华师大版七年级数学(下)同步测试卷
华师大版初中数学七年级下册《8.2.1 不等式的解集》同步练习卷(含答案解析
华师大新版七年级下学期《8.2.1 不等式的解集》同步练习卷一.选择题(共31小题)1.若关于x的不等式(a﹣b)x>a﹣b的解集是x<1,那么下列结论正确的是()A.a>b B.a<bC.a=b D.无法判断a、b的大小2.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.3.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<54.若不等式组有解,则m的取值范围为()A.m>1B.m≥1C.m<1D.m≤15.若(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m>1B.m≤﹣1C.m<1D.m≥16.若关于x的一元一次不等式组有解,则m的取值范围是()A.m≥﹣8B.m≤﹣8C.m>﹣8D.m<﹣8 7.一元一次不等式2x+1≥3的解在数轴上表示为()A.B.C.D.8.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3 9.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为()A.﹣1B.0C.1D.210.已知不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a<2C.a=2D.a>211.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>412.不等式组的解表示在数轴上,正确的是()A.B.C.D.13.如果不等式ax+4<0的解集在数轴上表示如图,那么()A.a>0B.a<0C.a=﹣2D.a=214.若不等式(a﹣3)x>a﹣3的解集是x<1,则a的取值范围是()A.a>3B.a>﹣3C.a<3D.a<﹣315.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.16.关于x的不等式ax>b的解集是,则()A.a>0B.a<0C.a≤0D.a≥017.已知不等式ax<b的解集为,则有()A.a<0B.a>0C.a<0,b>0D.a>0,b<0 18.把不等式x+2>4的解表示在数轴上,正确的是()A.B.C.D.19.下列不等式中,解集为空集的是()A.B.C.D.20.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.21.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.22.若不等式组的解集是x>3,则m的取值范围是()A.m≤B.m<C.m≥D.m=23.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.24.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.25.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.26.如图,用不等式表示数轴上所示不等式组的解集,正确的是()A.x<﹣1或x≥﹣3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤327.不等式x≥2的解集在数轴上表示为()A.B.C.D.28.不等式组的解集在数轴上表示,正确的是()A.B.C.D.29.不等式2(x+1)<3x的解集在数轴上表示出来应为()A.B.C.D.30.不等式组的解集在数轴上可表示为()A.B.C.D.31.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0B.﹣3C.﹣2D.﹣1二.填空题(共7小题)32.不等式组的解集是x>4,那么m的取值范围是.33.若不等式组有实数解,则实数m的取值范围是.34.已知关于x的不等式组无解,则a的取值范围是.35.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.36.不等式组的解集是x>4,那么m的取值范围是.37.不等式6﹣12x<0的解集是.38.不等式组的解集是;不等式组的解集是.三.解答题(共2小题)39.在数轴上表示下列不等式的解集:(1)x<﹣2(2)x≥140.已知x=3是关于x的不等式的解,求a的取值范围.华师大新版七年级下学期《8.2.1 不等式的解集》同步练习卷参考答案与试题解析一.选择题(共31小题)1.若关于x的不等式(a﹣b)x>a﹣b的解集是x<1,那么下列结论正确的是()A.a>b B.a<bC.a=b D.无法判断a、b的大小【分析】由已知不等式的解集确定出a与b的大小即可.【解答】解:∵关于x的不等式(a﹣b)x>a﹣b的解集是x<1,∴a﹣b<0,即a<b,故选:B.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.2.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由﹣x≤﹣1解得x≥1,由x+1>0解得x>﹣1,不等式的解集是x≥1,在数轴上表示如图,故选:A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<5【分析】先把a看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【解答】解:由>1得,x>,由>0得,x>﹣,∵关于x的不等式>1的解都是不等式>0的解,∴≥﹣,解得a≤5.即a的取值范围是:a≤5.故选:C.【点评】本题考查了不等式的解集,解一元一次不等式,分别求出两个不等式的解集,再根据同大取大列出关于a的不等式是解题的关键.4.若不等式组有解,则m的取值范围为()A.m>1B.m≥1C.m<1D.m≤1【分析】根据不等式组有解的口诀解答即可.【解答】解:∵不等式组有解,∴m的取值范围为m>1.故选:A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.若(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m>1B.m≤﹣1C.m<1D.m≥1【分析】根据已知不等式的解集,利用不等式的基本性质求出m的范围即可.【解答】解:∵(m﹣1)x>m﹣1的解集为x<1,∴m﹣1<0,解得:m<1,故选:C.【点评】本题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.6.若关于x的一元一次不等式组有解,则m的取值范围是()A.m≥﹣8B.m≤﹣8C.m>﹣8D.m<﹣8【分析】首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【解答】解:,解①得:x≤m,解②得:x>﹣4,根据题意得:m>﹣4,解得:m>﹣8.故选:C.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.7.一元一次不等式2x+1≥3的解在数轴上表示为()A.B.C.D.【分析】先移项、合并同类项、化系数为1即可求出x的取值范围,再把x的取值范围在数轴上表示出来即可.【解答】解:2x+1≥32x≥2x≥1,故选:A.【点评】本题考查的是解一元一次不等式及在数轴上表示不等式的解集,在解答此题时要注意实心圆点与空心圆点的区别.8.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为()A.﹣1B.0C.1D.2【分析】首先解不等式组,求得其解集,又由,即可求得不等式组的解集,则可得到关于a的方程,解方程即可求得a的值.【解答】解:∵的解集为:﹣2≤x<a﹣1,又∵,∴﹣2≤x<1,∴a﹣1=1,∴a=2.故选:D.【点评】此题考查了在数轴上表示不等式的解集.注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.已知不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a<2C.a=2D.a>2【分析】根据不等式组的求解规律:大大取较大,小小取较小,大小小大中间找,大大小小无解,探究a的取值范围即可.【解答】解:由不等式组的解集是x>2,因此a的取值范围是a≤2.故选:A.【点评】本题考查了不等式组解集的求解方法.注意,这里的a可以等于2.11.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>4【分析】利用不等式组取解集的方法判断即可得到m的范围.【解答】解:∵等式组的解集是x>4,∴m≤4,故选:A.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.12.不等式组的解表示在数轴上,正确的是()A.B.C.D.【分析】先解不等式组求得解集,再在数轴上表示出来.【解答】解:解不等式组得﹣1<x≤2,所以在数轴上表示为故选:D.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.如果不等式ax+4<0的解集在数轴上表示如图,那么()A.a>0B.a<0C.a=﹣2D.a=2【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【解答】解:解关于x的不等式ax+4<0,ax<﹣4,所以当a>0时,x<﹣;a<0时,x>﹣;a=0时,无解.由图可知,不等式的解集为x>2,故,a=﹣2.故选:C.【点评】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.14.若不等式(a﹣3)x>a﹣3的解集是x<1,则a的取值范围是()A.a>3B.a>﹣3C.a<3D.a<﹣3【分析】不等式两边同时除以a﹣3即可求解不等式,根据不等式的性质可以得到a﹣3一定小于0,据此即可求解.【解答】解:根据题意得:a﹣3<0,解得:a<3.故选:C.【点评】本题考查了不等式的解法,解答此题学生一定要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.15.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.【分析】首先由数轴上表示的不等式组的解集为:﹣1≤x≤2,然后解各不等式组,即可求得答案,注意排除法在解选择题中的应用.【解答】解:如图:数轴上表示的不等式组的解集为:﹣1≤x≤2,A、解得:此不等式组的解集为:﹣1≤x≤2,故本选项正确;B、解得:此不等式组的解集为:x≤﹣1,故本选项错误;C、解得:此不等式组的无解,故本选项错误;D、解得:此不等式组的解集为:x≥2,故本选项错误.故选:A.【点评】此题考查了在数轴上表示不等式解集的知识.此题比较简单,注意掌握不等式组的解法是解此题的关键.16.关于x的不等式ax>b的解集是,则()A.a>0B.a<0C.a≤0D.a≥0【分析】根据题意可得,不等式两边除以a后,不等式变号,从而可得出a的取值范围.【解答】解:∵ax>b的解集是,∴a<0.故选:B.【点评】此题考查了不等式的性质,注意掌握不等式两边同时除以一个负数,不等式变号.17.已知不等式ax<b的解集为,则有()A.a<0B.a>0C.a<0,b>0D.a>0,b<0【分析】求不等式ax<b的解集两边同时除以a,而解集是为,即原不等式两边同时除以a,不等号的方向改变,因而a的范围即可确定.【解答】解:ax<b的解集两边同时除以a,而解集是为,即原不等式两边同时除以a,不等号的方向改变,则a<0.故选:A.【点评】本题主要考查了不等式的性质,不等式的左右两边同时除以同一个负数时,不等号的方向要改变.18.把不等式x+2>4的解表示在数轴上,正确的是()A.B.C.D.【分析】利用解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1,进行解方程.【解答】解:移项得,x>4﹣2,合并同类项得,x>2,把解集画在数轴上,故选:B.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错19.下列不等式中,解集为空集的是()A.B.C.D.【分析】根据不等式组解集的确定方法:两大取大,两小取小,大小小大,中间找,大大小小无处找,即可确定.【解答】解:A、空集,故选项正确;B、解集是:x<﹣2,故选项错误;C、解集是:﹣3<x<7,故选项错误;D、解集是:x>3,故选项错误.【点评】本题考查了不等式组的解集的确定方法,正确理解法则是关键.20.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【分析】根据数轴上表示不等式解集的方法进行解答即可.【解答】解:∵此不等式不包含等于号,∴可排除B、D,∵此不等式是小于号,∴应向左化折线,∴A错误,C正确.故选:C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.21.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.【分析】先根据数轴上表示不等式解集的方法求出此不等式组的解集,再分别求出四个选项中不等式组的解集,找出符合条件的不等式组即可.【解答】解:由数轴上不等式解集的表示方法可知,此不等式组的解集为:﹣1<x<3.A、,由①得,x>﹣1,由②得,x>3,所以此不等式组的解集为:x>3,故本选项错误;B、,由①得,x>﹣1,由②得,x<3,所以此不等式组的解集为:﹣1<x<3,故本选项正确;C、,由①得,x<﹣1,由②得,x>3,所以此不等式组无解,故本选项错误;D、,由①得,x<﹣1,由②得,x<3,所以此不等式组的解集为:x<﹣1,故本选项错误.故选:B.【点评】本题考查的是在数轴上表示不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.22.若不等式组的解集是x>3,则m的取值范围是()A.m≤B.m<C.m≥D.m=【分析】解第一个不等式得到x>3,由于不等式的解集是x>3,则对于mx<﹣1要得到x>﹣,即m为负数,再根据同大取大得3≥﹣,然后再解关于m的不等式即可.【解答】解:解x+8<4x﹣1得x>3,∵不等式组的解集是x>3,∴解mx<﹣1得x>﹣(m<0),∴3≥﹣,∴3m≤﹣1,∴m≤﹣.故选:A.【点评】本题考查了不等式组的解集:先解出各个不等式的解集,再根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.23.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选:C.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.第二象限的点横坐标为<0,纵坐标>0.24.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.【分析】先移项再系数化1,然后从数轴上找出.【解答】解:2x﹣4≤02x≤4x≤2故选:B.【点评】本题既考查了一元一次不等式的解法又考查了数轴的表示方法.25.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式2x+3≥5的解集是x≥1,大于应向右画,且包括1时,应用点表示,不能用空心的圆圈,表示1这一点,据此可求得不等式的解集以及解集在数轴上的表示.【解答】解:不等式移项,得2x≥5﹣3,合并同类项得2x≥2,系数化1,得x≥1;∵包括1时,应用点表示,不能用空心的圆圈,表示1这一点;故选:D.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心圆点,没有等于号的画空心圆圈.26.如图,用不等式表示数轴上所示不等式组的解集,正确的是()A.x<﹣1或x≥﹣3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.27.不等式x≥2的解集在数轴上表示为()A.B.C.D.【分析】数轴上的数右边的数总是大于左边的数,因而不等式x≥2的解集是指2以及2右边的部分.【解答】解:不等式x≥2,在数轴上的2处用实心点表示,向右画线.故选:C.【点评】本题考查在数轴上表示不等式的解析,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.28.不等式组的解集在数轴上表示,正确的是()A.B.C.D.【分析】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),如果数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.【解答】解:由于x<1,所以表示1的点应该是空心点,折线的方向应该是向左,由于x≥0,所以表示0的点应该是实心点,折线的方向应该是向右,如图:故选:C.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.29.不等式2(x+1)<3x的解集在数轴上表示出来应为()A.B.C.D.【分析】首先解不等式,把不等式的解集表示出来,再对照答案的表示法判定则可.【解答】解:去括号得:2x+2<3x移项,合并同类项得:﹣x<﹣2即x>2.故选:D.【点评】解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.30.不等式组的解集在数轴上可表示为()A.B.C.D.【分析】在表示数轴时,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.而它们相交的地方加上阴影即为不等式的解集在数轴上的表示.【解答】解:两个不等式的公共部分是在数轴上,5以及5右边的部分,因而解集可表示为:故选:D.【点评】注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.31.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0B.﹣3C.﹣2D.﹣1【分析】首先根据不等式的性质,解出x≤,由数轴可知,x≤﹣1,所以,=﹣1,解出即可;【解答】解:不等式2x﹣a≤﹣1,解得,x≤,由数轴可知,x≤﹣1,所以,=﹣1,解得,a=﹣1;故选:D.【点评】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二.填空题(共7小题)32.不等式组的解集是x>4,那么m的取值范围是m≤4.【分析】根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.【解答】解:不等式组的解集是x>4,得m≤4,故答案为:m≤4.【点评】本题考查了不等式组解集,求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.33.若不等式组有实数解,则实数m的取值范围是m≤2.【分析】根据大小小大中间找可得答案.【解答】解:由6﹣3x≥0,解得x≤2.由x﹣m≥0,解得x≥m,由不等式组有实数解,则实数m的取值范围是m≤2,故答案为:m≤2.【点评】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).34.已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).35.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是13≤a<15.【分析】表示出不等式的解集,由x=5是一个解,x=4不是它的解,确定出a的范围即可.【解答】解:不等式2x+5>a,解得:x>,由x=5是不等式的一个解,但x=4不是它的解,得到4≤<5,解得:13≤a<15,则a的取值范围是13≤a<15,故答案为:13≤a<15【点评】此题考查了不等式的解集,熟练掌握不等式解集的定义是解本题的关键.36.不等式组的解集是x>4,那么m的取值范围是m≤4.【分析】首先解不等式﹣x+2<x﹣6得x>4,而x>m,并且不等式组解集为x >4,由此即可确定m的取值范围.【解答】解:∵﹣x+2<x﹣6,解之得x>4,而x>m,并且不等式组解集为x>4,∴m≤4.【点评】此题主要考查了如何确定不等式组的解集,首先确定已知不等式的解集,然后结合不等式组的解集和另一个不等式的形式就可以确定待定系数m的取值范围.37.不等式6﹣12x<0的解集是x>.【分析】先移项,然后将系数化为1即可.【解答】解:移项得,﹣12x<﹣6,解得x>.【点评】本题主要考查了不等式的解法,解不等式时要注意,不等式两边都乘以或除以一个负数,要改变不等号的方向.38.不等式组的解集是x>1;不等式组的解集是x<1.【分析】根据求不等式组解集的方法求解即可.【解答】解:∵不等式组,∴此不等式组的解集为x>1;∵不等式组,∴此不等式组的解集为x<1.故答案为:x>1;x<1.【点评】本题考查的是不等式组的解集,熟知“同大取较大,同小取较小”的原则是解答此题的关键.三.解答题(共2小题)39.在数轴上表示下列不等式的解集:(1)x<﹣2(2)x≥1【分析】(1)在﹣2处用空心圆点,折线向左即可;(2)在1处用实心圆点,折线向右即可.【解答】解:(1)如图所示;;(2)如图所示..【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.40.已知x=3是关于x的不等式的解,求a的取值范围.【分析】先根据不等式,解此不等式,再对a分类讨论,即可求出a的取值范围.【解答】解:解得(14﹣3a)x>6当a<,x>,又x=3是关于x的不等式的解,则<3,解得a<4;当a>,x<,又x=3是关于x的不等式的解,则>3,解得a<4(与所设条件不符,舍去).综上得a的取值范围是a<4.【点评】本题考查了不等式的解的定义及一元一次不等式的解法,比较简单,注意分类讨论是解题的关键.。
七年级下数学同步练习册华东师大
《新课程课堂同步练习册·数学(华东版七年级下册)》参考答案第6章 一元一次方程§6.1 从实际问题到方程一、1.D 2. A 3. A二、1. x = - 6 2. 2x -15=25 3. x =3(12-x )三、1.解:设生产运营用水x 亿立方米,则居民家庭用水(5.8-x )亿立方米,可列方程为:5.8-x =3x+0.62.解:设苹果买了x 千克, 则可列方程为: 4x +3(5-x )=173.解:设原来课外数学小组的人数为x ,则可列方程为:)4(21431+=+x x§6.2 解一元一次方程(一) 一、1. D 2. C 3.A 二、1.x =-3,x =38 2.10 3. x =5三、1. x =7 2. x =4 3. x =37- 4. x =49 5. x =3 6. y =67-§6.2 解一元一次方程(二) 一、1. B 2. D 3. A 二、1.x =-5,y =3 2. 21 3. -3三、1. (1)x =31 (2)x =-2 (3)x =114 (4) x =-4 (5)x =83 (6)x=-22. (1)设初一(2)班乒乓球小组共有x 人, 得:9x -5=8x +2. 解得:x =7 (2)48人3. (1)x =-7 (2)x =-3§6.2 解一元一次方程(三)一、1. C 2. D 3. B 4. B 二、1. 1 2.34 3. 10三、1. (1) x =3 (2) x =7 (3)x =–1 (4)x =83-(5) x=4 (6) x=23-2. 3(31x -2) -4(x -41)=4 解得 x=-3 3. 3元§6.2 解一元一次方程(四) 一、1. B 2.B 3. D 二、1. 5 2. 1736, 23-3. 51-4. 15三、1. (1)y =52-(2)y =6 (3)49-=x (4)x =11172. 由方程3(5x -6)=3-20x 解得x =53,把x =53代入方程a -310x =2a +10x ,得a =-8.∴ 当a =-8时,方程3(5x -6)=3-20x 与方程a -310x =2a +10x 有相同的解.3.0)332(532=---x x 解得:x =9§6.2 解一元一次方程(五) 一、1.A 2. B 3. C二、1.2(x +8)=40 2. 4,6,8 3.2x +10=6x +5 4. 15 5. 160元 三、1. 设调往甲处x 人, 根据题意,得27+x =2[19+(20-x )]. 解得:x =172. 设该用户5月份用水量为x 吨,依题意,得1.2×6+2(x -6)=1.4 x . 解得 x=8. 于是1.4x =11.2(元) .3. 设学生人数为x 人时,两家旅行社的收费一样多. 根据题意,得 240+120x =144(x +1),解得 x =4. §6.3 实践与探索(一)一、1. B 2. B 3. A 二、1. 36 2.81131)290(22⨯=x π 3. 42,270三、1. 设原来两位数的个位上的数字为x ,根据题意,得10x +11-x =10(11-x )+x +63. 解得 x =9. 则原来两位数是29. 2.设儿童票售出x 张,则成人票售出(700-x )张.依题意,得30x +50(700-x )=29000 . 解得:x =300, 则700-x=700-300=400人.则儿童票售出300张,成人票售出400张.§6.3 实践与探索(二)一、1. A 2. C 3. C 二、1.51x +52x +1+1=x 2. 23.75% 3. 2045三、1. 设乙每小时加工x 个零件,依题意得,5(x +2)+4(2x +2)=200 解得x =14.则甲每小时加工16个零件,乙每小时加工14个零件.2. 设王老师需从住房公积金处贷款x 元,依题意得,3.6%x +4.77%(250000-x )=10170. 解得 x =150000.则王老师需从住房公积金处贷款150000元,普通住房贷款100000元.3. 设乙工程队再单独做此工程需x 个月能完成,依题意,得16)6141(2=++x 解得 x = 14.21小时第7章 二元一次方程组§7.1 二元一次方程组和它的解 一、1. C 2. C 3. B二、1. ⎩⎨⎧==12y x 2. 5 3. ⎪⎩⎪⎨⎧=+=-42230y x y x三、1. 设甲原来有x 本书、乙原来有y 本书,根据题意,得 ⎩⎨⎧+=--=+1010)10(510y x y x2. 设每大件装x 罐,每小件装y 罐,依题意,得⎩⎨⎧=+=+843212043y x y x .3. 设有x 辆车,y 个学生,依题意⎩⎨⎧=-=+yx y x )1(601545§7.2二元一次方程组的解法(一) 一、1. D 2. B 3. B 二、1. ⎩⎨⎧==41y x 2.略 3. 20三、1. ⎩⎨⎧==412y x 2. ⎩⎨⎧-=-=31y x 3. ⎩⎨⎧-==32y x 4. ⎪⎪⎩⎪⎪⎨⎧==14111413y x§7.2二元一次方程组的解法(二)一、1. D 2. C 3. A 二、1.568-x ,856y + 2. 18,12 3. ⎩⎨⎧==13y x三、1. ⎩⎨⎧==15y x 2. ⎩⎨⎧==11y x 3. ⎪⎩⎪⎨⎧-==412y x 4. ⎩⎨⎧==32y x 四、设甲、乙两种蔬菜的种植面积分别为x 、y 亩,依题意可得:⎩⎨⎧=+=+138001*********y x y x 解这个方程组得⎩⎨⎧==64y x§7.2二元一次方程组的解法(三) 一、1. B 2.A 3.B 4. C 二、1. ⎩⎨⎧==34y x 2. 9 3. 180,20三、1.⎩⎨⎧==13y x 2.⎪⎩⎪⎨⎧-==761y x 3. ⎪⎩⎪⎨⎧-=-=1611y x ⎩⎨⎧-==284y x 四、设金、银牌分别为x 枚、y 枚,则铜牌为(y +7)枚,依题意,得⎩⎨⎧+++==+++2)7(100)7(y y x y y x 解这个方程组,⎩⎨⎧==2151y x , 所以 y +7=21+7=28.§7.2二元一次方程组的解法(四)一、1. D 2. C 3. B二、1. ⎩⎨⎧==35y x 2. 3, 52-3. -13三、1. 1.⎩⎨⎧==33y x 2. ⎪⎩⎪⎨⎧-==325y x 3.⎩⎨⎧==12y x 4. ⎩⎨⎧==75y x 5.⎩⎨⎧==50y x 6.⎪⎩⎪⎨⎧==373y x四、设小明预订了B 等级、C 等级门票分别为x 张和y 张. 依题意,得 ⎩⎨⎧⨯=+=+.3500150300,7y x y x 解这个方程组得⎩⎨⎧==.4,3y x§7.2二元一次方程组的解法(五) 一、1. D 2. D 3. A二、1. 24 2. 6 3. 28元, 20元 三、1. (1)(2)由(1)得:⎩⎨⎧=+=+1000008000600015y x y x 解得⎩⎨⎧==510y x∴7058103=⨯+⨯ 答:这批蔬菜共有70吨.2.设A 种篮球每个x 元,B 种篮球每个y 元,依题意,得⎩⎨⎧=+=+840812720146y x y x 解得⎩⎨⎧==3050y x 3.设不打折前购买1件A 商品和1件B 商品需分别用x 元,y 元,依题意,得⎩⎨⎧=+=+10836845y x y x 解这个方程组,得⎩⎨⎧==.416y x 因此50×16+50×4-960=40(元). §7.3实践与探索(一)一、1. C 2. D 3.A二、1. 72 2. ⎪⎩⎪⎨⎧=+-=9)(232y x y x 3. 14万,28万三、1.设甲、乙两种商品的原销售价分别为x 元,y 元,依题意,得 ⎩⎨⎧=+=+386%90%70500y y x 解得⎩⎨⎧==180320y x2. 设沙包落在A 区域得x 分,落在B 区域得y 分, 根据题意,得⎩⎨⎧=+=+3222343y x y x 解得 ⎩⎨⎧==79y x ∴307393=⨯+=+y x 答:小敏的四次总分为30分. 3.(1)设A 型洗衣机的售价为x 元,B 型洗衣机的售价为y 元, 则据题意,可列方程组5001313351.y x x y -=⎧⎨%+%=⎩,解得11001600.x y =⎧⎨=⎩,(2)小李实际付款:1100(113)957-%=(元);小王实际付款:1600(113)1392-%=(元). §7.3实践与探索(二)一、1. A 2. A 3.D二、1. 55米/分, 45米/分 2. 