【精品导学案人教版】2013-2014学年八年级数学上册第十一章三角形(共10份集)3

合集下载

人教版八年级数学上册第十一章三角形优秀教学案例

人教版八年级数学上册第十一章三角形优秀教学案例
四、教学内容与过程
(一)导入新课
1.利用实物模型、图片等教学资源,创设贴近学生生活实际的情景,引出三角形的概念。如展示一个三角形框架,让学生观察并描述其特征。
2.提出问题:“你们认为什么样的图形可以称为三角形?”引导学生思考并发表自己的观点。
3.教师总结学生的回答,给出三角形的定义,并强调三角形的三个基本要素:边、角、顶点。
五、案例亮点
1.生活情境导入:通过展示三角形在日常生活中的应用实例,如测量角度、计算三角形面积等,激发学生学习三角形的兴趣,使学生感受到数学与生活的密切联系。
2.问题导向:教师提出具有针对性和启发性的问题,引导学生深入思考,激发他们的求知欲。同时,鼓励学生提出问题,培养他们的问题意识,教会他们如何提出有价值的问题。
(三)小组合作
1.合理划分学习小组,培养学生团队协作、相互尊重、积极进取的精神风貌。
2.设计具有挑战性和综合性的学习任务,引导学生进行小组讨论、合作交流,提高他们的合作能力。
3.教师关注小组合作的过程,及时给予指导和反馈,促进学生全面发展。
4.鼓励பைடு நூலகம்生展示小组合作成果,培养他们的表达能力和自信心理品质。
3.小组合作:合理划分学习小组,培养学生团队协作、相互尊重、积极进取的精神风貌。设计具有挑战性和综合性的学习任务,引导学生进行小组讨论、合作交流,提高他们的合作能力。
4.数形结合:教师引导学生运用数形结合的思想方法,将几何问题转化为数学问题,提高他们的逻辑思维能力。同时,通过展示三角形框架,让学生观察并描述其特征,加深对三角形性质的理解。
(四)反思与评价
1.教师引导学生对学习过程进行反思,总结自己在三角形知识学习中的优点和不足,提高自我认知。
2.学生通过自我评价、同伴评价等方式,对学习成果进行评价,培养他们的评价能力和自我改进意识。

人教版数学八年级上册第11章三角形(教案)

人教版数学八年级上册第11章三角形(教案)
五、教学反思
在今天的教学中,我发现学生们对三角形的分类和性质这部分内容掌握得相对较好,他们能够迅速理解等腰三角形和等边三角形的特征。然而,在讲解全等三角形的判定时,部分学生对于SSS、SAS、ASA判定条件的应用还是显得有些迷茫。我意识到需要通过更多的实例和练习来帮助他们巩固这一部分。
课堂上,我尝试用生活实例导入新课,让学生感受到三角形在现实生活中的普遍存在。这种方式似乎能够激发他们的学习兴趣,但从学生的反馈来看,案例的选择可能还可以更加贴近他们的生活实际,以便更好地吸引他们的注意力。
4.等腰三角形的性质与判定
-性质:等腰三角形的两腰相等,来自角相等。-判定:两边和夹角对应相等的两个三角形为等腰三角形。
5.三角形相似的判定与性质
-判定:两角对应相等的两个三角形相似。
-性质:相似三角形的对应边成比例,对应角相等。
6.三角形面积的计算
-海伦公式:已知三角形三边长,可以计算其面积。
-正弦公式:已知三角形两边和它们夹角的正弦值,可以计算其面积。
-外角定理:三角形的一个外角等于与它不相邻的两个内角的和。
3.三角形全等的判定
- SSS(Side-Side-Side):三边对应相等的两个三角形全等。
- SAS(Side-Angle-Side):两边和夹角对应相等的两个三角形全等。
- ASA(Angle-Side-Angle):两角和一边对应相等的两个三角形全等。
3.重点难点解析:在讲授过程中,我会特别强调三角形的分类和全等判定这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角形内角和定理的基本原理。

人教版数学八年级上册导学案:第11章 三角形1 课题:三角形的边

人教版数学八年级上册导学案:第11章 三角形1 课题:三角形的边

第十一章 三角形课题:三角形的边 1.认识三角形的边、内角、顶点,能用符号语言表示三角形.了解三角形的分类.2.掌握判断三条线段可否构成一个三角形的方法.3.通过度量三角形的边长,理解三角形三边间的不等关系.重点:理解三角形三关系. 难点:三角形三边的运用. 一、情景导入,感受新知 三角形是一种最常见的几何图形,[投影]如古埃及金字塔,香港中银大夏,交通标志等等,处处都有三角形的形象.那么什么叫做三角形呢?二、自学互研,生成新知【自主探究】(一)阅读教材P 2思考之前部分,完成下面的内容:归纳:1.三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.边:如图,线段AB 、BC 、CA 是三角形的边.3.顶点:点A 、B 、C 是三角形的顶点.4.内角:相邻两边组成的角,叫做三角形的内角,简称三角形的角.5.三角形的读法:如图,顶点是A 、B 、C 的三角形,记作△ABC ,读作“三角形A BC ”.(二)阅读教材P 2思考至P 3探究之前部分,完成下面的内容:归纳:1.三角形按边的关系可以如下分类: 三角形⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧底和腰不相等的等腰三角形等边三角形 2.在等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰之间的夹角叫做顶角,腰和底边的夹角叫做底角.【合作探究】1.下列说法正确的是(B)A.所有的等腰三角形都是锐角三角形B.等边三角形属于等腰三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.一个三角形有两个锐角,则一定是锐角三角形2.以下长度的三条线段为边,哪些可以构成三角形,哪些不能构成三角形?(1)6,8,10(2)3,8,11(3)3,4,11 (4)长度比为4:6:7由学生抢答完成,再由教师总结归纳。

师生活动①明了学情:观察了解学生是否会判断三条线段能否构成三角形.②差异指导:根据学情对学生进行分层指导.③生生互助:同桌间,小组内交流讨论.三、典例剖析,运用新知【合作探究】例:用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边长度为4cm的等腰三角形吗?为什么?分析:(1)等腰三角形三边的长是多少?若设底边长为x cm,则腰长是多少?(2)“边长为 4 cm”是什么意思?解:(1)设底边长为 x cm,则腰长为2x cm.x+2x+2x=18解得:x=3.6所以。

