①②③④分别作出判断即可求解.【详解】解:①AB ∥CD ,AD ∥BC ,根据两组对边分别平行的四边形是平行四边形即可得到四边形是平行四边形;②AB CD =,AD BC =,根据两组对边分别相等的四边形是平行四边形即可得到四边形是平行四边形;;③AO CO =,BO DO =,根据对角线互相平分的四边形是平行四边形即可得到四边形是平行四边形;④AB ∥CD ,AD BC =,无法判定四边形是平行四边形.故选:C【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定定理是解题关键. 8.B解析:B【分析】根据三角形中位线定理解答即可.【详解】解:∵点D 和点E 分别是BC 和BA 的中点,∴DE 是△ABC 的中位线,∴DE =12AC =12⨯4=2, 故选:B .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.B解析:B【分析】根据已知条件和图形的变化可得前几个图形的最短边的长度,进而可得结论.【详解】解:在△A 1A 2A 3中,∠A 1A 3A 2=90°,∠A 2=30°,A 1A 3=1,A n+3是A n A n+1(n=1、2、3…)的中点,可知:A 4A 5//A 1A 3,A 3A 4=A 2A 4,∴∠A 3A 5A 4=90°,∠A 4A 3A 2=∠A 2=30°,∴△A 1A 2A 3是含30°角的直角三角形,同理可证△A n A n+1A n+2是含30°角的直角三角形.△A 1A 2A 3中最短边的长度为A 1A 3=1=012, △A 3A 4A 5中最短边的长度为A 4A 5=12=112, △A 5A 6A 7中最短边的长度为A 5A 7=21142=, …, 所以△A n A n+1A n+2中最短边的长度为1212n -,则△A 2019A 2020A 2021中最短边的长度为120211221122n --==101012. 故选:B .【点睛】 本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律.也考查了直角三角形斜边的中线,三角形的中位线,平行线的性质,含30°角的直角三角形的性质,以及等腰三角形的性质等知识.10.C解析:C【分析】根据直角三角形的性质得到AB=2BC ,利用勾股定理求出BC ,再根据三角形中位线定理求出DE .【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,∴AB=2BC ,设BC=x ,则AB=2x ,∴(2224x x =+, 解得:x=8或-8(舍),∴BC=8,∵D 是 AC 边的中点,DE AC ⊥,∴DE=12BC=4, 故选C .【点睛】本题考查了含30°角的直角三角形的性质,三角形的中位线的性质,熟练掌握直角三角形的性质是解题的关键.11.C解析:C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯=故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.12.B解析:B【分析】先根据三角形的中位线定理可求得DF 的长为2,然后作出点F 关于BC 的对称点F′,连接DF′交BC 于点E ,此时DEF 周长的最小,由轴对称图形的性质可知EF=EF′,从而可得到ED+EF=DF′,再证明四边形DBMF 为矩形,得出FF′=3,然后在Rt △DFF′中,由勾股定理可求得DF′的长度,从而可求得三角形DEF 周长的最小值.【详解】解:如图,作点F 关于BC 的对称点F′,连接DF′交BC 于点E .此时DE+EF 最小∵点D 、F 分别是AB 和AC 的中点,BC=4,3AB =,∴DF=12BC=2,DF//BC ,BD=1.5, ∵点F 与点F′关于BC 对称,∴EF=EF′,FF′⊥BC ,FM= F′M , ∴DE+EF 最小值为DE+ EF′=DF′,90DFF ∠'=︒,∵DF//BC ,90B ∠=︒,∴90B BDF FMB ∠=∠=∠=︒,∴四边形DBMF 为矩形,∴BD=FM=1.5,∴FF′=3,在Rt △DFF′中,2'2222313DF DF FF +=+='∴△DEF 周长的最小值=DF+D 13故选:B【点睛】本题主要考查的是轴对称路径最短问题,以及勾股定理,矩形的判定,作出点F 关于BC 的对称点,将DE+EF 转化为DF′的长是解题的关键.