20,18 3.2,1三、1. 设这个种植场今年“妃子笑”荔枝收获x 千克,“无核Ⅰ号”荔枝收获y 千克.根据题意得 320081230400x y x y +=⎧⎨+=⎩,.解这个方程组得20001200x y =⎧⎨=⎩,.2.设一枚壹元硬币x 克,一枚伍角硬币y 克,依题意得:⎩⎨⎧+==+.10201510105y x y x 解得:⎩⎨⎧==.46y x3.设原计划生产小麦x 吨,生产玉米y 吨,根据题意,得1812102018.x y x y +=⎧⎨+=-⎩,%%解得108.x y =⎧⎨=⎩,10×(1+12%)=11.2(吨),8×(1+10%)=8.8(吨).4. 略5. 40吨第8章 一元一次不等式§8.1 认识不等式一、1.B 2.B 3.A二、1. <;>;> ; > 2. 2x +3<5 3. 2433t ≤≤ 4. ω≤50 三、1.(1)2x -1>3;(2)a +7<0;(3)a 2+b 2≥0;(4)m3 ≤-2;(5)∣a -4∣≥a ;(6)-2<2y +3<4. 2.80+20n >100+16n ; n =6,7,8,… §8.2 解一元一次不等式(一) 一、1.C 2.A 3.C二、1.3,0,1,32 ,- 103;2-,4-,0,1 2. x ≥-1 3. -2<x <2 4. x <16三、1.不能,因为x <0不是不等式3-x >0的所有解的集合,例如x =1也是不等式3-x >0的一个解. 2.略 §8.2 解一元一次不等式(二) 一、1. B 2. C 3.A二、1.>;<;≤ 2. x ≥-3 3. >三、1. x >3; 2. x ≥-2 3.x <534. x >5四、x ≥-1 图略 五、(1)34>x (2)34=x (3) 34<x§8.2 解一元一次不等式(三) 一、1. C 2.A二、1. x ≤-3 2. x ≤- 943. k >2三、1. (1)x >-2 (2)x ≤-3 (3)x ≥-1 (4)x <-2 (5)x ≤5 (6) x ≤-1 (图略)2. x ≥257 3.八个月§8.2 解一元一次不等式(四) 一、1. B 2. B 3.A二、1. -3,-2,-1 2. 5 3. x ≤1 4. 24三、1. 解不等式6(x -1)≤2(4x +3)得x ≥-6,所以,能使6(x -1)的值不大于2(4x +3)的值的所有负整数x 的值为-6,-5,-4,-3,-2,-1.2. 设该公司最多可印制x 张广告单,依题意得 80+0.3x ≤1200,解得x ≤373313 .答:该公司最多可印制3733张广告单.3. 设购买x 把餐椅时到甲商场更优惠,当x >12时,得 200×12+50(x -12)<0.85(200×12+50x ),解得x <32 所以12<x <32; 当0<x ≤12时,得200×12<0.85(200×12+50x )解得x >17144 ,所以17144<x ≤12 其整数解为9,10,11,12.所以购买大于或等于9张且小于32张餐椅时到甲商场更优惠.§8.3 一元一次不等式组(一) 一、1. A 2. B二、1. x >-1 2. -1<x ≤2 3. x ≤-1三、1. (1) x ≥6 (2) 1<x <3 (3)4≤x <10 (4) x >2 (图略)2. 设幼儿园有x 位小朋友,则这批玩具共有3x +59件,依题意得 1≤3x +59-5(x -1)≤3,解得30.5≤x ≤31.5,因x 为整数,所以x =31,3x +59=3×31+59=152(件) §8.3 一元一次不等式组(二) 一、1. C 2. B.3.A二、1. m ≥2 2. 12 <x <23三、1. (1)3<x <5 (2)-2≤x <3 (3)-2≤x <5 (4) x ≥13(图略) 2. 设苹果的单价为x 元,依题意得解得4<x <535 ,因x 恰为整数,所以x =5(元)(答略) 3. -2<x ≤3 正整数解是1,2,34. 设剩余经费还能为x 名山区小学的学生每人购买一个书包和一件文化衫,依题意得 350≤1800-(18+30)x ≤400,解得2916 ≤x ≤30524 ,因人数应为整数,所以x =30.5.(1)这批货物有66吨 (2)用2辆载重为5吨的车,7辆载重为8吨的车.2×3+2.5x <204×3+2x >20第九章多边形§9.1三角形(一)一、1. C 2. C二、1. 3,1,1; 2. 直角内 3. 12三、1. 8个;△ABC、△FDC、△ADC是锐角三角形;△ABD、△AFC是钝角三角形;△AEF、△AEC、△BEC是直角三角形.2.(1)略(2)三条中线交于一点,交点把每条中线分成的两条线段的比均为1:2.3.不符合,因为三角形内角和应等于180°.4.∠A=95°∠B=52.5°∠C=32.5°§9.1三角形(二)一、1.C 2.B 3. A.二、1.(1)45°;(2)20°,40°(3)25°,35° 2. 165° 3. 20°4. 20°5.3:2:1三、1. ∠BDC应为21°+ 32°+ 90°=143°(提示:作射线AD)2. 70°3. 20°§9.1三角形(三)一、1.D 2.A二、1.12cm 2. 3个 3. 5<c<9,7三、1.其他两边长都为8cm 2. 略.§9.2多边形的内角和与外角和一、1.C 2. C. 3.C 4.C二、1.八,1080° 2. 10,1800° 3. 125° 4. 120米.三、1.15 2.十二边形 3.九边形,少加的那个内角的度数为135°.4.11§9.3用多种正多边形拼地板(一)一、1. B 2. C.二、1. 6 2. 正六边形 3. 11,(3n+2).三、1.(1)因为围绕一点拼在一起的正多边形的内角的和为360°.(2)不能,因为正八边形的每个内角都为135°,不能整除360°.(3)略.2.应选“80×80cm2”这种规格的瓷砖,因为长方形客厅的长和宽都是80cm的整数倍,需要这种瓷砖32块。
七年级下数学同步练习册华东师大
《新课程课堂同步练习册·数学(华东版七年级下册)》参考答案第6章 一元一次方程§6.1 从实际问题到方程一、1.D 2. A 3. A二、1. x = - 6 2. 2x -15=25 3. x =3(12-x )三、1.解:设生产运营用水x 亿立方米,则居民家庭用水(5.8-x )亿立方米,可列方程为:5.8-x =3x+0.62.解:设苹果买了x 千克, 则可列方程为: 4x +3(5-x )=173.解:设原来课外数学小组的人数为x ,则可列方程为: )4(21431+=+x x §6.2 解一元一次方程(一)一、1. D 2. C 3.A二、1.x =-3,x =2.103. x =538三、1. x =7 2. x =4 3. x = 4. x = 5. x =3 6. y =37-4967-§6.2 解一元一次方程(二)一、1. B 2. D 3. A二、1.x =-5,y =3 2.3. -321三、1. (1)x =(2)x =-2 (3)x = (4) x =-4 (5)x = (6)x=-231114832. (1)设初一(2)班乒乓球小组共有x 人, 得:9x -5=8x +2. 解得:x =7 (2)48人3. (1)x =-7 (2)x =-3§6.2 解一元一次方程(三)一、1. C 2. D 3. B 4. B二、1. 1 2.3. 10 34三、1. (1) x =3 (2) x =7 (3)x =–1(4)x = (5) x=4 (6) x=83-23-2. 3(x -2) -4(x -)=4 解得 x=-3 3. 3元3141§6.2 解一元一次方程(四)一、1. B 2.B 3. D二、1. 5 2., 3. 4. 15173623-51-三、1. (1)y = (2)y =6 (3) (4)x =52-49-=x 1117 2. 由方程3(5x -6)=3-20x 解得x =,把x =代入方程a -x =2a +10x ,得a =-8.5353310∴ 当a =-8时,方程3(5x -6)=3-20x 与方程a -x =2a +10x 有相同的解.3103.解得:x =90)332(532=---x x §6.2 解一元一次方程(五)一、1.A 2. B 3. C二、1.2(x +8)=40 2. 4,6,8 3.2x +10=6x +5 4. 15 5. 160元三、1. 设调往甲处x 人, 根据题意,得27+x =2[19+(20-x )]. 解得:x =172. 设该用户5月份用水量为x 吨,依题意,得1.2×6+2(x -6)=1.4 x .解得 x=8. 于是1.4x =11.2(元) .3. 设学生人数为x 人时,两家旅行社的收费一样多. 根据题意,得 240+120x =144(x +1),解得 x =4.§6.3 实践与探索(一)一、1. B 2. B 3. A二、1. 36 2. 3. 42,27081131)290(22⨯=x π三、1. 设原来两位数的个位上的数字为x ,根据题意,得10x +11-x =10(11-x )+x +63. 解得 x =9. 则原来两位数是29.2.设儿童票售出x 张,则成人票售出(700-x )张.依题意,得30x +50(700-x )=29000 . 解得:x =300, 则700-x=700-300=400人.则儿童票售出300张,成人票售出400张.§6.3 实践与探索(二)一、1. A 2. C 3. C二、1.x +x +1+1=x 2. 23.75% 3. 20455152三、1. 设乙每小时加工x 个零件,依题意得,5(x +2)+4(2x +2)=200解得x =14.则甲每小时加工16个零件,乙每小时加工14个零件.2. 设王老师需从住房公积金处贷款x 元,依题意得,3.6%x +4.77%(250000-x )=10170. 解得 x =150000.则王老师需从住房公积金处贷款150000元,普通住房贷款100000元.3. 设乙工程队再单独做此工程需x 个月能完成,依题意,得解得 x = 1166141(2=++x4.小时21第7章 二元一次方程组§7.1 二元一次方程组和它的解一、1. C 2. C 3. B二、1. 2. 5 3. ⎩⎨⎧==12y x ⎪⎩⎪⎨⎧=+=-42230yx y x 三、1. 设甲原来有x 本书、乙原来有y 本书,根据题意,得 ⎩⎨⎧+=--=+1010)10(510y x y x2. 设每大件装x 罐,每小件装y 罐,依题意,得.⎩⎨⎧=+=+843212043y x y x 3. 设有x 辆车,y 个学生,依题意⎩⎨⎧=-=+y x yx )1(601545§7.2二元一次方程组的解法(一)一、1. D 2. B 3. B二、1. 2.略 3. 20⎩⎨⎧==41y x 三、1. 2. 3. 4. ⎩⎨⎧==412y x ⎩⎨⎧-=-=31y x ⎩⎨⎧-==32y x ⎪⎪⎩⎪⎪⎨⎧==14111413y x §7.2二元一次方程组的解法(二)一、1. D 2. C 3. A二、1., 2. 18,12 3. 568-x 856y+⎩⎨⎧==13y x 三、1. 2. 3. 4. ⎩⎨⎧==15y x ⎩⎨⎧==11y x ⎪⎩⎪⎨⎧-==412y x ⎩⎨⎧==32y x 四、设甲、乙两种蔬菜的种植面积分别为x 、y 亩,依题意可得:解这个方程组得 ⎩⎨⎧=+=+138001*********y x y x ⎩⎨⎧==64y x §7.2二元一次方程组的解法(三)一、1. B 2.A 3.B 4. C二、1. 2. 9 3. 180,20⎩⎨⎧==34y x 三、1. 2. 3. ⎩⎨⎧==13y x ⎪⎩⎪⎨⎧-==761y x ⎪⎩⎪⎨⎧-=-=1611y x ⎩⎨⎧-==284y x 四、设金、银牌分别为x 枚、y 枚,则铜牌为(y +7)枚,依题意,得 解这个方程组,, 所以 y +7=21+7=28.⎩⎨⎧+++==+++2)7(100)7(y y x y y x ⎩⎨⎧==2151y x §7.2二元一次方程组的解法(四)一、1. D 2. C 3. B二、1. 2. 3, 3. -13⎩⎨⎧==35y x 52-三、1. 1. 2. 3. 4. 5. 6.⎩⎨⎧==33y x ⎪⎩⎪⎨⎧-==325y x ⎩⎨⎧==12y x ⎩⎨⎧==75y x ⎩⎨⎧==50y x ⎪⎩⎪⎨⎧==373y x 四、设小明预订了B 等级、C 等级门票分别为x 张和y 张.依题意,得 解这个方程组得⎩⎨⎧⨯=+=+.3500150300,7y x y x ⎩⎨⎧==.4,3y x §7.2二元一次方程组的解法(五)一、1. D 2. D 3. A二、1. 24 2. 6 3. 28元, 20元三、1. (1)加工类型项目精加工粗加工加工的天数(天)xy获得的利润(元)6000x8000y(2)由(1)得: 解得⎩⎨⎧=+=+1000008000600015y x y x ⎩⎨⎧==510y x ∴ 答:这批蔬菜共有70吨.7058103=⨯+⨯2.设A 种篮球每个元,B 种篮球每个元,依题意,得x y 解得⎩⎨⎧=+=+840812720146y x y x ⎩⎨⎧==3050y x3.设不打折前购买1件A 商品和1件B 商品需分别用x 元,y 元,依题意,得解这个方程组,得因此50×16+50×4-960=40(元).⎩⎨⎧=+=+10836845y x y x ⎩⎨⎧==.416y x §7.3实践与探索(一)一、1. C 2. D 3.A二、1. 72 2. 3. 14万,28万⎪⎩⎪⎨⎧=+-=9)(232y x y x 三、1.设甲、乙两种商品的原销售价分别为x 元,y 元,依题意,得解得⎩⎨⎧=+=+386%90%70500y y x ⎩⎨⎧==180320y x 2. 设沙包落在A 区域得分,落在B 区域得分,根据题意,得x y解得 ∴ 答:小敏的四次总分为30分.⎩⎨⎧=+=+3222343y x y x ⎩⎨⎧==79y x 307393=⨯+=+y x 3.(1)设A 型洗衣机的售价为x 元,B 型洗衣机的售价为y 元,则据题意,可列方程组解得5001313351.y x x y -=⎧⎨%+%=⎩,11001600.x y =⎧⎨=⎩,(2)小李实际付款:(元);小王实际付款:1100(113)957-%=(元).1600(113)1392-%=§7.3实践与探索(二)一、1. A 2. A 3.D二、1. 55米/分, 45米/分 2. 20,18 3.2,1三、1. 设这个种植场今年“妃子笑”荔枝收获x 千克,“无核Ⅰ号”荔枝收获y 千克.根据题意得 解这个方程组得 320081230400x y x y +=⎧⎨+=⎩,.20001200x y =⎧⎨=⎩,.2.设一枚壹元硬币x 克,一枚伍角硬币y 克,依题意得:解得:⎩⎨⎧+==+.10201510105y x yx⎩⎨⎧==.46y x 3.设原计划生产小麦x 吨,生产玉米y 吨,根据题意,得1812102018.x y x y +=⎧⎨+=-⎩,%%解得 10×(1+12%)=11.2(吨),8×(1+10%)=8.8(吨).108.x y =⎧⎨=⎩,4. 略5. 40吨第8章 一元一次不等式§8.1 认识不等式一、1.B 2.B 3.A二、1. <;>;> ; > 2. 2x +3<5 3. 4. ω≤502433t ≤≤三、1.(1)2-1>3;(2)a +7<0;(3)2+2≥0;(4)≤-2;(5)∣-x a b m3a 4∣≥;a (6)-2<2+3<4. 2.80+20n >100+16n ; n =6,7,8,…y §8.2 解一元一次不等式(一)一、1.C 2.A 3.C二、1.3,0,1,,- ;,,0,1 2. x ≥-1 3. -2<x <2 4. x <321032-4-16三、1.不能,因为x <0不是不等式3-x >0的所有解的集合,例如x =1也是不等式3-x >0的一个解. 2.略§8.2 解一元一次不等式(二)一、1. B 2. C 3.A二、1.>;<;≤ 2. x ≥-3 3. >三、1. x >3; 2. x ≥-2 3.x < 4. x >553四、x ≥-1 图略五、(1) (2) (3) 34>x 34=x 34<x §8.2 解一元一次不等式(三)一、1. C 2.A二、1. x ≤-3 2. x ≤- 3. k >294三、1. (1)x >-2 (2)x ≤-3 (3)x ≥-1 (4)x <-2 (5)x ≤5 (6) x ≤-1 (图略)2. x ≥3.八个月257§8.2 解一元一次不等式(四)一、1. B 2. B 3.A二、1. -3,-2,-1 2. 5 3. x ≤1 4. 24三、1. 解不等式6(x -1)≤2(4x +3)得x ≥-6,所以,能使6(x -1)的值不大于2(4x +3)的值的所有负整数x 的值为-6,-5,-4,-3,-2,-1.2. 设该公司最多可印制x 张广告单,依题意得 80+0.3x ≤1200,解得x ≤3733.13 答:该公司最多可印制3733张广告单.3.设购买x 把餐椅时到甲商场更优惠,当x >12时,得200×12+50(x -12)<0.85(200×12+50x ),解得x <32所以12<x <32;当0<x ≤12时,得200×12<0.85(200×12+50x )解得x >,所以<x ≤12其整数解为17144171449,10,11,12.所以购买大于或等于9张且小于32张餐椅时到甲商场更优惠.§8.3 一元一次不等式组(一)一、1. A 2. B二、1. x >-1 2. -1<x≤2 3. x≤-1三、1. (1) x ≥6 (2) 1<x <3 (3)4≤x <10 (4) x >2 (图略)2. 设幼儿园有x 位小朋友,则这批玩具共有3x +59件,依题意得 1≤3x +59-5(x -1)≤3,解得30.5≤x ≤31.5,因x 为整数,所以x =31,3x +59=3×31+59=152(件)§8.3 一元一次不等式组(二)一、1. C 2. B. 3.A二、1. m ≥2 2. <x <1223三、1. (1)3<x <5 (2)-2≤x <3 (3)-2≤x <5 (4) x ≥13(图略)2. 设苹果的单价为x 元,依题意得2×3+2.5x <20 4×3+2x >20解得4<x <5,因x 恰为整数,所以x =5(元)(答略)353. -2<x ≤3 正整数解是1,2,34. 设剩余经费还能为x 名山区小学的学生每人购买一个书包和一件文化衫,依题意得350≤1800-(18+30)x ≤400,解得29≤x ≤30,因人数应为整数,所以x =30.165245.(1)这批货物有66吨 (2)用2辆载重为5吨的车,7辆载重为8吨的车.第九章 多边形§9.1三角形(一)一、1. C 2. C二、1. 3,1,1; 2. 直角 内 3. 12三、1.8个;△ABC、△FDC、△ADC 是锐角三角形;△ABD、△AFC 是钝角三角形;△AEF 、△AEC、△BEC 是直角三角形.2.(1)略(2)三条中线交于一点,交点把每条中线分成的两条线段的比均为1:2.3.不符合,因为三角形内角和应等于180°.4.∠A=95°∠B=52.5°∠C=32.5°§9.1三角形(二)一、1.C 2.B 3. A.二、1.(1)45°;(2)20°,40°(3)25°,35° 2. 165° 3. 20°4. 20°5.3:2:1三、1. ∠BDC 应为21°+ 32°+ 90°=143°(提示:作射线AD )2. 70°3. 20°§9.1三角形(三)一、1.D 2.A二、1.12cm 2. 3个 3. 5<c<9,7三、1.其他两边长都为8cm 2. 略.§9.2多边形的内角和与外角和一、1.C 2. C. 3.C 4.C二、1.八,1080° 2. 10,1800° 3. 125° 4. 120米.三、1.15 2.十二边形 3.九边形,少加的那个内角的度数为135°.4.11§9.3用多种正多边形拼地板(一)一、1. B 2. C .二、1. 6 2. 正六边形3. 11,(3n+2).三、1.(1)因为围绕一点拼在一起的正多边形的内角的和为360°.(2)不能,因为正八边形的每个内角都为135°,不能整除360°.(3)略.2.应选“80×80cm 2”这种规格的瓷砖,因为长方形客厅的长和宽都是80cm 的整数倍,需要这种瓷砖32块。
华师大版初中数学七年级下册《9.3.2 用多种正多边形》同步练习卷(含答案解析
华师大新版七年级下学期《9.3.2 用多种正多边形》同步练习卷一.选择题(共14小题)1.某商场营业厅准备装修地面,现有正三角形,正方形,正五边形,正六边形这四种规格的花岗石板料(所有边长相等)若从其中选择一种板料铺设地面,则可以进行平面镶嵌的有()A.1种B.2种C.3种D.4种2.某商店出售下列四种形状的地砖,若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()①正三角形;②正方形;③正五边形;④正六边形.A.4种B.3种C.2种D.1种3.选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.任意四边形B.正方形C.正六边形D.正十边形4.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是()A.1、2B.2、1C.2、2D.2、35.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种边长相同、形状不同的正多边形地砖,与正三角形地砖作平面镶嵌,则该学校不应该购买的地砖是()A.正方形B.正六边形C.正八边形D.正十二边形6.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖,从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第9层中含有正三角形个数是()A.54个B.102个C.90个D.114个7.用两种正多边形组合铺满地面,其中的一种是正八边形,则另一种是()A.正三角形B.正方形C.正五边形D.正六边形8.下列正多边形中,与正八边形组合能够铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形9.下列正多边形的地板瓷砖中,单独使用一种不能铺满地面的是()A.正三角形B.正方形C.正六边形D.正八边形10.如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n 等于()A.4B.6C.8D.1011.阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是()A.正方形2块,正三角形2块B.正方形2块,正三角形3块C.正方形1块,正三角形2块D.正方形2块,正三角形1块12.用一些不重叠的多边形把平面的一部分完全覆盖叫做平面镶嵌.则用一种多边形镶嵌时,下列多边形中不能进行平面镶嵌的是()A.三角形B.正方形C.正五边形D.正六边形13.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个6×6的正方形图案,则其中完整的圆共有()个.A.59B.61C.63D.6514.定义:用形状、大小完全相同的一种或几种平面图进行拼接,彼此之间不留空隙,不重叠地铺成一片,称为平面图形的镶嵌,如图是只选用大小相同的正方形在某顶点O周围拼接成的镶嵌图案.判断:若只选用一种大小相同的正多边形,在下列四个选项中,能进行平面镶嵌的是()A.正五角形B.正六边形C.正八边形D.正十边形二.填空题(共8小题)15.某装饰图案非常漂亮,是由正三角形、正六边形和正边形镶嵌(密铺)而成.16.用边长相等的正三角形和正六边形铺满地面,一个结点周围有m块正三角形,n块正六边形,则m+n=17.在正三角形、正方形、正六边形、正八边形中,用相同的正多边形不能铺满地面的是.18.一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正六边形和正十二边形,则第三个正多边形的边数是.19.能够与正八边形平铺底面的正多边形是.(请从正六边形、正方形、正三角形、正十边形中选择一种正多边形).20.把边长为a的正三角形和正方形组合镶嵌,若用2个正方形,则还需个正三角形才可以镶嵌.21.某城市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖,有人提出了4种地砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不能进行密铺的地砖的形状是.22.用一种正五边形或正八边形的瓷砖铺满地面(填“能”或“不能”).三.解答题(共24小题)23.如图所示,有一边长为米的正方形大厅,它是由黑白完全相同的正方形方砖密铺而成.(1)图中黑白方砖共有块;(2)求一块方砖的边长.24.数学问题:用边长相等的正三角形、正方形和正六边形能否进行平面图形的镶嵌?问题探究:为了解决上述数学问题,我们采用分类讨论的思想方法去进行探究.探究一:从正三角形、正方形和正六边形中任选一种图形,能否进行平面图形的镶嵌?第一类:选正三角形.因为正三角形的每一个内角是60°,所以在镶嵌平面时,围绕某一点有6个正三角形的内角可以拼成一个周角,所以用正三角形可以进行平面图形的镶嵌.第二类:选正方形.因为正方形的每一个内角是90°,所以在镶嵌平面时,围绕某一点有4个正方形的内角可以拼成一个周角,所以用正方形也可以进行平面图形的镶嵌.第三类:选正六边形.(仿照上述方法,写出探究过程及结论)探究二:从正三角形、正方形和正六边形中任选两种图形,能否进行平面图形的镶嵌?第四类:选正三角形和正方形在镶嵌平面时,设围绕某一点有x个正三角形和y个正方形的内角可以拼成个周角.根据题意,可得方程60x+90y=360整理,得2x+3y=12.我们可以找到唯一组适合方程的正整数解为镶嵌平面时,在一个顶点周围围绕着3个正三角形和2个正方形的内角可以拼成一个周角,所以用正三角形和正方形可以进行平面镶嵌第五类:选正三角形和正六边形.(仿照上述方法,写出探究过程及结论)第六类:选正方形和正六边形,(不写探究过程,只写出结论)探究三:用正三角形、正方形和正六边形三种图形是否可以镶嵌平面?第七类:选正三角形、正方形和正六边形三种图形.(不写探究过程,只写结论),25.某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求+的值.26.阅读下面内容并回答问题:(1)有若干边长相等、边数分别为x,y,z的三种不同的正多边形,若这三种正多边形能镶嵌整个平面,试猜想x,y,z之间的关系,你能对你的这个猜想给出证明吗?解:边数为x的正多边形的一个内角为度.边数为y的正多边形的一个内角为度.边数为z的正多边形的一个内角为度,因为能进行平面镶嵌,即各取三种正多边形的一个内角能拼成360o角,所以有+ + =360,在等式两边同时除以180o,得.因为,所以(1﹣)+ + =2所以在等式两边同时除以(﹣2),得(2)根据上面得到的结论,从正三角形、正方形中选一种,再在其他正多边形中选两种,请尝试找出一个三种不同的正多边形镶嵌的方案.(直接写出方案即可)27.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+y=360,整理得:2x+3y=8,我们可以找到方程的正整数解为.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.28.如图所示,有一边长为8米的正方形大厅,它是由黑白完全相同的方砖密铺而成.求一块方砖的边长.29.某校研究性学习小组研究平面密铺的问题,其中在探究用两种边长相等的正多边形做平面密铺的情形时用了以下方法:用2个正三角形和2个正六边形或4个正三角形和1个正六边形可以拼成一个无缝隙、不重叠的平面图形,如图(1)、(2)(3).请你仿照此方法解决下面问题:(1)研究用边长相等的x个正三角形和y个正方形进行平面密铺的情形,求出x和y的值(2)按图(4)中给出两个边长相等的正方形和正三角形画出一个密铺后图形的示意图.(画正三角形时必须用尺规作图)30.(1)一个多边形的内角和等于它的外角和的3倍,则它是几边形?(2)某学校想用地砖铺地,学校已准备了一批完全相同的正n边形[n为(1)中的所求值],如果单独用这种地砖能密铺吗?(3)如果不能,请你自己只选用一种同(2)边长相同的正方形地砖搭配能密铺吗?如果能,请你画出一片密铺的示意图.31.我们常用各种多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些多边形,能够拼成一个平面图形,既不留一丝空白,又不互相重叠,这在几何里叫做平面密铺(镶嵌).我们知道,当围绕一点拼在一起的几个多边形的内角的和为360°时,就能够拼成一个平面图形.某校研究性学习小组研究平面密铺的问题,其中在探究用两种边长相等的正多边形做平面密铺的情形时用了以下方法:如果用x个正三角形、y个正六边形进行平面密铺,可得60°•x+120°•y=360°,化简得x+2y=6.因为x、y都是正整数,所以只有当x=2,y=2或x=4,y=1时上式才成立,即2个正三角形和2个正六边形或4个正三角形和1个正六边形可以拼成一个无缝隙、不重叠的平面图形,如图(1)、(2)、(3).(1)请你仿照上面的方法研究用边长相等的x个正三角形和y个正方形进行平面密铺的情形,并按图(4)中给出的正方形和正三角形的大小大致画出密铺后图形的示意图(只要画出一种图形即可);(2)如果用形状、大小相同的如图(5)方格纸中的三角形,能进行平面密铺吗?若能,请在方格纸中画出密铺的设计图.32.我们常见到如图那样图案的地面,它们分别是全用正方形或全用正六边形形状的材料辅成的,这样形状的材料能铺成平整、无空隙的地面.现在,问:(1)像上面那样铺地面,能否全用正五边形的材料,为什么?(2)你能不能另外想出一个用一种多边形(不一定是正多边形)的材料铺地的方案?把你想到的方案画成草图.(3)请你再画出一个用两种不同的正多边形材料铺地的草图.33.小明家准备在客厅铺设地板砖.客厅地面是一个矩形,长6.3米,宽4.8米.装修工人提出两个建议,一是铺设80cm×80cm的地板砖,每块40元;二是铺设60cm×60cm的地板砖,每块25元.小明希望材料费少,又铺得整齐(即只用同一种规格的地板砖),你能帮他出个好主意吗(实际生活中地板砖只售整块)?34.用边长相等的正方形和正三角形镶嵌平面.(1)则一个顶点处需要几个正方形、几个正三角形?(两种图形都要用上)(2)请画出你的镶嵌图.35.如图,是一个长方形地面,现有正三角形、正方形和正六边形三种瓷砖若干,要求:(1)三种瓷砖都必须用到;(2)铺成长方形或近似长方形,请你设计一种方案.36.如图所示的地面全是用正三角形的材料铺设而成的.(1)用这种形状的材料为什么能铺成平整、无隙的地面?