人教版八年级数学第十一章三角形导学案

人教版八年级数学第十一章三角形导学案
A.5 B.6 C.11 D.16
7.下列长度的三条线段,不能构成三角形的是( )
A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8
8.为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16 m,PB=12 m,那么A,B间的距离不可能是( )
A.5 m B.15 m C.20 m D.28 m
中所对的边分别是______;以BD为边的三角形是______,它在
相应的三角形中所对的角分别是______.
5.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,
第3个图中共有9个三角形,依次类推,则第6个图中共有三角形个.
6.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )
【思考】
(1).为了尽快爬到点C,小虫应选择哪条路?
(3).类比2的结论,你还可以得到哪些不等式?
【总结】(1)三角形两边的和_____第三边.
(2)三角形两边的差_____第三边.
(3)另两边之___<第三边<另两边之___.
2、判断(打“√”或“×”)
(1)三角形分为三边都不相等的三角形、等腰三角形和等边三角形三类.( )
【互动探究】若连接图中线段AF,则又增加了几个三角形?
【总结提升】数三角形个数的四个诀窍
(1)按照图形的形成过程(即重新画一遍图形,按照三角形形成的先后顺序去数).
(2)按照三角形的大小顺序数.
(3)可以从图中的某一条线段开始沿着一定的方向去数.
(4)可以先固定一个顶点,变换另两个顶点去数.
知识点2三角形三边关系的应用
(二)、三角形的分类
1.等边三角形:三边都的三角形.
2.等腰三角形:有相等的三角形.在如图所示的等腰△ABC中,AB=AC,则和是腰,是底边,是顶角,和是底角.

人教版八年级上册 数学 导学案 第11章 三角形

人教版八年级上册 数学 导学案  第11章 三角形

人教版八年级上册 数学 导学案第11章 三角形11.1 与三角形有关的线段 11.1.1三角形的边导学案【学习目标】1.认识三角形,•能用符号语言表示三角形,并把三角形分类. 2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题 【学习重点】知道三角形三边不等关系.【学习难点】 判断三条线段能否构成一个三角形的方法. 【学习过程】 一、学前准备回忆你所学过或知道的三角形的有关知识。

并写出来。

二、探索思考知识点一:三角形概念及分类1、学生自学课本2-3页探究之前内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段___________________所组成的图形叫做三角形。

如图,线段____、______、______是三角形的边;点A 、B 、C 是三角形的______; _____、 ______、_______是相邻两边组成的角,叫做三角形的内角,简称三角形的角。

图中三角形记作__________。

(2)三角形按角分类可分为_____________、______________、_________________。

(3)三角形按边分类可分为 ABC三角形_____________——————— _____________(4)如图1,等腰三角形ABC中,AB=AC,腰是__________,底是_________,顶角指_______,底角指_____________.等边三角形DEF是特殊的_______三角形,DE=____=_____.练习一:图11、如图2.下列图形中是三角形的有_______________?图22、图3中有几个三角形?用符号表示这些三角形.知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形1、探究:请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC_____AC AB+ AC _____ BC AC +BC _____ AB从中你可以得出结论:__________________________________________。

2013人教版八年级数学 第十一章 三角形导学案

2013人教版八年级数学 第十一章  三角形导学案

cabA BC学校 八年级 班第 组 姓名11.1.1三角形的边一、学习目标1、三角形的三边关系。

2、用三边关系判断三条线段能否组成三角形。

二、学习难重点 1、三角形的三边关系。

2、用三边关系判断三条线段能否组成三角形。

三学习过程(一)自主学习自研一、认真阅读课本(P1至P2“探究”前,时间)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。

一边阅读一边完成检测一。

检测练习一、1、 的图形叫三角形。

2、如图线段AB ,BC ,CA 是三角形的 , 点A ,B ,C 是三角形的 ,∠ A 、∠ B 、 ∠ C 是 ,叫做 ,简称 。

3、用符号语言表示上图的三角形。

顶点是 的三角形,记作 ,读作: 。

4、按照三个内角的大小,可以将三角形分为三角形按边可分为自研二、认真阅读课本( P2“探究”)要求:思考“探究”中的问题,理解三角形两边的和大于第三边; 游戏:用棍子摆三角形。

检测练习二、6、在三角形ABC 中,AB+BC AC AC+BC AB AB+AC BC 7、假设一只小虫从点B 出发,沿三角形的边爬到点C , 有 路线。

路线 最近,根据是: ,于是有:(得出的结论) 。

8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10自研三、认真阅读课本认真看课本( P2例题)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。

(2)、对这例题的解法你还有哪些不理解的?检测练习三、9、一个等腰三角形的周长为28cm①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长.(要有完整的解题过程)解:(二)合作交流小方有两根长度分别为5cm、8cm的游戏棒,他想再找一根,使这三根游戏棒首尾相连能搭成一个三角形.(要有完整的解题过程)(1)你能帮小方想出第三根游戏棒的长度吗?(长度为正整数)(2)想一想:如果已知两边,则构成三角形的第三边的条件是什么?(3)如果第三边的长为偶数,那么第三条又有几种情况?(三)展示提升已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。

人教版初中数学教案八年级数学上册第11章《三角形》全章导学案(共9课时)

人教版初中数学教案八年级数学上册第11章《三角形》全章导学案(共9课时)
△ABC的面积.
五、课后小结及展示
六、课后作业(巩固练习)习题11.1—3,4题
七、下节课预学指导:预习6-7页
八、导学感悟
课题
11.1.3三角形的稳定性
学习目标
1、认识三角形的稳定性,并会用其解决一些实际问题;
2、通过练习进一步巩固三角形的边和相关线段。
重难点
三角形的稳定性
三角形的稳定性的理解
导入新课
组成三角形的三条线段叫做三角形的三条,
相邻两边的夹角叫做三角形的。
相邻两边的公共端点叫做三角形的。
2.以A、B、C为顶点的三角形记作。
3.三角形按边分类,可将三角形分为和。
按角分类,可将三角形分为、和。
4、在等腰三角形中,相等的两边叫做,另一边叫做,
叫做顶角,叫做底角。
5.三角形任意两边之和第三边。三角形任意两边差第三边。
(4)若AB=CD=2cm,AE=3cm,则=_______,CE=_______。
2.以下列各组线段长为边,能组成三角形的是( )
A.1cm,2cm,4cm; B.8cm,6cm,4cm C.12cm,5cm,6cm; D.2cm,3cm,6cm
3.已知等腰三角形的两边长分别为6cm和3cm,则该等腰三角形的周长是( )
平分线都是线段
(3)一个三角形有三条角平分线和三条中线(4)三角形的中线是经过了顶点和对边中点的直线
A.①②③④B.②③④C.①④D.②③
四、拓展提升及展示
1.三角形的角平分线、中线、高都是()
A直线B线段C射线D以上都不对
2.如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,EC=2cm .求
八、导学感悟
课题
11.1.2三角形的高、中线、角平分线