二、填空题13.3【分析】根据菱形的轴对称性可得AC 关于BD 对称当APE 三点共线时的值最小为AE 再根据三角形的面积即可得出答案【详解】解:∵四边形菱形∴AC 关于BD 对称∵点EC 在BD 的同侧∴当APE 三点共线时的值最 解析:3【分析】根据菱形的轴对称性可得A 、C 关于BD 对称,当A 、P 、E 三点共线时,PE PC +的值最小为AE ,再根据三角形的面积即可得出答案.【详解】解:∵四边形ABCD 菱形,∴A 、C 关于BD 对称,∵点E ,C 在BD 的同侧,∴当A 、P 、E 三点共线时,PE PC +的值最小,且最小值为AE ;∵以AD 为斜边的Rt AED △的面积为3, 2DE =, ∴112322⨯=⨯=AE DE AE , ∴AE=3, ∴PE PC +的最小值是3故答案为:3.【点睛】本题考查了菱形的性质、最短问题、面积法等知识,解题的关键是利用轴对称解决最值问题,是中考常考题型.14.【分析】根据作图过程可得MN 是AC 的垂直平分线可得EA=EC 再根据矩形性质和勾股定理即可得到结论【详解】解:在矩形ABCD 中∠B=90°根据作图过程可知:MN 是AC 的垂直平分线∴EA=EC ∴EA=C 解析:34【分析】根据作图过程可得MN 是AC 的垂直平分线,可得EA=EC ,再根据矩形性质和勾股定理即可得到结论.【详解】解:在矩形ABCD 中,∠B=90°,根据作图过程可知:MN 是AC 的垂直平分线,∴EA=EC ,∴EA=CE=BC-BE=2-BE ,在Rt △ABE 中,根据勾股定理,得222EA AB BE =+,∴22221BE BE -=+(),解得BE=34, 故答案为34. 【点睛】本题考查了作图-基本作图,线段垂直平分线的性质,矩形的性质,解决本题的关键是掌握基本作图方法.15.(答案不唯一)【分析】根据平行四边形的判定定理有一组对边平行且相等的四边形是平行四边形即可填写【详解】解:∵AD ∥BCAD=BC ∴四边形ABCD 是平行四边形故答案为:AD=BC (答案不唯一)【点睛】解析:AD BC =(答案不唯一)【分析】根据平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”即可填写.【详解】解:∵AD ∥BC ,AD=BC ,∴四边形ABCD 是平行四边形.故答案为:AD=BC (答案不唯一)【点睛】本题考查了平行四边形的判定,熟知平行四边形的判定定理是解题的关键,本题有多种答案,如可以根据平行四边形的定义填写AB ∥CD 等.16.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.17.【分析】由题意画出菱形根据菱形的对角线性质得继而解出由含30°角的直角三角形性质解得在中利用勾股定理解得进一步得到最后由菱形的面积公式解题即可【详解】解:如图菱形中在中设则解得菱形的面积故答案为:【 解析:183 【分析】 由题意画出菱形ABCD ,根据菱形的对角线性质得160,2BAC BAD AC BD ∠=∠=︒⊥,继而解出30ABO ∠=︒,由含30°角的直角三角形性质解得33BO =,在Rt ABO 中,利用勾股定理解得3AO =,进一步得到6AC =,最后由菱形的面积公式解题即可.【详解】解:如图,菱形ABCD 中,120BAD ∠=︒,160,2BAC BAD AC BD ∴∠=∠=︒⊥ 30ABO ∴∠=︒63BD =33BO ∴=在Rt ABO 中,设AO x =,则2AB x =,222(33)(2)x x ∴+=22274x x +=解得3x =3AO ∴=6AC ∴=∴菱形的面积6362183S =÷=故答案为:183.【点睛】本题考查菱形的性质、菱形的面积、含30°角的直角三角形、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.2【分析】平行四边形ADCE的对角线的交点是AC的中点O当OD⊥AB时OD最小即DE最小根据直角三角形勾股定理即可求解【详解】解:如图∵平行四边形ADCE的对角线的交点是AC的中点O又AB=AC=4解析:22【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥AB时,OD最小,即DE最小,根据直角三角形勾股定理即可求解.【详解】解:如图∵平行四边形ADCE的对角线的交点是AC的中点O,又AB=AC=4∴OC=OA=12AC=2当OD⊥AB时,OD最小,即DE最小.