(2)像上面那样铺地砖,能否全用正十边形的材料?为什么?(3)你能不能另外想出一种用多边形(不一定是正多边形)的材料铺地面的方案?把你想到的方案画成草图.37.8年级①班教室的面积为80m2,房间地面恰巧由500块相同的正方形地砖铺成,每块地砖的边长是多少?38.一个凸11边形由若干个边长为1的正方形或正三角形无重叠、无间隙地拼成,求此凸11边形各个内角的大小,并画出这样的凸11边形的草图.39.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如果只限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?40.问题再现:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题、今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着个正六边形的内角.问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.41.某体育馆用大小相同的长方形木板镶嵌地面,第1次铺2块如图①;第2次把第1次铺的完全围起来,如图②,此时共使用木板12块;第3次把第2次铺的完全围起来,如图③:(1)依此方法,第4次铺完后,共使用的木板数为.(2)依此方法,第10次铺完后,共使用的木板数为.(3)依此方法,第n次铺完后,共使用的木板数为.42.某单位的地板由三种边长相等的正多边形铺成,三种多边形是按1:1:1来排列,设这三种正多边形的边数分别为x,y,z,求的值.43.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.44.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如图,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形;(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.45.王老师正准备装修新买房屋的地面,到一家装修公司去看地砖,公司现有一批边长相等的正多边形瓷砖(如下图)供用户选择.(1)若王老师考虑只用其中一种正多边形铺满地面,则供他选择的正多边形有哪些?(2)若王老师考虑想从其中任取两种来组合,能铺满地面的正多边形组合有哪些?(3)若王老师考虑从其中任取三种来组合,能铺满地面的正多边形组合有哪些?(4)你能说出其中所蕴含的数学道理吗?46.试说明:用15块大小是4×1的矩形地砖和一块大小是2×2的正方形地砖能不能恰好铺盖一块大小是8×8的正方形地面.华师大新版七年级下学期《9.3.2 用多种正多边形》同步练习卷参考答案与试题解析一.选择题(共14小题)1.某商场营业厅准备装修地面,现有正三角形,正方形,正五边形,正六边形这四种规格的花岗石板料(所有边长相等)若从其中选择一种板料铺设地面,则可以进行平面镶嵌的有()A.1种B.2种C.3种D.4种【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断,一种正多边形的镶嵌应符合一个内角度数能整除360°.【解答】解:正三角形的每个内角是60°,能整除360°,能密铺;正方形的每个内角是90°,4个能密铺;正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺;正六边形的每个内角是120°,能整除360°,能密铺.故选:C.【点评】此题主要考查了平面镶嵌,根据镶嵌的条件,判断一种正多边形能否镶嵌,要看周角360°能否被一个内角度数整除:若能整除,则能进行平面镶嵌;若不能整除,则不能进行平面镶嵌.2.某商店出售下列四种形状的地砖,若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()①正三角形;②正方形;③正五边形;④正六边形.A.4种B.3种C.2种D.1种【分析】由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.【解答】解:①正三角形的每个内角是60°,能整除360°,6个能组成镶嵌②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有3种.故选:B.【点评】此题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.3.选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.任意四边形B.正方形C.正六边形D.正十边形【分析】根据密铺的条件能整除360度的能密铺地面,分别对每一项进行分析即可.【解答】解:A、任意四边形的内角和为360°,在同一顶点处放4个,能密铺;B、正方形的每个内角是90°,能整除360°,能密铺;C、正六边形每个内角是120°,能整除360°,能密铺;D、正十边形每个内角是144°,不能整除360°,不能密铺;故选:D.【点评】本题考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.4.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是()A.1、2B.2、1C.2、2D.2、3【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【解答】解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴需要正方形2块,正三角形3块.故选:D.【点评】本题考查平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.5.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种边长相同、形状不同的正多边形地砖,与正三角形地砖作平面镶嵌,则该学校不应该购买的地砖是()A.正方形B.正六边形C.正八边形D.正十二边形【分析】根据密铺的条件得,两多边形内角和必须凑出360°,进而判断即可.【解答】解:A、正方形的每个内角是90°,90°×2+60°×3=360°,∴能密铺;B、正六边形每个内角是120°,120°+60°×4=360°,∴能密铺;C、正八边形每个内角是180°﹣360°÷8=135°,135°与60°无论怎样也不能组成360°的角,∴不能密铺;D、正十二边形每个内角是150°,150°×2+60°=360°,∴能密铺.故选:C.【点评】本题考查了平面镶嵌(密铺),几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.6.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖,从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第9层中含有正三角形个数是()A.54个B.102个C.90个D.114个【分析】观察三角形的规律,发现:三角形依次是6+12×(1﹣1),6+12×(2﹣1),…,6+12×(n﹣1)块,据此可得.【解答】解:第1层包括6个正三角形,第2层包括18个正三角形,…,每一层比上一层多12个,所以第9层中含有正三角形的个数是6+12×8=102(个).故选:B.【点评】本题考查了平面镶嵌(密铺)问题,此题要注意能够分别找到三角形和正方形的个数的规律.7.用两种正多边形组合铺满地面,其中的一种是正八边形,则另一种是()A.正三角形B.正方形C.正五边形D.正六边形【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【解答】解:正八边形的一个内角=180°﹣=135°,360°﹣2×135°=90°,∵正方形的每个内角是90°,∴另一种是正方形.故选:B.【点评】考查了平面镶嵌(密铺),几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.8.下列正多边形中,与正八边形组合能够铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【分析】先求出每个多边形的内角的度数,再逐个判断即可.【解答】解:∵正八边形的每个内角的度数是=135°,正三角形的每个内角的度数是60°,正方形的每个内角的度数是90°,正,五边形的每个内角的度数是=108°,正六边形的每个内角的度数是=120°,∴与正八边形组合能够铺满地面的是正方形(两个正八边形和一个正方形,故选:B.【点评】本题考查了正多边形的内角和外角,平面镶嵌等知识点,能理解平面镶嵌的定义是解此题的关键.9.下列正多边形的地板瓷砖中,单独使用一种不能铺满地面的是()A.正三角形B.正方形C.正六边形D.正八边形【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【解答】解:A、正三角形的每个内角是60°,6个能密铺;B、正方形的每个内角是90°,4个能密铺;C、正六边形的每个内角是120°,能整除360°,3个能密铺;D、正八边形的每个内角为180°﹣360°÷8=135°,不能整除360°,不能密铺.。
华师大版初中数学七年级下册《7.4 实践与探索》同步练习卷(含答案解析
华师大新版七年级下学期《7.4 实践与探索》同步练习卷一.选择题(共25小题)1.某年级学生共有300人,其中男生人数y比女生人数x的2倍少2人,则下面方程组中符合题意的是()A.B.C.D.2.根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装大小两种产品多少瓶?设应该分装大小瓶两种产品x瓶、y瓶,则可列方程组为()A.B.C.D.3.初一1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.4.甲、乙两个公共汽车站相向发车,一人在街上行走,他发现每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车,如果车站发车的间隔时间相同,各车的速度相同,那两车站发车的间隔时间为()A.18分钟B.10分钟C.12分钟D.16分钟5.某实验中学收到李老师捐赠的足球、篮球、排球共30个,总价值为440元;这三种球的价格分别是:足球每个60元,篮球每个30元,排球每个10元,那么其中篮球有()个.A.2B.4C.8D.126.今年,小丽爷爷的年龄是小丽的5倍.小丽发现,12年之后,爷爷的年龄是小丽的3倍,设今年小丽、爷爷的年龄分别是x岁、y岁,可列方程组()A.B.C.D.7.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种8.如图,面积为64的正方形ABCD被分成4个相同的长方形和1个面积为4的小正方形,则a,b的值分别是()A.3,5B.5,3C.6.5,1.5D.1.5,6.59.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y 的方程组是()A.B.C.D.10.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱:每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.B.C.D.11.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.B.C.D.12.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本B.20本C.15本D.10本13.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍.若购1副羽毛球拍和1副乒乓球拍共需70元,小强一共用540元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.B.C.D.14.某校七年级共有学生412人,已知女生人数比男生人数的2倍少62人,设男生,女生的人数分别为x,y人,有题意的方程组()A.B.C.D.15.《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两,y两,列方程组为()A.B.C.D.16.某校组织学生进行了禁毒知识竞赛,竞赛结束后,青青和红红两个人的对话如下:青青:这次考试有40道题,题型为单选和多选题,每种题型我各错了一道题.红红:单选2分一道,多选3分一道,那你可以得95分.根据以上信息,设单选题有x道,多选题有y道,则可列方程为()A.B.C.D.17.某文具商店搞促销活动,同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元已知书包标价比文具盒标价的3倍多15元,若设文具盒的标价是x元,书包的标价为y元,可列方程组为()A.B.C.D.18.小程、小芳两人相距10km,小程骑白行车、小芳步行,若两人同时出发相向而行,则1h后相遇;若两人同时出发同向而行,则小程2h可追上小芳,设小程骑自行车的平均速度为xkm/h,小芳步行的平均速度为ykm/h,则可列方程组为()A.B.C.D.19.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余 4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A.B.C.D.20.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5个大桶加上1个小桶可以盛酒3解,1个大桶加上5个小桶可以盛酒2斛,…“则一个大桶和个小桶一共可以盛酒斛,则可列方程组正确的是()A.B.C.D.21.明代数学家程大位的《算法统宗》中有这样一个问题,其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.设银子有x两,共有y人,则可得方程组.(注:明代时1斤=16两,故有“半斤八两“这个成语)()A.B.C.D.22.如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25B.15C.12D.1423.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元24.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150 元D.160元25.有甲、乙、丙三种货物,若购甲3件、乙2件、丙1件,共需315元,若购甲1件,乙2件,丙3件共需285元,那么购甲、乙、丙各1件,共需()A.128元B.130元C.150元D.160元二.填空题(共15小题)26.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).安全员是数学爱好者,制定加密规则为:明文x,y,z对应密文x+y+z,x﹣y+z,x﹣y﹣z.例如:明文1,2,3对应密文6,2,﹣4.当接收方收到密文12,4,﹣6时,则解密得到的明文为.27.2018年4月20日,重庆一中庆祝建校87周年暨第23次奖学金颁奖大会在学校本部运动场隆顶举行,其中小科技创新发明奖共有60人获奖,原计划一等奖5人,二等奖15人,三等奖40人.后来经校长会研究决定,在该项奖励总奖金不变的情况下,各等级获奖人数实际调整为:一等奖10人,二等奖20人,三等奖30人,调整后一等奖每人奖金降低80元,二等奖每人奖金降低50元,三等奖每人奖金降低30元,调整前二等奖每人奖金比三等奖每人奖金多70元,则调整后一等奖每人奖金比二等奖每人奖金多元.28.如图所示,已知前两架天平两端保持平衡.要使第三架天平两端保持平衡,则应在天平的右托盘上放个圆形物品.29.某商店中销售水果时采用了三种组合搭配的方式进行销售,甲种搭配是:2千克A水果,4千克B水果;乙种搭配是:3千克A水果,8千克B水果,1千克C水果;丙种搭配是:2千克A水果,6千克B水果,1千克C水果;如果A水果每千克售价为2元,B水果每千克售价为1.2元,C水果每千克售价为10元,某天,商店采用三种组合搭配的方式进行销售后共得销售额441.2元,并且A水果销售额116元,那么C水果的销售额是元.30.一个两位数,个位数字是x,十位数字是y,将个位和十位数字对调后,所得到新的两位数,与原两位相加的和是110,可以列方程为.31.某市实行阶梯电价制度,居民家庭每月用电量不超过80千瓦时时,实行“基本电价”;当每月用电量超过80千瓦时时,超过部分实行“提高电价”.去年小张家4月用电量为100千瓦时,交电费68元;5月用电量为120千瓦时,交电费88元.则基本电价”是元/千瓦时,“提高电价”是元/千瓦时.32.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.则1辆大货车与1辆小货车一次可以运货吨.33.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中第七卷《盈不足》记载了一道有趣的数学问题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:“今有大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容积各是多少斛?”设大容器的容积为x斛,小容器的容积为y斛,根据题意,可列方程组为.34.某人乘坐在匀速行驶在“318”国道的小车上,他看到第一块里程碑上写着一个两位数(单位:千米);经过30分钟,他看到第二块里程碑写的两位数恰好是第一块里程碑上的数字互换了;又经过30分钟,他看到第三块里程碑上写着一个三位数,这个三位数恰好是第一块里程碑上的两位数中间加上一个0.第三块里程碑上写着的三位数是.35.某家具厂有22名工人,每名工人每天可加工3张桌子或10把椅子,1张桌子与4把椅子配成一套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x名工人加工桌子,y名工人加工椅子,则列出的方程组为.36.“五•一”前夕,某服装专卖店按标价打折销售.小明去店里买了一套服装,衣服打五折,裤子打七折,共计260元,付款后,收银员发现结算时不小心把衣服、裤子的标价计算反了,又找给小明40元,则衣服、裤子原标价分别是.37.2018年6月14日至7月15日在俄罗斯举行第21届世界杯足球赛.现有球迷150人欲同时租用A,B,C三种型号客车去观看足球赛,其中A,B,C三种型号客车载客量分别为50人,30人,10人,要求每辆车必须满载,其中A 型客车最多租两辆且每种型号至少租一辆,则球迷们一次性到达赛场的租车方案有种.38.某小学捐给一所山区小学一些图书,如果每名学生分6册,那么还差100册;如果每名学生分5册,那么多出50册,若设这所山区小学有学生x人,图书有y册,则根据题意列方程组,得39.某校在“筑梦少年正当时,不忘初心跟党走”知识竟赛中,七年级(2)班2人获一等奖,1人获二等奖,3人获三等奖,奖品价值41元;七年级(7)班1人获一等奖,3人获二等奖,3人获三等奖,奖品价值37元;七年级(13)班5人获二等奖,3人获三等奖,奖品价值元.40.有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”问:两个牧童各有多少只羊?设甲牧童有x只羊,乙牧童有y只羊,可列方程组为.华师大新版七年级下学期《7.4 实践与探索》同步练习卷参考答案与试题解析一.选择题(共25小题)1.某年级学生共有300人,其中男生人数y比女生人数x的2倍少2人,则下面方程组中符合题意的是()A.B.C.D.【分析】此题中的等量关系有:①某年级学生共有300人,则x+y=300;②男生人数y比女生人数x的2倍少2人,则2x=y+2.【解答】解:根据某年级学生共有300人,则x+y=300;②男生人数y比女生人数x的2倍少2人,则y=2x﹣2.可列方程组.故选:C.【点评】考查了由实际问题抽象出二元一次方程组.找准等量关系是解决应用题的关键,注意代数式的正确书写,字母要写在数字的前面.2.根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装大小两种产品多少瓶?设应该分装大小瓶两种产品x瓶、y瓶,则可列方程组为()A.B.C.D.【分析】设应该分装大小瓶两种产品x瓶、y瓶,根据大瓶和小瓶的销售数量比为2:5及每天生产这种消毒液22.5吨,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设应该分装大小瓶两种产品x瓶、y瓶,根据题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3.初一1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.甲、乙两个公共汽车站相向发车,一人在街上行走,他发现每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车,如果车站发车的间隔时间相同,各车的速度相同,那两车站发车的间隔时间为()A.18分钟B.10分钟C.12分钟D.16分钟【分析】设公交车的速度为x米/分钟,人步行速度为y米/分钟,由路程=速度×时间结合“每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车”,即可得出关于x、y的二元一次方程,解之即可得出x=2y,再利用时间=路程÷速度即可求出两车站发车的间隔时间.【解答】解:设公交车的速度为x米/分钟,人步行速度为y米/分钟,根据题意得:8x+8y=24x﹣24y,解得:x=2y,∴==12.故选:C.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.5.某实验中学收到李老师捐赠的足球、篮球、排球共30个,总价值为440元;这三种球的价格分别是:足球每个60元,篮球每个30元,排球每个10元,那么其中篮球有()个.A.2B.4C.8D.12【分析】设其中有篮球x个,足球有y个,则排球有(30﹣x﹣y)个,根据总价=单价×数量结合30个球的总价值为440元,即可得出关于x、y的二元一次方程,再由x、y均为正整数,即可求出结论.【解答】解:设其中有篮球x个,足球有y个,则排球有(30﹣x﹣y)个,根据题意得:30x+60y+10(30﹣x﹣y)=440,∴x=7﹣y.∵x、y为正整数,∴y=2,x=2.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.今年,小丽爷爷的年龄是小丽的5倍.小丽发现,12年之后,爷爷的年龄是小丽的3倍,设今年小丽、爷爷的年龄分别是x岁、y岁,可列方程组()A.B.C.D.【分析】根据题意可得等量关系:①小丽爷爷的年龄=小丽的年龄×5;②小丽爷爷的年龄+12=(小丽的年龄+12)×3,根据等量关系列出方程组即可.【解答】解:设今年小丽、爷爷的年龄分别是x岁、y岁,依题意有.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,再列出方程组.7.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种【分析】设甲种笔记本购买了x本,乙种笔记本y本,就可以得出15x+5y=90,根据解不定方程的方法求出其解即可.【解答】解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得15x+5y=90整理,得3x+y=18因为y是x的整数倍,所以当x=1时,y=15.当x=2时,y=12.当x=3时,y=9.综上所述,共有3种购买方案.故选:B.【点评】本题考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立不等式是关键,合理运用分类是难点.8.如图,面积为64的正方形ABCD被分成4个相同的长方形和1个面积为4的小正方形,则a,b的值分别是()A.3,5B.5,3C.6.5,1.5D.1.5,6.5【分析】开方后求出大、小正方形的边长,观察图形,根据a、b之间的关系可得出关于a、b的二元一次方程组,解之即可得出结论.【解答】解:=8,=2.根据题意得:,解得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y 的方程组是()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.10.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱:每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.B.C.D.【分析】设合伙人数为x人,物价为y钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x人,物价为y钱,根据题意,可列方程组:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.11.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.B.C.D.【分析】等量关系为:生产螺栓的工人数+生产螺帽的工人数=90;螺栓总数×2=螺帽总数,把相关数值代入即可.【解答】解:设生产螺栓x人,生产螺帽y人,根据总人数可得方程x+y=90;根据生产的零件个数可得方程2×15x=24y,可得方程组:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.12.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本B.20本C.15本D.10本【分析】设甲种笔记本买了x本,乙种笔记本买了y本,根据题意列出关于x、y 的二元一次方程组,求出x、y的值即可.【解答】解:设甲种笔记本买了x本,乙种笔记本买了y本,根据题意,得:,解得:,答:甲种笔记本买了25本,乙种笔记本买了15本.故选:C.【点评】本题考查的是二元一次方程组的应用,能根据题意得出关于x、y的二元一次方程组是解答此题的关键.13.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍.若购1副羽毛球拍和1副乒乓球拍共需70元,小强一共用540元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.B.C.D.【分析】设每副羽毛球拍为x元,每副乒乓球拍为y元,利用购1副羽毛球拍和1副乒乓球拍共需70元,小强一共用540元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,分别得出等式求出答案.【解答】解:设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得:.故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,分别得出等量关系是解题关键.14.某校七年级共有学生412人,已知女生人数比男生人数的2倍少62人,设男生,女生的人数分别为x,y人,有题意的方程组()A.B.C.D.【分析】关系式为:女生人数=2×男生人数﹣4;七年级共有学生412人,把相关数值代入即可求解.【解答】解:女生人数比男生人数的2倍少62人,可列方程为y=2x﹣62,七年级共有学生412人,可列方程为x+y=412,故可列方程组是:.故选:A.【点评】此题主要考查了由实际问题抽象出二元一次方程组,分别得出等量关系是解题关键.15.《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两,y两,列方程组为()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程.16.某校组织学生进行了禁毒知识竞赛,竞赛结束后,青青和红红两个人的对话如下:青青:这次考试有40道题,题型为单选和多选题,每种题型我各错了一道题.红红:单选2分一道,多选3分一道,那你可以得95分.根据以上信息,设单选题有x道,多选题有y道,则可列方程为()A.B.C.D.【分析】直接利用已知分别得出方程组成方程组进而得出答案.【解答】解:设单选题有x道,多选题有y道,则可列方程为:.故选:A.【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等式方程是解题关键.17.某文具商店搞促销活动,同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元已知书包标价比文具盒标价的3倍多15元,若设文具盒的标价是x元,书包的标价为y元,可列方程组为()A.B.C.D.【分析】如果设文具盒的标价是x元,书包的标价为y元,根据同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元,以及书包标价比文具盒标价的3倍多15元列出方程组即可.【解答】解:设文具盒的标价是x元,书包的标价为y元,根据题意,得.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.18.小程、小芳两人相距10km,小程骑白行车、小芳步行,若两人同时出发相向而行,则1h后相遇;若两人同时出发同向而行,则小程2h可追上小芳,设小程骑自行车的平均速度为xkm/h,小芳步行的平均速度为ykm/h,则可列方程组为()A.B.C.D.【分析】设小程骑自行车的平均速度为xkm/h,小芳步行的平均速度为ykm/h,根据两人相距10km,两人同时出发相向而行,1h后相遇;同时出发同向而行小程2h可追上小芳,可列方程组求解.【解答】解:设小程骑自行车的平均速度为xkm/h,小芳步行的平均速度为ykm/h,依题意有.故选:C.【点评】本题主要考查了二元一次方程组的应用问题﹣行程问题,根据相遇和追及两种情况列出方程组求解,正确理解题意,找到等量关系是解决问题的关键.19.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一。
华师大版七年级下册数学第七章 一次方程组:第一节、第二节同步测试题(含答案)