人教版八年级上数学教学设计《第11章三角形》

人教版八年级上数学教学设计《第11章三角形》

人教版八年级上数学教学设计《第11章三角形》一. 教材分析人教版八年级上数学第11章《三角形》是初中数学的重要内容,本章主要介绍三角形的性质、分类以及三角形的相关计算。

通过本章的学习,使学生掌握三角形的性质,理解三角形分类,会用三角形的知识解决实际问题。

教材内容安排合理,循序渐进,注重培养学生自主探究、合作学习的能力。

二. 学情分析八年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。

但是,对于三角形的一些性质和分类,学生可能还存在着一些模糊的认识。

因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,自主探究三角形的性质和分类,提高他们分析问题、解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握三角形的性质,理解三角形的分类,会运用三角形的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、讨论等方式,培养学生的观察能力、操作能力、思考能力和合作能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极向上的精神风貌。

四. 教学重难点1.教学重点:三角形的性质、分类以及三角形的相关计算。

2.教学难点:三角形性质的证明,三角形分类的理解和应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生认识三角形,激发学生的学习兴趣。

2.自主探究法:引导学生通过观察、操作、思考、讨论等方式,自主探究三角形的性质和分类。

3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。

4.讲解法:对于一些难以理解的概念和性质,教师进行详细讲解,引导学生理解。

六. 教学准备1.教具准备:三角板、直尺、圆规等。

2.教学课件:制作相关的教学课件,辅助教学。

3.练习题:准备一些有关三角形性质和分类的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如电线杆、自行车三角架等,引导学生认识三角形,激发学生的学习兴趣。

提问:你们对这些三角形有什么了解?2.呈现(10分钟)展示三角形的相关图片,引导学生观察三角形的特征。

数学人教八年级上册(2013年新编)第十一章 三角形章节复习(导学案)

数学人教八年级上册(2013年新编)第十一章 三角形章节复习(导学案)

第十一章三角形章节复习导学案一、学习目标:1.梳理本章的知识结构网络,回顾与复习本章知识.2.结合图形回顾本章知识点,复习几种基本的画图,复习简单的证明技巧,在此基础上进行典型题、热点题的较大量的训练提高对三角形有关知识、多边形内角和、外角和知识综合运用能力.3.通过初步的几何证明的学习培养推理能力,通过由特殊到一般的探究过程的训练培养学生的探索能力,创新能力.重点:三角形的三条重要线段、三角形的内角和、外角和、多边形的内角和、外角和等知识的灵活运用.难点:简单的几何证明及几何知识的简单应用.二、学习过程:知识梳理1.三角形概念:由_____同一直线上的三条线段首尾_____相连所组成的图形.三角形的组成要素:如下图,边:_____条,分别为线段____、______、______;顶点:___个,点A、B、C为三角形的三个顶点;角:____个,分别为∠A、∠B、∠C.∠A,∠B,∠C是相邻两边组成的角,叫做三角形的______,简称三角形的角.顶点是A,B,C的三角形记作:△________,读作:____________.2.三角形的分类:按角分类:三角形按边分类:三角形3. 三角形的三边关系:三角形的两边之和_______第三边,两边之差_______第三边.已知三角形的两边a、b(a>b),则第三边的范围“____________________”4.三角形的高、中线与角平分线:高:________与____________间的线段,在下图中画出三边上的高.中线:______与_______间的线段,三条中线相交于______(这一点也叫做三角形的________).三角形一个内角的平分线与它的对边相交,这个角的_____与________之间的线段.三条角平分线相交于________.5.三角形的内角和与外角:(1)三角形的内角和等于_________;(2)直角三角形的两个锐角_______;(3)直角三角形的判定:有两个角_______的三角形是直角三角形;(4)三角形的一个外角等于与____________的两个内角的______;(5)三角形的一个外角________和它_________的任何一个内角.6.多边形及其内角和:(1)在平面内,由一些线段首尾顺次相接组成的封闭图形叫做________. 正多边形是各个角都_______,各条边都_______的多边形.(2)从n边形的一个顶点出发,能引出__________条对角线;(3)经过n边形的一个顶点的所有对角线把多边形分成__________个三角形;(4)n边形一共有_____________条对角线;(5)n边形内角和等于_____________(n≥3的整数);(6)n边形的外角和等于_________;(7)正多边形的每个内角的度数是__________或__________;(8)正多边形的每个外角的度数是_________.考点解析考点一:三角形的三边关系例1.已知a、b、c为△ABC的三边长,且a2+b2=6a+10b﹣34,其中c是△AB C中最长的边长,且c为整数,求c的值.例2.已知a,b,c是△ABC的三边长.(1)若a,b,c满足,(a-b)2+|b−c|=0,试判断△ABC的形状;(2)化简:|b−c−a|+|a−b+c|-|a−b−c|.例3.已知a,b,c分别为△ABC三边的长,且满足a+b=3c-2,a-b=2c-6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.【迁移应用】【1-1】下列长度的三条线段能组成三角形的是()A.3cm、3cm、6cm B.3cm、5cm、7cmC.2cm、4cm、6cm D.2cm、9cm、6cm【1-2】已知三角形的三边长分别为2,a-1,4,则化简|a-3|-|a-7|的结果为___________.【1-3】已知a,b,c是ABC的三边长,a、b满足2-+-=,且ABC的周长为偶数,a b|7|(2)0则边长c的值为多少?考点二:三角形中的重要线段例4.如图,在△AB C中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数; (2)指出AD是哪几个三角形的高.例5.如图,在△AB C中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长; (2)求BC边的取值范围.例6.如图,在△AB C中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF 和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,求S△ADF-S△BEF的值.【迁移应用】【2-1】如图,在△AB C中,∠ACB=90°,CD⊥AB于D,图中可以作为△ACD的高的线段有( ) A.0条B.1条C.2条D.3条【2-2】如图,在△AB C中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.S△AEB=S△EDB【2-3】如图,在△AB C中,点D是BC上的一点,DC=2BD,点E是AC的中点,S△ABC=20cm2,则S△ADE=_____cm2.考点三:有关三角形内、外角的计算例7.如图,AD平分∠BAC,∠EAD=∠ED A.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.例8.如图,在△AB C中,三条内角平分线AD,BE,CF相交于点O,OG⊥BC于点G.(1)若∠ABC=40°,∠BAC=60°,求∠BOD和∠COG的度数;【迁移应用】【3-1】如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为( )A.65° B.70° C.75° D.85°【3-2】一副三角板如图所示摆放,则∠α与∠β的数量关系为( )A.∠α+∠β=180° B.∠α+∠β=225°C.∠α+∠β=270° D.∠α=∠β【3-3】如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是_______.,则这个锐角三【3-4】一个锐角三角形,所有内角的度数均为正整数,且最小角是最大角的15角形三个内角的度数为___________________.考点4:多边形的内角和与外角和例9.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.例10.一个多边形剪去一个内角后,得到一个内角和为1980°的新多边形,求原多边形的边数.例11.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米【迁移应用】【4-1】把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数可能是_______________________________.【4-2】一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是( ) A.8 B.9 C.10 D.11【4-3】如图,已知正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=( )A.36°B.54°C.60°D.72°考点六:本章中的思想方法:1.方程思想:例12.如图,在△AB C中,∠C=∠ABC,BE⊥AC,△BDE是等边三角形,求∠C的度数.【迁移应用】如图,△AB C中,BD平分∠ABC,∠1=∠2,∠3=∠C,求∠1的度数.2.分类讨论思想:例13.已知等腰三角形的两边长分别为10和6,则三角形的周长是________.3.化归思想:例14.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.。