∵OD⊥BA,∠BAC=45°,∴∠AOD=45°∴△ADO为等腰直角三角形在Rt△ADO由勾股定理可知OD=222∴2故答案为:2【点睛】本题考查了勾股定理,平行四边形的性质,即平行四边形对角线互相平分,正确理解DE 最小值的条件是关键.19.【分析】由矩形ABCD证明求解再证明证明再利用勾股定理求解从而可得答案【详解】解:矩形ABCD故答案为:【点睛】本题考查的是勾股定理的应用等腰三角形的判定与性质矩形的性质掌握以上知识是解题的关键解析:【分析】由矩形ABCD ,4AB =,6BC =,12DE AE =,证明6,AD BC == 90,A ADC ∠=∠=︒求解4AB AE ==,再证明45FED AEB ∠=∠=︒,证明2DE DF ==, 再利用勾股定理求解,EF 从而可得答案.【详解】 解: 矩形ABCD ,4AB =,6BC =6,AD BC ∴== 90,A ADC ∠=∠=︒ 12DE AE =,,AE DE AD += 42AE DE ∴==,,4AB AE ∴==,45,AEB ∴∠=︒45,FED ∴∠=︒90ADC ∠=︒,90EDF ,∴∠=︒ 45DEF DFE ∴∠=∠=︒,2DE DF ∴==,EF ∴===224DEF C ∴=++=+故答案为:4+【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形的性质,掌握以上知识是解题的关键.20.【分析】先根据勾股定理求得AB 再做△ABD 的中位线EF 可得EF=3BF=DF=4从而可得CF=1再次利用勾股定理即可求得CE 【详解】解:∵AD 是BC 边上的高线AD=6AB=10∴∠D=90°∵CE 是【分析】先根据勾股定理求得AB ,再做△ABD 的中位线EF ,可得EF=3,BF=DF=4,从而可得CF=1,再次利用勾股定理即可求得CE .【详解】解:∵AD 是BC 边上的高线,AD =6,AB =10,∴∠D=90°,BD 8==,∵CE 是AB 边上的中线,CD =AE ,∴152CD AE BE AB ====, 取BD 的中点F,连接CF ,∴EF 为△ABD 的中位线,∴132EF AD ==,EF//AD , ∴∠EFB=∠D=90°, 在Rt △BEF 中,根据勾股定理,2222534BF BE EF =-=-=,∴DF=BD-BF=8-4=4,∴CF=CD-DF=5-4=1,在Rt △CEF 中,根据勾股定理,22221310CE CF EF +=+=10【点睛】本题考查三角形中位线的定理,勾股定理.能正确作出辅助线,构造直角三角形是解题关键.三、解答题21.103【分析】先根据三角形的面积公式求得BF 的长,然后根据勾股定理可求得AF=10,由翻折的性质和矩形的性质可知BC=10,故此FC=2,最后在△EFC 中,由勾股定理列方程求解即可.【详解】解:∵S △ABF =24,∴12AB•BF =24,即12×6×BF =24. 解得:BF=8.在Rt △ABF 中由勾股定理得:22AB BF +=10.由翻折的性质可知:BC=AD=AF=10,ED=FE .∴FC=10-8=2.设DE=x ,则EC=6-x .在Rt △EFC 中,由勾股定理得:EF 2=FC 2+EC 2,x 2=4+(6-x )2.解得:x=103, ∴DE=103. 【点睛】本题主要考查的是矩形与折叠、三角形的面积公式、勾股定理的应用,根据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】证明△ABE ≌△DCF ,得到AE=DF ,∠EAB=∠FDC ,推出AE ∥DF ,即可证明结论.【详解】解:∵AC=BD ,即AB+BC=CD+CB ,∴AB=CD ,∵∠EBC=∠FCB ,∴∠ABE=∠DCF ,在△ABE 和△DCF 中,AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (SAS ),∴AE=DF ,∠EAB=∠FDC ,∴AE ∥DF ,∴四边形AFDE 是平行四边形.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定,解题的关键是根据全等得到对应角和对应边相等.23.(1)如图所示,见解析;(2)见解析;(3)当ABAC 时,矩形BECD 是正方形,证明见解析.