华师大版七年级下册数学第七章 一次方程组:第一节、第二节同步测试题检测内容:7.1-7.2得分________ 卷后分________ 评价________一、选择题(每小题4分,共24分)1.方程组⎩⎪⎨⎪⎧x +y =12x -y =5的解是( )A .⎩⎪⎨⎪⎧x =-1y =2B .⎩⎪⎨⎪⎧x =-2y =3C .⎩⎪⎨⎪⎧x =2y =1D .⎩⎪⎨⎪⎧x =2y =-1 2.解二元一次联立方程式⎩⎪⎨⎪⎧197x +4y =11,197x =19-2y ,得y 等于( )A .-4B .-43C .53D .53.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为( ) A .-1 B .1 C .2 D .34.已知⎩⎪⎨⎪⎧3x =4+m ,2y -m =5,则x 与y 满足的方程为( )A .3x +2y =1B .3x -2y =1C .3x -2y =-1D .3x -2y =95.某班为奖励在校运动会上取得较好成绩的运动员,花了400元购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各买了多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则所列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =3012x +16y =400B .⎩⎪⎨⎪⎧x +y =3016x +12y =400C .⎩⎪⎨⎪⎧12x +16y =30x +y =400D .⎩⎪⎨⎪⎧16x +12y =30x +y =400 6.陈老师打算购买气球装扮学校六一儿童节活动会场,气球的种类有“笑脸”和“爱心”两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19元B .18元C .16元D .15元二、填空题(每小题4分,共24分)7.方程组⎩⎪⎨⎪⎧5x -2y -4=0,x +y -5=0的解是____.8.已知方程组⎩⎪⎨⎪⎧x +2y =6,2x +y =9,不解方程组,则x +y =____,x -y =____.9.若(x -y +3)2+|2x +y |=0,则x =____,y =____.10.二元一次方程组⎩⎪⎨⎪⎧x +y =1,kx +2y =5的解是方程x -y =1的解,则k 的值为___.11.(2014·龙东)小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买____________--_支.12.某班有40名同学去看演出,购买甲、乙两种票共用去了370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x 张,乙种票y 张,由此可列出方程组:_____________.三、解答题(共52分)13.(10分)用代入法解方程组:(1)⎩⎪⎨⎪⎧y =3x -7,5x +2y =8; (2)⎩⎪⎨⎪⎧x +3y =-1,3x -2y =8.14.(10分)用加减消元法解方程组:(1)⎩⎪⎨⎪⎧3x +2y =5,2x -y =8; (2)⎩⎪⎨⎪⎧x 3+y4=2,3x -4y =-7.15.(10分)用适当的方法解方程组:(1)⎩⎪⎨⎪⎧x -2y =0,3x +2y =8; (2)⎩⎪⎨⎪⎧3(x -2y )+4y =2y -1,2x +5y =7.16.(10分)已知方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解适合方程x +y =8,求m 的值.17.(12分)某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?参考答案一、选择题(每小题4分,共24分)1.方程组⎩⎪⎨⎪⎧x +y =12x -y =5的解是( D )A.⎩⎪⎨⎪⎧x =-1y =2B.⎩⎪⎨⎪⎧x =-2y =3C.⎩⎪⎨⎪⎧x =2y =1D.⎩⎪⎨⎪⎧x =2y =-1 2.解二元一次联立方程式⎩⎪⎨⎪⎧197x +4y =11,197x =19-2y ,得y 等于( A )A .-4B .-43C .53D .53.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为( A ) A .-1 B .1 C .2 D .34.已知⎩⎪⎨⎪⎧3x =4+m ,2y -m =5,则x 与y 满足的方程为( C )A .3x +2y =1B .3x -2y =1C .3x -2y =-1D .3x -2y =95.某班为奖励在校运动会上取得较好成绩的运动员,花了400元购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各买了多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则所列方程组正确的是( B )A .⎩⎪⎨⎪⎧x +y =3012x +16y =400B .⎩⎪⎨⎪⎧x +y =3016x +12y =400C .⎩⎪⎨⎪⎧12x +16y =30x +y =400D .⎩⎪⎨⎪⎧16x +12y =30x +y =400 6.陈老师打算购买气球装扮学校六一儿童节活动会场,气球的种类有“笑脸”和“爱心”两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( C )A .19元B .18元C .16元D .15元 二、填空题(每小题4分,共24分)7.方程组⎩⎪⎨⎪⎧5x -2y -4=0,x +y -5=0的解是__⎩⎪⎨⎪⎧x =2,y =3__.8.已知方程组⎩⎪⎨⎪⎧x +2y =6,2x +y =9,不解方程组,则x +y =__5__,x -y =__3__.9.若(x -y +3)2+|2x +y |=0,则x =__-1__,y =__2__.10.二元一次方程组⎩⎪⎨⎪⎧x +y =1,kx +2y =5的解是方程x -y =1的解,则k 的值为__5__.11.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买__1或2或3__支.12.某班有40名同学去看演出,购买甲、乙两种票共用去了370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x 张,乙种票y 张,由此可列出方程组:__⎩⎪⎨⎪⎧x +y =40,10x +8y =370__. 三、解答题(共52分)13.(10分)用代入法解方程组:(1)⎩⎪⎨⎪⎧y =3x -7,5x +2y =8; (2)⎩⎪⎨⎪⎧x +3y =-1,3x -2y =8. 解:⎩⎪⎨⎪⎧x =2,y =-1 解:⎩⎪⎨⎪⎧x =2,y =-114.(10分)用加减消元法解方程组:(1)⎩⎪⎨⎪⎧3x +2y =5,2x -y =8; (2)⎩⎪⎨⎪⎧x 3+y4=2,3x -4y =-7.解:⎩⎪⎨⎪⎧x =3,y =-2 解:⎩⎪⎨⎪⎧x =3,y =415.(10分)用适当的方法解方程组:(1)⎩⎪⎨⎪⎧x -2y =0,3x +2y =8; (2)⎩⎪⎨⎪⎧3(x -2y )+4y =2y -1,2x +5y =7. 解:⎩⎪⎨⎪⎧x =2,y =1 解:⎩⎪⎨⎪⎧x =1,y =116.(10分)已知方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解适合方程x +y =8,求m 的值.解:⎩⎪⎨⎪⎧3x +5y =m +2,①2x +3y =m.②①-②,得x +2y =2.④于是有方程组⎩⎪⎨⎪⎧x +y =8,③x +2y =2.④④-③,得y =-6,将y =-6代入③,得x =14,将x =14,y =-6代入②得m =2×14+3×(-6)=m ,即m =1017.(12分)某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?解:设甲商品单价为x ,乙商品单价为y ,由题意得:⎩⎪⎨⎪⎧3x +y =190,2x +3y =220,解得:⎩⎪⎨⎪⎧x =50y =40,则购买10件甲商品和10件乙商品需要900元,∵打折后实际花费735,∴这比不打折前少花165元.答:这比不打折前少花165元。
(新课标)华东师大版七年级数学下册同步训练:二元一次方程组和它的解(考点分析)
2017-2018学年(新课标)华东师大版七年级下册7.1二元一次方程组和它的解一.选择题(共8小题)1.若方程mx+ny=6的两个解是,,则m,n的值为()A. 4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣42.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B.2 C.3 D. 43.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A. 7 B.2 C.﹣1 D.﹣54.二元一次方程x+2y=3的解的个数是()A. 1 B.2 C 3 D.无数5.已知二元一次方程3x﹣4y=1,则用含x的代数式表示y是()A. y=B.y=C.y=D.y=﹣6.方程组的解是,则a,b为()A.B. C D.7.下列方程组中,解是的是()A.B.C.D.8.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.二.填空题(共7小题)9.关于x,y的方程组的解是,则|m+n|的值是_________ .10.已知是方程2x+ay=5的解,则a= _________ .11.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= _________ .12.在二元一次方程2x﹣y=3中,当x=2时,y= _________ .13.试写出一个以为解的二元一次方程组_________ .14.若方程组的解是,则a+b的值是_________ .15.2x+y=5的正整数解是_________ .三.解答题(共6小题)16.已知关于x、y的方程组的解为,求m、n的值.17.已知关于x,y的方程组的解为,求m n的值.18.根据图中提供的信息,写出T恤衫的单价x(元/件)与驱虫剂的单价y(元/瓶)满足的二元一次方程组.19.是否存在m值,使方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程?若存在,求出m的值;若不存在,请说明理由.20.甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为x=5,y=4.试计算a2014+(﹣b)2013的值.7.1二元一次方程组和它的解参考答案与试题解析一.选择题(共8小题)1.若方程mx+ny=6的两个解是,,则m,n的值为()A. 4,2 B.2,4 C ﹣4,﹣2 D.﹣2,﹣4考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:将x与y的两对值代入方程计算即可求出m与n的值.解答:解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B.2 C.3 D. 4考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A. 7 B.2 C.﹣1 D.﹣5考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:将x=1,y=2代入方程计算即可求出a的值.解答:解:将x=1,y=2代入方程得:a﹣6=1,解得:a=7,故选A.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.二元一次方程x+2y=3的解的个数是()A. 1 B.2 C.3 D.无数考点:解二元一次方程.菁优网版权所有分析:由于二元一次方程x+2y=3是不定方程,所以有无数组解.解答:解:由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.故选:D.点评:二元一次方程都有无数个解,但对于一些特殊解有有数个.5.已知二元一次方程3x﹣4y=1,则用含x的代数式表示y是()A. y=B.y= C y=D.y=﹣考点:解二元一次方程.菁优网版权所有专题:计算题.分析:将x看做已知数求出y即可.解答:解:3x﹣4y=1,解得:y=.故选B.点评:此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.6.方程组的解是,则a,b为()A.B.C.D.考点:二元一次方程组的解.菁优网版权所有分析:此题可以把x,y的值代入,即可求出a,b的值解答:解:依题意,得a﹣1=0,1﹣b=1∴a=1,b=0.故选B.点评:此题考查的是对二元一次方程的解的理解,解这类题时可把已知的值代入转化成求a,b的方程,这样就可以求出a,b的值.7.下列方程组中,解是的是()A.B. C D.考点:二元一次方程组的解.菁优网版权所有分析:根据解方程组,可得方程组的解,可得答案.解答:解:A、的解是,故A不符合题意;B、的解是,故B不符合题意;C、的解是,故C符合题意;D、的解是,故D不符合题意;故选:C.点评:本题考查了二元一次方程组的解,分别求出每一个方程组的解,再选出答案.8.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:将x、y的值分别代入x﹣2y中,看结果是否等于1,判断x、y的值是否为方程x﹣2y=1的解.解答:解:A、当x=0,y=﹣时,x﹣2y=0﹣2×(﹣)=1,是方程的解;B、当x=1,y=1时,x﹣2y=1﹣2×1=﹣1,不是方程的解;C、当x=1,y=0时,x﹣2y=1﹣2×0=1,是方程的解;D、当x=﹣1,y=﹣1时,x﹣2y=﹣1﹣2×(﹣1)=1,是方程的解;故选:B.点评:本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.二.填空题(共7小题)9.关于x,y的方程组的解是,则|m+n|的值是 3 .考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:将x与y的值代入方程组计算求出m与n的值,即可确定出所求式子的值.解答:解:将x=1,y=3代入方程组得:,解得:m=﹣1,n=﹣2,则|m+n|=|﹣1﹣2|=|﹣3|=3.故答案为:3点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10.已知是方程2x+ay=5的解,则a= 1 .考点:二元一次方程的解.菁优网版权所有专题:计算题.分析:知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a 的一元一次方程,从而可以求出a的值.解答:解:把代入方程2x+ay=5得:4+a=5,解得:a=1,故答案为:1.点评:此题考查的知识点是二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.11.4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= 0 .考点:二元一次方程的定义;解二元一次方程组.菁优网版权所有分析:根据二元一次方程的定义即可得到x、y的次数都是1,则得到关于a,b的方程组求得a,b的值,则代数式的值即可求得.解答:解:根据题意得:,解得:.则a﹣b=0.故答案为:0.点评:主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.在二元一次方程2x﹣y=3中,当x=2时,y= 1 .考点:解二元一次方程.菁优网版权所有专题:计算题.分析:直接把x=2代入二元一次方程2x﹣y=3,求出y的值即可.解答:解:当x=2时,原方程可化为2×2﹣y=3,解得y=1.故答案为:1.点评:本题考查的是解二元一次方程,把x=2代入得到关于y的一元一次方程是解答此题的关键.13.试写出一个以为解的二元一次方程组.考点:二元一次方程组的解.菁优网版权所有专题:开放型.分析:本题是一个开放性的题目,答案不唯一,只有举出一个方程组,把x=3,y=﹣1代入方程组,每个方程的左右两边分别相等即可.解答:解:∵当x=3,y=﹣1时,x+y=2,x﹣y=4,符合条件的一个方程组是,故答案为:.点评:本题考查了二元一次方程组的解,本题具有一定的代表性,是一道开放性的题目,答案不唯一,再如:等.14.若方程组的解是,则a+b的值是 5 .考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得a,b 的值,即可求a+b的值.解答:解:根据定义,把代入方程得:,所以a=,b=,∴a+b=5.故答案为:5.点评:此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.15.2x+y=5的正整数解是,.考点:解二元一次方程.菁优网版权所有专题:探究型.分析:根据方程2x+y=0有正整数解可分别令x=1,x=2求出y的对应值即可.解答:解:∵当x=1时,2×1+y=5,解得y=3;当x=2时,2×2+y=5,解得y=1,∴方程2x+y=0有正整数解为:,.当x取大于2的整数,求出的y是负数,即正整数解只有两个,故答案为:,.点评:本题考查的是二元一次方程,由于二元一次方程是不定方程,在解答此类题目时要先设出一个未知数的值,然后求出另一个数的对应值.三.解答题(共6小题)16.已知关于x、y的方程组的解为,求m、n的值.考点:二元一次方程组的解.菁优网版权所有专题:计算题.分析:将x与y的值代入方程组计算即可求出m与n的值.解答:解:将代入方程组得:,②﹣①得:n=,即n=1,将n=1代入②得:m=1,则.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.17.已知关于x,y的方程组的解为,求m n的值.考点:二元一次方程组的解.菁优网版权所有分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n 的值,即可求m n的值.解答:解:根据定义,把代入方程组,得,解得.那么m n=3﹣2=.点评:此题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法,比较简单.18.根据图中提供的信息,写出T恤衫的单价x(元/件)与驱虫剂的单价y(元/瓶)满足的二元一次方程组.考点:由实际问题抽象出二元一次方程组.菁优网版权所有分析:根据图象可知两件上衣和两瓶驱虫剂共44元,一件上衣和3瓶驱虫剂共26元,据此列出方程组即可.解答:解:设每件上衣x元,每瓶驱虫剂y元,根据题意得:点评:本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系,这是列方程组的依据.19.是否存在m值,使方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程?若存在,求出m的值;若不存在,请说明理由.考点:二元一次方程的定义.菁优网版权所有分析:利用二元一次方程的定义得出其系数的关系进而求出即可.解答:解:∵方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程,∴|m|﹣2=0,m+2≠0,m+1≠0,解得:m=2.故当m=2时,方程(|m|﹣2)x2+(m+2)x+(m+1)y=m+5是关于x,y的二元一次方程.点评:此题主要考查了二元一次方程的定义,正确把握定义是解题关键.20.甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为x=5,y=4.试计算a2014+(﹣b)2013的值.考点:二元一次方程组的解.菁优网版权所有分析:将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a与b的值,即可求出所求式子的值.解答:解:将代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则a2014+(﹣b)2013=1﹣1=0.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.。
华师大版初中数学七年级下册《9.1.3 三角形的三边关系》同步练习卷
华师大新版七年级下学期《9.1.3 三角形的三边关系》2019年同步练习卷一.选择题(共1小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共2小题)2.若一个三角形的三边长分别是m+2,10,2m﹣1,则m的取值范围为.3.如果三角形的两边长分别是3和7,那么第三边的长应大于,而小于,如果这个三角形中有两条边相等,那么它的周长是.三.解答题(共47小题)4.一个四边形的周长为48cm,已知第一条边长acm,第二条边比第一条边的2倍长3cm,第三条边等于第一,第二两条边的和.(1)求出表示第四条边长的式子;(2)当a=3cm时,还能得到四边形吗?请简要说明理由.5.“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)6.已知a、b、c分别为△ABC的三边,你能判断(a2+b2﹣c2)2﹣4a2b2的符号吗?并说明理由.7.用一条长18cm的铁丝围成一个三角形,其中三边长分别为4cm,xcm,ycm,且有两边相等,求x,y的值.8.一个三角形的两条边相等,周长为18cm,三角形一边长4cm,求其它两边长?9.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求△ABC三边长.10.如图,在△ABC中,∠1=∠2,点E、F、G分别在BC、AB、AC上.(1)若在△BCD中,BC=5,BD=4,设CD的长为奇数,则CD的取值是;(2)若EF⊥AB,DG∥BC,请判断CD与AB的位置关系,并说明理由.11.如图,在△BCD中,BC=4,BD=5,(1)若设CD的长为奇数,则CD的取值是;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.12.a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.13.一个三角形的两边长为3和5,(1)求它的第三边a的取值范围;(2)求它的周长L的取值范围;(3)若周长为偶数,求三角形的第三边长.14.已知a,b,c是三角形的三边长.(1)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;(2)在(1)的条件下,若a=5,b=4,c=3,求这个式子的值.15.小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米.①用含m的式子表示第三条边长;②第一条边长能否为10米?为什么?③若第一条边长最短,求m的取值范围.16.如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.17.已知,a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|.18.已知a、b、c是三角形三边长,化简:|a+b﹣c|+|a﹣c﹣b|﹣|b+c﹣a|.19.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求∠A 的度数.20.在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分别24和18两部分,求三角形三边的长.21.已知△ABC三边长是a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|.22.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请尽可能地写出满足题意的a、b、c.23.已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC﹣BC=5,求AB的最小值.24.一个不等边三角形的边长都是整数,且周长是12,这样的三角形共有多少个?25.小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?26.已知三角形的三边长分别是x,x﹣1,x+1.求x的取值范围.27.设a、b、c是△ABC的三边,化简:|a+b﹣c|+|a﹣c﹣b|+|b﹣c+a|.28.若三个互不相等的数:5、3、a能作为一个三角形的三边长,求a的取值范围.29.如图所示,已知O是△ABC内的一点,是说明OA+OB+OC与AB+BC+CA之间的大小关系.30.已知a、b、c分别为△ABC的三边长,化简|a+b﹣c|﹣|b﹣c﹣a|﹣|c﹣a+b|.31.如图所示,P是△ABC内一点,连接PB、PC,试比较PB+PC与AB+AC的大小.32.(1)下面两图是分别用三根、五根火材搭成的三角形,那么用九根火材你能搭成几种不同的三角形,画出示意图,并写出三角形的类型.(2)将一个正方形剖分成d个小正方形称为该正方形的d阶正方形剖分(注意:不要求分出的正方形大小一定要一样),如下面两图是一个正方形的4阶剖分(即d=4)、8阶剖分(即d=8),请你在另两个正方形中画出d=6和d=7的图形.33.已知△ABC有两边的长分别为3和7,第三边的长是关于x的方程解,求a 的取值范围.34.如图,已知线段AD是△ABC的中线,且AB=6,AD=4,AC边长为奇数.求边AC 的长.35.有人说,自己的步子大,一步能走三米多,你相信吗?用你学过的数学知识说明理由.36.如图,D,E是△ABC内两点,求证:AB+AC>BD+DE+CE.37.如图,点P是△ABC内任意一点,试说明PB+PC<AB+AC.38.小明家与学校相距2千米,与少年宫相距3千米,那么学校与少年宫相距一定是5千米吗?请说明理由.39.将长度为2n(n为不小于4的自然数)的一根铅丝折成各边长均为整数的三角形.把三边长分别为α、b、c且满足a≤b≤c的三角形简记为数组(a,b,c)如当n=4时,有(2,3,3).(1)就n=5、6的情况.分别写出所有满足题意的(α,b,c).(2)根据前面的结果猜想:当铅丝的长度为2n(n为不小于4的自然数)时.对应(a,b,c)的个数是.为了检验这个的猜想是否正确,请分别写出当n=8、10时所有的(a,b,c),并判断这个猜想(选填“正确”或“不正确”)40.想一想,下面各题的三条线段能组成三角形吗?如果能,会组成什么样的三角形?(1)6cm,9cm,5cm;(2)6cm,8cm,10cm;(3)5cm,7cm,5cm;(4)12cm,3cm,7cm.41.某海军在南海某海域进行实战演习,小岛A的周围方圆12km内的区域为危险区域,有一艘渔船误入离A地7km的B处(如图),为了尽快驶离危险区域,该船应沿哪条射线方向航行?为什么?42.已知:如图,在△ABC中有D、E两点,求证:BD+DE+EC<AB+AC.43.用长度相等的100根火柴,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形各边所用火柴的根数.44.有四个村庄(点)A、B、C、D,要建一所学校P,使P A+PB+PC+PD最小.画图说明P在哪里.45.①设△ABC的三边分别为a、b、c,试证明:a<(a+b+c)②设四边形的四边长依次为a、b、c、d,两条对角线分别为e、f,证明:e+f>(a+b+c+d)46.小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,你认为这个结论成立吗?如果成立,你能证明它?47.从1,2,3,…,2004中任选K﹣1个数中,一定可以找到能构成三角形边长的三个数(这里要求三角形三边长互不相等),试问满足条件的K的最小值是多少?48.如图,四个工厂A、B、C、D,试找一个供应站M,使它到四个工厂的距离之和为最小.49.现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1(cm)的整数.如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.50.已知三角形的一边是另一边的3倍,求证:三角形的最小边在周长的与之间.华师大新版七年级下学期《9.1.3 三角形的三边关系》2019年同步练习卷参考答案与试题解析一.选择题(共1小题)1.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7【分析】依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.【点评】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.二.填空题(共2小题)2.若一个三角形的三边长分别是m+2,10,2m﹣1,则m的取值范围为3<m<13.【分析】根据在三角形中,“任意两边之和大于第三边,任意两边之差小于第三边”列不等式组求解.【解答】解:根据三角形的三边关系,得即,解不等式组得,3<m<13.【点评】本题利用了三角形中三边的关系求解,同时还要能够熟练解不等式组.3.如果三角形的两边长分别是3和7,那么第三边的长应大于4,而小于10,如果这个三角形中有两条边相等,那么它的周长是17.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于4而小于10;如果三角形中,有两边相等,则分情况讨论:当三边是3,3,7时,3+3<7,不符合三角形的三边关系,舍去;当三角形的三边是3,7,7时,符合,此时周长是17.【点评】考查了三角形的三边关系.注意等腰三角形的时候,一定要分情况讨论.三.解答题(共47小题)4.一个四边形的周长为48cm,已知第一条边长acm,第二条边比第一条边的2倍长3cm,第三条边等于第一,第二两条边的和.(1)求出表示第四条边长的式子;(2)当a=3cm时,还能得到四边形吗?请简要说明理由.【分析】(1)由四边形的周长是四条边的和,首先表示出第二条边长为(2a+3)cm,第三条边为(a+2a+3)cm,即可得到第四边的长;(2)利用组成四边形的线段的条件,即可得到.【解答】解:(1)∵第一条边长是acm,依题意得:第二条边长为(2a+3)cm,第三条边为(a+2a+3)cm,又四边形的周长是48cm,∴第四条边长为:48﹣a﹣(2a+3)﹣(3a+3),=48﹣a﹣2a﹣3﹣3a﹣3,=42﹣6a(cm);(2)当a=3时,四条边的边长分别为3,9,12,24,因为3+9+12=24.