人教版八年级数学上册第十一章三角形导学案

人教版八年级数学上册第十一章三角形导学案

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边1.会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题.2.进一步认识三角形的概念及其基本要素,掌握三角形三边关系.重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.一、自学指导自学1:自学课本P2-3页,掌握三角形的概念、表示方法及分类,完成填空.(5分钟)总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点.(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形.(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形.点拨精讲:等边三角形是特殊的等腰三角形.自学2:自学课本P3-4页“探究与例题”,掌握三角形三边关系.(5分钟)总结归纳:一般地,三角形两边的和大于第三边;三角形两边的差小于第三边.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图①,以A,B,C为顶点的三角形记作△ABC,读作“三角形ABC”,它的边分别是AB,AC,BC(或a,b,c),内角是∠A,∠B,∠C,顶点是点A,B,C.点拨精讲:三角形的边也可以用边所对顶点的小写字母表示.2.图②中有5个三角形,分别是△ABE,△ABC,△BEC,△CDE,△BCD,以E为顶点的三角形是△ABE,△BEC,△CDE,以∠D为角的三角形是△CDE,△BCD,以AB 为边的三角形是△ABE,△ABC.3.下列长度的三条线段能组成三角形的有②:①3,4,11;②2,5,6;③3,5,8.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1一个等腰三角形的周长为28 cm.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边的长为6 cm,求其他两边的长.解:(1)设底边长为,依题意得2×3x+x=28,解得.(2)设另一边长为为底边时,2x+6=28,∴为腰长时,x+2×6=28,∴x=16.∵6+6<16,不符合三角形两边的和大于第三边,所以不能围成腰长为6 cm的等腰三角形,∴其他两边的长为11 cm,11 cm.探究2某同学有两根长度为40 cm,90 cm的木条,他想钉一个三角形的木框,那么第三根应该如何选择?(40 cm,50 cm,60 cm,90 cm,130 cm)解:设第三根木条长为x cm,依题意得90-40<.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.图中有6个三角形,以E为顶点的三角形有△ABE,△ADE,△ACE;以AD为边的三角形有△ABD,△ADE,△ACD.2.下列长度的三条线段能组成三角形的是C.A.3,4,8B.5,6,11C.2,4,53.等腰三角形一条边等于3 cm,一条边等于6 cm,则它的周长为15_cm.点拨精讲:注意三角形三边关系.(3分钟)(3分钟)1.等边三角形是特殊的等腰三角形.2.在进行等腰三角形的相关计算时,要注意分类思想的运用,同时要注意运用三角形三边关系判断所求三条线段长能否构成三角形.3.已知三角形的两边长,可依据三边关系求出第三边的取值范围.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.2三角形的高、中线与角平分线1.了解三角形的高、中线、角平分线等有关概念.2.掌握三角形的高、中线与角平分线的画法;了解三角形的三条高、三条中线、三条角平分线分别交于一点.重点:三角形的高、中线、角平分线概念的简单运用及它们的几何语言表达.难点:钝角三角形的高的画法.一、自学指导自学1:自学课本P4页,掌握三角形的高的画法,完成下列填空.(4分钟)作出下列三角形的高:如图①,AD 是△ABC 的边BC 上的高,则有∠ADB =∠ADC =90°.总结归纳:三角形的高有3条,锐角三角形的三条高都在三角形的内部,相交于一点,直角三角形的三条高相交于三角形的直角顶点上;钝角三角形的三条高相交于三角形的外部.自学2:自学课本P4-5页,掌握三角形的中线的画法,理解重心的概念,完成下列填空.(5分钟)作出下列三角形的中线,回答下面问题:如图①,AD 是△ABC 的边BC 上的中线,则有DB =DC =12BC ; 总结归纳:三角形的中线有3条,相交于一点,且在三角形的内部,三角形三条中线的交点叫做三角形的重心.取一块质地均匀的三角形木板,试着找出它的重心.自学3:自学课本P5页,掌握三角形的角平分线的画法,理解三角形的角平分线与角的平分线的区别,完成下列填空.(3分钟)作出下列三角形的角平分线,回答下列问题:如图①,AD 是△ABC 的角平分线,则有∠BAD =∠DAC =12∠BAC ; 总结归纳:三角形的角平分线有3条,相交于一点,且在三角形的内部.三角形的角平分线是线段,而角的角平分线是射线.点拨精讲:三角形的高、中线和角平分线都是线段.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P5页的练习题1,2.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则:(1)∵AE 是△ABC 的中线,∴BE =CE =12BC ; (2)∵AD 是△ABC 的角平分线,∴∠BAD =∠DAC =12∠BAC ; (3)∵AF 是△ABC 的高,∴∠AFB =∠AFC =90°;(4)∵AE 是△ABC 的中线,∴BE =CE ,又∵S △ABE =12BE ·AF ,S △AEC =12CE ·AF ,∴S △ABE =S △ACE .点拨精讲:三角形的高、中线和角平分线的概念既是性质,也可以做为判定定理用.探究2 如图,△ABC 中,AB =2,BC =4,△ABC 的高AD 与CE 的比是多少?解:∵12AB·CE =12BC·AD ,AB =2,BC =4,∴CE =2AD ,∴AD ∶CE =1∶2. 学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.三角形的三条中线、三条角平分线、三条高都是(C )A .直线B .射线C .线段D .射线或线段2.一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(B )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.能把三角形的面积分成两个相等的三角形的线段是(D )A .中线B .高C .角平分线D .以上都正确4.