紫外可见光吸收光谱原理
紫外–可见吸收光谱原理
紫外–可见吸收光谱原理
紫外-可见吸收光谱是一种常用的光谱分析技术,用于分析物
质的化学结构和浓度。
它基于物质对紫外-可见光的吸收特性。
紫外-可见光谱是通过将被测物质溶解在适当的溶剂中,然后
用一束紫外-可见光照射样品,并测量样品对光的吸收来进行的。
紫外-可见吸收光谱的原理基于被测物质分子电子的激发和跃迁。
当物质处于基态时,其分子处于低能级的电子轨道上。
当紫外-可见光照射被测物质时,光子的能量能够被物质中的电
子吸收,使其跃迁到高能级的轨道上。
这种电子跃迁导致了紫外-可见光谱的吸收峰。
每种物质都有其特定的吸收特性,这是由其分子结构和化学键决定的。
不同的分子或化学键对不同波长的光具有不同的吸收能力。
通过测量光通过样品后的强度变化,可以得到吸收光谱。
紫外-可见吸收光谱通常以波长(nm)为单位进行测量。
在可
见光范围内,波长较长的光产生红色的吸收峰,而波长较短的光产生紫色的吸收峰。
在紫外光范围内,波长较长的光产生较低能级的吸收峰,而波长较短的光产生较高能级的吸收峰。
通过分析样品吸收光谱的形状和位置,可以确定样品中的物质种类和浓度。
此外,紫外-可见吸收光谱还可以用于分析反应
动力学、鉴定物质和定量测量等应用。
紫外可见吸收光谱法原理_概述解释说明
紫外可见吸收光谱法原理概述解释说明1. 引言1.1 概述紫外可见吸收光谱法是一种广泛应用于化学分析、生物医药和材料科学等领域的分析技术。
它通过检测样品吸收紫外或可见光的能力,可以确定样品中存在的化合物或物质的浓度。
紫外可见吸收光谱法基于原子、离子或分子在特定波长范围内对电磁辐射的选择性吸收现象,利用这种吸收现象可以获得样品所具有的信息。
本文将对紫外可见吸收光谱法的原理进行详细介绍,并探讨其在化学分析、生物医药和材料科学中的应用。
1.2 文章结构本文共分为五个部分:引言、紫外可见吸收光谱法原理、紫外可见吸收光谱应用领域、实验方法与操作步骤以及结论和展望。
1.3 目的本文旨在向读者介绍紫外可见吸收光谱法的基本原理以及其在不同领域中的应用。
通过阐述紫外可见吸收光谱法的操作方法和实验步骤,希望能为初学者提供一份清晰的指南,使其能够准确、有效地应用该技术进行分析。
同时,我们将对紫外可见吸收光谱法的局限性进行讨论,并展望其未来在科学研究和实际应用中的发展方向。
2. 紫外可见吸收光谱法原理:2.1 光谱的基本概念:光谱是指将某物质在不同波长范围内对电磁辐射的吸收、发射或散射进行分析和测量的方法。
根据电磁辐射的能量不同,可将光谱分为紫外光谱、可见光谱和红外光谱等。
其中,紫外可见吸收光谱法利用物质对紫外及可见光区域(200-800 nm)的吸收特性进行定量和定性分析。
2.2 紫外可见吸收光谱的原理:紫外可见吸收光谱法是通过物质吸收特定波长范围内电磁辐射而产生的能级跃迁来进行分析。
当样品受到入射光线照射后,样品中的某些化学成分会吸收特定波长范围内的能量,并转为高能态。
这些化学成分在高能态时可能会跃迁至更高能级或离子化状态,从而使入射光线中特定波长的能量被吸收,形成明显的吸收峰。
根据琴斯定律(Lambert-Beer定律),光的吸收与样品中物质浓度成正比。
因此,通过测量入射光和透射光之间的吸收差异,可以推算出样品中特定化合物的浓度。
紫外-可见吸收光谱的产生及基本原理
判别顺反异构体
H
H C C H
C C
H
顺式
反式 λmax=295nm εmax=27000
λmax=280nm εmax=13500
共平面产生最大共轭效应, εmax大
判别互变异构体
O CH3 C H O C C H OC2H5
H O O H O H O H
酮式:λmax=272nm,εmax=16
汞灯用于波长检定。
用积分球的检测器波长<2500nm。
单色器
