第十七章反比例函数教案全章
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。
过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。
二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。
难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。
三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。
环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。
环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。
环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。
四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。
五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。
反比例函数全章教案范文
反比例函数全章教案范文一、教学目标:1. 理解反比例函数的概念,掌握反比例函数的定义和性质。
2. 学会求反比例函数的导数,并能运用导数解决相关问题。
3. 能够运用反比例函数解决实际问题,提高解决问题的能力。
二、教学内容:1. 反比例函数的定义与性质2. 反比例函数的图像与方程3. 反比例函数的导数4. 反比例函数的应用5. 反比例函数的综合训练三、教学重点与难点:1. 反比例函数的定义与性质2. 反比例函数的图像与方程3. 反比例函数的导数及其应用四、教学方法:1. 采用问题驱动法,引导学生主动探究反比例函数的性质和应用。
2. 利用多媒体课件,展示反比例函数的图像和实例,增强直观感受。
3. 注重个体差异,分组讨论,提高学生的合作能力和表达能力。
4. 举一反三,引导学生将反比例函数与其他函数相结合,提高解决问题的能力。
五、教学安排:1. 课时:本章共计10课时。
2. 教学过程:第1-2课时:反比例函数的定义与性质第3-4课时:反比例函数的图像与方程第5-6课时:反比例函数的导数第7-8课时:反比例函数的应用第9-10课时:反比例函数的综合训练六、教学过程:第11-12课时:反比例函数与几何图形通过讲解反比例函数与几何图形之间的关系,使学生能够更好地理解反比例函数的性质。
结合具体实例,引导学生运用反比例函数解决几何问题。
七、教学过程:第13-14课时:反比例函数在不同领域的应用通过讲解反比例函数在物理学、经济学等领域的应用,让学生体会反比例函数在实际生活中的重要性,提高学生运用数学知识解决实际问题的能力。
八、教学过程:第15-16课时:反比例函数的拓展与深化引导学生从反比例函数的角度思考问题,探讨反比例函数与其他函数的关系,提高学生的逻辑思维能力和创新意识。
九、教学过程:第17-18课时:反比例函数的自测与反思十、教学过程:重点和难点解析一、反比例函数的定义与性质:重点关注环节:反比例函数的概念理解、性质的推导与证明。
第十七章反比例函数教案
17.1.1反比例函数的意义(1课时)教学目标:知识与技能:1. 使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数3.能根据实际问题中的条件确定反比例函数的解析式过程与方法:1.让学生经历抽象反比例函数概念的进程,理解反比例函数的意义。
2.让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际,并能求出其函数解析式。
情感、态度与价值观:1、经历反比例函数形成的过程,使学生体验函数是描述变量之间对应关系的重要数学模型。
2、通过学习反比例函数,培养学生的观察、推理、分析能力和合作交流的意识,体验数形结合的数学思想,认识反比例函数的应用价值。
教学重难点:1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念课程类型:新授课教学方法:观察—分析—归纳、类比、讲练结合教具准备:小黑板、三角尺学情分析:教学教程:一、创设情境,导入新课问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.分析及解答:(1)vt 1463=(2)x y 1000= (3)ns 41068.1⨯= 其中v 是自变量,t 是v 的函数;x 是自变量,y 是x 的函数;n 是自变量,s 是n 的函数;上面的函数关系式,都具有xk y =的形式,其中k 是常数。
二、探究新知反比例函数的概念:形如x k y =(k 为常数,0≠k )的函数称为反比例函数。
其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数。
反比例函数全章教案
第一章:反比例函数的概念与性质1.1 反比例函数的定义理解反比例函数的定义:反比例函数是指当一个变量的值增大时,另一个变量的值减小,且它们的乘积保持不变。