如图,D ,E 是边AC 的三等分点:(1)图中有6个三角形,BD 是三角形ABE 中AE 边上的中线,BE 是三角形DBC 中CD边上的中线,AD =DE =EC =13AC ,AE =DC =23AC ; (2)S △ABD =S △DBE =S △EBC =13S △ABC ; (3)S △ABE =S △DBC =23S △ABC .(1分钟)1.三角形的高、中线和角平分线都是线段.2.三角形的高、中线和角平分线的概念既可得到角与线段的数量关系,也可做为判定三角形高、中线和角平分线的判定定理.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1.3 三角形的稳定性通过观察和操作得到三角形具有稳定性,四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的应用.重、难点:了解三角形稳定性在生产、生活中的实际应用.一、自学指导自学:自学课本P6-7页,掌握三角形的稳定性及应用,完成下列填空.(5分钟)将准备好的木条做成的三角形木架、四边形木架取出进行操作并观察:(1)如图①,扭动三角形木架,它的形状会改变吗?(2)如图②,扭动四边形木架,它的形状会改变吗?总结归纳:由上面的操作我们发现,三角形木架的形状不会改变,而四边形木架的形状会改变.(3)如图③,斜钉一根木条的四边形木架的形状不会改变.想一想其中的道理是什么? 总结归纳:三角形是具有稳定性的图形,而四边形没有稳定性.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P7页练习题第1题.2.请例举生活中关于三角形的稳定性与四边形的不稳定性的应用实例.小组讨论交流解题思路,小组活动后选代表展示活动成果.(10分钟)探究1 要使四边形不变形,最少需要加1条线段,五边形最少需要加2条线段,六边形最少需要加3条线段……n 边形(n >3)最少需要加(n -3)条线段才具有稳定性.点拨精讲:过一点把一个多边形分成若干个三角形最少需要几条线段.探究2 等腰三角形一腰上的中线将此等腰三角形分成9 cm ,15 cm 两部分,求此等腰三角形的周长是多少?解:设等腰三角形的腰长为,依题意得,当x >y 时,⎩⎨⎧x +12x =15,y +12x =9,解得⎩⎪⎨⎪⎧x =10,y =4;当x<y 时,⎩⎨⎧x +12x =9,y +12x =15,解得⎩⎨⎧x =6,y =12,∵6+6=12,不符合三角形的三边关系,故舍去.∴此三角形的周长为10+10+4=24(cm ).答:此等腰三角形的周长为24 cm .点拨精讲:此题用到分类思想,同时要考虑三角形的三边关系.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.课本P9页第10题.2.下列图形具有稳定性的有(C )A .梯形B .长方形C .三角形D .正方形3.体育馆屋顶的横梁用钢筋焊出了无数个三角形,是因为:三角形具有稳定性.4.已知AD ,AE 分别是△ABC 的中线、高,且AB =5 cm ,AC =3 cm ,则△ABD 与△ADC 的周长之差为2_cm ;△ABD 与△ADC 的面积关系是相等.5.如图,D 是△ABC 中BC 边上的一点,DE ∥AC 交AB 边于E ,DF ∥AB 交AC 边于F ,且∠ADE =∠ADF.求证:AD 是△ABC 的角平分线.证明:∵DE ∥AC ,DF ∥AB ,∴∠ADE =∠DAC ,∠ADF =∠DAB ,又∵∠ADE =∠ADF ,∴∠DAC =∠DAB ,∴AD 是△ABC 的角平分线.(1分钟)三角形的稳定性与四边形的不稳定性在日常生活中非常常用.(学生总结本堂课的收获与困惑)(2分钟)(12分钟)11.2 与三角形有关的角11.2.1 三角形的内角(1)1.会用不同的方法证明三角形的内角和定理.2.能应用三角形内角和定理解决一些简单的问题.重点:三角形内角和定理的应用.难点:三角形内角和定理的证明.一、自学指导自学1:自学课本P11-12页“探究”,掌握三角形内角和定理的证明方法,完成下列填空.(5分钟)归纳总结:三角形内角和定理——三角形三个内角的和等于180°.已知:△ABC.求证:∠A+∠B+∠C=180°.点拨精讲:为了证明的需要,在原来的图形上添画的线叫做辅助线.作辅助线是几何证明过程中常用到的方法,辅助线通常画成虚线.证明:延长BC到点D,过点B作BE∥AC,∵BE∥AC,∴∠1=∠A,∠2=∠C,∵∠1+∠2+∠ABC=180°,∴∠A+∠ABC+∠C=180°.自学2:自学课本P12-13“例1、例2”,掌握三角形内角和的应用.(5分钟)你可以用其他方法解决例2的问题吗?点拨精讲:可过点C作CF∥AD,可证得CF∥BE,同时将∠ACB分成∠ACF与∠BCF,求出这两个角的度数,就能求出∠ACB.解:过点C作CF∥AD,∵AD∥BE,∴CF∥BE,∵CF∥AD,CF∥BE,∴∠ACF=∠DAC=50°,∠FCB=∠CBE=40°,∴∠ACB=∠ACF+∠FCB=50°+40°=90°,∵∠CAB=∠DAB-∠DAC=80°-50°=30°,∴∠ABC=180°-∠CAB-∠ACB=180°-30°-90°=60°.答:从B岛看A,C两岛的视角∠ABC是60°,从C岛看A,B两岛的视角∠ACB是90°.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)完成课本P13页的练习题1,2.点拨精讲:仰角是当视线在视平线上方时视线与视平线所夹的角.小组讨论交流解题思路,小组活动后选代表展示活动成果.(7分钟)探究1①一个三角形中最多有1个直角;②一个三角形中最多有1个钝角;③一个三角形中至少有2个锐角;④任意一个三角形中,最大的一个角的度数至少为60°.为什么?点拨精讲:三角形的内角和为180°.探究2 如图,在△ABC 中,EF 与AC 交于点G ,与BC 的延长线交于点F ,∠B =45°,∠F =30°,∠CGF =70°,求∠A 的度数.解:在△CGF 中,∠GCF =180°-∠CGF -∠F =180°-70°-30°=80°,∴∠ACB =180°-∠GCF =180°-80°=100°,在△ABC 中,∠A =180°-∠B -∠ACB =180°-45°-100°=35°.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.课本P16页复习巩固第1题.2.在△ABC 中,∠A =35°,∠B =43°,则∠C =102°.3.在△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A =40°,∠B =60°,∠C =80°.4.在△ABC 中,如果∠A =12∠B =13∠C ,那么△ABC 是什么三角形? 解:∵∠A =12∠B =13∠C ,∴∠B =2∠A ,∠C =3∠A ,∵∠A +∠B +∠C =180°,∴∠A +2∠A +3∠A =180°,∴∠A =30°,∴∠B =60°,∠C =90°,∴△ABC 是直角三角形.。

