初2014级九下南开五月月考数学试题

合集下载

mjt-重庆市南开中学2014届高三5月月考数学试题(理)及答案

mjt-重庆市南开中学2014届高三5月月考数学试题(理)及答案

重庆南开中学高2014级高三5月月考数学试题(理)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个备选项中,只有一项是符合题目要求的。

1、若集合{}{}20,,1,2A mB ==,则“1m =”是“{}0,1,2AB =”的( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件2、设非零实数,a b 满足a b <,则下列不等式中一定成立的是( ) A 、11a b>B 、2ab b <C 、0a b +>D 、a b <3、函数sin 26y x π⎛⎫=- ⎪⎝⎭的一条对称轴为( ) A 、3x π=-B 、3x π=C 、6x π=D 、512x π=-4、已知向量a 、b 满足3,23a b ==,且()a ab ⊥+,则向量a 与b 的夹角是( ) A 、2π B 、23π C 、34π D 、56π 5、若在区间[]0,2中随机地取两个数,则这两个数之和大于1的概率是( ) A 、34B 、78C 、916D 、35126、执行如题(6)图所示的程序框图,则输出的S 为( )A 、12- B 、2 C 、13D 、3-7、已知某几何体的三视图如题(7)图所示, 则该几何体的体积为( )A 、8B 、83C 、4D 、128、已知,0a b >,实数,x y 满足不等式组22220,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则当2a b a b a ++取得最大值时,z bx ay =+取最大值的最优解为( ) A 、()0,0B 、()1,0C 、()0,1D 、22,33⎛⎫⎪⎝⎭9、已知双曲线的左、右焦点分别为1F 、2F ,且双曲线上存在异于顶点的一点P ,满足1221t a n 3t a n22PF F PF F ∠∠=,则该双曲线离心率为( ) A 、2B 、3CD10、如图所示,某地有一段网格状公路,小王开车从A 处出发,选择最近的路线去往B 处。

九年级下册数学 第一次月考数学试卷含答案解析

九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。

2014-2015年南开中学九年级下月考数学试卷及答案解析

2014-2015年南开中学九年级下月考数学试卷及答案解析

)÷(a+1﹣
),
22.(10 分)(2015•沙坪坝区校级模拟)今年,微信通过春晚“摇一摇”互动,微信红包、摇 礼券等丰富的形式陪伴全国人民度过了一个欢乐的羊年春节,通过发送微信红包,京东商城 的智能手机销售异常火爆,若销售 10 部 A 型和 20 部 B 型手机的利润共 4000 元,每部 B 型手机的利润比每部 A 型手机多 50 元. (1)求每部 A 型手机和 B 型手机的销售利润. (2)商城计划一次购进两种型号的手机共 100 部,其中 B 型手机的进货量不超过 A 型手机 的 2 倍,则商城购进 A 型、B 型手机各多少部,才能使销售利润最大?最大利润是多少?
A. x>2
B. x<2
有意义,那么 x 的取值范围是( )
C. x≥2
D.x≤2
6.(4 分)(2013•重庆) 如图,AB∥CD,AD 平分∠BAC,若∠BAD=70°,那么∠ACD 的度数为( )
A. 40°
B. 35°
C. 50°
D.45°
7.(4 分)(2010•南通)如图,⊙O 的直径 AB=4,点 C 在⊙O 上,∠ABC=30°,则 AC 的 长是( )
3.(4 分)该试题已被管理员删除
4.(4 分)(2015•沙坪坝区校级模拟)在某次数学测验中,随机抽取了 10 份试卷,其成绩
如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为( )
A. 81,82
B. 83,81
C. 81,81
D.83,82
5.(4 分)(2012•株洲)要使二次根式
A. 2:5
B. 2:3
C. 3:5
D.3:2
10.(4 分)(2010•眉山)打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历

九年级数学月考试卷(含答案)

九年级数学月考试卷(含答案)

九年级第一次月考数学试卷1一、选择题(每小题4分,共40分) 1.下列运算正确的是( ).A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+D .()2121a a --=--2.二次根式中,x 的取值范围是( )A .x=3B . x≥3C . x >3D .一切实数 3.若点 P (a ,a -3)在第四象限,则a 的取值范围是 ( ). A .-3<a <0 B .0<a <3 C .a >3 D .a <04.二次函数y=﹣(x+2)2﹣3的顶点坐标为( )A .(﹣2,3)B . (2,3)C . (﹣2,﹣3)D . (2,﹣3)5.芜湖市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是 ( ). A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x += 6.下列方程没有实数根的是( )A .x 2+4x=10B .3x 2+8x ﹣3=0C .x 2﹣2x+3=0 D .(x ﹣2)(x ﹣3)=12 7.方程(x ﹣1)(x+2)=2(x+2)的根是( ) A .1,﹣2 B . 3,﹣2 C . 0,﹣2 D .18.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2的值为( ) A .5 B .7 C .8 D .109.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是( )A .18B .19C . 20D .2110.已知k 为实数,且方程223x x k --=恰有4个实数根,则k 的范围是A .任意实数B .0k >C .04k <<D .不存在 二、填空题(每题5分,共20分)11.关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足 12.汽车刹车后行驶的距离s (单位:米)与行驶的时间t (单位:秒)的函数关系式是s=15t﹣6t 2,那么汽车刹车后 秒停下来。

数学理卷·2014届重庆市重庆一中高三5月月考(2014.05)

数学理卷·2014届重庆市重庆一中高三5月月考(2014.05)

2014年重庆一中高2014级高三下期第三次月考 数 学 试 题(理科)2014.5【试卷综析】本卷为高三月考试卷,本次高三数学模拟试题从整体看,既注重了对基础知识的重点考查,也注重了对能力的考查。

从考生的反映看,试题难度适中,最后两道大题考查深入,有较好的梯度和区分度;坚持重点内容重点考,考潜能,考数学应用,在“知识的交汇处命题”有新的突破,反映了新课程的理念,试卷注重对常规数学思想方法以及通性、通法的考查,注重认识能力的考查,注重创新意识,稳中求新,新中求活,活中凸显能力。

注重综合性、应用性、探索性、开放性等能力型题目的考查,充分体现了能力立意,在考查学生数学基础知识、数学思想和方法的基础上,以逻辑思维能力为核心,同时考查了学生的学习能力、运算能力、空间想像能力、应用能力、探究能力、分析和解决问题的能力和创新能力,同时加强对思维品质的考查。