例题讲解:求解y = 1/x 的反比例函数。
1.2 反比例函数的性质理解反比例函数的性质:反比例函数的图像是一条通过原点的斜率为正或负的双曲线。
例题讲解:分析反比例函数的图像和性质。
第二章:反比例函数的图像与解析式2.1 反比例函数的图像绘制反比例函数的图像:通过解析式和图像来理解反比例函数的特点。
例题讲解:绘制y = 1/x 的图像。
2.2 反比例函数的解析式反比例函数的解析式:通过给定的两个点来求解反比例函数的解析式。
例题讲解:已知两个点的坐标,求解反比例函数的解析式。
第三章:反比例函数的性质与应用3.1 反比例函数的单调性理解反比例函数的单调性:当x > 0 时,反比例函数是单调递减的;当x < 0 时,反比例函数是单调递增的。
例题讲解:分析反比例函数的单调性。
应用反比例函数解决实际问题:通过反比例函数来计算两个变量之间的比例关系。
例题讲解:已知物体的速度与时间成反比例关系,求物体的最大速度。
第四章:反比例函数的综合应用4.1 反比例函数与一元二次方程反比例函数与一元二次方程的关系:解一元二次方程时,利用反比例函数来简化计算。
例题讲解:解一元二次方程x^2 4x + 1 = 0,利用反比例函数来简化计算。
4.2 反比例函数与不等式反比例函数与不等式的关系:通过反比例函数的性质来解决不等式问题。
例题讲解:解不等式1/x > 2,利用反比例函数的性质来解决。
第五章:反比例函数的扩展与思考5.1 反比例函数的扩展探索反比例函数的扩展:了解反比例函数在其他领域的应用,如物理学、化学等。
例题讲解:反比例函数在物理学中的应用,如电阻与电流的关系。
5.2 反比例函数的思考与讨论思考与讨论:引导学生思考反比例函数在实际生活中的意义和应用,鼓励学生提出问题并解决问题。
反比例函数教案(优秀8篇)
反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
三、情感态度与价值观1、积极参与交流,并积极发表意见。
2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重点:掌握从实际问题中建构反比例函数模型。
教学难点:从实际问题中寻找变量之间的关系。
关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。
2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。
教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。
二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。
第十七章 反比例函数 复习教学案
第十七章 反比例函数 一、知识点与方法(一)反比例函数的意义(1)一般地,形如 的函数称为反比例函数,其中,自变量x 的取值范围是 。
(2)反比例函数的特点是:① ② ③ (3)反比例函数除了一般形式外, 它的表达形式还有 、 。
【练习】1、下列哪个等式中的y 是x 的反比例函数? ① y = 4x ② y = -2x -1 ③ y = 6x + 1 ④ xy = 123 ⑤ x y = 3 ⑥xy 2-= ⑦ 25+=x y ⑧ x y 23-= ⑨ 31+=x y ⑩ 28xy = (11) x ay = 2、已知点(1,-2)在反比例函数y =kx的图象上,则k=_______3、(2010·凉山)已知函数52)2(--=mx m y 是反比例函数,求m 的值?4、已知y 是x 的反比例函数,当x =2时,y =8,写出y 与x 的关系式,并求当y =-4时,x 的值。
5、y 与x 成正比例,x 与z 成反比例,那么y 与z 成什么函数?写出推理过程。
(二)反比例函数的图象和性质(1)反比例函数y =kx (k 为常数,且0k ≠)的图象是 。
(2)反比例函数y =x6的两个分支关于 对称;在同一直角坐标系中,反比例函数y =x 6与y =—x6的图象关于 对称。
(3)完成表格说明:表格中划线的内容还可以说成 。
【练习】4、反比例函数4y x =-的图象大致是( )5、如果函数y=kx-2(k ≠0)的图象不经过第一象限,那么函数ky x=的图象一定在( )A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限6、函数)1(+=x k y 和xky -=(k ≠0)在同一坐标系中的大致图象是(• )A B C D7、函数y kx =-与y k x=(k ≠0)的图象的交点个数是( )A 、0B 、1C 、2D 、不确定8、已知反比例函数()0ky k x=<的图象上有两点A (1x ,1y ),B (2x ,2y ),且12x x <则12y y -的值是( )A 、正数B 、负数C 、非正数D 、不能确定 9、正比例函数y = k 1x (k ≠0)和反比例函数y =xk 2(k ≠0)的的一个交点坐标为(1,—3),则另一个交点坐标为 。
反比例函数教案(优秀6篇)