【分析】(1)根据角平分线及垂线的作图方法依次作图;(2)根据CD 是AB 的垂直平分线,推出∠CDB =90°,AC =BC ,利用CN 平分∠BCM 求出∠DCN =∠DCB +∠BCN =90°,由BE ⊥CN 求得∠BEC =90°,即可得到结论;(3)当AB时,矩形BECD 是正方形,由AD =BD ,ABAC ,求得BDAC ,根据AD ⊥CD ,∠CDB =90°,推出BD =CD ,由此得到矩形BECD 是正方形.【详解】(1)解:如图所示,(2)证明:∵ CD 是AB 的垂直平分线,∴ CD ⊥BD ,AD =BD ,∴ ∠CDB =90°,AC =BC ,∴ ∠DCB =12∠ACB , ∵ CN 平分∠BCM , ∴∠BCN =12∠BCM , ∵∠ACB +∠BCM =180°, ∴∠DCN =∠DCB +∠BCN =12(∠ACB +∠BCM )=90°, ∵ BE ⊥CN ,∴ ∠BEC =90°,∴ 四边形BECD 是矩形;(3)当AB 2时,矩形BECD 是正方形∵ AD =BD ,AB 2AC ,∴ BD 2, ∵ AD ⊥CD ,∠CDB =90°,∴ BD =CD ,∴ 矩形BECD 是正方形.【点睛】此题考查作图—角平分线、垂线,矩形的判定定理,正方形的判定定理,正确作图及熟练掌握矩形和正方形的判定定理是解题的关键.24.(1)见解析;(2)等边三角形,理由见解析【分析】(1)由菱形ABCD 边长与对角线都是2,知ABD △和BCD △都是等边三角形.可得60BDE BCF ∠=∠=︒,BD BC =,可证BDE BCF △≌△;(2)由BDE BCF △≌△,得DBE CBF ∠=∠,BE BF =,利用=60DBF DBE DBF CBF ∠+∠=∠+∠︒.可证BEF 为等边三角形.【详解】(1)证明:∵菱形ABCD 的边长为2,2BD =,∴ABD △和BCD △都是等边三角形.∴60BDE BCF ∠=∠=︒,BD BC =,∵2AE DE AD +==,而2AE CF +=,∴DE CF =,∴BDE BCF △≌△;(2)解:BEF 为等边三角形.理由如下:∵BDE BCF △≌△,∴DBE CBF ∠=∠,BE BF =,∵60DBC DBF CBF ∠=∠+∠=︒°,∴60DBF DBE ∠+∠=︒.即60EBF ∠=︒.∴BEF 为等边三角形.【点睛】 本题考查菱形的性质,等边三角形的判定与性质,三角形全等判定与性质,掌握菱形的性质,等边三角形的判定与性质,三角形全等判定与性质是解题解题关键.25.(1)见解析;(2)【分析】(1)先证明四边形ADCE 是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=AD ,即可得出四边形ADCE 为菱形;(2)过点D 作DF ⊥CE ,垂足为点F ;先证明△BCD 是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt △CDF 中,求出DF 即可.【详解】解:(1)证明:∵AE ∥CD ,CE ∥AB ,∴四边形ADCE 是平行四边形,∵∠ACB=90°,D 为AB 的中点,∴CD=AB=AD ,∴四边形ADCE 为菱形;(2)过点D 作DF ⊥CE ,垂足为点F ,如图所示:DF 即为菱形ADCE 的高,∵∠B=60°,CD=BD ,∴△BCD 是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE ∥AB ,∴∠DCE=∠BDC=60°,∴∠CDF=30°,又∵CD=BC=6,∴CF=3,∴在Rt △CDF 中,DF==.【点睛】本题考查了平行四边形的判定、菱形的判定、等边三角形的判定与性质、平行线的性质,熟练掌握直角三角形的性质,并能进行推理论证与计算是解决问题的关键.26.(1)见解析;(2)CE=CF ,理由见解析;(3)522【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG ∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt △ADK ≌Rt BAG ,则AK =BG =12,DK =AG =5,∵AF +FK =AK =BG=GF=AG +AF∴FK =AG =5在R t △DFK 中,根据勾股定理可得,DF 2252DK FK +=②点F在AB左侧时,如图,过D作DK⊥AG,交其延长线于K.方法同①,可得FK=AG=12,在R t△DFK中,根据勾股定理可得,DF22122+=DK FK综上所述,DF的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.。