试卷在考查基础知识的同时,注重对数学思想和方法的考查,注重对数学能力的考查。

数学试题共4页,共21个小题。

满分150分。

考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.一、选择题.(共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{1},{M x y x N y y ==+==,则M N =( )A. {(0,1)}B. {1}x x ≥-C. {0}x x ≥D. {1}x x ≥【知识点】集合的概念与运算.【答案解析】C 解析:解:M R,=N ={0}x x ≥∴ M N ={0}x x ≥【思路点拨】M 是函数21y x =+的定义域,N 是函数y =. 2.设复数z 满足()(1)1,(z i i i i ++=-是虚数单位),则z =( )A. 1B.2C.3D. 4【知识点】复数的运算;复数的模的计算. 【答案解析】B解析:解:设z a bi=+则()()()()21111a bi i i a b a i b i i+++=+++++=-∴()()111a b b a i i --+++=-可知11,11a b a b --=++=-0,2a b ∴==-2,2z i z ∴=-=正确选项为B.【思路点拨】可用待定系数法设出复数Z ,然后求出a 与b 的值,最后求出复数的模长.3.命题“若1,x >则22x >”的否定是( )A.21,2x x ∀>≤B.21,2x x ∃>>C.21,2x x ∃>≤D.21,2x x ∃≤>【知识点】命题的否定命题.【答案解析】C 解析:解:命题的否定指对命题结论的否定,故1x >时,22x >不一定成立即:212x x ∃>≤,,所以选C 【思路点拨】命题的否定命题只将原命题的结论否定,而否命题是将原命题的题设和结论都否定,此题求的是命题的否定命题.4.双曲线2213y x -=上一点P 到左焦点的距离为4,则点P 到右准线的距离为( )A. 1B.2C.3D. 1或3【知识点】双曲线的定义;双曲线的第二定义;双曲线的离心率;双曲线的性质.【答案解析】D 解析:解:设P 到右准线的距离为d,根据题意可知长轴a=1,c=2, 2e ∴=双曲线的性质可知双曲线上的点到两焦点的距离差的绝对值为2a,所以设左焦点为1F ,右焦点为2F ,则122PF PF -= 2226PF PF ==或 ,再根据第二定义2PF e d = 1d ∴=或d=3 .【思路点拨】设P 到右准线的距离为d,根据题意可知长轴a=1,c=2, 2e ∴=双曲线的性质可知双曲线上的点到两焦点的距离差的绝对值为2a,所以设左焦点为1F ,右焦点为2F ,则122PF PF -= 2226PF PF ==或 所以d 有两个值.5.一个圆锥被过其顶点的一个平面截去了较少的一部分几何体,余下的几何体的三视图如下图,则余下部分的几何体的体积为( )A. 169πB. 169π+C. 89πD. 163π+【知识点】三视图;勾股定理;锥体的体积公式.【答案解析】B 解析:解:根据题意可求圆锥的高为2,底面圆的半径为2,截面弦所对的(第5题图)0T =2I =while I <T T I =+2I I =+EndwhilePr int T(第6题图)圆心角为120o ,所以剩余几何的体积为23倍圆锥的体积1V +三棱锥的体积2V ,211833V r h ππ==,三棱锥的体积为21233V sh ===∴余下几何体的体积为1223V V +=169π. 【思路点拨】依据三视图,对各线段的长度正确求值,注意三视图中数据与原图的对应关系,代入体积公式可求.6.根据上面的程序框图,若输出的结果600=T ,则图中横线上应填( )A. 48B.50C. 52D.54 【知识点】程序框图;等差数列求和. 【答案解析】B 解析:解:根据程序框图可知T 为首项为2公差为2的等差数列的前n 项和,依据数值能计算出数列的最后一项为48,再根据题意可知应填50. 【思路点拨】依据程序框图可知此程序为等差数列的求和数列,所以根据等差数列的求和公式可求出数值.7.对于集合A ,若满足:,a A ∈且1,1a A a A -∉+∉,则称a 为集合A 的“孤立元素”,则集合}10,,3,2,1{ =M 的无“孤立元素”的含4个元素的子集个数共有( )A. 28B.36C.49D. 175 【知识点】元素与集合关系的判断【答案解析】A 解析:解:我们用列举法列出满足条件的所有集合,即可得到答案,符合条件的集合有{}{}{}{}{}{}{}1,2,3,41,2,4,5,1,2,5,61,2,6,71,2,7,81,2,8,91,2,9,107个{}{}{}{}{}{}2,3,4,52,3,5,62,3,672,3,7,82,3,8,92,3,9,106个{}{}3,4,5,63,4,6,75个{}7,8,9,101个,所以7+6+5+4+3+2+1=28【思路点拨】本题在新定义的基础上考查了集合的成立的条件,利用列举法可得到所有子集个数.8.已知圆O 的半径为1,四边形ABCD 为其内接正方形,EF 为圆O 的一条直径,M 为正方形ABCD 边界上一动点,则MF ME ⋅的最小值为( )A.34-B.12-C.14-D.0【知识点】【答案解析】B 解析:解:由已知可画出图形,如下图所示:设M(x,y),E(-1,0),F(1,0),所以⋅=(-1-x,-y )(1-x,-y)= 221x y +-,即当22x y +最小时,也就是正方形边界上的点到原点的距离的最小值的算术平方根;2212x y +≥,即MF ME ⋅=221x y +-12≥-,故选B.【思路点拨】向量的数量积公式;函数的最小值.9.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若2222014,a b c +=则tan tan tan tan C CA B +=( )A.22013B. 12013C.22014D.12014【知识点】三角形的正、余弦定理;内角和为π定理;;两角和的正弦定理;切弦互化. 【答案解析】A 解析:解:将已知2222014a b c +=变形为22222013a b c c +-=,由余弦定理又可变形为22cos 2013ab c c =,由正弦定理得22sin 2013sinAsinBcosC C=,等式右边2sin sin tan sinAsinBcosC sinAsinB C CC=,又()C A B π=-+,所以sin()sinA cos cos sinBtan tan sinAsinB sinAsinBA B B A CC++==11tan ()tan tan C A B+tan tan ()tan tan C C A B =+, ∴tan tan 2()tan tan 2013C C A B +=,故选A.【思路点拨】利用所学过的定理实现边向角的转化.10.设,,1,a b R a b +∈+=).A. 2B. .C 3D. 【知识点】数形结合思想;对称问题;几何法求最值. 【答案解析】D 解析:解: 可将1b a=-代入2a +可转化为数轴上的点A (a,0)到B(0,1)与C(1,2)的距离之和和最小的问题,由下图所示:最小值为(0,-1)到(1,2)【思路点拨】与求最值有关的问题一般转化成几何问题或三角问题,利用几何性质可顺利求解,也有利用三角的有界性求解,不同问题不同的应用是关键.二.填空题.(本大题共6小题,考生作答5小题,每小题5分,共25分)11.某商场销售甲、乙、丙三种不同类型的商品,它们的数量之比分别为2:3:4,现采用分层抽样的方法抽出一个容量为n 的样本,其中甲种商品有12件,则此样本容量n = ; 【知识点】分层抽样的概念【答案解析】54解析:解:由分层抽样的概念可知所抽样本中甲、乙、丙三种商品的数量之比也为2:3:4,故可设乙、丙两商品分别有3k 、4k 件,由题意得12:3k :4k=2:3:4,所以k=6,故乙、丙两商品分别有18、24件,故n=12+18+24=54【思路点拨】分层抽样中样本中不同类别个体数量之比与总体中它们的比例相同.12.已知()f x 是定义在R 上的奇函数,对R x ∈∀恒有)2()1()1(f x f x f --=+,且当)2,1(∈x 时,2()31,f x x x =-+则1()2f =;【知识点】奇函数的定义;函数的周期性;求函数的解析式.【答案解析】54解析:解:因为()f x 是奇函数,所以()00f =,令x=1有()()()()()111122200f f f f f +=--⇒==()20f ∴=()()11f x f x ∴+=-令12x =,3122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭=54-又11152224f f f ⎛⎫⎛⎫⎛⎫-=-⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【思路点拨】本题先根据特殊值求出()20f =,然后再利用奇函数的性质求出12f ⎛⎫⎪⎝⎭的值.13.等差数列{}n a 的前n 项和为n S,若123,3S S 成公比为q 的等比数列,则q = ;【知识点】等差数列前n 和的概念,等比中项公式.【答案解析】2123,3S S 成公比为q 的等比数列即112123)a )a +a +a 、3(a +a 成公比为q 的等比数列,又1322+=a a a即1122)a a +a 、9a 成公比为q 的等比数列,所以120a ≠a ,2121229a =(a +a )a,且211q )==+aa ,整理2121229a =(a +a )a 得:221212225a a a +=a 即1221225+=a a a a ,设21a a =x,则22x 520x -+=,解得122x =或所以q 2=【思路点拨】先利用等比中项公式得到2121229a =(a +a )a ,再利用1322+=a a a ;两式联立解出21a a,最后得到q 2=特别提醒:14~16题,考生只能从中选做两题;若三道题都做的,则只计前两题的得分.14.