反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
第十七章反比例函数教案全章
第十七章反比例函数教案全章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十七章 反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xk y =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k ;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0。
讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 三、课堂引入1.回忆一下什么是正比例函数、一次函数它们的一般形式是怎样的2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?四、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设xk y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=xy (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成x k y =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是xx y 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? 分析:反比例函数x k y =(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。
反比例函数教案设计(优秀篇)
反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:理解反比例函数的概念,掌握反比例函数的性质和图像特点;能够运用反比例函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质;学会用图像和解析式表示反比例函数。
3. 情感态度价值观:培养学生的数学思维能力,提高学生对数学的兴趣;培养学生合作交流的能力,提高学生的团队协作精神。
二、教学内容1. 反比例函数的概念:反比例函数的定义、形式。
2. 反比例函数的性质:比例系数、定义域、值域、图像特点。
3. 反比例函数的图像:绘制反比例函数的图像,观察图像的形状和特点。
4. 反比例函数的实际应用:解决实际问题,如面积、速度、浓度等问题。
三、教学重点与难点1. 重点:反比例函数的概念、性质和图像特点。
2. 难点:反比例函数的实际应用,特别是复杂问题的解决。
四、教学方法与手段1. 教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、积极参与。
2. 教学手段:利用多媒体课件、反比例函数图像软件等辅助教学,提高教学效果。
五、教学过程1. 导入新课:通过一个实际问题,引入反比例函数的概念。
2. 自主学习:学生自主学习反比例函数的定义和性质,理解反比例函数的概念。
3. 合作探究:学生分组讨论,探索反比例函数的图像特点,总结反比例函数的性质。
4. 课堂讲解:教师讲解反比例函数的性质和图像特点,引导学生理解反比例函数的概念。
5. 练习巩固:学生进行课堂练习,运用反比例函数解决实际问题。
6. 课堂小结:教师总结本节课的反比例函数知识点,强调重点和难点。
7. 课后作业:布置相关的课后作业,巩固反比例函数的知识。
六、教学评价1. 评价目标:检查学生对反比例函数的概念、性质和图像特点的理解程度。
2. 评价方法:课堂提问、课堂练习、课后作业、小组讨论等。
3. 评价内容:反比例函数的定义、性质、图像特点,以及实际应用能力的展示。
七、教学反馈1. 课堂反馈:通过课堂提问、练习等环节,及时了解学生的学习情况,对学生的疑惑进行解答。
第十七章反比例函数复习教学设计
第十七章反比例函数复习教学设计课题:反比例函数复习教学目标知识与技能1、通过对实际问题中数量关系得探索,掌握用函数的思想去研究其变化规律2、结合具体情境体会和理解反比例函数的意义,并解决与它们有关的简单的实际问题3、让学生参与知识的发现和形成过程,强化数学的应用与建模意识,提高分析问题和解决问题的能力。
过程与方法 反思在具体的问题中探索数量关系和变化的过程,理解反比例函数的概念,领会反比例函数作为一种教学模型的意义。
情感态度与价值观培养学生观察、分析、归纳的能力,感悟数形结合的数学思想方法,体会函数在实际问题中的应用价值。
重点 反比例函数的图像和性质在实际问题中的运用。
难点运用函数的性质和图像解综合题,要善于识别图形,勤于思考,获取有用的信息,灵活的运用数学思想方法。
教 学 过 程教学设计 与 师生行为备 注第一步;知识回顾1、什么是反比例函数?2、你能回顾总结一下反比例函数的图像性质特征吗?与同伴交流。