人教版八年级数学下册《平行四边形判定》题选

人教版八年级数学下册《平行四边形判定》题选

初中数学试卷金戈铁骑整理制作《平行四边形的判断》题选一、选择题1.( 2013?牡丹江)如图,四边形ABCD 中, AB=CD,对角线AC, BD 订交于点O, AE⊥BD 于点 E, CF⊥ BD 于点 F,连接 AF, CE,若 DE=BF,则以下结论:①CF=AE;② OE=OF;③四边形 ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B. 3C. 2D. 1答案: B2.( 2013?泸州)四边形 ABCD中,对角线AC、BD 订交于点O,以下条件不能够判断这个四边形是平行四边形的是()A. AB∥ DC, AD∥ BC B. AB=DC,AD=BCC. AO=CO, BO=DO D. AB∥ DC, AD=BC答案:D3.( 2013?荆门)四边形ABCD中,对角线AC、 BD 订交于点 O,给出以下四个条件:①AD∥ BC;② AD=BC;③ OA=OC;④ OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3 种B.4 种C.5 种D.6 种答案:B4.( 2012?巴中)不能够判断一个四边形是平行四边形的条件是()A.两组对边分别平行B.一组对边平行,另一组对边相等C.一组对边平行且相等D.两组对边分别相等答案: B5.( 2011?张家界)按次连接任意四边形四边中点所得的四边形必然是()A.平行四边形B.矩形C.菱形D.正方形答案: A6.( 2011?泰州)四边形 ABCD 中,对角线AC、 BD 订交于点 O,给出以下四组条件:① AB ∥CD,AD∥ BC;② AB=CD,AD=BC;③ AO=CO,BO=DO;④ AB∥CD, AD=BC.其中必然能判断这个四边形是平行四边形的条件共有()A.1 组B.2 组C.3 组D.4 组答案: C7.( 2010?成都)已知四边形ABCD,有以下四个条件:① AB∥ CD;② AB=CD;③ BC∥ AD;④ BC=AD.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有()A.6 种B.5 种C.4 种D.3 种答案: C8.(2003?烟台)已知一个凸四边形ABCD的四条边的长按次是 a、b、c、d,且 a2+ab-ac-bc=0,b2+bc-bd-cd=0 ,那么四边形ABCD是()A.平行四边形B.矩形 C.菱形 D.梯形答案: A9.( 1998?内江)能判断四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等答案: D10.( 2001?宁夏)下面给出的条件中,能判断四边形ABCD为平行四边形的是()A. AB∥ CD, AD=BC B.AB=CD, AD=BCC. AB=AD, CB=CD D.∠ B=∠C,∠ A=∠ D答案: D二、填空题1.(2013?三明)如图,在四边形ABCD中,AB∥ CD,请你增加一个条件,使得四边形ABCD成为平行四边形,你增加的条件是.答案: AB=CD,答案不唯一 .2.( 2013?黑龙江)以下列图,平行四边形ABCD的对角线AC、BD订交于点O,试增加一个条件:,使得平行四边形ABCD为菱形.答案: AC⊥ BD三、解答题1.( 2013?镇江)如图,AB∥ CD,AB=CD,点E、F在BC上,且BE=CF.(1)求证:△ABE≌ △DCF;(2)试证明:以 A、F、D、E为极点的四边形是平行四边形.证明:(1)如图,∵AB∥ CD,∴∠B=∠ C.∵在△ABE与△DCF中,∴ △ ABE≌ △ DCF( SAS);(2)如图,连接 AF、DE.由(1)知,△ABE≌ △DCF,∴AE=DF,∠ AEB=∠ DFC,∴∠ AEF=∠ DFE,∴AE∥ DF,∴以 A、F、D、E为极点的四边形是平行四边形.2.(2013?梧州)如图,已知:AB∥ CD,BE⊥AD,垂足为点 E,CF⊥ AD,垂足为点 F,并且 AE=DF.求证:四边形 BECF是平行四边形.证明:∵ BE⊥ AD, BE⊥ AD,∴ ∠ AEB=∠ DFC=90°,∵AB∥ CD,∴∠A=∠ D,在△AEB与△DFC中,AEB DFCAE DFA D∴⊿ AEB≌ ⊿ DFC(ASA)∴BE=CF.∵BE⊥AD,BE⊥AD,∴ BE∥ CF.∴四边形 BECF是平行四边形.3.( 2013?郴州)如图,已知BE∥ DF,∠ ADF=∠ CBE,AF=CE,求证:四边形DEBF是平行四边形.证明:∵BE∥ DF,∴ ∠ BEC=∠ DFA,在△ADF和△CBE中ADF CBEAFD CEBAF CE∴ △ ADF≌ △ CBE( AAS),∴BE=DF,又∵ BE∥ DF,∴四边形 DEBF是平行四边形.4.( 2013?鞍山)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥ BE.求证:(1)△ AFD≌ △ CEB;(2)四边形 ABCD是平行四边形.证明:(1)∵DF∥ BE,∴ ∠ DFE=∠ BEF.又∵ AF=CE,D F=BE,∴ △ AFD≌ △ CEB( SAS).(2)由( 1)知△AFD≌ △CEB,∴ ∠ DAC=∠ BCA, AD=BC,∴ AD∥ BC.∴四边形 ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).5.(2012?淄博)如图,在?ABCD中,点 E、F 分别在 BC、AD上,且 AF=CE.求证四边形AECF是平行四边形.证明:∵四边形 ABCD是平行四边形,∴AD∥ BC∴AF∥CE.又∵AF=CE,∴四边形 AECF是平行四边形.6.(2012?泰州)如图,四边形 ABCD中,AD∥ BC, AE⊥ AD 交 BD于点 E,CF⊥ BC 交 BD 于点 F,且 AE=CF.