八年级数学上册《11 三角形》导学案(新版)新人教版

八年级数学上册《11 三角形》导学案(新版)新人教版

八年级数学上册《11 三角形》导学案(新版)新人教版11、1三角形学习目标1、认识三角形的分类方法。

2、理解三角形两边的和大于第三边;会根据三条线段的长度判断它们能否构成三角形。

重难点重点:理解三角形两边的和大于第三边难点:关于等腰三角形边长的计算前置学习(课前独学20分或30分钟)1、自主学习1、三角形的定义:叫三角形。

2、构成三角形的元素及表示方法:如图,三角形的表示方法:记作,读作。

三角形的边是或;三角形的顶点:;三角形的角:。

3、你能从边和角两个角度对三角形作个分类吗?4、任意画一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?在用一个三角形中,任意两边之和与第三边有什么关系?二、跟踪练习:1、图中有几个三角形?用符号表示这些三角形?2、下列长度的三条线段能否组成三角形?为什么?(1)3,4,8 (2)5,6,11 (3)5,6,10 课堂学习流程总结反思一、前置学习展示交流5-10分钟:(对学群学)(一)学生提出的问题:(二)注意事项:(师生总结,学生整理)2、分层训练(20分钟)(一)双基过关(二)能力提升已知等腰三角形的一边等于5,一边等于6,求它的周长。

3、课堂小结(5分钟)◆ 总结所学,建构知识:四、达标反馈(10-15分钟)必做题:1、图中有个三角形。

用符号表示:2、一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A、3cmB、4cmC、7cmD、11cm3、一等腰三角形的周长为20厘米,一边长为8厘米。

求其它两边的长。

选做题:从长为1,2,3,4 的四根木条中,选出3根组成三角形,有几种选法?时间______________评价_____________。

新版人教版八年级上册第十一章三角形导学案(全)

新版人教版八年级上册第十一章三角形导学案(全)

第十一章三角形与三角形有关的线段三角形的边学习目标:1、明确三角形的相关概念;能正确对三角形进行分类;2、能利用三角形三边关系进行有关计算。

新课导学:}三角形的有关概念——阅读课本第1至3页,回答以下问题:(1)三角形概念:由不在同一直线上的条线段连接所组成的图形。

(2)三角形的表示法(如图1)三角形ABC可表示为:;(3)ΔABC的顶点分别为A、、;(3)ΔABC的内角分别为∠ABC,,;(4)ΔABC的三条边分别为AB,,;或a,、;(5)顶点A的对边是,顶点B的对边分别是,顶点C的对边分别是。

三角形的分类:\(1)下图中,每个三角形的内角各有什么特点(2)下图中,每个三角形的三边各有什么特点{(3)结合以上图形你认为三角形可以如何分类试一试①按角分类:②按边分类:(4)在等腰三角形中,叫做腰,另外一边叫做,两腰的夹角叫做,叫做底角。

(5)—(6)等边三角形是特殊的等腰三角形,即底边和腰的等腰三角形。

第1题3、三角形的三边关系问题1:如图,现有三块地,问从A 地到B 地有几种走法,哪一种走法的距离最近请将你的设计方案填写在下表中: 路线距离 》比较(3)阅读课本第3页,填写:三角形两边的和 (4)用式子表示:BC + AC AB (填上“> ”或“ < ” ) ① BC + AB AC (填上“> ”或“ < ” ) ②$AB + AC BC (填上“> ”或“ < ” ) ③4、例题:用一条长为18cm 的细绳围成一个等腰三角形,如果腰长是底边的2倍,那么各边的长是多少解:设底边长为xcm ,则腰长是 cm 因为三角形的周长为 cm所以: 所以x= cm答:三角形的三边分别是 、 、 ~课堂练习: A 组 】1.①图中有 个三角形,分别为②△ABC 的三个顶点是 、 、 ; 三个内角是 、 、 ; 三条边是 、 、 ;2、如图中有 个三角形,用符号表示 3.判断下列线段能否组成三角形:①4,5,6 ( )②1,2,3 ( ) ③2,2,6 ( )④8,8,2 ( ) 4、等腰三角形一腰长为6,底边长为7,则另一腰为 ,周长为 。