已知A B C ∆的中线,A D B E 交于,K AB =且,,,K D C E 四点共圆,则CK=;【知识点】三角形的中位线;勾股定理;射影定理;特殊值法;弦长公式.【答案解析】1解析:解:可用特殊值法设BCAC2DF∴=,EC=2,DC=,设KC与DE交于M点,由弦心距可求CM=34,MK=14,1CK∴=.【思路点拨】适合用特殊值的问题,在选择、填空题中要用特殊值法,是一种省时省力的数学方法.15.在直角坐标系yOx--中,极点与直角坐标系原点重合,极轴与x轴非负半轴重合建立极坐标系,若曲线2sin,(sin,xyθθθ=⎧⎨=⎩为参数)与曲线sin aρθ=有两个公共点,则实数a的取值范围是;【知识点】【答案解析】(0,1]解析:解:曲线2sin,(sin,xyθθθ=⎧⎨=⎩为参数)转化为普通方程为:2(11)y x x=-≤≤;曲线sin aρθ=转化为普通方程为:y a=,有两个公共点,画图形如上图可得:a∈(0,1].【思路点拨】数形结合的思想方法;16.若关于x的不等式232|2|4x x x ax+-≥-在[]10,1∈x内恒成立,则实数a的取值范围是.【知识点】不等式;函数的图像;组合函数的性质. 【答案解析】(],4-∞解析:解:2124,2y x y x x x =+=-⇒23224x x x ax +-+≥[]1,10x ∈为正数,所以不等式转化为242x x x x ++-,设2124,2y x y x xx =+=-,两个函数在[]1,2上都为减函数,在[]2,10上都为增函数,依据组合函数的性质可得24242905x x x x ≤++-≤+242x x x x ∴++-的最小值为4,224x x x ax ∴+-≥-在[]1,10x ∈上恒成立,a 应该小于等于最小值4.【思路点拨】本题首先根据取值范围分离出常数a,然后依据组合函数的性质求出242x x x x ++-的取值范围,最后依据恒成立问题最到a 的范围.三.解答题.(共6小题,共75分,解答须写出文字说明、证明过程和演算步骤.) 17.(13分) 已知()2s i n c o s(f x x x ωωϕωπϕπ=+>-<<的单増区间为5[,],()1212k k k Z ππππ-+∈.(1)求,ωϕ的值;(2)在ABC ∆中,若()f A <求角A 的取值范围.【知识点】两角和的余弦公式;降次公式;三角函数的最值、周期;三角不等式.【答案解析】(1)1,.3πωϕ==-(2)0,,32A πππ⎛⎫⎛⎫∈⋃ ⎪ ⎪⎝⎭⎝⎭ 解析:解:(1)()2sin (cos cos sin sin )sin 2cos (1cos 2)sin f x x x x x x ωωϕωϕωϕωϕ=-=-- =sin(2)sin x ωϕϕ+-,由已知可得,, 1.T πω=∴=即()sin(2)sin .f x x ϕϕ=+-又当512x k ππ=+时,()f x 取最大值,即52()2,(,)122k m k m Z πππϕπ++=+∈解得2,()3n n Z πϕπ=-+∈,由于,.3ππϕπϕ-<<∴=-故1,.3πωϕ==-(2)()sin(2)32f x x π=-+由()f A <得sin(2)32A π-< 而52,333A πππ-<-<由正弦函数图象得,252(,)(,),(0,)(,).3333332A A ππππππππ-∈-∴∈【思路点拨】(1)先利用两角和的余弦公式、降次公式把函数化简,然后求出T 、ω的值,再利用最值的情况解得φ;(2)由()f A <得sin(2),32A π-<得到52,333A πππ-<-<再解出A 即可.18.(13分)如图,由M 到N 的电路中有4个元件,分别标为1234,,,T T T T ,已知每个元件正常工作的概率均为32,且各元件相互独立.(1)求电流能在M 与N 之间通过的概率; (2)记随机变量ξ表示1234,,,T T T T 这四个元件中正常工作的元件个数,求ξ的分布列及数学期望.【知识点】互斥事件、对立事件、相互独立事件的概率;分布列;数学期望.【答案解析】(1) 7081(2)38)(=ξE .解析:解:(1) 记事件i A 为“元件i T 正常工作”,4,3,2,1=i ,事件B 表示“电流能在M 与MBSN 之间通过”,则32)(=i A P , 由于4321,,,A A A A 相互独立,所以32142144A A A A A A A A B ++=,法一:)()()()()(3214214432142144A A A A P A A A P A P A A A A A A A A P B P ++=++=81703232313132323132=⋅⋅⋅+⋅⋅+=;法二:从反面考虑:[]))(1()(1)(1)(2134A A P A P A P B P -⋅-⋅-=817081111))31(1(3213112=-=⎥⎦⎤⎢⎣⎡-⋅-⋅-=;(2)由题ξ~)32,4(B ,4,0,)31()32()(44===-k C k P kk k ξ,易得ξ的分布列如右,期望38)(=ξE .【思路点拨】记事件i A 为“元件i T 正常工作,相互独立每一个事件的概率等于它所有基本事件概率的和,根据二项分布先求随机变量相应结果的概率,再利用数学期望公式求期望.19.(13分)如图,多面体ABCDS 中,四边形ABCD 为矩形,,SD AD ⊥22,,AB AD M N ==分别为,AB CD 中点.(1)求异面直线,SM AN 所成的角;(2)若二面角A SC D --大小为60,求SD 的长.【知识点】法一(几何法):线面垂直的性质定理;三垂线定理;二的作法.法二: (向量法): 向量语言表述线线的垂直、平行关系;用空间向量求平面间的夹角.【答案解析】(1)090.(2) SD =y解析:解:法一(几何法):(1),,.SD AD SD AB SD ABCD ⊥⊥∴⊥面连MN ,则由已知,AMND 为正方形,连,DM 则,DM AN ⊥又DM 是SM 在面ABCD 上的射影,由三垂线定理得,SM AN ⊥.所以直线SM 与AN 所成的角为090.(2),,AD CD AD SD AD ⊥⊥∴⊥面SCD ,过D 作DE SC ⊥于E ,连AE ,则AED ∠为所求二面角A SC D --的平面角060.则在ADE Rt ∆中易得3DE =设SD a =,在SDC Rt ∆中,311DE SD a ==∴==法二: (向量法)(1) 以D 为原点,分别以,,DS DA DC 为,,x y z 轴建系,则(0,1,0),(0,0,1),(0,1,1),(0,0,2)A N M C ,设)0,0,(a S ,则(0,1,1),(,1,1),AN SM a =-=-0=⋅,故SM 与AN 成 90角;(2) 设平面ASC 的一个法向量为1(,,),(,1,0),(0,1,2)n x y z AS a AC ==-=-,由),2,2(00111a a n n AS n =⇒⎪⎩⎪⎨⎧=⋅=⋅,又显然平面SDC的一个法向量为2(0,1,0)n =, 由题有:012cos60cos ,11n n SD a ====【思路点拨】法一(几何法): (1)先利用线面垂直的性质定理得到,DM AN ⊥;再利用三垂线定理得SM AN ⊥;然后得出结论. (2)作出二面角,然后在SDC Rt ∆中得出结论. 法二: (向量法)(1)建立空间直角坐标系,分别求出SM ,AN 的方向向量,进而根据向量垂直的充要条件,得到结论;(2)分别求出平面ASC 的法向量和平面SDC 的一个法向量,代入向量夹角公式可和答案. 20.(12分)在数列{}n a 中,n n S a ,0>为其前n 项和,向量2(,),(1,1)n n AB S p a CD p =-=-,且,//其中0>p 且1≠p .(1)求数列{}n a 的通项公式;(2)若12p =,数列{}n b 满足对任意n N *∈,都有12111...212nn n n b a b a b a n -+++=--,求数列{}n b 的前n 项和n T .【知识点】共线向量;前n 项和与通项公式的关系;特殊数列的求和方法.【答案解析】(1)21(),().n n a n N p -*=∈(2)2)1(+=n n T n 解析:解:(1)2//(1).n n AB CD p S p a ⇒-=-由21111,(1),n p a p a a p =-=-∴=又由2211(1)(1)n n n n p S p a p S p a ++⎧-=-⎪⎨-=-⎪⎩,两式相减得:1111(1),.n n n n n p a a a a a p +++-=-∴= 所以数列{}n a 是以首项为p ,公比为1p 的等比数列,21(),().n n a n N p -*=∈(2)法一:当21=p 时,*2,2N n a n n ∈=-,在12111 (21)2n n n n b a b a b a n -+++=--中,令1,n =则111111121,, 1.222b a a b =--==∴=因为1211211 (21)2n n n n n b a b a b a b a n --++++=--, ()a 所以11122221111...2,(2)22n n n n n b a b a b a b a n n -----++++=--≥,将上式两边同乘公比12p =得,12112...21,(2)nn n n b a b a b a n n --+++=--≥, ()b ()a 减去()b 得,1,.(2)2n n nb a b n n =∴=≥,又11,b =所以)(,*N n n b n ∈= 所以{}n b 的前n 项和2)1(+=n n T n 。