不是四边形.是四条在同一条直线上的线段.【点评】本题考查了列代数式,代数式的值,构成四边形的关系,合并同类项法则的运用.5.“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有3种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)【分析】(1)根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,确定第三边的取值范围,从而确定符合条件的三角形的个数.(2)求出各三角形的周长的和,再乘以售价为8元╱分米,可求其所需钱数.【解答】解:(1)三角形的第三边x满足:7﹣3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5、7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),∴51×8=408(元).答:至少需要408元购买材料.【点评】本题主要考查三角形三边关系的应用,注意熟练运用在三角形中任意两边之和大于第三边,任意两边之差小于第三边.6.已知a、b、c分别为△ABC的三边,你能判断(a2+b2﹣c2)2﹣4a2b2的符号吗?并说明理由.【分析】理由公式法因式分解即可解决问题;【解答】解:(a2+b2﹣c2)2﹣4a2b2=(a2+b2﹣c2+2ab)(a2+b2﹣c2﹣2ab)=[(a+b)2﹣c2][(a﹣b)2﹣c2]=(a+b+c)(a+b﹣c)(a﹣b+c)(a﹣b﹣c)∵a+b+c>0,a+b﹣c>0,a﹣b+c>0,a﹣b﹣c<0,∴(a2+b2﹣c2)2﹣4a2b2<0【点评】本题考查三角形的三边关系、平方差公式、完全平方公式等知识,解题的关键是熟练掌握因式分解,属于中考常考题型.7.用一条长18cm的铁丝围成一个三角形,其中三边长分别为4cm,xcm,ycm,且有两边相等,求x,y的值.【分析】根据三角形的三边关系即可解决问题;【解答】解:①当x=4时,y=18﹣8=10,4+4<10,不能构成三角形,不符合题意;②当y=4时,x=18﹣8=10,4+4<10,不能构成三角形,不符合题意;③当x=y时,x=y=14÷2=7,符合题意,∴x=y=7.【点评】本题考查三角形的三边关系,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.一个三角形的两条边相等,周长为18cm,三角形一边长4cm,求其它两边长?【分析】分两种情形讨论求解即可:①若4cm为底边.②若4cm为腰长;【解答】解:①若4cm为底边,则另外两边均为(18﹣4)=7厘米;②若4cm为腰长,则另一腰为4厘米,底边为18﹣4×2=10厘米∵4+4<10,∴此时不能构成三角形,舍去.因此其他两边的长分别为7cm、7cm.【点评】本题考查三角形的三边关系,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.9.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求△ABC 三边长.【分析】首先设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;然后根据△ABC三边长都是整数且互不相等,判断出△ABC三边长.【解答】解:根据题意,设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;∵BC为最大边,∴a最大,又∵b+c>a,∴a<6,∵△ABC三边长都是整数,∴a=5,又∵△ABC三边长互不相等,∴其他两边分别为3,4,∴三角形的三边长为AB=4,BC=5,AC=3或AB=3,BC=5,AC=4.【点评】此题主要考查了三角形三边的关系,以及勾股定理的应用,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.10.如图,在△ABC中,∠1=∠2,点E、F、G分别在BC、AB、AC上.(1)若在△BCD中,BC=5,BD=4,设CD的长为奇数,则CD的取值是3,5,7;(2)若EF⊥AB,DG∥BC,请判断CD与AB的位置关系,并说明理由.【分析】(1)根据三角形三边关系定理求出CD取值范围,再根据CD的长为奇数即可得出CD的取值;(2)由平行线的性质和已知条件可证明CD∥EF,可求得∠CDB=90°,可判断CD⊥AB.【解答】解:(1)∵在△BCD中,BC=5,BD=4,∴1<CD<9,∵CD的长为奇数,∴CD的取值是3,5,7.故答案为3,5,7;(2)CD⊥AB.理由如下:∴DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴CD∥EF,∴∠CDB=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CDB=90°,∴CD⊥AB.【点评】本题考查了三角形三边关系定理,平行线的性质和判定,掌握定理与性质是解题的关键.11.如图,在△BCD中,BC=4,BD=5,(1)若设CD的长为奇数,则CD的取值是3或5或7;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形内角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;∵CD的长为奇数,∴CD的值为3或5或7;故答案为:3或5或7;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.12.a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.【分析】(1)根据三角形任意两边之和大于第三边得出3c﹣2>c,任意两边之差小于第三边得出|2c﹣6|<c,列不等式组求解即可;(2)由△ABC的周长为18,a+b=3c﹣2,4c﹣2=18,解方程得出答案即可.【解答】解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:2<c<6;(2)∵△ABC的周长为18,a+b=3c﹣2,∴a+b+c=4c﹣2=18,解得c=5.【点评】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题.13.一个三角形的两边长为3和5,(1)求它的第三边a的取值范围;(2)求它的周长L的取值范围;(3)若周长为偶数,求三角形的第三边长.【分析】根据三角形的三边关系定理可得第三边的范围是:大于已知的两边的差,而小于两边的和.再根据范围确定a的值.【解答】解:(1)根据三角形的三边关系可得5﹣3<a<5+3,即:2<a<8,(2)∵第三边a的取值范围为2<a<8,∴它的周长L的取值范围2+3+5<L<5+3+8即10<L<16;(3)∵第三边a的取值范围为2<a<8,周长为偶数,∴第三边的长为4或6.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.14.已知a,b,c是三角形的三边长.(1)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;(2)在(1)的条件下,若a=5,b=4,c=3,求这个式子的值.【分析】(1)根据三角形的三边关系判断出a﹣b﹣c,b﹣c﹣a及c﹣a﹣b的符号,再根据绝对值的性质化简;(2)将a=5,b=4,c=3代入计算即可.【解答】解:(1)∵a、b、c是三角形的三边长,∴a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴原式=﹣a+b+c﹣b+a+c﹣c+a+b=a+b+c;(2)当a=5,b=4,c=3时,原式=5+4+3=12.【点评】本题考查的是三角形的三边关系以及绝对值的性质的运用,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.15.小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米.①用含m的式子表示第三条边长;②第一条边长能否为10米?为什么?③若第一条边长最短,求m的取值范围.【分析】(1)本题需先表示出第二条边长,即可得出第三条边长;(2)当m=10时,三边长分别为10,28,12,根据三角形三边关系即可作出判断;(3)根据第一条边长最短以及三角形的三边关系列出不等式组,即可求出m的取值范围.【解答】解:(1)∵第二条边长为(3m﹣2)米,∴第三条边长为50﹣m﹣(3m﹣2)=(52﹣4m)米;(2)当m=10时,三边长分别为10,28,12,由于10+12<28,所以不能构成三角形,即第一条边长不能为10米;(3)由题意,得,解得<m<9.【点评】本题主要考查了一元一次不等式组的应用,在解题时根据三角形的三边关系,列出不等式组是本题的关键.16.如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是1<BC<9;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.【分析】(1)利用三角形的三边关系确定第三边的取值范围即可;(2)首先利用平行线的性质确定∠EDB的度数,然后利用三角形内角和定理确定∠B的度数即可.【解答】解:(1)∵AB=4,AC=5,∴5﹣4<BC<4+5,即1<BC<9,故答案为:1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵DE∥AC,∴∠BDE=∠ACB=55°.∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.【点评】本题考查了三角形的三边关系及平行线的性质,解题的关键是能够了解三角形的三边关系及两直线平行同位角相等的知识,难度不大.17.已知,a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【解答】解:|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|=﹣(a﹣b﹣c)+2(b﹣c﹣a)+(a+b﹣c)=﹣a+b+c+2b﹣2c﹣2a+a+b﹣c=﹣2a+4b﹣2c.【点评】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.18.已知a、b、c是三角形三边长,化简:|a+b﹣c|+|a﹣c﹣b|﹣|b+c﹣a|.【分析】根据三角形三边关系得到a+b﹣c>0,a﹣c﹣b<0,b+c﹣a>0,再去绝对值,合并同类项即可求解.【解答】解:∵a,b,c是一个三角形的三条边长,∴a+b﹣c>0,a﹣c﹣b<0,b+c﹣a>0,∴|a+b﹣c|+|a﹣c﹣b|﹣|b+c﹣a|=a+b﹣c﹣a+c+b﹣b﹣c+a=a+b﹣c.【点评】考查了三角形三边关系,绝对值的性质,整式的加减,关键是得到a+b﹣c>0,a ﹣c﹣b<0,b+c﹣a>0.19.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求∠A 的度数.【分析】首先设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;然后根据△ABC三边长都是整数且互不相等,判断出△ABC三边长分别是5、3、4;最后根据勾股定理,判断出△ABC是直角三角形,即可求出∠A的度数是多少.【解答】解:根据题意,设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;∵BC为最大边,∴a最大,又∵b+c>a,∴a<6,∵△ABC三边长都是整数,∴a=5,又∵△ABC三边长互不相等,∴其他两边分别为3,4,∵32+42=52,∴△ABC是直角三角形,∴∠A=90°,即∠A的度数是90°.【点评】此题主要考查了三角形三边的关系,以及勾股定理的应用,要熟练掌握,解答此题的关键是要明确:(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.20.在△ABC中,AB=AC,AC上的中线BD把△ABC的周长分别24和18两部分,求三角形三边的长.【分析】结合题意画出图形,利用三角形的中线的定义,以及三角形的周长和三角形的三边关系求三角形三边的长.【解答】解:如图,设AB=AC=a,BC=b,则有a+a=24且a+b=18;或a+a=18且a+b=24,得到a=16,b=10或a=12,b=18,这时三角形的三边长分别为16,16,10和12,12,18.它们都能构成三角形.【点评】三角形的中线即三角形一个顶点与对边中点所连接的线段.21.已知△ABC三边长是a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|.【分析】根据三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【解答】解:|a+b﹣c|﹣|b﹣c﹣a|=a+b﹣c﹣(﹣b+c+a)=a+b﹣c+b﹣a﹣c=2b﹣2c.【点评】此题主要考查了三角形的三边关系,以及绝对值的计算,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.22.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请尽可能地写出满足题意的a、b、c.【分析】三角形的分类标准有2种,一种是按角来分,一种是按边来分,列举出所有符合条件的三角形,即可解答.【解答】解:∵a+b+c=24,且a+b>c,a≤b≤c,∴8≤c≤11,即c=8,9,10,11,故可得(a,b,c)共12组:A(2,11,11),B(3,10,11),C(4,9,11),D(5,8,11),E(6,7,11),F(4,10,10),G(5,9,10),H(6,8,10),I(7,7,10),J(6,9,9),K(7,8,9),L(8,8,8).【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.23.已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC﹣BC=5,求AB的最小值.【分析】(1)根据三角形的三边关系求出AB的取值范围,再由AB为奇数即可得出结论;(2)根据AC﹣BC=5可知AC、BC中一个奇数、一个偶数,再由△ABC的周长为奇数,可知AB为偶数,再根据AB>AC﹣BC即可得出AB的最小值.【解答】解:(1)∵由三角形的三边关系知,AC﹣BC<AB<AC+BC,即:8﹣2<AB<8+2,∴6<AB<10,又∵△ABC的周长为奇数,而AC、BC为偶数,∴AB为奇数,故AB=7或9;(2)∵AC﹣BC=5,∴AC、BC中一个奇数、一个偶数,又∵△ABC的周长为奇数,故AB为偶数,∴AB>AC﹣BC=5,得AB的最小值为6.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.24.一个不等边三角形的边长都是整数,且周长是12,这样的三角形共有多少个?【分析】题设中已知数较少,只知道周长为12,应抓住不等边三角形的边长都是整数这一条件,依据三角形三边关系先确定出最大边的取值范围,则问题迎刃而解.【解答】解:设a<b<c,则a+b+c>2c,即2c<12,所以c<6.因为a,b,c都是正整数,所以若c=3,则其他两边必然为a=1,b=2.由于1+2=3,即a+b=c,故线段a,b,c不可能组成三角形.当然c更不可能为1或2,因而有4≤c<6.当c=4时,a=2,b=3,不符合条件;当c=5时,a=3,b=4,符合条件.于是符合条件的三角形共有1个.【点评】点拨:本题考查了三角形的三边关系,关键是根据三角形三边关系确定出最大边的取值范围.25.小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?【分析】已知两边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围;再结合整数这一条件进行分析.【解答】解:设第三根的长是xm.根据三角形的三边关系,则3<x<13.因为x是整数,因而第三根的长度是大于3m且小于13m的所有整数,共有9个数.答:小颖有9种选法.第三根木棒的长度可以是4m,5m,6m,7m,8m,9m,10m,11m,12m.【点评】本题就是利用三角形的三边关系定理解决实际问题.26.已知三角形的三边长分别是x,x﹣1,x+1.求x的取值范围.【分析】根据三角形的三边关系列出关于x的不等式组,求出x的取值范围即可;【解答】解:∵三角形的三边长分别是x,x﹣1,x+1,∴x+1﹣(x﹣1)<x<x+1+(x﹣1),解得:x>2,∴x的取值范围是x>2.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.27.设a、b、c是△ABC的三边,化简:|a+b﹣c|+|a﹣c﹣b|+|b﹣c+a|.【分析】首先根据三角形的三边关系可得a+b﹣c>0,a﹣c﹣b<0,b﹣c+a>0,再根据绝对值的性质去掉绝对值符号,然后合并同类项即可.【解答】解:|a+b﹣c|+|a﹣c﹣b|+|b﹣c+a|=a+b﹣c+(﹣a+c+b)+(b﹣c+a)=a+b﹣c﹣a+c+b+b﹣c+a=a+3b﹣c.【点评】此题主要考查了三角形的三边关系,以及绝对值和整式的加减,关键是掌握三角形的三边关系.28.若三个互不相等的数:5、3、a能作为一个三角形的三边长,求a的取值范围.【分析】根据三角形的三边关系列出不等式即可求出a的取值范围.【解答】解:∵三个互不相等的数:5、3、a能作为一个三角形的三边长,∴5﹣3<a<5+3,且a≠3,a≠5,即2<a<8且a≠3,a≠5.【点评】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.29.如图所示,已知O是△ABC内的一点,是说明OA+OB+OC与AB+BC+CA之间的大小关系.【分析】直接根据三角形的三边关系进行解答即可.【解答】解:∵在△ABO中,OA+OB>AB;同理可得,OA+OC>CA;OB+OC>BC,∴2(OA+OB+OC)>AB+BC+CA.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.30.已知a、b、c分别为△ABC的三边长,化简|a+b﹣c|﹣|b﹣c﹣a|﹣|c﹣a+b|.【分析】根据三角形的任意两边之和大于第三边可得a+b﹣c>0,b﹣c﹣a<0,c﹣a+b>0,再根据绝对值的性质去掉绝对值符号,然后利用整式的加减运算进行计算即可得解.【解答】解:∵a、b、c分别为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,c﹣a+b>0,∴|a+b﹣c|﹣|b﹣c﹣a|﹣|c﹣a+b|=a+b﹣c+b﹣c﹣a﹣c+a﹣b=a+b﹣3c.【点评】本题考查了三角形的三边关系,绝对值的性质,整式的加减运算,熟记性质并去掉绝对值符号是解题的关键.31.如图所示,P是△ABC内一点,连接PB、PC,试比较PB+PC与AB+AC的大小.【分析】首先需要作辅助线(延长BP交AC于点D),根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得:在△ABD中,AB+AD>PB+PD;在△PCD中,PD+DC >PC,即可得:AB+AC>PB+PC.【解答】解:如图,延长BP交AC于点D,。
难点详解华东师大版七年级数学下册第9章多边形同步测试练习题(含详解)
七年级数学下册第9章多边形同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG2、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°3、下列多边形中,内角和与外角和相等的是( )A.B.C.D.4、如图,直线l1∥l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于()A.56°B.34°C.44°D.46°5、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为()A.60°B.120°C.135°D.150°6、在下列长度的四根木棒中,能与3cm ,9cm 的两根木棒首尾顺次相接钉成一个三角形的是( )A .3cmB .6cmC .10cmD .12cm7、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A .155°B .125°C .135°D .145°8、已知a b ∥,一块含30°角的直角三角板如图所示放置,250∠=︒,则1∠等于( )A .140°B .150°C .160°D .170°9、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A .三角形B .四边形C .五边形D .六边形10、下列图形中,不具有稳定性的是( )A .等腰三角形B .平行四边形C .锐角三角形D .等边三角形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,E 为△ABC 的BC 边上一点,点D 在BA 的延长线上,DE 交AC 于点F ,∠B =46°,∠C =30°,∠EFC =70°,则∠D =______.2、在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.3、一个三角形的两边分别是3和7,如果第三边长为整数,那么第三边可取的最大整数是___.4、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.5、如图,BE ,CD 是△ABC 的高,BE ,CD 相交于点O ,若BAC α∠=,则BOC ∠=_________.(用含α的式子表示)三、解答题(5小题,每小题10分,共计50分)1、如图所示,在一副三角板ABC 和三角板DEC 中,90ACB CDE ∠=∠=︒,60BAC ∠=︒,∠B =30°,∠DEC =∠DCE =45°.(1)当AB∥DC时,如图①,DCB∠的度数为°;(2)当CD与CB重合时,如图②,判断DE与AC的位置关系并说明理由;(3)如图③,当DCB∠=°时,AB∥EC;(4)当AB∥ED时,如图④、图⑤,分别求出DCB∠的度数.2、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.3、如图,在△ABC中,∠C=30°,∠B=58°,AD平分∠CAB.求∠CAD和∠1的度数.4、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C =∠DGC.(1)求证:AB//CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.5、求下列图中的x的值(1)(2)-参考答案-一、单选题1、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.2、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.3、B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设所求多边形的边数为n,根据题意得:(n-2)•180°=360°,解得n=4.故选:B.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.4、C【解析】【分析】依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l1∥l2,∠1=46°,∴∠3=∠1=46°,又∵l3⊥l4,∴∠2=90°﹣46°=44°,故选:C.【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.5、B【解析】【分析】观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.【详解】∠α=6218061()20-⨯︒÷=︒故选:B .【点睛】本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.6、C【解析】【分析】设第三根木棒的长度为x cm ,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm ,则9393,x612,x所以A ,B ,D 不符合题意,C 符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.7、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.8、D【解析】【分析】利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.【详解】解:∵∠C =90°,∠2=∠CDE =50°,∠3=∠C +∠CDE=90°+50°=140°.∵a∥b,∴∠4=∠3=140°.∵∠A=30°∴∠1=∠4+∠A=140°+30°=170°.故选:D.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.9、A【解析】【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,∴多边形的内角和是180度,∴这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.10、B【解析】【分析】根据三角形具有稳定性,四边形不具有稳定性即可作出选择.【详解】解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;故选:B.【点睛】本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.二、填空题1、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【点睛】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.2、1cm2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D是BC的中点,S△ABC=4cm2∴S△ABD=12S△ABC=12×4=2cm2∵E是AD的中点,∴S△ABE=12S△ABD=12×2=1cm2故答案为:1cm2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解.3、9【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得第三边长的最大值.【详解】解:设第三边为a ,根据三角形的三边关系,得:7﹣3<a <3+7,即4<a <10,∵a 为整数,∴a 的最大值为9.故答案为:9.【点睛】此题考查了三角形的三边关系.注意第三边是整数的已知条件.4、6【解析】【分析】根据多边形内角和公式及多边形外角和可直接进行求解.【详解】解:由题意得:()18022360n ︒⨯-=⨯︒,解得:6n =,∴该多边形的边数为6;故答案为6.【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.5、180°-α【解析】【分析】根据三角形的高的定义可得∠AEO=∠ADO=90°,再根据四边形在内角和为360°解答即可.【详解】解:∵BE,CD是△ABC的高,∠=,∴∠AEO=∠ADO=90°,又BACα∴∠BOC=∠DOE=360°-90°-90°-α=180°-α,故答案为:180°-α.【点睛】本题考查三角形的高、四边形的内角和、对顶角相等,熟知四边形在内角和为360°是解答的关键.三、解答题1、(1)30;(2)DE∥AC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;【解析】【分析】(1)根据两直线平行,内错角相等求解即可;(2)根据内错角相等,两直线平行证明即可;(3)根据AB∥EC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;(4)如图④所示,,设CD与AB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.【详解】解:(1)∵AB∥CD,∴∠BCD=∠B=30°,故答案为:30;(2)DE∥AC,理由如下:∵∠CBE=∠ACB=90°,∴DE∥AC;(3)∵AB∥EC,∴∠ECB=∠B=30°,又∵∠DCE=45°,∴∠DCB=∠DCE-∠ECB=15°,∴当∠DCB=15°时,AB∥EC,故答案为:15;(4)如图④所示,设CD与AB交于F,∵AB∥ED,∴∠BFC=∠EDC=90°,∴∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,∵AB∥DE,∵∠ACB=∠CDE=90°,∴∠BCG=∠CDG=90°,∴∠DCG=180°-∠G-∠CDG=30°,∴∠DCB=∠BCG+∠DCG=120°.【点睛】本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.2、∠AFE=50°.【解析】【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=11804022ACB∠=⨯︒=︒,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=11804022ACB∠=⨯︒=︒,∵AD是△ABC边BC上的高,AD⊥BC,∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,∴∠AFE=∠DFC=50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.3、∠CAD=46°,∠1=76°.【解析】【分析】利用三角形内角和求出∠BAC,根据角平分线定义求出∠CAD,然后根据三角形外角性质∠1=∠C+∠CAD即可求解.【详解】解:∵∠C=30°,∠B=58°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣58°=92°.又∵AD平分∠BAC,∠BAC=46°,∴∠CAD=12∵∠1是△ACD的外角,∴∠1=∠C+∠CAD=30°+46°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、(1)见解析;(2)见解析;(3)108°【解析】(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.【详解】证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC∴∠AEG=∠C∴AB//CD(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°∴∠DGC+∠AHF=180°∴EC//BF∴∠B=∠AEG由(1)得∠AEG=∠C∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C∴∠C=36°∴∠DGC=36°∵∠C+∠DGC+∠D=180°∴∠D=108°此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.5、(1)65;(2)60.【解析】【分析】(1)根据四边形内角和等于360°,列方程即可求出x的值;(2)根据五边形内角和等于(5-2)⨯180°,列方程即可求出x的值.【详解】解:(1)∵四边形内角和等于360°,∴x+x+140+90=360,解得:x=65;(2)∵五边形内角和等于(5-2)⨯180°=540°,∴x+2x+150+120+90=540,解得:x=60.【点睛】本题考查了四边形和五边形的内角和,熟练掌握n边形的内角和等于(n-2)⨯180°是解题的关键.①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“n边形的内角和等于(n-2)⨯180°”这一隐含的条件.。