将光源发射的复合光分解成单色光并可从中选出一任波 长单色光的光学系统。 ①入射狭缝:光源的光由此进入单色器; ②准光装置:透镜或返射镜使入射光成为平行光束; ③色散元件:将复合光分解成单色光;棱镜或光栅; ④聚焦装置:透镜或凹面反射镜,将分光后所得单色光聚焦 至出射狭缝; ⑤出射狭缝。
a
b c
比例常数,称为吸光系数
液层厚度,单位cm 浓度。当浓度 c 以 g· L-1 为单位,液层厚度 b 以 cm 为单位 时,吸光系数的单位为:L· g-1· cm-1
紫外分光光度法定性分析
比较吸收光谱曲线法:
可以将在相同条件下测得的未知物的吸收光谱与标准谱图 进行比较来作定性分析。如果吸收光谱的形状,包括吸收光谱 的λmax、λmin、吸收峰的数目、位置、拐点以及等完全一致,则 可以初步认为是同一化合物。
OH CH3 C H O C C OC2H5
O H
O
烯醇式:λmax=243nm,εmax=16000
纯度的控制和检验
a) 根据吸收光谱判断
含10-6M蒽的苯溶液
苯溶液
b) 根据lgε判断
4.10 例如:标准菲 lg 氯仿 max( 296 nm )
紫外可见吸收光谱法基本原理和解析
收曲线(最大吸收波长 max)。
2020/5/24
蓝 ➢黄 450~480nm 580~600nm
10
★吸收曲线的讨论
(1)同一种物质对不同波 长光的吸光度不同。 吸光度最大处
对应的波长称为最大吸收波长λmax。
(2)不同浓度的同一种物质,其吸收曲线 形状相似、λmax不变。而对于不同物 质,它们的吸收曲线形状和λmax则不 同。
物质可能达到的最大灵敏度。
2020/5/24
19
3.偏离朗白—比耳定律的原因 标准曲线法测定未知溶液的浓度时,发现: 标准曲线常发生弯曲(尤其当溶液浓度较高 时),这种现象称为对朗伯-比耳定律的偏离。
引起这种偏离的原因: (1)入射光非单色光。
仪器的非理想引起的 (2)溶液不均匀。 (3)溶液中发生了化学变化
布格(Bouguer)和朗白(Lambert)先后于1729年
和1760年阐明了光的吸收程度和吸收层厚度
的关系。A∝b
1852年比耳(Beer)又提出了光的吸收程度和吸
收物浓度之间也具有类似的关系
A∝ c
二者的结合称为朗白—比耳定律,其数学表达
式为: A=lg(I0 / It)= εb c
T It
AlgT
特征常数。 (2)不随浓度c和光程长度b的改变而改
变。在温度和波长等条件一定时,ε 仅与吸收物质本身的性质有关,与待 测物浓度无关。 (3)可作为定性鉴定的参数。
2020/5/24
18
(4)同一吸收物质在不同波长下的ε值 是不同的。在最大吸收波长λmax 处的摩尔吸光系数以εmax表示。
εmax表明了该吸收物质最大限度的 吸光能力,也反映了光度法测定该
有机波谱分析--紫外-可见光谱法
②呈一宽峰,且有精细结构。 ③当苯环被烷基以外的基团取代或溶剂极性增大时,精细
结构将会减弱甚至消失。
(4)E 带:芳香族化合物的特征谱带。
Ethylene
●E1带:苯环中“乙烯键”的π→π*跃迁产生的吸收带。 λmax=180~200nm,远紫外区; εmax=5×104L·mol-1·cm-1,强吸收。(不常用)
3.互变异构
4.氢键效应 1)溶质分子间氢键
使n→*共轭受限,轨道能差增大,波长蓝移。
2)分子内氢键:能差减小,波长红移。
例如:邻硝基苯酚和间硝基苯酚
分子内氢键
max=278nm =6.6103
无分子内氢键
max=273nm =6.6103
邻硝基苯酚, 由于分子内氢键的形成,红移了5nm。
3)溶质与溶剂间形成的氢键(属于溶剂效应)
波谱范围:10~800nm
(1)远紫外光区10~200nm (2)近紫外光区200~400nm (3)可见区400~800nm.