2014—2015学年度九年级第一次月考数学试题

2014—2015学年度九年级第一次月考数学试题

2014—2015学年度九年级第一次月考数学试题(120分钟 120分)一、选择题(本题有12小题,每小题3分,共36分)1.下面关于x 的方程中①ax 2+bx+c=0;②3(x-9)2-(x+1)2=1;③x+3=1x;④(a 2+a+1)x 2-a=0;④1x +=x-1.一元二次方程的个数是( )A .1B .2C .3D .42.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( ). A .x =ba-B .x =1C .x =2D .x =33.将方程0362=+-x x 左边配成完全平方式,得到的方程是( ) A.6)3(2=-x B.3)3(2-=-x C.3)3(2=-x D.12)3(2=-x4.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k >-且 0k ≠C .1k <D .1k <且0k ≠5、把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( ) A .(-5,1) B .(1,-5) C .(-1,1)D .(-1,3)6、已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <47、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A 、%10B 、%15C 、%20D 、%258.把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则 ( ).A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =219. 如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分 种上草坪.要使草坪的面积为2540m ,求道路的宽. 如果设小路宽为x ,根据题意,所列方程正确的是( )A .(20-x )(32-x )= 540B .(20-x )(32-x )=100C .(20+x )(32-x )=540D .(20+x )(32-x )= 54032m20m10、不解方程,01322=-+x x 的两个根的符号为( ) (A )同号 (B )异号 (C )两根都为正 (D )不能确定11.当代数式x 2+2x +5的值为8时,代数式2x 2+4x -2的值是 ( ) A .4 B .0 C .-2 D .-4 12.如图,二次函数的图像与轴正半轴相交,其顶点坐标为(121,),下列结论:①;②;③;④.其中正确结论的个数是 ( )A. 1B. 2C. 3D. 4 二、填空题(本题有5小题,每小题3分,共15分)13. 等腰三角形的两边长分别是方程23740x x -+=的两个根,则此三角形的周长为 . 14.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为 . 15对称轴是x=-1的抛物线过点A (-2,1),B (1,4),该抛物线的解析式为 16、二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______.17. 如图,边长为1的正方形ABCO,以A 为顶点,且经过点C 的抛物线与对角线交于点D,则点D 的坐标为 .三、解答题 (共69分。

南开中学初2014级13-14学年(上)12月月考——数学

南开中学初2014级13-14学年(上)12月月考——数学

重庆南开中学初2014级九年级(上)阶段测试(四)数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1、试题的答案书写在答题卡...(卷.)上,不得在试卷上直接作答; 2、作图(包括作辅助线),请一律用黑色..签字笔完成。