求证:四边形 ABCD是平行四边形.证明:∵ AE⊥ AD, CF⊥ BC,∴ ∠ EAD=∠ FCB=90°,∵AD∥ BC,∴ ∠ ADE=∠ CBF,在 Rt△ AED 和 Rt△ CFB 中,ADE CBFEAD FCB90AE CF∴Rt△ AED≌ Rt△ CFB( AAS),∴AD=BC,∵AD∥ BC,∴四边形 ABCD是平行四边形.7.(2012?东莞)已知:如图,在四边形 ABCD中,AB∥ CD,对角线 AC、BD订交于点 O,BO=DO.求证:四边形 ABCD是平行四边形.证明:∵AB∥ CD,∴ ∠ ABO=∠ CDO,在△ ABO与△ CDO中,ABO CDOOB ODAOB COD∴ △ ABO≌ △ CDO,∴AB=CD,∴四边形 ABCD是平行四边形.8.( 2012?定西)如图,已知△ ABC是等边三角形,点 D、F 分别在线段 BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形 EFCD是平行四边形;(2)若 BF=EF,求证: AE=AD.证明:(1)∵ △ABC是等边三角形,∴ ∠ ABC=60°,∵ ∠ EFB=60°,∴ ∠ ABC=∠ EFB,∴EF∥ DC(内错角相等,两直线平行),∵DC=EF,∴四边形 EFCD 是平行四边形;( 2)连接 BE∵ BF=EF , ∠ EFB=60°,∴△EFB 是等边三角形, ∴EB=EF , ∠ EBF=60°∵ DC=EF , ∴ EB=DC ,∵△ABC 是等边三角形, ∴ ∠ ACB=60°, AB=AC , ∴ ∠ EBF=∠ ACB , ∴ △ AEB ≌ △ ADC ,∴ AE=AD .9.(2010?滨 州)如图,四边形 ABCD ,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.( 1)请判断四边形 EFGH 的形状?并说明为什么;( 2)若使四边形 EFGH 为正方形,那么四边形 ABCD 的对角线应拥有怎样的性质?解:(1)如图,四边形 EFGH 是平行四边形 . 连接 AC , BD ,∵E 、 F 分别是 AB 、BC 的中点,∴ EF ∥ AC , EF= 1AC2同理 HG ∥ AC , HG = 1AC2∴ EF ∥ HG , EF=HG∴ EFGH 是平行四边形;( 2)四边形 ABCD 的对角线垂直且相等 .∵四边形 EFGH 为正方形, ∴ EH ⊥ EF , EH=EF ,∵E 、 H 、F 分别是 AB 、DA 、BC 的中点,∴ EH= 1 BD,EF= 1AC22∴ BD=AC ,∵ EH 为三角形 ABD 的中位线, ∴ EH ∥ BD ,∴ ∠ HEF=∠ ENM=90°,∵EF 为三角形 ABC的中位线,∴EF∥ AC,∴ ∠ AMN=90°,∴ AC⊥ BD,∴ABCD的对角线应该互相垂直且相等.10.(2012?襄城区模拟)如图,已知△ ABC是等边三角形,D、E分别在边BC、AC上,且 CD=CE,连接 DE并延长至点 F,使 EF=AE,连接 AF、 BE和 CF.(1)求证:△BCE≌ △FDC;(2)判断四边形 ABDF是怎样的四边形,并说明原由.答案:(1)证明:∵△ABC是等边三角形,∴AC=BC=AB,∠ACB=60°;又∵ CD=CE,∴△EDC是等边三角形,∴DE=CD=CE,∠ DCE=∠EDC=60°,∵ EF=AE,∴EF+DE=AE+CE,∴FD=AC=BC,∴△ BCE≌ △ FDC( SAS);(2)解:四边形 ABDF是平行四边形;原由以下:∵由(1)知△ABC、△AEF、△DCE均为等边三角形,∴ ∠CDE=∠ ABC=∠ EFA=60°,∴AB∥ FD, BD∥ AF,∴四边形 ABDF是平行四边形.11. 如图,以△ABC的三边为边,在 BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形 AFED可否为平行四边形?若是是,请证明之,若是不是,请说明原由.解:四边形 AFED是平行四边形.证明以下:在△BED与△BCA中,BE=BC,BD=BA(均为同一等边三角形的边)∠DBE=∠ ABC=60° - ∠ EBA∴ △ BED≌ △ BCA( SAS)∴DE=AC又∵ AC=AF∴D E=AF在△ CBA 与△ CEF 中, CB=CE, CA=CF∠ACB=∠ FCE=60°+∠ ACE∴ △ CBA≌ △ CEF( SAS)∴BA=EF又∵ BA=DA,∴ DA=EF故四边形 AFED为平行四边形(两组对边分别相等的四边形是平行四边形).12.如图,已知△ABC为等边三角形,D、F 分别为 BC、AB边上的点,CD=BF,以 AD为边作等边△ADE.(1)△ACD和△CBF全等吗?请说明原由;(2)判断四边形 CDEF的形状,并说明原由;(3)当点 D在线段 BC上搬动到哪处时,∠DEF=30°.解:( 1)△ ACD≌ △ CBF证:∵△ABC为等边三角形∴AC=BC∠ACD=∠B=60°∵ CD=BF∴ △ ACD≌ △ CBF( SAS)(2)四边形 CDEF为平行四边形∵△ ACD≌ △ CBF∴ ∠ DAC=∠ BCF, CF=AD∵△AED是等边三角形∴AD=DE∴CF=DE①∵ ∠ ACG+∠ BCF=60°∴ ∠ ACG+∠ DAC=60°∴ ∠ AGC=180°- (∠ ACG+∠ DAC) =120°∴ ∠ DGF=∠ AGC=120°∵△AED是等边三角形∴ ∠ ADE=60°∴ ∠ DGF+∠ ADE=180°∴CF∥ DE②综合①②可得四边形 CDEF是平行四边形.( 3) ∵ AC=BC ,当点 D 是 BC 中点时,BF=CD=1 BC=1AB22∴CF 为 AB 边上的中线,CF 均分∠ACB ,1 ∴ ∠ DEF= ∠ ACB=30°,2∴当点 D 是 BC 中点时,∠DEF=30°.。