第二步;练一练1 、 反比例函数y=-x2的图象是 ,分布在第 象限,在每个象限内, y 都随x 的增大而 ;若 p1 (x1 , y1)、p2 (x2 , y2) 都在第二象限且x1<x2 , 则y 1 y 2。
3、已知反比例函数 ,若X 1 <x2 ,其对应值y 1,y 2 的大小关系是4、如图在坐标系中,直线y=x+ k 与双曲线xky =在第一象限交与点A , 与x 轴交于点C ,AB 垂直x 轴,垂足为B ,且S △AOB =1 1)求两个函数解析式 2)求△ABC 的面积x1y =21。
反比例函数的图像和性质教案
反比例函数的图象和性质新课标人教版八年级下册第十七章《反比例函数》第一节第二课时。
教学任务分析教学过程说明本节课主要通过活动引路, 提出问题, 让学生经历画图、观察、猜想、思考等数学活动, 向学生渗透数形结合的思想方法, 让学生初步认识具体的反比例函数图象的特征, 体会事物是有规律地变化着的观点。
用科学的方法解决问题, 培养学生科学的态度与精神。
本节课的教学设计力求在每一个环节上都能以学生为主体, 以围绕着增加学生学习的兴趣, 降低思维难度, 减少学生对函数学习的畏惧心理, 强化主动的学习动机, 为学生自信的心理品质的发展和学习的主动性培养提供良好的心理环境为出发点, 让学生自己完成知识的探索, 体会他们的探索是有意义、有科学性、有创造性的。
本设计有以下几个突出特点:1..敢于使用知识的负迁移。
在教学中普遍认为, 知识的负迁移对学生起到负面的作用, 因此, 在教学中都想方设法避开这些错误的负面, 一旦出现也是围追堵截, 消灭在萌芽状态。
而实际上, 巧妙地利用负面资源, 变废为宝, 不失良策, 甚至能起到事半功倍的效果。
2、提供足够的感性材料, 为理性认识蓄足底蕴。
为了更好地发现反比例函数的性质, 组织了三次画图活动, 在画图、评析、纠正、调整等活动中反复历练了画图的方法, 学生有了丰富的感性素材, 可谓“厚积薄发”。
3.教师、学生的合理定位。
教师始终把自己放在了策划者、引导者、促进者的位置, 注重了学法的指导, “授人以鱼, 不如授人以渔”, 方法是高于知识的, 它能驾驭知识。
同时把学生推向前台, 使学生以研究者和探索者的身份穿梭于课堂, 充分突出了主体的地位, 角色的更新提升了学生的参与意识, 在成功中获得自信, 可谓德智双赢。
板书设计:反比例函数的图象和性质画图象画61的图象(1)列表(2)描点(3)连线性质:1、形状2、位置3.增减性3、增减性体会练习。
第十七章 反比例函数教案doc
第十七章反比例函数单元要点分析一. 教学内容本章内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受现实世界存在各种函数以及如何应用函数解决实际问题。
反比例函数是最基本的函数之一,是学习后续各类函数的基础。
第17.1节的内容是反比例函数的概念、图象和性质。
反比例函数(k为常数,)的图象分布在两个象限,当时,图象分布在一、三象限,y随x的增大(减小)而减小(增大);当时,图象分布在二、四象限,y随x的增大(减小)而增大(减小)。
第17.2节的内容是如何利用反比例函数解决现实世界的实际问题,以及如何用反比例函数解释现实世界中的一些现象。
本章主要涉及到如下的4个现实世界中的反比例函数模型:当圆柱体的体积V一定时,圆柱的底面积S是高(深度)d的反比例函数:;当工程总量k一定时,做工时间t是做工速度v的反比例函数:;在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数:;电压U一定,输出功率P是电路中电阻 R的反比例函数:。
此外,本章还安排了两个选学内容:第17.1节的“信息技术应用”中安排了“探索反比例函数的性质”,第17.1节的“阅读与思考”中安排了“生活中的反比例关系”。
这两个内容可以开阔学生的视野,拓展知识面。
教学目标(1)使学生理解并掌握反比函数的概念,能根据实际问题中的条件确定反比例函数的解析式y=kx(k 为常数,k≠0)能判定一个函数是否为反比函数。
(2)能描点画出反比例函数的图像,会用待定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析法、图像法的各自特点。
(3)能根据图像数形结合地分析并掌握反比函数y=kx(k 为常数,k≠0)的函数关系与性质;能用反比例函数这些性质各解决实际一些问题简单的实际问题。
(4)探索现实生活中数量间的反比例关系,在解决实际问题的过程中,进一步体会和认识反比函数这种刻画世界中待定数量关系的数学模型。
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 学生能理解反比例函数的概念,掌握反比例函数的定义和性质。
2. 学生能够运用反比例函数解决实际问题,提高解决问题的能力。
过程与方法:1. 学生通过观察、分析、归纳等方法,探索反比例函数的性质。
2. 学生能够利用反比例函数的性质进行函数图象的识别和分析。
情感态度价值观:1. 学生培养对数学的兴趣和好奇心,体验成功的喜悦。
2. 学生培养合作精神,学会与他人交流和分享。
二、教学内容:1. 反比例函数的定义:学生通过观察实例,理解反比例函数的概念,掌握反比例函数的定义。