一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。

1、3的倒数为( )A 、3B 、3-C 、13D 、13- 2、计算()232a b-的结果是( )A 、62a b -B 、624a bC 、624a b -D 、524a b 3、如图,O 是ABC ∆的外接圆,100BOC ∠= ,则A ∠的度数等于( )A 、50B 、60C 、70D 、804、已知ABC DEF ∆∆ ,若A B C D E F ∆∆与的相似比为3:4,则A B C D E F ∆∆与的面积比为( )A 、3:4B 、9:16C 、4:3D 、16:95、以下调查中,适合用普查方式进行调查的是( )A 、调查我市所有初三年级学生的身高情况B 、调查某食品添加剂是否超标C 、调查全国人民对十一届三中全会的知晓情况D 、调查10名运动员兴奋剂的使用情况6、若关于x 的一元二次方程2230x x k -+=有两个相等的实数根,则实数k 的值是( )A 、98B 、94C 、34D 、38 7、如图,直线12//l l ,若1140,265∠=∠= ,则3∠的度数是( )A 、60B 、65C 、75D 、858、10月份,我校初2014级全体学生举行了实心球测试,下面是某组(6名)男同学的测试成绩(单位:米):7.6,8.8,8.6,9.5,8.4,8.8,则该组数据的众数、中位数分别为( )A 、8.6,8.7B 、8.8,8.6C 、8.8,8.7D 、8.8,8.89、如图,在半径为1的O 中,AP 是O 的切线,A 为切点,OP 与弦AB 交于点C ,点为AB 中点,30P ∠=,则CP 的长度为( )A 、2B 、1.5C 、1.6D 、1.810、如图,它们是由一些火柴棒搭成的图案,按图①②③所示的规律依次下去,摆第2014个图案由火柴棒的根数是( )A 、4047B 、8047C 、4057D 、805711、据悉,沙坪坝火车站改造工程预计于2014年完工并投入使用,到时可有效解决三峡广场堵车问题。

重庆市南开中学2014届九年级3月月考 数学 无答案

重庆市南开中学2014届九年级3月月考 数学 无答案

注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前认真阅读答题卡上的注意事项.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.4的平方根是(▲)A .2B .﹣2C .±2D .162.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是(▲)3.下列运算正确的是(▲)A .235x x x +=B .426x x x ⋅=C .623x x x ÷=D .426()x x = 4.下列调查中,适宜采用全面调查(普查)方式的是(▲)A .调查我市市民对“春运火车票抢票软件”的使用情况B .调查重庆中学生对“两会”的关注度C .调查人们在使用小米手机中容易出现的问题D .调查我校初三.一班学生本周三的睡眠时间5.如图,在△ABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于(▲)A .60°B .70°C .80°D .90°6.下列所给出的点在第二象限的是(▲)A .(2,3)B .(2,﹣3)C .(﹣2,﹣3)D .(﹣2,3)7.如果分式2133x x -+的值为0,则x 的值是(▲) A .1 B .0 C .﹣1 D .±18.已知Rt △ABC 中,∠B=90°,AC=6,⊙O 是△ABC 外接圆,则⊙O 半径等于(▲)A .3B .4C .5D .69.2014年3月14日赵传保利巡演重庆站在重庆大剧院演出.小王从家出发乘坐出租车前往观看,演出结束后,小王搭乘邻居小周的车回到家.己知小王出发时的速度比回家时的速度快,其中x 表示小王从家出发后所用时间,y 表示小王离家的距离.下面能反映y 与x 的函数关系的大致图象是(▲)10.观察下列图形:它们是按一定规律排列,依照此规律,第20个图形共有❤(▲)A .58个B .60个C .62个D .64个11.如图,矩形ABCD 中,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F ,连接BD 交AF 于H ,AD=52,且2tan 4EFC ∠=,那么AH 的长为(▲) A .1063B .52C .10D .5 12.如图,已知二次函数2(0)y ax bx c a =++≠的图象经过(0,﹣1),(1,0),且图象的对称轴位于y 轴左侧。

人教版2014年春9年级数学月考试题(三)

人教版2014年春9年级数学月考试题(三)

12人教版2014春九年级数学月考试题(三)(满分120分,考试时间120分钟)一、选择题(每小题3分,共30分) 1、下列运算正确的是( )A、x 5+x 5=2x 10 B、x 10÷x 2=x 5 C、x 3·x 4=x 7 D、(-x 3)4=-x 122、与左边三视图所对应的直观图是( )3、为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234 760 000元,其中234 760 000元用科学记数法可表示为( )(保留三位有效数字).A .2.34×108元B .2.35×108元C .2.35×109 元D .2.34×109元4、某校10名篮球队队员进行投篮命中率测试,每人投篮10次,实际测得成绩记录如下表:命中次数(次) 5 6 7 8 9 人数(人)14311由上表知,这次投篮测试成绩的中位数与众数分别是( ).A .6,6B .6.5,6C .6,6.5D .7,6 5、若A (-2,3)B (a ,a+b )点A 点B 关于原点对称,则点C (a 、b )在( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 6、已知a<0,那么|2a +3a |可化简为( ) A、4aB、-4aC、2aD、-2a7、已知反比例函数y =xm21-的图象上两点(x 1,y 1)B(x 2,y 2),当x 1 <0< x 2时,y 1< y 2,则m 的取值范围。

A 、m<0B 、m>0C 、m<21 D 、m>21 8、方程x 2+2 =2x的正根的个数为( ). (A )3个 (B ) 2个 (C )1个 (D )0个9、如图,半径为r 1的圆内切于半径为r 2的圆,切点为P ,点A 、C 、D 、B 在过O 1的直线上,已知AC ∶CD ∶DB =3∶4∶2,则r 1∶r 2 的值为( ) A 、21 B 、31 C 、 D 、 2310、已知如图:y=ax 2+bx+c 中,下列正确的结论有( )个。

重庆南开中学初2014级九年级(下)期单元测试(三)数学 无答案

重庆南开中学初2014级九年级(下)期单元测试(三)数学 无答案

重庆南开中学初2014级九年级下期阶段测试(三)数 学 试 题(全卷共五大题,满分150分,考试时间120分钟)注意事项:1、试题的答案书写在答题卡上,不得在试卷上直接作答。

2、作答前认真阅读答题卡上的注意事项。

一、选择题:(本大题12小题,每小题4分,共48分)在每小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。

1.41,-1,0,-3.2这四个数中,属于负分数的是( ) A. 41B.-1C.0D. -3.22. 下列标点符号中既是轴对称图形又是中心对称图形的是( )A .,B .。

C .“” D. !3. 若∠A=35°,则∠A 的补角为( )A .35°B .55°C .145° D.155°4. 计算()a a 283-÷的结果是( )A .a 4 B .a 4- C .24a D.24a -5. 若两个相似三角形的面积比为9:4,则这两个相似三角形的周长之比为( )A .2:3B .3:2C .4:9 D.9:46. 分式方程xx 312=-的解为( ) A .3-=x B .1-=x C .1=x D. 3=x7. 如图,AB ∥CD ,CE 平分∠ACD ,交AB 于点E ,若∠ACE=12°,则∠1的度数为( )A .6°B .12°C .24° D.39°8. 甲、乙、丙、丁四位同学在相同条件下进行“立定跳远”训练,每人各跳10次,统计它们的平均成绩和方差如下表所示:学生 甲 乙 丙 丁 平均成绩 2.35 2.35 2.35 2.35 方差0.350.250.20.3则这四名同学“立定跳远”成绩波动最大的是( )A .甲B .乙C .丙 D.丁9. 上周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口.则小华离学校门路的距离y 与时间t 之间的函数关系的大致图像是( )10. 如图,⊙O 的半径为4,PC 切⊙O 于点C ,交直线AB 的延长线于点P ,若CP 长为4,则阴影部分的面积为( )A .8-2πB .8-πC .16-2π D. 16-π11. 如图所示,每个图形都由相同的图形按一定的规律组成,其中第①个图形的面积为6cm 2,第②个图形的面积为18cm 2,第③个图形的面积为36cm 2,……那么第⑥个图形的面积为( )A .84cm 2B .90cm 2C .126cm 2 D. 168cm 212. 如图,Rt △ABO 中,∠ABO=90°,AC=3BC ,D 为OA 中点,反比例函数经过C 、D 两点.若△ACD 的面积为3,则反比例函数的解析式为( ) A.x y 2=B.x y 2-=C.x y 4=D.xy 2-= 二、填空题:(本大题共6小题,每小题4分,共24分)请将每小题的答案直接填答题卡(卷)中对应的横线上。

重庆南开中学九年级下学期月考数学试题(含答案)

重庆南开中学九年级下学期月考数学试题(含答案)