(部编)八年级数学下册《平行四边形判定》测试卷及

(部编)八年级数学下册《平行四边形判定》测试卷及

(部编)八年级数学下册?平行四边形判断?测试卷及平行四边形判断练习卷A8、如图,□ABCD中, E,F 分别是边BC和 AD上的点,且BE=DF,求证: AE=CF.一、知识点题型化1、以以下图,∠ 1=∠2,∠ 3=∠4,问四边形ABCD是不是平行四边形,为什么?2、能够判断四边形是平行四边形的条件是( )9、以以下图,□ ABCD中,AC、BD订交于点O,E、F在对角线BD上,且BE DF.试说明四A.一组对角相等 B .两条对角线互相垂直 C .两条对角线互相均分D .一条邻角互补边形 AECF 的形状.3、以以下图, DE是△ ABC的中位线, BC=8,那么 DE=_______.A DFOEB C三、整合提高1、,如图,在△ ABC中, BD是∠ ABC的均分线, DE∥ BC交 AB于 E,EF∥AC交 BC于 F,那么 BE= FC,1 题图3题图4题图为什么?4、如图,在□ABCD中,对角线 AC,BD交于点 O,OE∥BC交 CD?于 E,假设 OE=3,那么 AD的长为。

5、下面各条件中,能判断四边形是平行四边形的是〔〕A、对角线互相垂直B、对角线互相均分C、一组对角相等D、一组对边相等6、四边形形ABCD中, AD‖BC,要判断四边形 ABCD是平行四边形,还应满足〔〕A、∠ A+∠ C=180° B 、∠ B+∠ D=180°C、∠ A+∠ B=180°D、∠ A+∠ D=180°AED7、以下条件,得不到平行四边形的是〔〕A、 AB= CD, AD= BC B 、AB‖C D, AB= CD C、 AB= CD,AD‖BC D、AB‖CD,AD‖BCB F C二、夯实基础2、一个四边形的边长依次为a, b, c, d,且 a2+b2+c2+d2= 2ac+2bd,那么这个四边形是。

1、以下三个命题,其中错误的命题的个数是。

3、:如图,在△ABC中,中线 BE,CD交于点 O, F,G分别是 OB, OC的中点.求证:四边形DFG⑴两组对角分别相等的四边形是平行四边形是平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形判定测试题2014-4-3
一、选择题
1.(2013•泸州)四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四
④两条对角线相等. 以上四种条件中,可以判定四边形ABCD 是平行四边形的有( )
A .1个
B .2个
C .3个
D .4个
3.(2013·泰安)如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( )
A .2
B .4
C .4
D .8
4.(2013•荆门)四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:

AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD
(A)AB ∥CD ,AD=BC (B)AB=AD ,CB=CD
(C)AB=CD ,AD=BC (D)∠B=∠C ,∠A=∠D
6.(2013•钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A 地到B 地的路线图(箭头表示行
条件,这个条件可以是( )
①AF=CF ;②AE=CF ;③∠BAE=∠FCD ;④∠BEA=∠FCE
A .①或②
B .②或③
C .③或④
D .①或③或④
8.
下列条件中,能判定四边形是平行四边形的条件是( ) A.一组对边平行,另一组对边相等 B.一组对边平行,一组对角相等 C.一组对边平行,一组邻角互补 D.一组对边相等,一组邻角相等
9.如图,已知□ABCD 的对角线交点是O ,直线EF 过O 点,且平行于BC ,直线GH 过且平行于AB ,则图中共有( )个平行四边形.
A.5
B.6
C.7
D.10
10..以下结论正确的是( )
A.对角线相等,且一组对角也相等的四边形是平行四边形
B.一边长为5cm ,两条对角线分别是4cm 和6cm 的四边形是平行四边形 1题图 3题图 6题图 7题图 9题图
C.一组对边平行,且一组对角相等的四边形是平行四边形
D.对角线相等的四边形是平行四边形
11.如图,在△ABC 中,DE ∥AB ,FD ∥BC ,EF ∥AC ,则下列说法中正确的有( )个。