一般的紫外光谱是指近紫外区。
1、紫外光谱产生的条件
2、有机分子的化学键类型
★构成分子的化学键主要有 键、 键,还 有未成键孤
对电子构成的非键(n 键)。
★ 5种轨道分别是:
54
2)单环共轭烯烃(乙醇溶剂) ◆母体值: ①共轭二烯不在同一环内
217nm
②共轭二烯在同一环内
◆扩展共轭: ◆取代基增加值: 烷基 卤素 ◆环外双键
253nm
+30nm
+5nm +17nm +5nm
55
●注意: (1)母体值只是指共轭二烯母体本身的λ值,不包括C=C-C=C
紫外可见吸收光谱法
-C-C- 如:乙烷: max=135nm C-H 如: 甲烷: max= 125nm
2) n * 跃迁
分子中未共用n电子跃迁到* 轨道
化合物种类:凡含有n电子的杂原子的饱和化合物
特点:跃迁所需要的能量较高
位置:远紫外光区和近紫外光区
150-250nm
ε=100 ~ 1000 L·cm-1 ·mol-1
Mn+-Lb- M(n+1)+-L(b+1)- (hν) [Fe3+-SCN-]2+ [Fe2+-SCN]2+ (这就是配合物λmax=490nm为血红色原因)
金属配合物的电荷转移吸收光谱,有三种类型:
1. 电子从配体到金属离子: 相当于金属的还原; 2. 电子从金属离子到配体; 产生这种跃迁的必要条件是金属离子容易被氧化
白炽光源: 热辐射光源:可见光区,340-2 500nm,影响因素:灯电压
如 钨丝灯和卤钨灯; 气体放电光源: 气体放电发光光源:紫外光
否相同。 在进行紫外光谱法分析时,必须正确选择溶剂。
三、紫外-可见分光光度计
光源 λ1、 λ2、 λ3、 …、 λn
分光系统
λmax
调制放大 记录系统→显示A
检测系统 光→电
I0→样品池→ It
紫外-可见分光光度计主要组成部件
光源
分光系统
样品池
检测系统
记录系统
1、光源
1.光源:提供入射光的元件。
3.电子从金属到金属
配合物中含有两种不同氧化态的金属时,电子可在其间转移,
这类配合物有很深的颜色,如普鲁士蓝 (磷、砷)钼蓝 H8 [SiMo2O5(Mo2O7)5 ]
(UV-Vis)紫外-可见吸收光谱分析
朗伯-比耳定律 材料对光的吸收可以用吸收定律加以描述。
布格Bouguer和朗伯Lambert先后于1729年和1760年阐 明了光的吸收和吸收层厚度的关系,称为朗伯定律。 1852年比耳又提出了光的吸收和吸收物浓度之间的关 系,称为比耳定律。两者的结合称为朗伯比耳定律。
1
B(hv Eg ) 2
为吸收系数,B为常数,hv 为光子的能量
Eg 为半导体的禁带宽带。
( )2和 hv为线性关系,由半导体的吸收光谱,做 ( )2
B
B
(
)
2和
hv
的图谱,就得到线性吸收边
B
如果将吸收边的线性关系延伸到与 hv
轴相交的地方,就可以得到半导体的带隙 Eg
一般将用这种方法得到的带隙叫做光学带隙,它的测 量是紫外-可见吸收光谱在半导体材料中最常见的应用。
dI x
ai dni
i 1
Ix
s
当光束通过厚度为b的吸收层时,产生的总的吸光度等
于在全部吸收层内吸收的总和,对上式积分得到:
m
ln I0
ai ni
i 1
I
s
吸光度是指吸光体对光的吸收程度,通常人们用
A
log
I0 I
来表示,因此,根据吸光度A的定义
A log I0
I
2. 禁戒的直接跃迁
某些情况下,即使在直接禁带的半导体材料中,其价 带顶和导带底都在K空间的原点,但是它们之间的跃 迁即K=0可能被选择定则禁止,而K不为0的情况下的 跃迁反而被允许,一般把这种跃迁称为禁戒的直接跃 迁。同样通过计算,可以得到吸收系数和光子能量的 关系
紫外可见吸收光谱基本原理
n→π* < π→π* < n→σ* < σ→σ*
11:51:47
2
σ→σ*跃迁
所需能量最大;σ电子只有吸收远紫外光的能量
才能发生跃迁;
饱和烷烃的分子吸收光谱出现在远紫外区; 吸收波长λ <200 nm; 例:甲烷的λ max为125nm , 乙烷λ max为135nm 。 只能被真空紫外分光光度计检测到; 作为溶剂使用;
max(甲醇) max(水) max(氯仿)
n → p*跃迁:蓝移; ;
max(正己烷)
p → p* n → p*
230 329
11:51:47
238 315
237 309
243 305
溶剂的影响
苯 酰 丙 酮 1 1:乙醚 2:水
2
250
300
极性溶剂使精细结构 消失;
11:51:47
11:51:47
11:51:47
精品课件!