重庆南开中学九年级数学下学期月考试题(全卷共五个大题,满分l50分,考试时间l20分钟)注意事项:1.试题的答案书写在答题卡...上不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 参考公式:抛物线()02≠++=a c bx ax y 的定点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,,对称作为ab x 2-=. 一、选择题:(本大题共l2个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正 确答案所对应的方框涂黑.1.实数4的倒数是(▲)A .4B .41C .-4D .41- 2.计算()232x 的结果是(▲) A .64x B .62x C .54x D .52x 3.下列商标是轴对称图形的是(▲)4.在代数式12+x 中,x 的取值范围是(▲) A .0>x B .0≤x C .x ≠-1 D .x ≠0 5.下列调查中,适合采用普查方式的是(▲)A .调查市场上粽子的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了违禁物品D .调查我市市民收看重庆新闻的情况6.ABC ∆与DEF ∆的相似比为3:4,则ABC ∆与DEF ∆的周长比为(▲)A .3:2B .3:4C .4:5D .9:167.如图,a ∥b ,将—块三角板的直角顶点放在直线a 上,若︒=∠421,则2∠的度数为(▲)A .46°B .48°C .56°D .72°8.如图,A 、B 、C 是O 上的三点,︒=∠40ACB ,则AOB ∠的度数为(▲)A .20°B .40°C .60°D .80°9.不等式组⎪⎩⎪⎨⎧-+≤-1321022x x x >的解集是(▲) A .1≥x B .14≤-x > C .4<xD .1≤x10.五一假期,刘老师开车自驾前往荣昌,他开车离开家时,由于车流量大,行进非常缓慢,十几分钟后,终于行驶在畅通无阻的高速公路上,大约五十分钟后,汽车顺利到达荣昌收费站,经停车缴费后,进入车流量较小的道路,很快就到达了荣昌县城.在以上描述中,汽车行驶的路程s(千米)与所经历的时间t(小时)之间的大致函数图象是(▲)11.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有l8颗棋子,…,则第⑥个图形中棋子的颗数为(▲)12.如图,Rt OAB ∆的直角边OA 在x 轴正半轴上,︒=∠60AOB ,反比例函数()03>x xy =的图象与Rt OAB ∆两 边OB ,AB 分别交于点C ,D .若点C 是OB 边的中点,则点D 的坐标是(▲)A .()3,1B .()1,3 C .⎪⎪⎭⎫ ⎝⎛23,2 D .⎪⎪⎭⎫ ⎝⎛43,4二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答. 题卡..中对应的横线上. 13.化简()()11-+a a 的结果为 ▲ .14.某校乒乓球训练队共有7名队员,他们的年龄(单位:岁)分别为:l2,13,14,12,l3,15,l3,则他们年龄的众数为 ▲ 岁.15.计算()120153121-⎪⎭⎫ ⎝⎛--+-的值为 ▲ . 16.如图,AB 为半圆O 的直径,点C 在AB 的延长线上,CD 与半圆O 相切于点D ,且42==CD AB ,则图中阴影部分的面积为 ▲ .(结果保留π)17.从23-,1-,0,1这四个数中,任取一个数作为m 的值,恰好使得关于x ,y 的二元一 次方程组⎩⎨⎧-=--=-232y x m y x 有整数解,且使以x 为自变量的一次函数()331-++=m x m y的图象不经过第二象限,则取到满足条件的m 值的概率为 ▲ .18.如图,ABC ∆中,4==AC AB ,︒=∠120BAC ,以A 为一个顶点的等边三角形ADE 绕点A 在BAC ∠内旋转,AD 、AE 所在的直线与BC 边分别交于点F 、G ,若点B 关于直线AD 的对称点为'B ,当'FGB ∆是以点G 为直角顶点的直角三角形时,BF 的长为 ▲ .三、解答题:(本大题共2个小题。

2014届天津市南开区中考一模数学

2014届天津市南开区中考一模数学

2014届天津市南开区中考一模数学一、选择题(共12小题;共60分)1. 下列四个数中的负数是A. B. C. D.2. 的值等于A. B. C. D.3. 下列图形中既是中心对称图形,又是轴对称图形的是______A. B.C. D.4. 在我国南海某海域探明可燃冰储量大约有亿立方米.亿用科学记数法表示为A. B. C. D.5. 某农场各用块面积相同的试验田种植甲、乙两种大豆,收成后对两种大豆产量(单位:吨/亩)的数据统计如下:甲,乙,甲,乙,则由上述数据推断乙种大豆产量比较稳定的依据是______A.甲乙B.甲乙C.甲甲D.乙乙6. 如图的几何体是由一个正方体切去一个小正方体形成的,它的左视图是______A. B.C. D.7. 如图,点是的边上的一点,与边相切于点,与线段相交于点,若点是上一点,且,则的度数为A. B. C. D.8. 如图,平行四边形中,,,平分交于点、交于点,则的值为______A. B. C. D.9. 如图,现有一圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为______.A. B. C. D.10. 如图,双曲线与直线交于点、,并且点的坐标为,点的纵坐标为,根据图象信息可得关于的方程的解为______A. ,B. ,C. ,D. ,11. 已知:如图,在,中,,,,点,,三点在同一条直线上,连接,.以下四个结论:①;②;③;④.其中结论正确的个数是______A. B. C. D.12. 若,是方程的两个根,则实数,,,的大小关系为______A. B. C. D.二、填空题(共6小题;共30分)13. ______.14. 已知、为两个连续的整数,且,则 ______.15. 如图,网格的小正方形的边长均为,小正方形的顶点叫做格点.如果的三个顶点都在格点上,那么的外接圆半径是 ______.16. 同时投掷三枚质地均匀的硬币一次,三枚硬币同时向上的概率为______.17. 一个正三角形和一个正六边形面积相等,则它们的边长之比为______.18. 阅读下列材料:小明遇到一个问题:个同样大小的正方形纸片排列形式如图①所示,将它们分割后拼接成一个新的正方形.他的做法是:按图②所示的方法分割后,将三角形纸片①绕的中点旋转至三角形纸片②处,依此方法继续操作,即可拼成一个新的正方形.个形状、大小相同的矩形纸片,排列形式如图③所示.请将其分割后拼接成一个平行四边形,要求:在图③中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图④,在面积为的平行四边形中,点、、、分别是边、、、的中点,分别连接、、、,所得平行四边形面积为 ______.三、解答题(共7小题;共91分)19. 解不等式组,并把解集在数轴上表示出来.20. 某高中学校为使2014-2015学年高一新生入校后及时穿上合身的校服,现提前对某校2015届九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为种型号)根据以上信息,解答下列问题:(1)该班共有______ 名学生,其中穿型校服的学生有______ 名.(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,型校服所对应的扇形圆心角的大小为______.(4)该班学生所穿校服型号的众数为______,中位数为______.(5)如果该校预计招收新生名,根据样本数据,估计新生中穿型校服的学生大约有______ 名.21. 如图,是的直径,为的切线,为上的一点,,延长交的延长线于点.(1)求证:为的切线;(2)若的弦心距,,求图中阴影部分的面积.(结果保留)22. 如图所示,山顶有一铁塔的高度为米,为测量山的高度,在山脚点处测得塔顶和塔基的仰角分别为和,求山的高度.(结果保留根号)23. 有一批图形计算器,原售价为每台元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为元;买两台,每台都为元.依次类推,即每多买一台,所买各台单价均再减元,但最低不能低于每台元.乙公司一律按原售价的促销.某单位需购买一批图形计算器:(1)若此单位需购买台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费元在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的?数量是多少?24. 如图,在平面直角坐标系中,四边形为矩形,点、的坐标分别为、,直线与轴交于点,与边交于点,与边交于点.(1)若直线过矩形对角线交点,求的值;(2)在(1)的条件下,当直线绕点顺时针旋转时,与直线和轴分别交于点、,问:是否存在平分的情况?若存在,求线段的长;若不存在,请说明理由;(3)当直线沿轴向______ 平移______ 个单位长度时,将矩形沿平移后的直线折叠,点恰好落在边上.25. 如图,已知直线与轴交于点,与轴交于点,抛物线与直线交于、两点,与轴交于、两点,且点坐标为.(1)求该抛物线的解析式;(2)动点在轴上移动,当是直角三角形时,求点的坐标;(3)在抛物线的对称轴上找一点,使的值最大,求出点的坐标.答案第一部分1. A2. A3. B4. A5. B6. D7. A8. B9. C 10. A11. C 12. C第二部分13.14.15.16.17.18. (1)即为所求(2)第三部分19. 解不等式①,得解不等式②,得不等式组的解集为.20. (1);(2)补全统计图如图所示:(3)型校服所对应的扇形圆心角为:.(4)和;.(5)21. (1).是的切线,.,.,,,即.点在上,为的切线.(2)在中,,,,,,,,,.阴影扇形22. 在山脚处测得塔顶和塔基的仰角分别为和,,.在中,,.在中,,,.答:山高为米.23. (1)在甲公司购买台图形计算器需要用:(元)在乙公司购买台图形计算器需要用:(元)因为,故应去乙公司购买花费较少.(2)设此单位购买了台图形计算器,若在甲公司购买则需要花费:(元)若在乙公司购买则需要花费:(元)若此单位是在甲公司花费元购买的图形计算器,则有,解得或.当时,每台单价为,符合题意.当时,每台单价为,不符合题意,舍去.若此单位是在乙公司花费元购买的图形计算器,则有,解得,不符合题意,舍去故此单位是在甲公司购买的图形计算器,买了台.24. (1)直线过矩形对角线交点,由题意得矩形对角线交点为,,解得.(2)如图假设存在平分的情况,当直线与边和边相交时,过作于,平分,,.由(1)知,,.当时,由解得,,.当直线与直线和轴相交时,(或由解得)(3)下;25. (1)直线与轴交于点,点坐标为.抛物线过点点,抛物线的解析式为.(2)抛物线与直线交于点,.可求点坐标为.设点坐标为,当垂足为,根据勾股定理可得,,,点坐标为.当垂足为时,根据勾股定理可知,,解得,点坐标为.当垂足为时,根据勾股定理可得,,,,点坐标为或.综上,当是直角三角形时,点的坐标为或或或.(3)抛物线与轴交于、两点,可求点的坐标为,抛物线的对称轴为.、关于对称,.要使最大,即是使最大,有三角形两边之差小于第三边得:当、、在同一直线上的值最大,易知直线的解析式.由得点的坐标为.。

重庆南开中学初2014级九年级(下)摸底考试 南开考学考试数学

重庆南开中学初2014级九年级(下)摸底考试 南开考学考试数学

重庆南开中学初2014级九年级(下)摸底考试数 学 试 题一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑。