2. 反比例函数的性质:学生通过实验、观察、分析等方法,探索反比例函数的性质,如单调性、奇偶性等。
3. 反比例函数图象的识别:学生通过观察图象,学会识别反比例函数图象,理解图象的特点。
4. 反比例函数的应用:学生通过解决实际问题,运用反比例函数的知识,提高解决问题的能力。
5. 反比例函数的综合练习:学生通过练习题,巩固反比例函数的知识,提高解题能力。
三、教学重点与难点:重点:1. 反比例函数的概念和性质。
2. 反比例函数图象的识别和分析。
难点:1. 反比例函数的性质的深入理解和运用。
2. 解决实际问题中反比例函数的应用。
四、教学方法与手段:1. 教学方法:采用问题驱动法、案例教学法、合作学习法等,激发学生的学习兴趣,培养学生的探究能力和合作精神。
2. 教学手段:利用多媒体课件、实物模型、反比例函数图象软件等,直观展示反比例函数的知识,帮助学生理解和掌握。
五、教学过程:1. 导入新课:通过展示实例,引导学生思考反比例函数的概念,激发学生的学习兴趣。
2. 知识讲解:讲解反比例函数的定义和性质,引导学生通过观察、分析、归纳等方法,探索反比例函数的性质。
3. 实例分析:分析实际问题,引导学生运用反比例函数的知识,解决问题。
4. 课堂练习:学生独立完成练习题,巩固反比例函数的知识。
6. 课后作业:布置作业,让学生进一步巩固反比例函数的知识。
十七章_反比例函数复习教案
反比例函数复习教案复习目标 知识目标:1、理解反比例函数概念,掌握反比例函数的主要性质。
2、会从函数图象中获取信息,解决问题。
能力目标:1、逐步提高从函数图象中获取信息的能力和感知水平。
2、形成用函数观点处理问题的意识,体验数形结合的思想方法,发展学生形象思维能力。
情感目标:培养学生观察、分析、归纳的能力,感悟数形结合的数学思想方法,体会函数在实际问题的应用价值。
重点:掌握反比例函数的概念、图象、性质、应用。
难点:运用反比例函数的性质和图象解答综合题,要善于识别图形,获取有用的信息,灵活的运用数学思想方法。
复 习 过 程 一、基础知识归纳1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
x k y =还可以写成kx y =1-2. 反比例函数图像的特点:双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
反比例函数的图像即是中心对称图形(对称中心是原点),也是轴对称图形(对称轴是x y =或x y -=)。
34、反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
二、基础知识训练(一)定义与解析式1.下列函数中哪些是反比例函数?① y=3x; ② y=2x 2; ③ xy=-2; ④ y=2x -1; ⑤ 2y 3x =; ⑥3y 2x = .2.已知y 与x 成反比例,当x=2时,y=3,则 y 与x 的关系式为________.3.若双曲线经过点(-3 ,2),则其解析式是______. 4. 反比例函数x ky =的图像经过点(-3,5)、点(a ,-3),则k = ,a = .(二)图像及性质1. 函数5y x =-的图象位于 象限,在每一象限内,函数y 随着x 的增大而 . 2. 若函数ky x =的图象经过(3,-4),则k = ,此图象位于 象限,在每一个象限内y 随x 的减小而 .3、反比例函数 图像在第二、四象限,则m 取值范围为 4.已知点A(x 1,y 1),B(x 2,y 2)(x 1<0<x 2 )都在反比例函数的图象上,则y 1与y 2的大小关系(从大到小)为 .5、若()11,A x y ()22,B x y ()33,C x y 都在双曲线6y x=-上,且1230x x x <<<则1y 、2y 、3y 间的大小关系为(三)K 的几何意义1、点A 是反比例函数图象上的一点,过A 作AB ⊥y 轴于B 点,若△ABO 面积为2,则反比例函数解析式为 。
初中八年级初二数学教案 第十七章反比例函数导学案全章
学习课题:17.1.1反比例函数的意义 学习内容:教材P39-40学习目标:1、理解并掌握反比例函数的概念。
2、能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3、能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式 学习难点:理解反比例函数的概念。
学习准备:1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?学习过程: 一、探索研讨 【活动1】 问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;_________________(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化;_________________ (3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S(平方千米/人)随全市总人口数n (单位:人)的变化而变化。