华师大版七年级数学下册《第十章轴对称、平移与旋转》 达标测试卷-带参考答案
华师大版七年级数学下册《第十章轴对称、平移与旋转》达标测试卷-带参考答案一、选择题(每题3分,共24分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看成是轴对称图形的是()2.下列四组图形中,不能视为由一个基本图形通过平移得到的是()3.美丽的雪花呈现出浪漫空灵的气质.如图,雪花图案可以看成是由自身的一部分围绕它的中心依次旋转一定角度得到的,这个角的度数可以是()A.30°B.45°C.60°D.90°(第3题)(第5题)4.下列图形中既是轴对称图形又是中心对称图形的是()5.如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC 的长为()A.3 B.5 C.8 D.116.如图,在长方形ABCD中,E是CD上一点,连结AE,将△ADE沿AE折叠,使点D的对应点F落在BC上,若AB=3,BC=5,BF=4,则CE的长为()(第6题)A.2 B.1 C.53 D.437.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把其中一张扑克牌旋转180°.魔术师解除蒙具后,看到4张牌如图②所示.那么被旋转过的牌是()(第7题)A.方块4 B.黑桃5 C.梅花6 D.红桃7 8.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移将长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为()(第8题)A.407 B.406 C.405 D.404二、填空题(每题3分,共18分)9.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________°.(第9题)(第11题)10.把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.11.如图,方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A′B′C′,使各顶点仍在格点上,则其旋转角的最小度数是________°.12.如图,直角三角形DEF是由直角三角形ABC沿BC平移得到的,若AB=8,BE=3,DH=2,则图中阴影部分的面积是________.(第12题)(第13题)13.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C的对应点C′落在△ABC内,则∠1+∠2=________°.14.如图,在锐角三角形ABC中,AB=8,△ABC的面积为40,BD平分∠ABC,若M、N分别是BD、BC上的动点,则CM+MN的最小值为________.(第14题)三、解答题(共78分)15.(6分)如图是正方形纸片ABCD,点E、F分别在边BC、CD上,连结AF,AE,将△ABE,△ADF分别沿AE、AF折叠,折叠后边AB与AD恰好重叠于AG,求∠EAF的大小.(第15题)第3 页共12 页16.(6分)如图,在边长均为1的小正方形组成的网格中,△AOB的顶点均在格点上.(1)将△AOB向下平移2个单位后得到△A1O1B1,请画出△A1O1B1;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请画出△A2OB2;(3)△A3OB3与△AOB关于点O中心对称,请画出△A3OB3.(第16题)17.(6分)如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.(第17题)18.(7分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用3种不同的方法分别在下图方格内涂黑2个小正方形,使它们成为轴对称图形.(第18题)19.(7分)如图,△ABD≌△EBC,AB=3 cm,BC=6 cm.(1)求DE的长;(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?(第19题)20.(7分)如图,E是正方形ABCD的边AB上一点,AB=4,AE=1.5,△DAE逆时针旋转后能够与△DCF重合.第5 页共12 页(1)旋转中心是哪一点,旋转角为多少度?(2)请你判断△DFE的形状,并说明理由.(3)求四边形ABFD的面积.(第20题)21.(8分)如图①②均为上底为1,下底为2,高为1的直角梯形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.(第21题)22.(9分)如图,小丽将直角三角形ABC沿某条直线折叠,使斜边的两个端点A 与B重合,折痕为DE.(1)如果AC=6,BC=8,试求△ACD的周长;(2)如果∠CAD∶∠BAD=4∶7,求∠B的度数.(第22题)23.(10分)如图①,将一副直角三角尺OCD、PMN放在同一条直线AB上,其中∠PNM=30°,∠OCD=45°.(1)【观察猜想】将图①中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=________.(2)【操作探究】将图①中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图③,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)【深化拓展】将图①中的三角尺OCD绕点O按顺时针方向旋转一周,在旋转的过程中,若边CD恰好与边MN平行,请你求出此时旋转的角度.(第23题)第7 页共12 页24.(12分)将一副直角三角尺按如图①所示的方式摆放在直线MN上(∠DEC=60°,∠BAC=45°),保持三角尺EDC不动,将三角尺ABC绕点C以每秒5°的速度顺时针旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转.(1)如图②,当CA平分∠DCE时,求此时t的值;(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB之间的数量关系,并说明理由;(3)在旋转过程中,当三角尺ABC的某一边平行于三角尺EDC的某一边时,求此时t的值.(第24题)答案一、1.B 2.C 3.C 4.A 5.B6.D思路点睛:根据长方形的面积列方程求解.7.A点拨:观察发现旋转之前和旋转之后扑克牌的图案没变化,所以旋转的扑克牌转180°后图案与原来相同,只有方块4符合题意,故选A.8.D思路点睛:根据平移的性质得出AA1=5,A1A2=5,A1B1=6,A2B2=6,进而求出AB1和AB2的长,然后总结规律,得出AB n=(n+1)×5+1,求出n 即可.二、9.12010.6011.9012.2113.8014.10三、15.解:∵四边形ABCD是正方形,∴∠BAD=90°由折叠的性质得,∠DAF=∠GAF=12∠DAG,∠BAE=∠GAE=12∠BAG,∴∠EAF=∠GAF+∠GAE=12∠DAG+12∠BAG=12(∠DAG+∠BAG)=12∠BAD=45°.16.解:(1)如图,△A1O1B1即为所作.(2)如图,△A2OB2即为所作.(3)如图,△A3OB3即为所作.(第16题) 17.解:由旋转的性质可得,AB=AD,∠ADE=∠B=70°∴∠ADB=∠B=70°∴∠CDE=180°-∠ADB-∠ADE=40°.18.解:如图.(方法不唯一)(第18题)第9 页共12 页19.解:(1)∵△ABD ≌△EBC ∴AB =BE ,BD =BC∴DE =BD -BE =BC -AB =6-3=3(cm).(2)垂直.∵△ABD ≌△EBC ,且A 、B 、C 在一条直线上 ∴∠ABD =∠CBE ,∠ABD +∠CBE =180° ∴∠ABD =∠CBE =90°,即DB ⊥AC . 20.解:(1)旋转中心是点D ,旋转角为90°.(2)△DFE 是等腰直角三角形.理由如下: ∵四边形ABCD 是正方形,∴∠ADC =90°.根据旋转的性质可得DE =DF ,∠EDF =∠ADC =90° ∴△DFE 是等腰直角三角形.(3)∵四边形ABCD 是正方形,∴∠A =90°,AD =AB =4,S正方形ABCD=4×4=16,根据旋转的性质可得S △CDF =S △ADE =12AD ·AE =12×4×1.5=3 ∴S 四边形ABFD =S 正方形ABCD +S △CDF =16+3=19. 21.解:(1)如图①所示. (2)如图②所示.(第21题)22.解:(1)由折叠的性质可得BD =AD ,∴△ACD 的周长=AC +AD +CD =AC+BD +CD =AC +BC =6+8=14. (2)可设∠CAD =4x °,∠BAD =7x °由折叠的性质可得∠B =∠BAD ,∴∠B =7x ° ∵∠C =90°,∴∠B +∠DAB +∠CAD =90° ∴7x °+7x °+4x °=90°,解得x =5,∴∠B =35°. 23.解:(1)105°(2)∵OD 平分∠MON ,∴∠DON =12∠MON =12×90°=45°,∴∠DON =∠D =45°,∴CD ∥AB∴∠CEN =180°-∠MNO =180°-30°=150°.(3)设直线MO 与CD 相交于点F 如图①,当CD 在AB 上方时(第23题)∵CD∥MN,∴∠OFD=∠M=60°在△ODF中,∠MOD=180°-∠D-∠OFD=180°-45°-60°=75°,∴旋转角为75°;如图②,当CD在AB的下方时∵CD∥MN,∴∠DFO=∠M=60°,在△DOF中,∠DOF=180°-∠D-∠DFO=180°-45°-60°=75°∴旋转角为75°+180°=255°.综上所述,旋转的角度为75°或255°时,边CD恰好与边MN平行.24.解:(1)∵CA平分∠DCE,∴∠ACE =12∠DCE=15°∴t=15°÷5°=3.(第24题)(2)∠ECB-∠DCA=15°.理由如下:如图①,由旋转得∠ACE=5°t,∴∠DCA=30°-5°t,∠ECB=45°-5°t,∴∠ECB-∠DCA=(45°-5°t)-(30°-5°t)=15°.(3)分四种情况:①当AB∥DE时,如图②,∠ACE=∠ACB+∠DCE=45°+30°=75°,∴t=75°÷5°=15;(第24题)②当AB∥CE时,如图③,则∠BCE=∠B=90°∴∠ACE=∠BCE+∠ACB=90°+45°=135°第11 页共12 页∴t=135°÷5°=27;③当AB∥CD时,如图④,则∠DCB=∠B=90°∴∠ACE=∠DCE+∠DCB+∠ACB=30°+90°+45°=165°,∴t=165°÷5°=33;(第24题)④当AC∥DE时,如图⑤,则∠ACD=∠D=90°∴∠ACE=∠ACD+∠DCE=90°+30°=120°∴t=120°÷5°=24.综上所述,t的值是15,24,27或33.第12 页共12 页。
华师大版初中数学七年级下册《9.2 多边形的内角和与外角和》同步练习卷(含答案解析
华师大新版七年级下学期《9.2 多边形的内角和与外角和》同步练习卷一.选择题(共32小题)1.一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6B.8C.9D.122.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()A.35°B.40°C.50°D.不存在3.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()A.∠A+∠D﹣45°B.(∠A+∠D)+45°C.180°﹣(∠A+∠D)D.∠A+∠D4.如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()A.180°B.270°C.360°D.450°5.一个多边形的内角和等于360°,它是()A.四边形B.五边形C.六边形D.七边形6.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形B.八边形C.正六边形D.正八边形7.下列角度中,不能成为多边形内角和的是()A.460°B.540°C.900°D.1260°8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°9.若一个多边形的外角和与它的内角和相等,则这个多边形是()边形.A.三B.四C.五D.六10.四边形的四个内角可以都是()A.锐角B.直角C.钝角D.以上答案都不对11.如图所示的四边形中,若去掉一个50°的角得到一个五边形,则∠1+∠2等于()A.230°B.240°C.250°D.260°12.下列图形中有稳定性的是()A.平行四边形B.直角三角形C.长方形D.正方形13.将四边形截去一个角后,所形成的一个新的多边形的内角和()A.180°B.360°C.540°D.180°或360°或540°14.下列哪个答案可能是多边形的内角和()A.560°B.1040°C.1080°D.2000°15.如果一个多边形从一个顶点出发最多能画四条对角线,则这个多边形的边数为()A.5B.6C.7D.816.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,4的外角和等于210°,则∠BOD的度数为()A.30°B.35°C.40°D.45°17.经过多边形一个顶点共有5条对角线,则这个多边形的边数是()A.5B.6C.7D.818.若一个多边形的内角和与外角和总共是900°,则此多边形是()A.四边形B.五边形C.六边形D.七边形19.在一个四边形的所有内角中,锐角的个数最多有()A.4个B.3个C.2个D.1个20.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为()A.1620°B.1800°C.1980°D.2160°21.如图,将四边形ABCD去掉一个60°的角得到一个五边形BCDEF,则∠1与∠2的和为()A.60°B.108°C.120°D.240°22.下列角度中,不能成为多边形内角和的是()A.600°B.900°C.1080°D.720°23.如图,边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少()A.30°B.15°C.18°D.20°24.如图所示,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°25.如果一个多边形的每个外角都是30°,那么这个多边形的边数是()A.18B.12C.11D.626.一个多边形的内角和为720°,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形27.过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为()A.3B.4C.5D.628.一个多边形的内角和比外角和的三倍少180°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形29.若正多边形的一个外角是120°,则该正多边形的边数是()A.6B.5C.4D.330.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α31.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.360°B.480°C.540°D.720°32.如果过一个多边形的一个顶点的对角线有6条,则该多边形是()A.九边形B.八边形C.七边形D.六边形二.填空题(共8小题)33.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.小明一共走了米?这个多边形的内角和是度?34.一个正多边形的每个内角等于108°,则它的边数是.35.在图中,x的值为.36.如图,∠1+∠2+∠3+∠4+∠5+∠6=.37.如图所示是三个边长相等的正多边形拼成的无缝隙、不重叠的图形的一部分,正多边形①和②的内角都是108°,则正多边形③的边数是.38.如图,是某个正多边形的一部分,则这个正多边形是边形.39.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.40.正多边形的一个内角等于144°,则该多边形是正边形.三.解答题(共3小题)41.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?42.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC 边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.43.解答题:(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)华师大新版七年级下学期《9.2 多边形的内角和与外角和》同步练习卷参考答案与试题解析一.选择题(共32小题)1.一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6B.8C.9D.12【分析】任何一个多边形的外角都等于360°,用360除以每一个外角的度数就是这个多边形的边数.【解答】解:360÷30=12(条)故选:D.【点评】本题考查了多边形的外角和,关键是根据任何一个多边形的外角都等于360°解答.2.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()A.35°B.40°C.50°D.不存在【分析】根据题意可知,小林走的是正多边形,先求出边数,然后再利用外角和等于360°,除以边数即可求出α的值.【解答】解:设边数为n,根据题意,n=108÷12=9,∴α=360°÷9=40°.所以α﹣5=35°,故选:A.【点评】本题主要考查了多边形的外角和等于360°,根据题意判断出所走路线是正多边形是解题的关键.3.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()A.∠A+∠D﹣45°B.(∠A+∠D)+45°C.180°﹣(∠A+∠D)D.∠A+∠D【分析】根据四边形的内角和和角平分线的定义解答即可.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣=,故选:D.【点评】本题考查角平分线的定义及四边形的内角和定理,解答的关键是根据四边形的内角和和角平分线的定义解答.4.如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()A.180°B.270°C.360°D.450°【分析】首先过点D作DF∥AE,交AB于点F,由AE∥BC,可证得AE∥DF∥BC,然后由两直线平行,同旁内角互补,证得∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,继而证得结论.【解答】解:过点D作DF∥AE,交AB于点F,∵AE∥BC,∴AE∥DF∥BC,∴∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,∴∠C+∠CDE+∠E=360°,故选:C.【点评】此题考查了平行线的性质.此题比较适中,注意掌握辅助线的作法,注意数形结合思想的应用.5.一个多边形的内角和等于360°,它是()A.四边形B.五边形C.六边形D.七边形【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:由题意可得:(n﹣2)•180°=360°,解得:n=4.则它是四边形,故选:A.【点评】此题考查多边形内角与外角,已知多边形的内角和求边数,可以转化为方程的问题来解决.6.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形B.八边形C.正六边形D.正八边形【分析】设出外角的度数,利用外角与相邻内角和为180°求得外角度数,360°÷这个外角度数的结果就是所求的多边形的边数.【解答】解:设正多边形的每个外角为x度,则每个内角为3x度,∴x+3x=180,解得x=45.∴多边形的边数为360°÷45°=8.故选:B.【点评】考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为180°;正多边形的边数等于360÷正多边形的一个外角度数.7.下列角度中,不能成为多边形内角和的是()A.460°B.540°C.900°D.1260°【分析】设多边形的边数为n,根据多边形的内角和公式得出方程,求出n,再判断即可.【解答】解:设多边形的边数为n,A、(n﹣2)×180°=460°,解得:n=,多边形的边数不能为分数,故本选项符合题意;B、(n﹣2)×180°=540°,解得:n=5,多边形的边数为5,故本选项不符合题意;C、(n﹣2)×180°=900°,解得:n=7,多边形的边数为7,故本选项不符合题意;D、(n﹣2)×180°=1260°,解得:n=10,多边形的边数为10,故本选项不符合题意;故选:A.【点评】本题考查了多边形的外角和内角,能熟记多边形的内角和公式是解此题的关键,注意:n边形的内角和等于(n﹣2)×180°.8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:C.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.9.若一个多边形的外角和与它的内角和相等,则这个多边形是()边形.A.三B.四C.五D.六【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【解答】解:设多边形的边数为n.根据题意得:(n﹣2)×180°=360°,解得:n=4.故选:B.【点评】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.10.四边形的四个内角可以都是()A.锐角B.直角C.钝角D.以上答案都不对【分析】根据四边形的内角和公式作答.【解答】解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.故选:B.【点评】本题主要考查了四边形的内角和定理,熟记四边形的内角和定理是解题的关键.11.如图所示的四边形中,若去掉一个50°的角得到一个五边形,则∠1+∠2等于()A.230°B.240°C.250°D.260°【分析】根据三角形的外角性质和三角形内角和定理得出∠1=∠A+∠ACB,∠2=∠A+∠ABC,∠A+∠ABC+∠ACB=180°,再相加即可.【解答】解:∵∠1=∠A+∠ACB,∠2=∠A+∠ABC,∠A+∠ABC+∠ACB=180°,∴∠1+∠2=∠A+∠ACB+∠A+∠ABC=180°+∠A=180°+50°=230°,故选:A.【点评】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.12.下列图形中有稳定性的是()A.平行四边形B.直角三角形C.长方形D.正方形【分析】根据三角形具有稳定性解答.【解答】解:平行四边形、长方形、正方形、直角三角形中具有稳定性的是直角三角形.故选:B.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.13.将四边形截去一个角后,所形成的一个新的多边形的内角和()A.180°B.360°C.540°D.180°或360°或540°【分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【解答】解:∵一个四边形截去一个角后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能减少180°,可能不变,可能增加180°,即新的多边形的内角和为180°或360°或540°.故选:D.【点评】本题考查了多边形的内角与外角,能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键.14.下列哪个答案可能是多边形的内角和()A.560°B.1040°C.1080°D.2000°【分析】根据多边形的内角和为(n﹣2)×180°来确定解决本题的方法,即判断哪个度数可能是多边形的内角和,就看它是否能被180°整除,从而根据这一方法解决问题.【解答】解:判断哪个度数可能是多边形的内角和,我们主要看它是否能被180°整除.只有1080°能被180°整除.故选:C.【点评】本题主要考查多边形的内角和定理,正确把握多边形内角和定理是解题关键.15.如果一个多边形从一个顶点出发最多能画四条对角线,则这个多边形的边数为()A.5B.6C.7D.8【分析】根据从n边形的一个顶点可以作对角线的条数公式(n﹣3)求出边数即可得解.【解答】解:∵从一个多边形的一个顶点出发可以引5条对角线,设多边形边数为n,∴n﹣3=4,解得n=7.故选:C.【点评】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n边形从一个顶点出发可引出(n﹣3)条对角线是解题的关键.16.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,4的外角和等于210°,则∠BOD的度数为()A.30°B.35°C.40°D.45°【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣510°=30°,故选:A.【点评】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.17.经过多边形一个顶点共有5条对角线,则这个多边形的边数是()A.5B.6C.7D.8【分析】根据从n边形的一个顶点可以作对角线的条数公式(n﹣3)求出边数即可得解.【解答】解:∵从一个多边形的一个顶点出发可以引5条对角线,设多边形边数为n,∴n﹣3=5,解得:n=8.故选:D.【点评】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n边形从一个顶点出发可引出(n﹣3)条对角线是解题的关键.18.若一个多边形的内角和与外角和总共是900°,则此多边形是()A.四边形B.五边形C.六边形D.七边形【分析】本题需先根据已知条件,再根据多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.【解答】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900°﹣360°=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故选:B.【点评】本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.19.在一个四边形的所有内角中,锐角的个数最多有()A.4个B.3个C.2个D.1个【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选:B.【点评】本题考查了多边形的内角与外角.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.20.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为()A.1620°B.1800°C.1980°D.2160°【分析】从多边形一个顶点可作9条对角线,则这个多边形的边数是12,n边形的内角和可以表示成(n﹣2)•180°,代入公式就可以求出内角和.【解答】解:∵过多边形的一个顶点共有9条对角线,故该多边形边数为12,∴(12﹣2)•180°=1800°,∴这个多边形的内角和为1800°.故选:B.【点评】本题主要考查了多边形的内角和公式,是需要熟记的内容,比较简单.21.如图,将四边形ABCD去掉一个60°的角得到一个五边形BCDEF,则∠1与∠2的和为()A.60°B.108°C.120°D.240°【分析】根据三角形内角和定理求出∠AEF+∠AFE,根据邻补角的性质计算即可.