1.在3、0、-4、2这四个数中,最小的数是(▲). A. 3 B. O C. -4 D.22.下列图案中,不是中心对称图形的是(▲).3.计算32)(m m ⋅-的结果是(▲).A.5m -B. 5mC. 6mD. 6m -4.分式方程0223=--x x 的解为(▲). A. x = 6 B.x = -6 C. x = 2 D .原方程无解5.如图,AB ∥CD , DB ⊥BC ,∠2 = 55°,则∠1的度数是(▲).A. 35°B. 45°C. 55°D. 145°6.已知,在Rt △ABC 中,∠C = 90°,BC = 1,AC = 2,则sin A 的值为(▲).A.2 B .21 C .55 D .552 7.在“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同,其中的一 名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(▲).A. 众数B. 方差C. 平均数D. 中位数8.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P ,若CD = 8,OP = 3,则⊙O 的半径为(▲).A. 10B. 5C. 8 D .39.如图,在△ABC 中,AB = 3AD ,DE ∥BC ,EF ∥AB ,若DE = 2,则FC 的长度是(▲).A. 4 B .6 C .5 D .310. 如图,它们是用一系列的正方形组合的图形,且图中的三角形都是等腰三角形,第①个图形中的 正方形边长是2互:第②个图形中最大的一个正方形的边长为2:第③个图形中最大的一个正方形的边长为22;按照此规律,第⑧个图形中最大的一个正方形的边长是(▲). A. 8 B. 16 C.24 D.2811. 蒋老师早上开车去学校上班,途中去加油站加油,等加完油后,为赶在上班时间前赶到学校,蒋 老师加快了开车速度。

初一下学期天津南开翔宇学校5月考数学试卷(附解析)

初一下学期天津南开翔宇学校5月考数学试卷(附解析)

一.选择题(共6小题)1.如图,∠BAD =∠ADC =90°,以AD 为一条高线的三角形个数有()A .2个B .3个C .4个D .5个2.如图,将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)的直角顶点重合并如图叠放,当∠DEB =25°,则∠AOC =()A .30°B .10°C .40°D .25°3.把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则∠APG =()A .141°B .144°C .147°D .150°4.如图,在△ABC 中,AE 平分∠BAC ,AD ⊥BC 于点D .∠ABD 的角平分线BF 所在直线与射线AE 相交于点G ,若∠ABC =3∠C ,且∠G =20°,则∠DFB 的度数为()A .50°B .55°C .60°D .65°5.设2a =3,2b =6,2c =12.现给出实数a ,b ,c 三者之间的四个关系式:①a +c =2b ;②a +b =2c ﹣3;③b +c =2a +3;④b 2﹣ac =1.其中,正确的关系式的个数是()A .1B .2C .3D .46.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,∠CEG=2∠DCB,且∠DFB=∠CGE.下列结论:①EG∥BC,②CG⊥EG,③∠ADC=∠GCD,④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.4二.填空题(共3小题)7.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=.8.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.9.如图,AD,BE,CF交于△ABC内的一点P,并将△ABC分成六个小三角形,其中四个小三角形的面积已在图中给出.则△ABC的面积为.三.解答题(共4小题)10.小轩计算一道整式乘法的题:(x+m)(5x﹣4),由于小轩将第一个多项式中的“+m”抄成“﹣m”,得到的结果为5x2﹣34x+24.(1)求m的值;(2)请计算出这道题的正确结果.11.如图,在三角形ABC中,∠B=60°,∠C=α,点D是AB上一点,E是AC上一点,∠ADE=60°,点F为线段BC上一点,连接EF,过D作DG∥AC交EF于点G,(1)若α=40°,求∠EDG的度数;(2)若∠FEC=2∠DEF,∠DGF=∠BFG,求α.12.某公司门前一块长为(6a+2b)米,宽为(4a+2b)米的长方形空地要铺地砖,如图所示,空白的甲、乙两正方形区域是建筑物,不需要铺地砖.两正方形区域的边长均为(a+b)米.(1)求铺设地砖的面积是多少平方米;(2)当a=2,b=3时,需要铺地砖的面积是多少?(3)在(2)的条件下,某种道路防滑地砖的规格是:正方形,边长为0.2米,每块1.5元,不考虑其他因素,如果要购买此种地砖,需要元钱.13.在△ABC中,若存在一个内角是另外一个内角度数的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=60°,∠C=40°,可知∠A=2∠C,所以△ABC为2倍角三角形.(1)在△DEF中,∠E=40°,∠F=35°,则△DEF为倍角三角形;(2)如图,直线MN⊥直线PQ于点O,点A、点B分别在射线OP、OM上;已知∠BAO、∠OAG的角平分线分别与∠BOQ的角平分线所在的直线交于点E、F;①说明∠ABO=2∠E的理由;②若△AEF为4倍角三角形,直接写出∠ABO的度数.参考答案与试题解析一.选择题(共6小题)1.如图,∠BAD=∠ADC=90°,以AD为一条高线的三角形个数有()A.2个B.3个C.4个D.5个【考点】三角形的角平分线、中线和高.【分析】由于AB⊥AD,AD⊥CD,根据三角形的高的定义,可确定以AD为一条高线的三角形的个数.【解答】解:以AD为一条高线的三角形有△ADE、△ADC、△AEC、△DAB这4个,故选:C.【点评】此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.2.如图,将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)的直角顶点重合并如图叠放,当∠DEB=25°,则∠AOC=()A.30°B.10°C.40°D.25°【考点】直角三角形的性质.【分析】根据直角三角形的性质和三角形的内角和定理即可得到结论.【解答】解:∵∠DEB=25°,∴∠AEC=∠DEB=25°,∵∠A+∠AEC=∠C+∠AOC,∠C=45°,∠A=30°,∴30°+25°=45°+∠AOC,∴∠AOC=(25﹣15)°,故选:B.【点评】本题考查了直角三角形的选择,三角形的内角和定理,正确的识别图形是解题的关键.3.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°【考点】多边形内角与外角.【分析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【解答】解:(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°.故选:B.【点评】考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180(n≥3)且n为整数).4.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°【考点】三角形内角和定理.【分析】由题意AE平分∠BAC,BF平分∠ABD,推出∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE =x,设∠C=y,∠ABC=3y,想办法用含x和y的代数式表示∠ABF和∠DBF即可解决问题.【解答】解:如图:∵AE平分∠BAC,BF平分∠ABD,∴∠CAE=∠BAE,∠1=∠2,设∠CAE=∠BAE=x,∠C=y,∠ABC=3y,由外角的性质得:∠1=∠BAE+∠G=x+20,∠2=∠ABD=(2x+y)=x+y,∴x+20=x+y,解得y=40°,∴∠1=∠2=(180°﹣∠ABC)=×(180°﹣120°)=30°,∴∠DFB=60°.故选:C.【点评】本题考查三角形内角和定理,三角形外角的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.5.设2a=3,2b=6,2c=12.现给出实数a,b,c三者之间的四个关系式:①a+c=2b;②a+b=2c﹣3;③b+c=2a+3;④b2﹣ac=1.其中,正确的关系式的个数是()A.1B.2C.3D.4【考点】幂的乘方与积的乘方.【分析】根据同底数幂的乘除法公式即可求出a、b、c的关系.【解答】解:∵2a=3,2b=6,2c=12.∴2a×22=3×4=12,2b×2=6×2=12,2c=12,∴a+2=b+1=c,即b=a+1,c=b+1,c=a+2,于是有:①a+c=a+a+2=2a+2,2b=2a+2,所以a+c=2b,因此①正确;②a+b=a+a+1=2a+1,2c﹣3=2a+4﹣3=2a+1,所以a+b=2c﹣3,因此②正确;③b+c=a+1+a+2=2a+3,因此③正确;④b2﹣ac=(a+1)2﹣a(a+2)=a2+2a+1﹣a2﹣2a=1,因此④正确;综上所述,正确的结论有:①②③④四个,故选:D.【点评】本题考查同底数幂的乘除法,解题的关键是熟练运用同底数幂的乘除法公式,本题属于中等题型.6.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,∠CEG=2∠DCB,且∠DFB=∠CGE.下列结论:①EG∥BC,②CG⊥EG,③∠ADC=∠GCD,④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.4【考点】平行线的判定与性质;三角形内角和定理.【分析】①正确.利用平行线的性质证明即可;②正确.首先证明∠CBF=∠CBA,∠BCF=∠BCA,再利用三角形的外角的性质解决问题即可;③正确.利用同角的余角相等得到∠ECG=∠ABC,再根据直角三角形的性质可得;④错误.假设AC平分∠BCG,再得到与图形不符的结论即可解决问题.【解答】解:①∵CD平分∠ACB,∴∠BCA=2∠DCB,∵∠CEG=2∠DCB,∴∠CEG=∠BCA,∴EG∥BC,故①正确;②∵△ABC的角平分线CD、BE相交于F,∴∠CBF=∠CBA,∠BCF=∠BCA,∵∠A=90°,∴∠CBA+∠BCA=90°,∴∠CBF+∠BCF=45°,即∠DFB=45°,∵∠DFB=∠CGE,∴∠CGE=90°,即CG⊥EG.故②正确;③∵CG⊥EG,∴∠G=90°,∴∠GCE+∠CEG=90°,∵∠A=90°,∴∠BCA+∠ABC=90°,∵∠CEG=∠ACB,∴∠ECG=∠ABC,∵∠ADC=∠ABC+∠DCB,∠GCD=∠ECG+∠ACD,∠ACD=∠DCB,∴∠ADC=∠GCD,故③正确;④假设CA平分∠BCG,则∠ECG=∠ECB=∠CEG,∴∠ECG=∠CEG=45°,显然不符合题意,故④错误.故选:C.【点评】本题考查三角形内角和定理,三角形外角的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共3小题)7.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=45°.【考点】三角形的角平分线、中线和高.【分析】延长CH交AB于点F,锐角三角形三条高交于一点,所以CF⊥AB,再根据三角形内角和定理得出答案.【解答】解:延长CH交AB于点F,在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.【点评】考查三角形中,三条边的高交于一点,且内角和为180°.8.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于15.【考点】多边形内角与外角;等腰梯形的性质.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作边AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH﹣AB﹣BG=8﹣1﹣3=4,EF=PH﹣HF﹣EP=8﹣4﹣2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.9.如图,AD,BE,CF交于△ABC内的一点P,并将△ABC分成六个小三角形,其中四个小三角形的面积已在图中给出.则△ABC的面积为.【考点】三角形的面积.【分析】设未知的两个小三角形的面积为x和y,根据三角形的面积和底边长成比例,列出二元一次方程,解得x,y,进而求出△ABC的面积.【解答】解:设未知的两个小三角形的面积为x和y,则,即①,又,即②,①÷②得,解得y=35,再由②得x=56,=84+70+56+35+40+30=315.因此S△ABC【点评】本题主要考查三角形的面积的知识点,根据三角形的面积与底边长成比例进行解答,此题的解答方法需要同学们熟练掌握.三.解答题(共4小题)10.小轩计算一道整式乘法的题:(x+m)(5x﹣4),由于小轩将第一个多项式中的“+m”抄成“﹣m”,得到的结果为5x2﹣34x+24.(1)求m的值;(2)请计算出这道题的正确结果.【考点】多项式乘多项式.【分析】(1)直接利用多项式乘多项式运算法则计算得出答案;(2)直接利用(1)中所求,代入原式求出答案.【解答】解:(1)∵(x﹣m)(5x﹣4)=5x2﹣34x+24,∴5x2﹣4x﹣5mx+4m=5x2﹣34x+24,∴﹣4﹣5m=﹣34,解得:m=6;(2)由(1)得:(x+m)(5x﹣4)=(x+6)(5x﹣4)=5x2﹣4x+30x﹣24=5x2+26x﹣24.【点评】此题主要考查了多项式乘多项式运算,正确掌握相关运算法则是解题关键.11.如图,在三角形ABC中,∠B=60°,∠C=α,点D是AB上一点,E是AC上一点,∠ADE=60°,点F为线段BC上一点,连接EF,过D作DG∥AC交EF于点G,(1)若α=40°,求∠EDG的度数;(2)若∠FEC=2∠DEF,∠DGF=∠BFG,求α.【考点】平行线的性质;三角形内角和定理.【分析】(1)根据平行线的判定和性质即可得到结论;(2)根据平行线的性质和三角形的内角和即可得到结论.【解答】解:(1)∵∠B=∠ADE=60°,∴DE∥BC,∴∠AED=∠C=40°,∵DG∥AC,∴∠EDG=∠AED=40°;(2)∵DE∥BC,∴∠AED=∠C=α,∴∠DEC=180°﹣α,∵∠FEC=2∠DEF,∴∠DEF==60°﹣,∴∠DGE=∠CEF=2∠DEF=120°﹣α,∠EFC=∠DEF=60°﹣,∴∠DGF=180°﹣∠DGE=60°+α,∠BFG=180°﹣∠EFC=120°+,∵∠DGF=∠BFG,∴60°+α=(120°+),解得:α=72°.【点评】本题考查了三角形的内角和,平行线的判定和性质,熟练掌握三角形的内角和是解题的关键.12.某公司门前一块长为(6a+2b)米,宽为(4a+2b)米的长方形空地要铺地砖,如图所示,空白的甲、乙两正方形区域是建筑物,不需要铺地砖.两正方形区域的边长均为(a+b)米.(1)求铺设地砖的面积是多少平方米;(2)当a=2,b=3时,需要铺地砖的面积是多少?(3)在(2)的条件下,某种道路防滑地砖的规格是:正方形,边长为0.2米,每块1.5元,不考虑其他因素,如果要购买此种地砖,需要7575元钱.【考点】多项式乘多项式.【分析】(1)长方形空地的面积减去建筑物A、B的面积即可;(2)把a=2,b=3时代入计算即可;(3)计算出需要的地砖的块数,再求出总金额.【解答】解:(1)铺设地砖的面积为:(6a+2b)(4a+2b)﹣2(a+b)2=24a2+20ab+4b2﹣2a2﹣4ab﹣2b2=22a2+16ab+2b2(平方米),答:铺设地砖的面积为22a2+16ab+2b2平方米;(2)当a=2,b=3时,原式=22×22+16×2×3+2×32=202(平方米),答:当a=2,b=3时,需要铺地砖的面积是202平方米;(3)202÷0.22×1.5=7575(元),故答案为:7575.【点评】本题考查多项式乘以多项式,掌握计算法则是正确计算的前提.13.在△ABC中,若存在一个内角是另外一个内角度数的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=60°,∠C=40°,可知∠A=2∠C,所以△ABC为2倍角三角形.(1)在△DEF中,∠E=40°,∠F=35°,则△DEF为3倍角三角形;(2)如图,直线MN⊥直线PQ于点O,点A、点B分别在射线OP、OM上;已知∠BAO、∠OAG的角平分线分别与∠BOQ的角平分线所在的直线交于点E、F;①说明∠ABO=2∠E的理由;②若△AEF为4倍角三角形,直接写出∠ABO的度数.【考点】三角形内角和定理.【分析】(1)由∠E=40°,∠F=35°可知∠D=105°,再根据n倍角三角形的定义可得结论.(2)①根据三角形内角和定理及一个外角等于与它不相邻的两个内角和,利用角的和差计算即可求得结果.②首先证明∠EAF=90°,分两种情形分别求出即可.【解答】解:(1)∵∠E=40°,∠F=35°,∴∠D=180°﹣40°﹣35°=105°,∴∠D=3∠F,∴△ABC为3倍角三角形,故答案为:3;(2)①∵AE平分∠BAO,OE平分∠BOQ,∴∠BAO=2∠EAQ,∠BOG=2∠EOQ,由外角的性质可得:∠BOQ=∠BAO+∠ABO,∠EOQ=∠EAQ+∠E,∴∠ABO=2∠E.②∵AE平分∠BAO,AF平分∠OAG,∴∠EAB=∠EAO,∠OAF=∠FAG,∴∠EAF=∠EAO+∠OAF=(∠BAO+∠OAG)=90°,∵△EAF是4倍角三角形,∴∠E=×90°=22.5°或×90°=18°,∵∠ABO=2∠E,∴∠ABO=45°或36°.【点评】考查三角形的内角和定理,余角的意义,不等式组的解法和应用等知识,读懂新定义n倍角三角形的意义和分类讨论是解决问题的基础和关键.。