_________________上面的函数关系式,都具有_____________的形式,其中_________是常数。
【活动2】下列问题中,变量间的对应关系可用这样的函数式表示吗?(1)一个游泳池的容积为m 3,注满游泳池所用的时间随注水速度u 的变化而变化;_________________(2)某立方体的体积为1000cm 3,立方体的高h 随底面积S 的变化而变化; _________________(3)一个物体重100牛顿,物体对地面的压力p 随物体与地面的接触面积S 的变化而变化。
_________________概念:如果两个变量x,y 之间的关系可以表示成___________的形式,那么y 是x 的反比例函数,反比例函数的自变量x____为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章 反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xky =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k ;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0。
讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 三、课堂引入1.回忆一下什么是正比例函数、一次函数它们的一般形式是怎样的 2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的 四、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设xky =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数(1)3x y = (2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-=(6)31+=xy (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成xky =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是xxy 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数 分析:反比例函数xk y =(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。
解得m =-2例3.(补充)已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 (1) 求y 与x 的函数关系式 (2) 当x =-2时,求函数y 的值分析:此题函数y 是由y 1和y 2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y 1、 y 2与x 的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。
这里要注意y 1与x 和y 2与x 的函数关系中的比例系数不一定相同,故不能都设为k ,要用不同的字母表示。
略解:设y 1=k 1x (k 1≠0),x k y 22=(k 2≠0),则xkx k y 21+=,代入数值求得k 1=2, k 2=2,则xx y 22+=,当x =-2时,y =-5 五、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为 2.若函数28)3(m xm y -+=是反比例函数,则m 的取值是3.矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为 4.已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y = 5.函数21+-=x y 中自变量x 的取值范围是 六、课后练习已知函数y =y 1+y 2,y 1与x +1成正比例,y 2与x 成反比例,且当x =1时,y =0;当x =4时,y =9,求当x =-1时y 的值答案:y =417.1.2反比例函数的图象和性质(1)一、教学目标1.会用描点法画反比例函数的图象 2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法 二、重点、难点1.重点:理解并掌握反比例函数的图象和性质2.难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质 3.难点的突破方法:画反比例函数图象前,应先让学生回忆一下画函数图象的基本步骤,即:列表、描点、连线,其中列表取值很关键。
反比例函数xky =(k ≠0)自变量的取值范围是x ≠0,所以取值时应对称式地选取正数和负数各一半,并且互为相反数,通常取的数值越多,画出的图象越精确。
连线时要告诉学生用平滑的曲线连接,不能用折线连接。