初中数学八年级上册第11章三角形教、导学案 人教版

初中数学八年级上册第11章三角形教、导学案 人教版

第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边1.会用符号表示三角形,了解按边的大小关系对三角形进行分类;理解掌握三角形三边之间的不等关系,并会初步应用它们来解决问题.2.进一步认识三角形的概念及其基本要素,掌握三角形三边关系.重点:三角形的三边之间的不等关系.难点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.一、自学指导自学1:自学课本P2-3页,掌握三角形的概念、表示方法及分类,完成填空.(5分钟) 总结归纳:(1)由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;其中这三条线段叫做三角形的边;相邻两边组成的角叫做三角形的内角;相邻两边的公共端点叫做三角形的顶点.(2)三边都相等的三角形叫做等边三角形,有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.(3)三角形按内角大小可分为锐角三角形、直角三角形、钝角三角形.(4)三角形按边的大小关系可分为三边都不相等的三角形、等腰三角形;等腰三角形可分为底边和腰不相等的等腰三角形、等边三角形.点拨精讲:等边三角形是特殊的等腰三角形.自学2:自学课本P3-4页“探究与例题”,掌握三角形三边关系.(5分钟)总结归纳:一般地,三角形两边的和大于第三边;三角形两边的差小于第三边.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图①,以A,B,C为顶点的三角形记作△ABC,读作“三角形ABC”,它的边分别是AB,AC,BC(或a,b,c),内角是∠A,∠B,∠C,顶点是点A,B,C.点拨精讲:三角形的边也可以用边所对顶点的小写字母表示.2.图②中有5个三角形,分别是△ABE,△ABC,△BEC,△CDE,△BCD,以E为顶点的三角形是△ABE,△BEC,△CDE,以∠D为角的三角形是△CDE,△BCD,以AB为边的三角形是△ABE,△ABC.3.下列长度的三条线段能组成三角形的有②:①3,4,11;②2,5,6;③3,5,8.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 一个等腰三角形的周长为28 cm.(1)已知腰长是底边长的3倍,求各边的长;(2)已知其中一边的长为6 cm,求其他两边的长.解:(1)设底边长为x cm,则腰长为3x cm,依题意得2×3x+x=28,解得x=4,3x=12,∴三边长分别为4 cm,12 cm,12 cm.(2)设另一边长为x cm,依题意得,当6 cm为底边时,2x+6=28,∴x=11;当6 cm 为腰长时,x+2×6=28,∴x=16.∵6+6<16,不符合三角形两边的和大于第三边,所以不能围成腰长为6 cm的等腰三角形,∴其他两边的长为11 cm,11 cm.探究2 某同学有两根长度为40 cm,90 cm的木条,他想钉一个三角形的木框,那么第三根应该如何选择?(40 cm,50 cm,60 cm,90 cm,130 cm)解:设第三根木条长为x cm,依题意得90-40<x<40+90,∴50<x<130,∴第三根应选60 cm或90 cm.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.图中有6个三角形,以E为顶点的三角形有△ABE,△ADE,△ACE;以AD为边的三角形有△ABD,△ADE,△ACD.2.下列长度的三条线段能组成三角形的是C.A.3,4,8 B.5,6,11 C.2,4,53.等腰三角形一条边等于3 cm,一条边等于6 cm,则它的周长为15_cm.点拨精讲:注意三角形三边关系.(3分钟)1.等边三角形是特殊的等腰三角形.2.在进行等腰三角形的相关计算时,要注意分类思想的运用,同时要注意运用三角形三边关系判断所求三条线段长能否构成三角形.3.已知三角形的两边长,可依据三边关系求出第三边的取值范围.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)11.1 与三角形有关的线段11.1.1 三角形的边1.结合具体的实例,进一步认识三角形的概念及其基本要素.2.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类.3.理解三角形任何两边之和大于第三边与任意两边之差小于第三边的性质,并会初步运用这些性质来解决问题.重点三角形的三边关系.难点三角形的三边关系.一、创设情境,引入新课老师出示一个用硬纸板剪好的三角形,并提出问题;小学中我们已经认识了三角形,那么你能不能给三角形下一个完整的定义?老师出示教具,提出问题.让学生观察教具,然后给出三角形的定义.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.二、探究问题,形成概念(一)探究三角形的有关概念1.三角形的顶点及符号表示方法.2.三角形的内角.3.三角形的边.教师继续利用教具向学生直接指明相关的概念.学生注意记忆相关的概念.教师再出示另外剪好的三角形,各顶点字母与原来不同,然后通过新三角形让学生巩固刚才的有关概念.(二)探究三角形的分类问题1:小学中已经学过,如何将三角形进行分类?问题2:如何将三角形按边分类?教师提出问题,学生举手回答.教师提示,分类的标准是什么?学生回答:有两边相等和有三边相等,以及三条边均不相等.教师进一步提出新的问题,并进一步讲解等边三角形、等腰三角形的有关概念,然后给出三角形按边分类的方法:三角形⎩⎪⎨⎪⎧三边都不相等的三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形之后师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法.(三)探究三角形的三边关系探究:画出一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C 点,它有几种路线可以选择?各条路线的长一样吗?教师提出问题,学生先画图然后进行讨论,并思考问题,然后教师指定学生回答问题.(1)小虫从点B 出发沿三角形的边爬到点C 有如下几条路线:a .从B→Cb .从B→A→C(2)从B→C 路线最短.然后老师进一步提出问题:这条路线为什么是最短的?学生举手回答:“两点之间,线段最短.”然后师生共同归纳得出:AC +BC >AB ①AB +AC >BC ②AB +BC >AC ③即三角形两边的和大于第三边.教师提问:(1)由不等式①②③移项,你能得到怎样的不等式?(2)通过刚才得到的不等式,你有什么发现?学生回答,师生共同归纳:三角形两边的差小于第三边.教师出示教材第3页例题.分析:(1)“用一条长18 cm 的细绳围成一个等腰三角形”,这句话有什么含义?(2)有一边长为4 cm 是什么意思,哪一边的长度是4 cm?三、练习巩固练习:教材第4页练习第1,2题.老师布置练习,学生举手回答即可.第2题注意让学生说明理由.解决完以后,教师利用投影出示补充练习,学生独立完成.补充练习:一个三角形有两条边相等,周长为20 cm ,一条边长是6 cm ,求其他两条边长.四、小结与作业小结:谈谈本节课的收获.老师引导学生主要从对三角形的分类和三边关系的认识方面进行小结.布置作业:习题11.1第1,2,7题.三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,让学生自己动手操作,初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。