九年级数学下学期5月月考试题 试题

九年级数学下学期5月月考试题 试题

南开中学2021年九年级数学下学期5月月考试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日(全卷一共五个大题,满分是l50分,考试时间是是l20分钟)考前须知:1.试题之答案书写在答题卡...上不得在试卷上直接答题; 2.答题前认真阅读答题卡上的考前须知;3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.在考试完毕之后,由监考人员将试题和答题卡...一并收回. 参考公式:抛物线()02≠++=a c bx ax y 的定点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,,对称作为ab x 2-=. 一、选择题:(本大题一一共l2个小题,每一小题4分,一共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正 确答案所对应的方框涂黑.1.实数4的倒数是(▲)A .4B .41 C .-4 D .41- 2.计算()232x的结果是(▲) A .64x B .62x C .54x D .52x 3.以下商标是轴对称图形的是(▲)4.在代数式12+x 中,x 的取值范围是(▲) A .0>x B .0≤x C .x ≠-1 D .x ≠05.以下调查中,合适采用普查方式的是(▲)A .调查场上粽子的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了HY 物品D .调查我民收看新闻的情况6.ABC ∆与DEF ∆的相似比为3:4,那么ABC ∆与DEF ∆的周长比为(▲)A .3:2B .3:4C .4:5D .9:167.如图,a ∥b ,将—块三角板的直角顶点放在直线a 上,假设︒=∠421,那么2∠的度数为(▲)A .46°B .48°C .56°D .72°8.如图,A 、B 、C 是O 上的三点,︒=∠40ACB ,那么AOB ∠的度数为(▲)A .20°B .40°C .60°D .80°9.不等式组⎪⎩⎪⎨⎧-+≤-1321022x x x >的解集是(▲) A .1≥x B .14≤-x > C .4<xD .1≤x10.五一假期,刘教师开车自驾前往荣昌,他开车分开家时,由于车流量大,行进非常缓慢,十几分钟后,终于行驶在畅通无阻的高速公路上,大约五非常钟后,汽车顺利到达荣昌收费站,经停车缴费后,进入车流量较小的道路,很快就到达了荣昌县城.在以上描绘中,汽车行驶的路程s(千米)与所经历的时间是t(小时)之间的大致函数图象是(▲)11.以下图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一一共有9颗棋子,第③个图形一一共有l8颗棋子,…,那么第⑥个图形中棋子的颗数为(▲)12.如图,Rt OAB ∆的直角边OA 在x 轴正半轴上,︒=∠60AOB ,反比例函数()03>x xy =的图象与Rt OAB ∆两 边OB ,AB 分别交于点C ,D .假设点C 是OB 边的中点,那么点D 的坐标是(▲)A .()3,1B .()1,3 C .⎪⎪⎭⎫ ⎝⎛23,2 D .⎪⎪⎭⎫ ⎝⎛43,4二、填空题:(本大题一一共6个小题,每一小题4分,一共24分)请将每一小题之答案直接填在答.题卡..中对应的横线上.13.化简()()11-+a a 的结果为 ▲ . 14.某校乒乓球训练队一共有7名队员,他们的年龄(单位:岁)分别为:l2,13,14,12,l3,15,l3,那么他们年龄的众数为 ▲ 岁.15.计算()120153121-⎪⎭⎫ ⎝⎛--+-的值是 ▲ . 16.如图,AB 为半圆O 的直径,点C 在AB 的延长线上,CD 与半圆O 相切于点D ,且42==CD AB ,那么图中阴影局部的面积为 ▲ .(结果保存π)17.从23-,1-,0,1这四个数中,任取一个数作为m 的值,恰好使得关于x ,y 的二元一 次方程组⎩⎨⎧-=--=-232y x m y x 有整数解,且使以x 为自变量的一次函数()331-++=m x m y的图象不经过第二象限,那么取到满足条件的m 值的概率为 ▲ .18.如图,ABC ∆中,4==AC AB ,︒=∠120BAC ,以A 为一个顶点的等边三角形ADE 绕点A 在BAC ∠内旋转,AD 、AE 所在的直线与BC 边分别交于点F 、G ,假设点B 关于直线AD 的对称点为'B ,当'FGB ∆是以点G 为直角顶点的直角三角形时,BF 的长为 ▲ .三、解答题:(本大题一一共2个小题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆南开中学初2014届九年级(下)阶段测试(三)
数 学 试 题
(全卷共五个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案请书写在答题卡上,不得在试卷上直接作答. 2.作答前请认真阅读答题卡上的注意事项.
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑. 1.在1
4
,1-,0, 3.2-这四个数中,属于负分数的是( ) A .
14
B .1-
C .0
D . 3.2-
2.下列标点符号中既是轴对称图形又是中心对称图形的是( ) A .

B .。

C .
“ ”
D .

3.若∠A =35°,则∠A 的补角为( ) A .35°
B .55°
C .145°
D .155°
4.计算3
8(2)a a ÷-的结果是( ) A .4a
B .4a -
C .2
4a
D .2
4a -
5.若两个相似三角形的面积比为9:4,则这两个相似三角形的周长之比为( ) A .2:3
B .3:2
C .4:9
D .9:4
6.分式方程
23
1x x
=-的解为( ) A .3x =- B .1x =-
C . 1x =
D . 3x =
7.如图,AB ∥CD ,CE 平分∠ACD ,交AB 于点E ,若∠ACE =12°,则∠1的
度数为( ) A .6°
B .12°
C .24°
D .39°
8.甲、乙、丙、丁四位同学在相同条件下进行“立定跳远”训练,每人各跳10次,统计他们的平均成绩(单位:米)和方差如下表所示:
则这四名同学“立定跳远”成绩波动最大的是( )
A .甲
B .乙
C .丙
D .丁
9.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室
A
B C
E
D
1
(第7题图)
里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口.则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )
A
B
C
D
10.如图,⊙O 的半径为4,PC 切⊙O 于点C ,交直径
AB 延长线于点P ,若CP 长为4,则阴影部分的面积为( ) A .82π-
B .8π-
C .
162π-
D .16π-
11.如图所示,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为
62cm ,第②个图形的面积为182cm ,第③个图形的面积为362cm ,……,那么第⑥个图形的面积为( ) A .842cm
B .902cm
C .1262cm
D .1682cm
12.如图,Rt △ABO 中,∠ABO =90°,AC =3BC ,D 为OA 中点,反比例函数经过C 、D 两点,若△ACD 的面积为3,则反比例函数的解析式为( )
A .2
y x
=
B .2
y x
=-
C .4
y x
=
D .4
y x
=-
二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卷中对应的横线上.
13.4月27日至29日,国务院总理李克强在重庆实地考察“长江黄金水道”建设.“长江黄金水道”是贯通东、中、西部,通航能力最强的航道,当前“长江黄金水道”干支流的通航里程已经达到96000公里,那么96000用科学记数法可以表示为 . 14.函数2
3
x y x -=
+中,自变量x 的取值范围是 . 15.重庆市上周每天的最高气温(单位:℃)分别为25,27,29,27,25,23,25,则这组数据的中位数和众数之和为 .
16.如图,点A 、B 、C 为⊙O 上的三点,连接AC ,若∠OCA =40°,则∠ABC 的度数为 °. 17.从2-,23-
,1
2
,1,3五个数中任选1个数,记为a ,它的倒数记为b ,将a ,b 代入不等式组 P
(第10题图)
A
O
A
C
(第16题图)
(第11题图)
① ② ③ ④
2123x a x x b >-⎧⎪
+⎨≤⎪⎩
中,能使不等式组至少有两个整数解的概率是 .
18.如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3cm ,
GC =4cm ,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边长为 cm . 三、解答题(本大题共2个小题,每小题7分,共14
分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上. 19
.计算:2014
201
1
()(42
π---+---+
20.如图,在Rt △ABC 中,∠C =90°,点D 是AC 边上一点, tan ∠DBC =4
3
,且BC =6,AD =4.求cos A 的值.
四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.
21.先化简,再求值:2222
244(4)2a b b a b a a ab +--÷+,其中a ,b 满足2427.,a b a b -=⎧⎨+=⎩
A B F
E
G
D
C
(第18题图)
A C
D
B
22.今年4月18日—4月20日,第29届重庆市青少年科技创新大赛在重庆南开中学举行,该校学生会在赛后对某年级各班的志愿者人数进行了统计,各班志愿者人数有6名,5名、4名、3名、2名、1名共计六种情况,并制成两幅不完整的统计图如下:
(1)该年级共有______个班级,并将条形图补充完整; (2)求平均每班有多少名志愿者;
(3)为了了解志愿者在这次活动中的感受,校学生会准备从只有2名志愿者的班级中任选两名志愿者参加座谈会,请用列表或画树状图的方法,求出所选志愿者来自同一个班级的概率.
23.维多利亚房产公司于2012年投资建成了一个拥有180个车位的地下停车场,所有车位都用于出租,租期一年,没租出的每个车位每年公司需支出费用(维护费、管理费等)400元.2013年,公司将每个车位的租金定为一年6000元,所有车位全部租出.
(1)2014年,公司将每个车位的租金提高至一年6800元,请问该公司至少需要租出多少个车位才能使得其收益不低于2013年?
(2)由于购车人数不断增加,人们对车位的需求越来越大,公司决定于2015年继续提高租金,经调查发现,在2013年的基础上,每提高100元的租金,租出的车位将减少3个,为了获得103.8万元的收益,公司需要将租金定为一年多少元?
班级 数量 1
23
5
4
人数
6名 5名 4名 3名 2名 1名
各种情况下班级数量的条形统计图
24.已知,如图,在Rt△ABC中,∠ACB=90°,点D为AB
中点,连接CD.点E为边AC上一点,过点E作EF∥AB,
交CD于点F,连接EB,取EB的中点G,连接DG、FG.(1)求证:EF=CF;
(2)求证:FG⊥DG.
A
C
B F
G
E
D
五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上. 25.如图,抛物线2
128
y x =-
+交x 轴于A 、B 两点(点A 在点B 的左侧),交y 轴于点C ,连接BC ,经过点C 的直线2y x m =+交x 轴于点D .点P 为线段DB 上的一动点,过点P 作PQ ∥CD ,交BC 于点Q . (1)求△BCD 的周长;
(2)连接CP ,求△C PQ 的最大面积,并求出此时点P 的坐标;
(3)设直线PQ 与抛物线交于点M ,与y 轴交于点N ,连接DM ,若DM =C N ,求点M 的坐标.
26.已知:△ABC 中,BC=AC =10,tan 2B ,射线CD 平分∠ACB ,交AB 于点D .Rt △EFG 中,∠GEF =90°,
EF =5,EG =
5
2
,将△ABC 与△EFG 如图(1)摆放,使点C 与点E 重合,B 、C 、E 、F 共线,现将△EFG 沿着射线CD
t 秒. (1)求点A 到BC 的距离;
(2)在平移过程中,当△EFG 与△ACD 有重叠部分时,设重叠部分的面积为S ,请直接写出S 与t 的函数关系式及对应的自变量t 的取值范围;
(3)如图(2),当点E 与点D 重合时,将△EFG 绕点D 旋转,记旋转中的△EFG 为△EF 1G 1,在旋转过程中G 1F 1所在直线与边AB 交于点M ,与边AC 交于点N ,当△AMN 为以MN 为腰的等腰三角形时,求AM 的长度.
A ()
C E G D
B
备用图
A ()
C E G
D B
图(1)
G ()
D E F
B
图(2)
A。

相关文档
最新文档