【解答】解:在△AEF中,∠AEF+∠AFE=180°﹣∠A=120°,∴∠1+∠2=360°﹣120°=240°,故选:D.【点评】本题考查的是多边形的内角与外角,掌握三角形的内角和定理是解题的关键.22.下列角度中,不能成为多边形内角和的是()A.600°B.900°C.1080°D.720°【分析】利用多边形的内角和公式即可作出判断.【解答】解:∵多边形内角和公式为(n﹣2)×180,∴多边形内角和一定是180的倍数.故选:A.【点评】本题主要考查了多边形内角和公式,在解题时要记住多边形内角和公式,并加以应用即可解决问题.23.如图,边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少()A.30°B.15°C.18°D.20°【分析】∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【解答】解:∵正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,∴∠1=108°﹣90°=18°.故选:C.【点评】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.24.如图所示,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°【分析】根据三角形外角性质得出∠ENM=∠A+∠C,∠DMN=∠B+∠F,根据四边形的内角和定理得出∠ENM+∠DMN+∠D+∠E=360°,代入求出即可.【解答】解:设AE和CF交于N,BD和CF交于M,∵∠ENM=∠A+∠C,∠DMN=∠B+∠F,又∵∠ENM+∠DMN+∠D+∠E=360°,∴∠A+∠C+∠B+∠F+∠D+∠E=360°,即∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:B.【点评】本题考查了多边形的内角和定理和三角形外角性质,能根据定理得出∠ENM=∠A+∠C、∠DMN=∠B+∠F、∠ENM+∠DMN+∠D+∠E=360°是解此题的关键.25.如果一个多边形的每个外角都是30°,那么这个多边形的边数是()A.18B.12C.11D.6【分析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【解答】解:多边形的边数是:360°÷30°=12.故选:B.【点评】本题主要考查了多边形的外角和定理,理解多边形外角和中外角的个数与正多边形的边数之间的关系,是解题关键.26.一个多边形的内角和为720°,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.故这个正多边形是六边形.故选:B.【点评】考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.27.过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为()A.3B.4C.5D.6【分析】n边形中过一个顶点的所有对角线有(n﹣3)条,把这个多边形分成(n ﹣2)个三角形,根据这一点即可解答.【解答】解:这个多边形的边数是4+2=6.故选:D.【点评】本题考查多边形的对角线规律,解题的关键是利用多边形的对角线把多边形分成(n﹣2)个三角形,本题属于基础题型.28.一个多边形的内角和比外角和的三倍少180°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=3×360°﹣180°,解得n=7.故选:C.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.29.若正多边形的一个外角是120°,则该正多边形的边数是()A.6B.5C.4D.3【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=3,即该正多边形的边数是3.故选:D.【点评】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单.30.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:B.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,关键是先求出∠ABC+∠BCD的度数.31.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.360°B.480°C.540°D.720°【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠ADE,由四边形内角和是360°,即可求∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠ADE,∴∠E+∠F=∠FAD+∠ADE,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=∠BAF+∠B+∠C+∠CDE+∠FAD+∠ADE=∠BAD+∠B+∠C+∠ADC.又∵∠BAD+∠B+∠C+∠ADC=360°,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°.故选:A.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.32.如果过一个多边形的一个顶点的对角线有6条,则该多边形是()A.九边形B.八边形C.七边形D.六边形【分析】根据从每一个顶点处可以作的对角线的条数为(n﹣3)计算即可得解.【解答】解:∵过一个多边形的一个顶点的对角线有6条,∴多边形的边数为6+3=9,∴这个多边形是九边形.故选:A.【点评】本题考查了多边形的对角线公式,熟记从每一个顶点处可以作的对角线的条数为(n﹣3)是解题的关键.二.填空题(共8小题)33.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.小明一共走了120米?这个多边形的内角和是3960度?【分析】根据多边形的外角和为360°,内角和为(n﹣2)×180°计算.【解答】解:设他所走的路径构成了正n多边形,则n==24,5×24=120(m),多边形的内角和=(24﹣2)×180°=3960°,故答案为:120;3960.【点评】本题考查的是多边形的外角和和内角和的求法,掌握多边形的外角和为360°,内角和为(n﹣2)×180°是解题的关键.34.一个正多边形的每个内角等于108°,则它的边数是五.【分析】根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解.【解答】解:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,∴这个正多边形是正五边形.故答案为:五.【点评】本题考查了多边形的内角与外角,对于正多边形,利用多边形的外角和除以每一个外角的度数求边数更简便.35.在图中,x的值为135.【分析】直接利用邻补角的性质得出∠1,进而利用四边形内角和定理得出答案.【解答】解:如图所示:可得∠1=180°﹣103°=77°,故x=360﹣65﹣83﹣77=135.故答案为:135.【点评】此题主要考查了四边形内角和定理,正确得出∠1的度数是解题关键.36.如图,∠1+∠2+∠3+∠4+∠5+∠6=360°.【分析】根据三角形的外角性质可得∠7=∠1+∠2,∠8=∠5+∠6,再利用四边形中内角和为360°即可求得.【解答】解:∵∠7=∠1+∠2,∠8=∠5+∠6,∠3+∠4+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.故答案为:360°.【点评】本题考查了多边形的内角与外角,利用了三角形的外角性质,多边形内角和定理求解.37.如图所示是三个边长相等的正多边形拼成的无缝隙、不重叠的图形的一部分,正多边形①和②的内角都是108°,则正多边形③的边数是10.【分析】先根据周角的定义求出正多边形③的每一个内角都是144°,由多边形的每一个内角都是144°先求得它的每一个外角是36°,然后根据正多边形的每个内角的度数×边数=360°求解即可.【解答】解:360°﹣108°﹣108°=144°,180°﹣144°=36°,360°÷36°=10.【点评】本题主要考查的是多边形的内角与外角,明确正多边形的每个内角的度数×边数=360°是解题的关键.38.如图,是某个正多边形的一部分,则这个正多边形是十边形.【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10.故这个正多边形是正十边形.故答案为:十.【点评】本题主要考查了多边形的外角和定理.是需要识记的内容.39.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为40°.【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,【点评】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.40.正多边形的一个内角等于144°,则该多边形是正十边形.【分析】根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【解答】解:设正多边形是n边形,由题意得(n﹣2)×180°=144°n.解得n=10,故答案为:十.【点评】本题考查了多边形的内角与外角,利用了正多边形的内角相等,多边形的内角和公式.三.解答题(共3小题)41.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的内角和定理列式计算即可得解.【解答】解:如图,由三角形的外角性质得,∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.42.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC 边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.【分析】(1)由AD∥BC知∠1=∠3,结合∠1=∠2得∠3=∠2,据此即可得证;(2)由AD∥BC、∠A=130°知∠ABC=50°,再根据平分线定义及BD∥EF知∠3=∠2=25°,由三角形的内角和定理可得答案.【解答】解:(1)如图,∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=∠ABC=25°.∴∠2=∠3=25°.∵在△CFE中,∠CFE+∠2+∠C=180°(三角形内角和定理),∠C=70°,∴∠CFE=85°.【点评】本题主要考查多边形的内角与外角、平行线的判定与性质,解题的关键是掌握平行线的判定与性质、三角形的内角和定理及角平分线的性质.43.解答题:(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=90°﹣α﹣β.(用α,β的代数式表示)(作图2分,写出结果)【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,再根据角平分线的性质即可得解;(2)①方法一:根据四边形的内角和定理表示出∠BCD,再表示出∠DCE,然后根据角平分线的定义可得∠PBC=∠ABC,∠PCE=∠DCE,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCE,然后整理即可得解;方法二:添加辅助线,利用(1)中结论解决问题即可;②同①的思路求解即可;【解答】解:(1)如图1中,结论:2∠P=∠A.。
精品试题华东师大版七年级数学下册第7章一次方程组专题测试试题(含解析)
七年级数学下册第7章一次方程组专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:则12:00时看到的两位数是()A.16 B.25 C.34 D.522、下列方程组中,属于二元一次方程组的是()A.31x yx z+=⎧⎨+=⎩B.2121x yx y⎧+=⎨+=-⎩C.235x yx y-=⎧⎨+=⎩D.212x yxy-=⎧⎨=⎩3、有下列方程:①xy=1;②2x=3y;③12xy-=;④x2+y=3;⑤314xy=-;⑥ax2+2x+3y=0(a=0),其中,二元一次方程有()A.1个B.2个C.3个D.4个4、下列方程中,是关于x的一元二次方程的是()A.x(x-2)=0 B.x2-1-y=0 C.x2+1=x2-2x D.ax2+c=05、已知方程组242x yx y k+=⎧⎨+=⎩的解满足1x y+=,则k的值为()A.7 B.7-C.1 D.1-6、如图,已知长方形ABCD中,8cmAD=,6cmAB=,点E为AD的中点,若点P在线段AB上以2cm/s的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若AEP△与BPQ全等,则点Q的运动速度是()A.6或83B.2或6 C.2或23D.2或837、二元一次方程组325223x yx y-=⎧⎨+=⎩更适合用哪种方法消元()A.代入消元法B.加减消元法C.代入、加减消元法都可以D.以上都不对8、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是()A.y=112x-B.y=112x-C.x=2y﹣11 D.x=11﹣2y9、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有()A.5个B.6个C.7个D.8个10、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个x元,包子每个y元,依题意可列方程组为( )A .5317211533.30.9x y x y +=+⎧⎨+=⨯⎩B .5317211533.30.9x y x y +=+⎧⎨+=÷⎩ C .5317211533.30.9x y x y +=-⎧⎨+=⨯⎩ D .5317211533.30.9x y x y +=-⎧⎨+=÷⎩ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现____________,从而求得方程组的解,这种解方程组的方法叫做____________,简称代入法.2、将24x y +=变形成用含x 的式子表示y ,那么y =_______.3、在二元一次方程3x +y =12的解中,x 和y 是相反数的解是_______.4、已知221(23)0x y x y -+++-=,则x y +的值是__.5、某销售商十月份销售X 、Y 、C 三种糖果的数量之比2∶1∶1,X 、Y 、C 三种糖果的单价之比为1∶3∶4.十一月份该销售商为了迎接双“十一”加大了宣传力度.预计三种糖果的营业额都会增加.其中X 种糖果增加的营业额占总增加的营业额的715,此时,X 种糖果的营业额与十一月份三种糖果总营业颁之比为3∶8,为使十一月份Y 、C 两种糖果的营业额之比为2∶3,则十一月份C 种糖果增加的营业额与十一月份总营业额之比为____.三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1)2233y x x y =+⎧⎨-=⎩(2)57328x y x y +=⎧⎨+=⎩2、解方程组:(1)20 3460 x yx y+=⎧⎨+-=⎩(2)1352 3432 x yx y+-⎧=⎪⎨⎪+=⎩3、解方程组:2437x yx y-=⎧⎨-=-⎩.4、解方程组:(1)653 615 x yx y-=⎧⎨+=-⎩(2)4143314312 x yx y+=⎧⎪--⎨-=⎪⎩5、为了做好学校疫情防控工作,某中学开学前需备足防疫物资,准备购买N95口罩(单位:只)和医用外科口罩(单位:包)若干.根据标价,已知购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍.(1)求一只N95口罩和一包医用外科口罩的标价各是多少元?(2)市场上现有甲、乙两所医疗机构对该中学的采购给出如下的优惠方案:甲医疗机构:购买的口罩按标价结算,但每购买一只N95口罩赠送一包医用外科口罩;乙医疗机构:购买的口罩全部按标价打九折结算.若该中学准备购买1000只N95口罩和6000包医用外科口罩,考虑配送成本等其他因素,只能一次性从其中一家采购,问选择哪所医疗机构更省钱?-参考答案-一、单选题1、A【解析】【分析】设小明12:00看到的两位数,十位数为x ,个位数为y ,根据车的速度不变和12:00时看到的两位数字之和为7,即可列出二元一次方程组,解方程组即可求解.【详解】设小明12:00看到的两位数,十位数为x ,个位数为y ,由题意列方程组得:()7(100)(10)(10)10x y x y y x y x x y +=⎧⎪⎨+-+=+-+⎪⎩, 解得:16x y ⎧⎨⎩==, ∴12:00时看到的两位数是16.故选:A .【点睛】本题考查二元一次方程组的应用,掌握里程碑上的数的表示是解题的关键.2、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.【详解】解:A 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意B 、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;C 、该方程组符合二元一次方程组的定义,故本选项符合题意;D 、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意; 故选:C .【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.3、C【解析】略4、A【解析】【分析】根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.【详解】解:A、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;B、含有两个未知数,不是一元二次方程,不符合题意;x+=,含有一个未知数,不是一元二次方程,不符合题意;C、210a=时,不是一元二次方程,不符合题意;D、当0故选:A【点睛】此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.5、D【解析】【分析】①+②得出x+y的值,代入x+y=1中即可求出k的值.【详解】解:242x y x y k +=⎧⎨+=⎩①②①+②得:3x +3y =4+k , ∴43k x y ++=, ∵1x y +=, ∴413k +=, ∴43k +=,解得:1k =-,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.6、A【解析】【分析】设Q 运动的速度为x cm/s ,则根据△AEP 与△BQP 得出AP =BP 、AE =BQ 或AP =BQ ,AE =BP ,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD 是长方形,∴∠A =∠B =90°,∵点E 为AD 的中点,AD =8cm ,∴AE =4cm ,设点Q 的运动速度为x cm/s ,①经过y 秒后,△AEP ≌△BQP ,则AP =BP ,AE =BQ ,26248y y xy-⎧⎨-⎩==, 解得,3283x y ⎧=⎪⎪⎨⎪=⎪⎩, 即点Q 的运动速度83cm/s 时能使两三角形全等.②经过y 秒后,△AEP ≌△BPQ ,则AP =BQ ,AE =BP ,28462y xy y -⎧⎨-⎩==, 解得:61x y ⎧⎨⎩==, 即点Q 的运动速度6cm/s 时能使两三角形全等.综上所述,点Q 的运动速度83或6cm/s 时能使两三角形全等.故选:A .【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t 和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.7、B【解析】【分析】由题意直接根据加减消元法和代入消元法的特点进行判断即可.解:325223x y x y -=⎧⎨+=⎩①②, ①+②,得58x =,消去了未知数y ,即二元一次方程组325223x y x y -=⎧⎨+=⎩更适合用加减法消元, 故选:B .【点睛】本题考查解二元一次方程组,注意掌握解二元一次方程组的方法有:代入消元法和加减消元法两种.8、B【解析】【详解】解:211x y +=,211y x =-,112x y -∴=. 故选:B .【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.9、D【解析】【分析】设原来的两位数为10a +b ,则新两位数为10b a +,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.解:设原来的两位数为10a +b ,根据题意得:10a +b +9=10b +a ,解得:b =a +1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D .【点睛】本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:10⨯十位上的数+个位上的数,注意不要漏数.10、B【解析】【分析】设馒头每个x 元,包子每个y 元,根据李大爷买5个馒头、3个包子的钱数等于()172+元,张大妈买11个馒头、5个包子的钱数等于()33.30.9÷元列出二元一次方程组即可【详解】解:设馒头每个x 元,包子每个y 元,根据题意得5317211533.30.9x y x y +=+⎧⎨+=÷⎩ 故选B【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于()33.30.9÷元是解题的关键.二、填空题1、 消元 代入消元法【解析】略2、122x -【解析】【分析】先移项,再将系数化为1,即可求解.【详解】解:24x y +=,移项,得:24y x =-,122y x ∴=- . 故答案为:122x -【点睛】本题主要考查了等式的基本性质,熟练掌握等式两边同时加上(或减去)同一个数(或整式),等式仍然成立;等式两边同时乘或除以同一个不为0的数(或整式),等式仍然成立是解题的关键.3、66x y =⎧⎨=-⎩ 【解析】【分析】根据x 和y 是相反数可得x =﹣y ,然后代入原方程求解即可.【详解】解:∵x 和y 是相反数,∴x =﹣y ,把x =﹣y 代入原方程中,可得:﹣3y +y =12,解得:y =﹣6,∴x =6,∴在二元一次方程3x +y =12的解中,x 和y 是相反数的解是66x y =⎧⎨=-⎩, 故答案为:66x y =⎧⎨=-⎩. 【点睛】本题考查二元一次方程的解,理解方程的解和互为相反数的概念是解题关键.4、2【解析】【分析】由题意根据绝对值和偶次方的非负性得出方程组,求出方程组的解即可.【详解】 解:221(23)0x y x y -+++-=,210x y ∴-+=,230x y +-=,即2123x y x y -=-⎧⎨+=⎩①②, ①+②,得22x =,解得1x =,把1x =代入①,得121y -=-,解得1y =,∴11x y =⎧⎨=⎩,112x y ∴+=+=.故答案为:2.【点睛】本题考查绝对值,偶次方,二次一元方程组的应用,解题的关键是能求出方程组的解.5、5:24【解析】【分析】根据三种糖果的数量比、单价比,可以按照比例设未知数,即10月份X 、Y 、C 三种糖果的销售的数量和单价分别为2x 、x 、x ;y 、3y 、4y ,则10月份X 、Y 、C 三种糖果的销售额比为2:3:4.因问题中涉及到X 的10月销售数量,因此可以设11月份X 增加的营业额为7x ,则11月份总增加的营业额为15x ;再根据X 种糖果的营业额与十一月份三种糖果总营业额之比为3:8,建立等式,求出x .可以根据十一月份Y 、C 两种糖果的营业额之比为2:3算出十一月份C 种糖果增加的营业额即可求解.【详解】解:设10月份X 、Y 、C 三种糖果的销售的数量分别为2x 、x 、x ;单价分别为y 、3y 、4y , ∴10月份X 、Y 、C 三种糖果的销售额分别为2xy ,3xy ,4xy ;∵X 种糖果增加的营业额占总增加的营业额的715, ∴设11月份X 增加的营业额为7x ,则11月份总增加的营业额为15x ;又X 种糖果的营业额与十一月份三种糖果总营业额之比为3:8,∴(7x +2xy ):(15x +9xy )=3:8,解得x =xy ,∴十一月份X 种糖果的营业额为9xy ,三种糖果总营业额为24xy ,∴Y ,C 两种糖果的营业额之和为15xy ,若十一月份Y 、C 两种糖果的营业额之比为2:3,则Y 、C 两种糖果的营业额分别为6xy ,9xy ;∴C种糖果增加的营业额为9xy-4xy=5xy,∴十一月份C种糖果增加的营业额与十一月份总营业额之比为5xy:24xy=5:24.【点睛】本题考查了三元一次方程组的应用,掌握用代数式表示每个参数,并用整体法解题是关键.三、解答题1、 (1)512 xy=⎧⎨=⎩(2)21 xy=⎧⎨=⎩【解析】【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.(1)解:22 33 y xx y=+⎧⎨-=⎩①②将①代入②得:3x−(2x+2)=3,解得:x=5,把x=5代入①中,解得:y=12,∴方程组的解为:512xy=⎧⎨=⎩;(2)57328x y x y +=⎧⎨+=⎩①②①×3-②得:13y =13,解得:y =1,把y =1代入①中,解得:x =2,∴方程组的解为:21x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,做题的关键是根据方程特点选择合适的方法.2、 (1)63x y =⎧⎨=-⎩(2)45x y =⎧⎨=⎩【解析】【分析】用代入消元法或加减消元法解二元一次方程即可.(1)原方程可转化为20346x y x y +=⎧⎨+=⎩①②, 由①,得2x y =-③,把③代入②,得3y =-,把3y =-代入①,得6x =,故原方程组的解为63x y =⎧⎨=-⎩. (2)原方程组可转化为25173432x y x y -=-⎧⎨+=⎩①②, 由①×4+②×5得:2392x =,解得4x =,把4x =代入②式得:5y =,故原方程组的解为45x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代人消元法,简称代入法.当二元一次方程组的两个方程中间一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.3、195185x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】观察方程组各个含有未知数的项的系数,可加减消元法解二元一次方程组.【详解】解:2437x y x y -=⎧⎨-=-⎩①② 2⨯②,得:2614x y -=-③-①③,得:518y = ∴185y = 将185y =代入①得:195x = ∴该方程组的解为195185x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二元一次方程组的解法,熟练掌握代入消元法或加减消元法解二元一次方程组是解题的关键.4、 (1)23x y =-⎧⎨=-⎩ (2)3114x y =⎧⎪⎨=⎪⎩【解析】【分析】根据加减消元的方法求解即可.(1)解:653615x y x y -=⎧⎨+=-⎩①②, 由①-②得:618y -=,∴3y =-,把3y =-代入②,解得:2x =-,∴方程组的解为23x y =-⎧⎨=-⎩;4143314312x y x y +=⎧⎪--⎨-=⎪⎩ (2)解:方程组整理得:414342x y x y +=⎧⎨-=-⎩①②, 由①+②,得:412x =,∴3x =,把3x =代入①,得:114y =, ∴方程组的解为3114x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、(1)一只N 95口罩20元,一包医用外科口罩4元;(2)选择乙医疗机构更省钱【解析】【分析】(1)设一只N 95口罩x 元,一包医用外科口罩y 元,根据购买10只N 95口罩和9包医用外科口罩共需236元,购买一只N 95口罩的费用是购买一包医用外科口罩费用的5倍列出二元一次方程组即可;(2)分别算出两个机构的费用,比较大小即可.【详解】(1)设一只N 95口罩x 元,一包医用外科口罩y 元,根据题意得,1092365x y x y +=⎧⎨=⎩,解得:204x y =⎧⎨=⎩, 所以一只N 95口罩20元,一包医用外科口罩4元;⨯+-=(元);(2)单独去甲医疗机构买总费用为:2010004(60001000)40000⨯+⨯⨯=(元);单独去乙医疗机构买总费用为:(20100046000)0.939600>,4000039600∴选择乙医疗机构更省钱.【点睛】本题考查了二元一次方程组的应用,解题关键是熟练掌握题目中的数量关系,找到等量关系列出方程.。
华师大版数学七年级下册全册单元测试卷含答案
华师大版数学七年级下册全册单元测试卷含答案绝密★启用前初一数学一元一次方程单元测试评卷人得分一、选择题(每小题2分,共30分)1.下列方程中,是一元一次方程的是()(A)(B)(C)(D)2.在解方程-=1时,去分母正确的是A、3(x-1)-2(2+3x)=1B、3(x-1)-2(2x+3)=6C、3x-1-4x+3=1D、3x-1-4x+3=63.下列方程变形不正确的是()A、4x+8=0x+2=0B、x+5=3-3x4x=-2C、2x=15D、3x=-1x=-34.关于的方程的解是3,则的值是()A.4B.—4C.5D.—55.某工厂计划每天烧煤5吨,实际每天少烧2吨,吨煤多烧了20天,则可列的方程是()A.B.C.D.6.某个体户在一次买卖中同时卖出两件上衣,售价都是165元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他()A、赚22元B、赚36元C、亏22元D、不赚不亏.7.下列方程中,解是x=1的是()A.B.C.D.8.、若是一元一次方程,则m的值是()A.±1B.-1C.1D.29.某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7。