人教版八年级数学上册导学案 第十一章三角形 11.3.1多边形

人教版八年级数学上册导学案 第十一章三角形 11.3.1多边形

(5)多 边形的对角线:连接多边形 __ 的两个顶点的线段,叫做多边形的对角线。①如图 2,线段 AB 是五边形 A BCDE 的一条对角线;②五边形 ABCDE 共有 条对角线;在图 2 中画出五边形 ABCDE 的所有对角线。
那么这个多边形就是

(6)凸多边形和凹多边形
如图,这两个多边形有什么不同?
6.一个正十边形的某一边长为 8cm,其中一个内角的度数为 144º,则这个正十边形的周长和内角和分别为( )
A.64cm,1440º
B.80cm,1620º
C.80cm,1440º
D.88cm,1620º
7.通过连接对角线的方法,可以把十边形分成互不重叠的三角形的个数( )
A.7 个
B.8 个
C.9 个 1/6
A.2 个
B.3 个
C.4 个
D.5 个
4.将已知六边形 ABCDEF,用对角线将它剖分成互不重叠的 4 个三角形,那么各种不同的剖分方法种数是( )
A.6
B.8
C.12
D.14
5.下列说法不正确的是( )
A.各边都相等的多边形是正多边形 B.正多形的各边都相等
C.正三角形就是等边三角形 D.各内角相等的多边形不一定是正多边形
A.6 条
B.7 条
C.8 条
D.9 条
10.六边形共有几条对角线( )
A.6 二、填空题
B.7
C.8
D.9
11.过 m 边形的一个顶点有 7 条对角线, n 边形没有对角线, k 边形有 k 条对角线,则 (m − k )n = ______.
12.过 m 边形的一个顶点有 7 条对角线,n 边形没有对角线,则 n-m=______.

人教版八年级数学上册第11章《三角形》教学设计

人教版八年级数学上册第11章《三角形》教学设计

人教版八年级数学上册第11章《三角形》教学设计一. 教材分析人教版八年级数学上册第11章《三角形》是学生在学习了平面几何基本概念和图形的基础上,进一步研究三角形的性质和分类。

本章内容包括三角形的概念、三角形的分类、三角形的内角和、三角形的边长关系等。

通过本章的学习,学生能够理解三角形的性质,掌握三角形的分类方法,运用三角形的性质解决实际问题。

二. 学情分析八年级的学生已经具备了一定的几何知识,对平面几何的基本概念和图形有一定的了解。

但是,对于三角形的性质和分类,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,逐步理解和掌握三角形的性质和分类方法。

三. 教学目标1.知识与技能:使学生理解三角形的概念,掌握三角形的分类方法,了解三角形的内角和定理,能够运用三角形的性质解决实际问题。

2.过程与方法:培养学生观察、操作、思考、交流的能力,提高学生的几何思维能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学与生活的联系,培养学生的合作意识。

四. 教学重难点1.重点:三角形的性质和分类方法,三角形的内角和定理。

2.难点:三角形的性质和分类方法的运用,三角形的内角和定理的理解。

五. 教学方法1.情境教学法:通过生活情境和几何图形,引导学生观察和思考三角形的性质和分类。

2.合作学习法:引导学生进行小组讨论和交流,共同探索三角形的性质和分类方法。

3.引导发现法:教师引导学生发现问题,学生通过操作和思考,发现三角形的性质和分类方法。

六. 教学准备1.教具:三角板、直尺、圆规、多媒体课件。

2.学具:三角板、直尺、圆规、练习本。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的三角形图形,如自行车三角架、自行车的三角铁等,引导学生观察和思考三角形的特征。

2.呈现(10分钟)教师通过多媒体课件,呈现三角形的定义和性质,引导学生理解和掌握三角形的概念。

3.操练(10分钟)教师提出一些关于三角形性质的问题,如三角形的内角和是多少?等,学生通过操作和思考,回答问题。

八年级数学上册 第11章《三角形》导学案(新版)新人教版

八年级数学上册 第11章《三角形》导学案(新版)新人教版

三角形学习目标1、了解三角形的概念。

2、了解等腰三角形的概念并能理解它的特殊性。

3、掌握三角形的三边关系,并能运用它解决实际问题。

二、复习1、说一说生活中哪些物体有三角形的形状?2、观察图形,在连接两点的所有线中最短。

三、探索与思考1、阅读书本42-43页并完成下列填空。

⑴不在同一直线上的三条线段首尾相接所构成的图形叫做。

⑵三角形可以用符号“△”来 A表示,如图①中的三角形可记作“△ABC”,读作“三角形ABC”。

B C其中,点A,B,C叫做△ABC的;①∠A, ∠B,∠C叫做△ABC的;线段AB,BC,CA叫做△ABC的。

通常∠A, ∠B,∠C的对边分别用,,来表示。

A⑶如图②两条边相等的三角形叫做。

在等腰三角形中,相等的两边叫做,另外一条边叫做,两腰的夹角叫做, B ② C腰和底边的夹角叫做。

A⑷如图③,三边都相等的三角形叫做。

等边三角形是特殊的等腰三角形腰和底边相等的三角形。

③ C2、探究并讨论书本43页如图①,在△ABC中,连接BC两点的线有:线段,折线AB+ ,由“两点之间线段最短”,可得AB+AC>.同理可得 AB+BC> , AC+BC> .由此可得:三角形的任意两边和第三边。

由此可得:三角形的两边之差第三边。

3、思考并解答下列问题。

⑴用自制的小棒,看能否摆成一个三角形?⑵①等腰三角形周长20厘米,底边长6厘米,则腰长。

②等腰三角形周长20厘米,一边长5厘米,则另外两边的长分别为。

⑶如图④,D是△ABC的边AC上的一点,AD=BD,试判断AC与BC的大小。

A解在△BDC中,有BD+DC﹥ ( ) D又AD=BD( ) B ④ C则BD+DC=AD+DC= 所以AC﹥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档