①图中共有三个平行四边形; ②AF=BF ,CE=BE ,AD=CD ;
③EF=DE=DF ; ④图中共有三对全等三角形。

A .1
B .2
C .3
D .4
二、填空题
1.用两个全等三角形拼成的四边形,有下列说法①一定是平行四边形,②可能是平行四边形,③一定不是平行四边形,其中正确的说法是 .
2.已知四边形ABCD 中,AD ∥BC ,分别添加下列条件,①AB ∥CD ,②AB =DC ,③AD =BC ,④∠A =∠C ,⑤∠B =∠C ,能使四边形ABCD 成为平行四边表的条件的序号是 .
3.如图,等边三角形ABC 的边长为a ,P 为△ABC 内一点,且PD ∥AB ,PE ∥BC ,PF ∥AC ,那么,PD+PE+PF =
4.已知等腰三角形ABC 的一腰,AB =9cm ,过底边上任一点P 作两腰的平行线分别交AB 于M ,交AC 于N ,则AM+AN = .
三、解答题
1.(2013•郴州)如图,已知BE ∥DF ,∠ADF=∠CBE ,AF=CE ,求证:四边形DEBF 是平行四边形.
2.(2013·年广州市)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ′BD.
(1) 利用尺规作出△A ′BD .(要求保留作图痕迹,不写作法);
(2)设D A ′ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .
11题图 3题图
3.(2013·鞍山)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF=CE ,DF=BE ,DF ∥BE .
求证:(1)△AFD ≌△CEB ;
(2)四边形ABCD 是平行四边形.
4.(2013·北京)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=2
1BC ,连结DE ,CF 。

(1)求证:四边形CEDF 是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE 的长。

5.(2013·甘肃兰州)如图1,在△OAB 中,∠OAB=90°,∠AOB=30°,OB=8.以OB 为边,在△OAB 外作等边△OBC ,D 是OB 的中点,连接AD 并延长交OC 于E .
(1)求证:四边形ABCE 是平行四边形;
(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.
参考答案:
一、选择题
1.D;
2.B;
3.B;
4.B;
5.C;
6.D;
7.C;
8.B;
9.D;10.C;11.B;
二、填空题
1.①;
2.①③⑤;
3.a;
4.9;
三、解答题
1. 证明:∵BE∥DF,
∴∠BEC=∠DFA,
在△ADF和△CBE中,
∴△ADF≌△CBE(AAS),
∴BE=DF,
又∵BE∥DF,
∴四边形DEBF是平行四边形.
2. 解:(1)如图:①作∠A′BD=∠ABD,
②以B为圆心,AB长为半径画弧,交BA′于点A′,
③连接BA′,DA′,
则△A′BD即为所求;
(2)∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠C,
由折叠的性质可得:∠BA′D=∠BAD,A′B=AB,
∴∠BA′D=∠C,A′B=CD,
在△BA′E和△DCE中,

∴△BA′E≌△DCE(AAS).
3. 解答:证明:(1)∵DF∥BE,
∴∠DFE=∠BEF.
又∵AF=CE,DF=BE,
∴△AFD≌△CEB(SAS).
(2)由(1)知△AFD≌△CEB,
∴∠DAC=∠BCA,AD=BC,
∴AD∥BC.
4.
5.
(1)证明:∵Rt△OAB中,D为OB的中点,
∴DO=DA,
∴∠DAO=∠DOA=30°,∠EOA=90°,
∴∠AEO=60°,
又∵△OBC为等边三角形,
∴∠BCO=∠AEO=60°,
∴BC∥AE,
∵∠BAO=∠COA=90°,
∴CO∥AB,
∴四边形ABCE是平行四边形;
(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,
∵∠OAB=90°,∠AOB=30°,BO=8,
∴AO=BO•cos30°=8×=4,
在Rt△OAG中,OG2+OA2=AG2,
x2+(4)2=(8﹣x)2,
解得:x=1,
∴OG=1.。

相关文档
最新文档