若由外校转入1人加入乙队,则后来乙与丙的人数比为何?A.3:4B.4:5C.5:6D.6:710.下列方程中,一元一次方程的有()个。
①2x-3y=6②x2-5x+6=0③3(x-2)=1-2x④⑤3x-2(6-x)A.1B.2C.3D.411.方程2x+1=3与2-=0的解相同,则a的值是()A.7B.0C.3D.512.有m辆客车及n个人,若每辆乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①;②;③;④,其中正确的是().A.①②B.②④C.①③D.③④13.若与互为倒数,那么x的值等于()A.B.C.D.14.若代数式(a-1)x│a│+8=0是关于x的一元一次方程,则a的值为()A.-1B.0C.1D.1或-115.下面是一个被墨水污染过的方程:,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是A.1B.-1C.D.二、填空题(每小题3分,共30分)16.若方程2x-5=1和的解相同,则a=17..写出满足下列条件的一个一元一次方程:①未知数的系数是;②方程的解是3,这样的方程可以是:____________.18.若式子的值比式子的值少5,那么__________.19.若,,则的取值为_____________.20.小李在解方程(x为未知数)时,误将-x看作+x,解得方程的解,则原方程的解为___________________________。
达标测试华东师大版七年级数学下册第7章一次方程组同步训练试题(含答案解析)
七年级数学下册第7章一次方程组同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是()A.1 B.﹣1 C.2 D.﹣22、用加减法将方程组4311455x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16 3、下列方程组中,属于二元一次方程组的是()A.31x yx z+=⎧⎨+=⎩B.2121x yx y⎧+=⎨+=-⎩C.235x yx y-=⎧⎨+=⎩D.212x yxy-=⎧⎨=⎩4、用代入消元法解二元一次方程组220x yx y=+⎧⎨-=⎩①②,将①代入②消去x,可得方程()A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=12x+2 D.x﹣2(x﹣2)=05、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )A .95元,180元B .155元,200元C .100元,120元D .150元,125元6、用代入法解方程组25?53?x y x y -=⎧⎨+=⎩①②,以下各式正确的是( ) A .()2352x x --=B .()5235x x -=-C .()553+-=x xD .()556x x -= 7、已知x ,y 满足235348x y x y -=⎧⎨-=⎩,则x -y 的值为( ) A .3 B .-3 C .5 D .08、已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组)()(111122222626a m b n c b a m b n c b ⎧--=+⎪⎨--=+⎪⎩的解是( ) A .52m n =⎧⎨=-⎩ B .41m n =⎧⎨=⎩ C .11m n =-⎧⎨=-⎩ D .51m n =⎧⎨=-⎩ 9、《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x 两,燕每只y 两,则可列出方程组为( )A .561656x y x y y x +=⎧⎨+=+⎩B .561645x y x y y x +=⎧⎨+=+⎩C .651665x y x y y x +=⎧⎨+=+⎩D .651654x y x y y x+=⎧⎨+=+⎩ 10、若21x y =⎧⎨=⎩为10x y =-⎧⎨=⎩都是方程ax +by =1的解,则a +b 的值是( ) A .0 B .1 C .2 D .3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.2、若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y=1,则m的值为__________.3、某销商10月份销售B、C三种奶茶的数量之比为2:3:4,A、B、C三种奶茶的单价之比为1:2:3.11月份该销售商加大了宣传力度,并根据季节对三种奶茶的价格作了适当的调整,预计11月份三种奶茶的销售总额将比10月份有所增加,其中A奶茶增加的销售额占11月份销售总额的110,A、C奶茶的销售额之比是2:9.11月份三种奶茶的单价之和比10月份增加2336.11月份C奶茶的数量在10月份基础上上调50%,A、B奶茶的数量不变,则11月份A、B奶茶的单价之比为 ___.4、方程组43139x yx y+=-⎧⎨+=⎩的解是:_____.5、填空:端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,在这个问题中的等量关系是:(1)荷包个数+五彩绳个数=______;(2)______=72三、解答题(5小题,每小题10分,共计50分)1、(1)解方程3(x+1)=8x+6;(2)解方程组57 3212x yx y+=⎧⎨-=⎩.2、某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔20支,共用了1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共60支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔,需支领1322元.”王老师算了一下,说:“如果只买这两种笔,你的帐肯定算错了!”请判断王老师的说法是否正确,并说明理由;②陈老师突然想起,所做的预算中还包括一支签字笔.如果签字笔的单价为不大于10元的整数,请直接写出签字笔的单价3、解方程组:(1)5 24 x yx y+=⎧⎨-=⎩(2)2(1)1341x yy x--=⎧⎨=-⎩4、解方程组410 2210x yy x+-=⎧⎨-+=⎩.5、解方程组:326?22x yx y-=⎧⎨+=⎩.-参考答案-一、单选题1、C【解析】【分析】先求出326x yx y+=⎧⎨-=⎩①②的解,然后代入kx+y=7求解即可.【详解】解:联立326x yx y+=⎧⎨-=⎩①②,②-①,得-3y=3,∴y=-1,把y=-1代入①,得x-1=3∴x=4,∴41xy=⎧⎨=-⎩,代入kx+y=7得:4k﹣1=7,∴k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.2、D【解析】【分析】根据二元一次方程组的加减消元法可直接进行求解.【详解】解:用加减法将方程组4311455x yx y-=⎧⎨+=-⎩①②中的未知数x消去,则有①-②得:﹣8y=16;故选D.【点睛】本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.3、C【解析】根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.【详解】解:A、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意B、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;C、该方程组符合二元一次方程组的定义,故本选项符合题意;D、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;故选:C.【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.4、B【解析】【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组220x yx y=+⎧⎨-=⎩①②,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.5、B【分析】设每件商品标价x 元,进价y 元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.【详解】解:设每件商品标价x 元,进价y 元则根据题意得:()()4580.85124535x y x y =+⎧⎨⨯-=⨯-⎩, 解得:200155x y =⎧⎨=⎩, 答:该商品每件进价155元,标价每件200元.故选:B .【点睛】本题考查了二元一次方程的应用,找出正确等量关系是解题关键.6、B【解析】【分析】根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.【详解】解:由②得35y x =-,代入①得2(35)5x x --=,移项可得52(35)x x -=-,故选B .【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键.7、A【解析】【分析】用第二个方程减去第一个方程即可解答.【详解】解:∵235348x y x y -=⎧⎨-=⎩ ∴3x -4y -(2x -3y )=8-5x -y =3.故选A.【点睛】本题主要考查了解二元一次方程组以及求代数式的值,掌握整体法成为解答本题的关键.8、A【解析】【分析】先将关于,m n 的方程组变形为)(())(()111222261261a m b n c a m b n c ⎧--+=⎪⎨--+=⎪⎩,再根据关于,x y 的方程组的解可得26411m n -=⎧⎨+=-⎩,由此即可得出答案. 【详解】解:关于,m n 的方程组可变形为)(())(()111222261261a m b n c a m b n c ⎧--+=⎪⎨--+=⎪⎩,由题意得:26411m n -=⎧⎨+=-⎩,解得52m n =⎧⎨=-⎩, 故选:A .【点睛】本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键.9、B【解析】【分析】根据题意列二元一次方程组即可.【详解】解:设雀每只x 两,燕每只y 两则五只雀为5x ,六只燕为6y共重16两,则有5616x y +=互换其中一只则五只雀变为四只雀一只燕,即4x +y六只燕变为五只燕一只雀,即5y +x且一样重即45x y y x +=+由此可得方程组561645x y x y y x +=⎧⎨+=+⎩. 故选:B .【点睛】列二元一次方程组解应用题的一般步骤审:审题,明确各数量之间的关系;设:设未知数(一般求什么,就设什么);找:找出应用题中的相等关系;列:根据相等关系列出两个方程,组成方程组;解:解方程组,求出未知数的值;答:检验方程组的解是否符合题意,写出答案.10、C【解析】【分析】把21x y =⎧⎨=⎩为10x y =-⎧⎨=⎩代入ax +by =1,建立方程组,再解方程组即可. 【详解】 解: 21x y =⎧⎨=⎩为10x y =-⎧⎨=⎩都是方程ax +by =1的解, 21,1a b a ①②解②得:1,a =-把1a =-代入①得:3,b =1.3a b13 2.a b故选C【点睛】本题考查的是二元一次方程的解,二元一次方程组的解法,掌握“利用方程的解建立新的二元一次方程”是解本题的关键.二、填空题1、3【解析】【分析】先根据二元一次方程的定义求出a 、b 的值,然后代入a ﹣b 计算即可.【详解】解:∵x 2a ﹣3+yb +2=3是二元一次方程,∴2a ﹣3=1,b +2=1,∴a =2,b =﹣1,则a ﹣b =2﹣(﹣1)=2+1=3.故答案为:3.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.2、﹣1【解析】【分析】由①+②,得:2224x y m +=+ ,从而得到2x y m +=+ ,再由x +y =1,可得到21+=m ,即可求解.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②, 由①+②,得:2224x y m +=+ ,∴2x y m +=+ ,∵x +y =1,∴21+=m ,解得:1m =- .故答案为:-1【点睛】本题主要考查了解二元一次方程和二元一次方程的解,由①+②得到2x y m +=+ 是解题的关键.3、9:7【解析】【分析】根据三种饮料的数量比、单价比,可以按照比例设未知数,即10月份A 、B 、C 三种饮料的销售的数量和单价分别为2a 、3a 、4a ;b 、2b 、3b .可以表示出10月份各种饮料的销售额和总销售额.因问题中涉及到A 的10月销售数量,因此可以设11月份A 的销售量为x ,再根据A 11月份的单价求出11月份A 的销售额和C 的销售额.可以根据饮料增加的销售额占11月份销售总额比,用未知数列出等式关键即可求解出.【详解】解:由题意可设10月份A 、B 、C 三种饮料的销售的数量为2a 、3a 、4a ,单价为b 、2b 、3b ;11月份A 的销售量为x ,则11月份A 、B 、C 三种饮料的销售的数量为2a 、3a 、6a ;10∴月份奶茶销售额为2324320a b a b a b ab ⋅+⋅+⋅=,11月份A 种奶茶的销售额为:2ax , A 、C 奶茶的销售额之比是2:9,11∴月份C 种奶茶的销售额为:9ax ,11∴月份C 种奶茶的价格为1.5x , 11月份三种奶茶的单价之和比10月份增加2336, 11∴月份三种奶茶的单价之和为2359(23)(1)366b b b b +++=, 11∴月份B 种奶茶的单价为:5959( 1.5)( 2.5)66b x x b x --=-, A 奶茶增加的销售额占11月份销售总额的110, 15922[113( 2.5)]106ax ab ax a b x ∴-=+-,解得3x b =,∴5972.563b x b -=, 73:9:73b b ∴=. 即11月份A 、B 奶茶的单价之比为为9:7.故答案为:9:7.【点睛】此题考查的是二元一次方程的应用,掌握用代数式表示每个参数,并用整体法解题是关键.4、285395x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】②×3-①求出x 的值,再把x 的值代入②求出y 的值即可.【详解】解:43139x y x y +=-⎧⎨+=⎩①② ②×3-①,得5x =28∴x =285把x =285代入②得,283+95y ⨯= ∴395y =-∴方程组的解为285395x y ⎧=⎪⎪⎨⎪=-⎪⎩故答案为:285395 xy⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.5、 20 荷包钱数+五彩绳钱数【解析】【分析】(1)根据题意即得出荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即得出答案;(2)根据王老师用了72元钱买荷包和五彩绳,即可直接填空.【详解】(1)根据题意可知荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即为20个.故答案为:20.(2)根据题意王老师用了72元钱买荷包和五彩绳,所以荷包钱数+五彩绳钱数=72.故答案为:荷包钱数+五彩绳钱数.【点睛】本题考查一元一次方程的实际应用.找准等量关系是解答本题的关键.三、解答题1、(1)x=35;(2)23xy=⎧⎨=-⎩【解析】【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)①×2+②得出13x=26,求出x,把x=2代入①求出y即可.【详解】解:(1)3(x+1)=8x+6,去括号,得3x+3=8x+6,移项,得3x-8x=6-3,合并同类项,得-5x=3,系数化成1,得x=35;(2)573212x yx y+=⎧⎨-=⎩①②,①×2+②,得13x=26,解得:x=2,把x=2代入①,得10+y=7,解得:y=-3,所以方程组的解是23xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.2、 (1)钢笔的单价为19元,毛笔的单价为25元(2)①王老师的说法是正确的,理由见解析;②2元/支或8元/支【解析】【分析】(1)设钢笔的单价为x 元,则毛笔的单价为()6x +元,根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;(2)①根据第一问的结论设钢笔为y 支,所以毛笔则为()60y -支,求出方程的解不是整数则说明算错了;②设钢笔为y 支,毛笔则为()60y -支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.(1)设钢笔的单价为x 元,则毛笔的单价为()6x +元,由题意得:()302061070x x ++=,解得:19x =.625x +=,答:钢笔的单价为19元,毛笔的单价为25元;(2)①王老师的说法是正确的.理由:设钢笔为y 支,所以毛笔则为()60y -支.根据题意,得()1925601322y y +-=, 解得893y =(不符合题意), ∴陈老师肯定算错了;②设钢笔为y 支,签字笔的单价为a 元,则根据题意,得()1925601322y y a +-=-,∴6178y a =+,∵a 、y 都是整数,∴178a +应被6整除,∴a 为偶数,∵a 为小于10元的整数,∴a 可能为2、4、6、8,当2a =时,6180y =,30y =,符合题意;当4a =时,6182y =,913y =,不符合题意; 当6a =时,6184y =,923y =,不符合题意; 当8a =时,6186y =,31y =,符合题意,∴签字笔的单价可能2元或8元.【点睛】本题考查了列二元一次方程解实际问题的运用,列一元一次方程解实际问题的运用,在解答时根据题意等量关系建立方程是关键.3、 (1)32x y =⎧⎨=⎩(2)45x y =⎧⎨=⎩【解析】【分析】(1) 利用加减消元法求出解即可;(2) 方程组整理后,利用加减消元法求出解即可.(1)解:524x yx y+=-=⎧⎨⎩①②,①+②得,3x=9,即x=3, 把x=3代入①得,y=2,则方程组的解为32xy=⎧⎨=⎩;(2)解:方程组整理得:23431x yx y-=-+=-⎧⎨⎩①②,①×2+②得,y=5,把y=5代入①得,x=4,则方程组的解为45 xy=⎧⎨=⎩【点睛】本题考查二元一次方程组的解法.关键是熟练掌握代入消元法和加减消元法的应用.4、31015xy⎧=⎪⎪⎨⎪=-⎪⎩.【解析】【分析】利用加减消元法解方程组即可得答案.【详解】原方程组可整理得41221x y y x +=⎧⎨-=-⎩①②, ②×2得:442y x -=-③①+③得:51y =-, 解得:15y =-, 将15y =-代入①得:1415x -=, ∴310x =, ∴原方程组的解为:31015x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查解二元一次方程组,解二元一次方程组的主要思想是消元,主要有代入消元法和加减消元法,熟练掌握并灵活运用适当的方法是解题关键.5、10767x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】直接利用加减消元法解方程组求解即可;【详解】解:32622x y x y -=⎧⎨+=⎩①②, ①+②×2,得7x =10,解得:x=107,把x=107代入②,得207+y=2,解得:y=67 -,所以方程组的解是10767xy⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。
华东师大版七年级下9.3用正多边形铺设地面同步练习题含答案
10.(4分)请欣赏如图所示的图案,并观察每一种图案是由哪几种正多边形拼铺而成的.
(1)图①是由______________铺成的;
(2)图②是由______________铺成的;
(3)图③是由______________________铺成的;
(4)图④是由______________________铺成的.
9.(4分)如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有________个.
6. D
7. A
8. B
9. 181
10. (1) 正六边形
(2) 正方形
(3) 正三角形和正方形
(4) 正方形和正八边形
11. B
(1)请你根据图中的图形,填写表中空格:
正多边形边数
3
4
5
6
……
n
正多边形每个内角度数
60°
90°
108°
120°
……
(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?
答案:
1. D
2. B
3. D
4. 60
5. 6 044
13.(4分)一幅美丽的图案,在某个顶点处由四个边长相等的正多边形密铺而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
华东师大版七年级下册数学试题:6.2.1---6.2.2同步检测题含答案
6.2.1 等式的性质1.若a +b =0,则a = ,若a -b =0,则a = 2.若23x =y ,则x =y ,若-5x =10,则x =.3.等式4x +3=2x -5两边同时减去 ,得到4x -2x =-5-3.4.若a 2-2a +1=0,则2a 2-4a =.5.等式123x x -=,可变形得到3x - = ;再变形得到3x - = .6.下列运用等式的性质对等式x =y 进行变形中正确的是( ) A.x +y =0B.x -2=2-yC.1x y-=D.ax =ay7.下列变形中,正确的是( )A.若a =b ,则11a b= B.若cx =cy ,则x =yC.若3x =2,则32x =D.若a b c c=,则a =b 8.将方程2x =5x 的两边同时除以x ,得2=5,产生错误的原因是( )A.2x ≠5xB.方程无解C.两边同时除以零D.方程错了9.由等式的性质求得方程3x +6=0的解是( ) A.-2B.2C.12- D.1210.由等式的性质将等式3a -5=2a +6变形得a =11,正确的是( ) A.等式两边都除以3B.等式两边都加上5C.等式两边都加上2a -5D.等式两边都减2a -511.在下面解方程的每一步括号内填上解题根据.解方程:13(2)1025x +-= 解:13(2)125x += (两边同时加上1)3225x += ( ) 305x = ( ) 0x =()12.x =2是关于x 的方程2x +3k -1=0的解,则k 的值为.13.若2x 2-3x +1=2x 2-8,则x =.14.由等式的性质把梯形面积公式1()2S a b h =+,变形得a = .15.若x =y ,请根据等式的两条性质分别编一个变形正确的等式, .16.下列变形中,错误的是( )A.若1-2a =1-2b ,则a =bB.若x +y =2y ,则x =yC.若ab 2=b 3,则a =bD.若23x y=,则3x =2y17.若x =3是方程ax =5的解,则x =3也是方程( ) A.3ax =15的解 B.ax -3=-2的解C.ax -0.5=112的解D.1102ax =-的解 18.已知式子3y 2-2y +6的值为8,求式子2312y y -+的值.19.利用等式的性质解下列方程: (1)2x +5=10(2)3842x --=(3)2(x -1)=3x -5(4)5x -7=3x +820.种一批树,如果每人种10棵,则剩6棵未种:如果每人种12棵,则缺6棵,求有多少人种树.(要求:设未知数,列出方程,并用等式的性质解方程)21.已知等式(2x -3)a =2x -3,能由等式的性质得到a =1吗?请你根据x 的取值情况加以说明.22.已知关于x 的方程ax +b =c 的解是x =1,求|c -a -b -1|的值.6.2.2解一元一次方程1.下列方程中,一元一次方程的个数是( )3x+4z=2 ②2x+3=0 ③- x+ =2.7 ④x 2-2=1A .1 B. 2 C. 3 D. 4 2. 解方程2133123+-=-+x x x 去分母正确的是( ) A .18x+2(2x-1)=18-3(x+1) B .3x+(2x-1)=3-(x+1) C .18x+(2x-1)=18-(x+1) D .3x+2(2x-1)=3-3(x+1) 3. 方程161213=--+x x 的解是( ) A .81-=x B .21=x C .41=x D .83-=x4. 某人从甲地乙地,原计划用6小时,因任务紧急每小时比原计划多行2千米,结果5小时到达乙地,则原计划每小时行( )千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版七年级数学(下)同步测试卷
一元一次方程
班级:________ 姓名:____________ 学号:_______ 成绩:________
一、填空题:(每小题2分,共20分)
1. 2=x ________(填“是”与“不是”)方程92
123+-=+x x 的解. 2. 如果3+=y x ,那么=-y x ______________.
3. 当x =____________时,12-x 的值等于2.
4. 已知方程)6()2(3)12(2--+=+x x x ,去括号得______________________.
5. 方程35
=x 的解是______________. 6. 若25(3)0a a b -++-=,则a =__________,b=__________.
7. 若2=x 是关于x 的方程0132=-+k x 的解,则k 的值是__________.
8. 用体积为448cm 3的钢锭锻造一个高7cm ,且底面是正方形的长方体零件毛坯,则底面正
方形的边长是___________cm.
9. 某商品国庆节期间实行促销,七五折出售,售价为12元的物品其标价是________元.
10. 2004年我国国民总产值为a 亿元,按计划以后每年比上一年增长P %,那么2006年我国
计划的国民总产值是__________亿元.
二、选择题:(每小题3分,共30分)
11. 下列四个式子中是方程的是( )
A. 3+2=5
B. 1=x
C. 32-x
D. 222b ab a ≠+
12. 方程07
1=x 的解是( ) A. 7
1=x B. 7=x C. 7-=x D. 0=x 13. 在解方程2314-=+x x 时,下列移项正确的是( )
A. 2134-=+x x
B. 1234--=-x x
C. 1234-=-x x
D. 1234--=+x x
14. 把方程5.15
.0=x 的分母化为整数,可得方程( ) A. 5.12=x B. 152=x C. 5.1210=x D. 152
10=x 15. 如果127
1-m ab 与19.0+-m ab 是同类项,则m 的值等于( ) A. 2 B. 1 C. 1- D. 0
16. 若多项式1002
13222--+--x xy y kx x 中不含xy 的乘积项,则k 取( ) A. 1 B. 1- C. 4
1 D. 0 17. 解方程16
3221=--+x x 去分母正确的是( ) A. 632)1(3=--+x x B. 132)1(3=--+x x
C. 12)32()1(3=--+x x
D. 6)32()1(3=--+x x
18. 甲、乙两人练习赛跑,甲每秒跑4米,乙每秒跑5米,甲先跑6米后,乙开始跑,设乙
x 秒后追上甲,依题意可列方程得( )
A. 645-=x x
B. 645+=x x
C. x 645=-
D. 645=-x x
19. 足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队打14
场负5场共得19分,这个队胜了( )场
A. 3
B. 4
C. 5
D. 6
20. 某商店出售两件上衣,每件按60元出售,这样一件赚了25%,另一件赔了25%,那么
这两件大衣出售后,商店的赚和赔的情况是( )
A. 不赔不赚
B. 赔了8元
C. 赚了8元
D. 赔了15元
三、解答题:(共50分)
21. 解方程(每题5分,共15分)
(1) 4227-=+-x x
(2) 3)20(34=--x x
(3) )2(512)1(21+-=-x x
22. (6分)下列方程的解答过程是否有错误?若有错误,简要说明产生错误的原因,并改
正. 解方程:5.25
.014.02.03-=--+x x 解:原方程可化为:255
10423010-=--+x x 去分母,得 250)104(2)3010(5-=--+x x
去括号、移项、合并同类项,得 42042-=x
∴10=x
23. (6分)已知3=y 是方程y y m 2)(4
16=-+的解,求关于x 的方程 )43)(1()1(2-+=-x m x m 的解.
24.(6分)小明问小芳:“你今年几岁了?”小芳说:“我4年后的岁数是4年前岁数的2
倍. ”小芳有几岁?
25.(5分)图10-1是某月日历,回答下列问
(1)A、B、C各是几号?
(2)如果14号是星期二,那么22号是
星期几?
26.(5分)小明的爸妈想用一笔钱为小明存一个年利率为2.5%的6年期教育储蓄. 如果他
们想6年后本息和为2.3万元,现在应存这种教育储蓄多少元?
27.(7分)据有关部门统计,20世纪初全世界共有哺乳动物和鸟类动物约1350种,由于受
环境等因素的影响,到20世纪末,这两类动物共灭绝约1.9%,其中哺乳动物灭绝约3.0%,鸟类动物灭绝约1.5%.
(1)问20世纪初,哺乳动物和鸟类动物各有多少种?
(2)现在人们已经意识到,保护环境就是保护人类自己,到本世纪末,如果把哺乳动物的
灭绝种数与鸟类动物的灭绝种数之比调整为6∶7,为了实现这个目标,鸟类动物的数量不能超过多少种?(本题所求结果均精确到十位)
参考答案
1. 是
2. 3
3. 23
4. 66324+-+=+x x x
5. 15=x
6. 5,2-
7. 1-
8. 8
9. 16 10. 2%)1(p a + 11. B 12. D 13. B 14. C 15. A 16. C 17. D 18. B 19. C 20. B
21. (1)32
=x (2)9=x (3)3=x 22. 1465
-=x
23. 3=m ,35
=x
24. 12岁
25. ①24,27,9 ②三
26. 2万元
27. ①哺乳动物约3470种,鸟类约9530种
②9320种。