教学时,老师要带着学生一起画,注意引导,及时纠错。
在探究反比例函数的性质时,可结合正比例函数y =kx (k ≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容。
这里要强调一下,反比例函数的图象位置和增减性是由反比例系数k 的符号决定的;反之,双曲线的位置和函数性质也能推出k 的符号,注意让学生体会数形结合的思想方法。
四、课堂引入提出问题:1.一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么其性质有哪些正比例函数y =kx (k ≠0)呢2.画函数图象的方法是什么其一般步骤有哪些应注意什么 3.反比例函数的图象是什么样呢 五、例习题分析例2.见教材P48,用描点法画图,注意强调:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线 (4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴例1.(补充)已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况分析:此题要考虑两个方面,一是反比例函数的定义,即1-=kx y (k ≠0)自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件略解:∵32)1(--=m xm y 是反比例函数 ∴m 2-3=-1,且m -1≠0又∵图象在第二、四象限 ∴m -1<0 解得2±=m 且m <1 则2-=m例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B五、随堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限 (2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 七、课后练习1.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是 2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是3. 已知反比例函数y a xa=--()226,当x >0时,y 随x 的增大而增大,求函数关系式 答案:3.xy a 25,5--=-=17.1.2反比例函数的图象和性质(2)一、教学目标1.使学生进一步理解和掌握反比例函数及其图象与性质 2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法 二、重点、难点1.重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题 2.难点:学会从图象上分析、解决问题 3.难点的突破方法:在前一节的基础上,可适当增加一些较综合的题目,帮助学生熟练掌握反比例函数的图象和性质,要让学生学会如何通过函数图象分析解析式,或由函数解析式分析图象的方法,以便更好的理解数形结合的思想,最终能达到从“数”和“形”两方面去分析问题、解决问题。
三、课堂引入复习上节课所学的内容 1.什么是反比例函数2.反比例函数的图象是什么有什么性质 四、例习题分析例3.见教材P51 分析:反比例函数xky =的图象位置及y 随x 的变化情况取决于常数k 的符号,因此要先求常数k ,而题中已知图象经过点A (2,6),即表明把A 点坐标代入解析式成立,所以用待定系数法能求出k ,这样解析式也就确定了。
例4.见教材P52例1.(补充)若点A (-2,a )、B (-1,b )、C (3,c )在反比例函数xky =(k <0)图象上,则a 、b 、c 的大小关系怎样分析:由k <0可知,双曲线位于第二、四象限,且在每一象限内,y 随x 的增大而增大,因为A 、B 在第二象限,且-1>-2,故b >a >0;又C 在第四象限,则c <0,所以 b >a >0>c说明:由于双曲线的两个分支在两个不同的象限内,因此函数y 随x 的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k <0时y 随x 的增大而增大,就会误认为3最大,则c 最大,出现错误。
此题还可以画草图,比较a 、b 、c 的大小,利用图象直观易懂,不易出错,应学会使用。
例2. (补充)如图, 一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1)、B (1,n )两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围分析:因为A 点在反比例函数的图象上,可先求出反比例函数的解析式xy 2-=,又B 点在反比例函数的图象上,代入即可求出n 的值,最后再由A 、B 两点坐标求出一次函数解析式y =-x -1,第(2)问根据图象可得x 的取值范围x <-2或0<x <1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。