11:51:47
精品课件!
11:51:47
(三) 金属离子影响下的配位体内π→π*跃迁 金属离子的微扰,将引起配位体吸收波长和 强度的变化。变化与成键性质有关,若共价 键和配位键结合,则变化非常明显。 茜素磺酸钠: 弱酸性介质:黄色(λ max=420nm) 弱碱性介质:紫红色(λ max=560nm )
一、有机物吸收光谱与电子跃迁
(一)电子跃迁类型
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果: σ电子、π电子、n电子。 s*
E p 分子轨道理论:成键轨道—反键轨道。
s
H
C H
OnKR Nhomakorabeap*
E,B
n
p
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反 键轨道)跃迁。主要有四种跃迁所需能量ΔΕ大小顺序为:
第三章紫外光谱和质谱
③ π-π*跃迁
是π电子从π成键向反键π*轨道的跃迁,含有π电子基团的不饱和有 机化合物,都会发生π-π*跃迁,如有 、 等的有机化合
物。π-π*跃迁所需的能量比σ-σ*跃迁小,也一般比n-σ*跃迁小,吸收 峰一般在200nm附近。
π-π*还具有以下特点:
吸收波长一般受组成不饱和键的原子影响不大,如 及 的λmax 都是 175 nm;摩尔吸光系数都比较大,通常在104以上,为强吸收带;
特点:光谱原理简单,识谱容易,信息量较少, 应用仍较广泛。
一、基本原理
1.紫外光谱的产生 E = E0 + E平动 + E转动 + E振动 + E电子 图中A、B表示不同能量的两个电 子能级,在每个电子能级中还分 布着若干振动能量不同的振动能 级,它们的振动量子数V=0、1、 2、3…表示,而在同一电子能级 和同一电子能级和同一振动能级 中,还分布着若干能量不同的转 动能量,它们的转动能级数J=0、 1、2、3……表示。 在分子能级跃迁所产生的能级变化ΔE中,电子能级跃 迁的能量变化ΔEe是最大的,一般在1~20eV之间, 它对应的电磁辐射能量主要在紫外-可见光区。
3.某些常见化合物的吸收光谱 ① 饱和烃及其取代衍生物 饱和烃中只有σ键,即只有σ电子,因此只能产生σ-σ*跃 迁,饱和烃的取代衍生物引入具有未成键n电子的杂原子, 可以产生n -σ*跃迁,吸收波长变大 。 如CH4的吸收波长为125 nm,而CH3Cl、CH3Br和CH3I的 吸收波长分别为173、204 和258 nm。 饱和烃是测定紫外-可见光谱时的良好溶剂。 ② 不饱和烃及共轭烯烃 可以产生σ-σ*跃迁和π-π*跃迁,一般在近紫外光区,为强吸收带在 分析上较有实用价值。 不饱和烃中,如果存在着共轭体系,共轭使电子离域大,-*能 量降低,跃迁几率增加,吸收波长变长,吸收变大。共轭程度越大, 则λmax越大,εmax也越大。 如:乙烯(193 nm),1,3-丁二烯(217 nm),己三烯(258 nm),辛四 烯(300 nm) 在共轭体系下,π-π*跃迁所产生的吸收带,又称为K带。
紫外吸收光谱基本原理
07:18:51
光的互补:蓝 黄
07:18:51
2.物质对光的选择性吸收及吸收曲线
M + h 基态 → M* 激发态 M + 热
M + 荧光或磷光
E1
(△E)
E2
• E = E2 - E1 = h
• 量子化 ;选择性吸收 • 吸收曲线与最大吸收 波长 max • 用不同波长的单色光 照射,测吸光度;
也提供分子结构的信息。通常将在最大吸收波长处测得的摩
尔吸光系数ε max也作为定性的依据。不同物质的λ max有时
可能相同,但ε max不一定相同;
(6)吸收谱带强度与该物质分子吸收的光子数成正比,定 量分析的依据。
07:18:51
二、有机物吸收光谱与电子跃迁
ultraviolet spectrometry of organic compounds
07:18:51
苯环上助色基团对吸收带的影响
07:18:51
苯环上发色基团对吸收带的影响
07:18:51
2. 立体结构和互变结构的影响
H C C H
顺反异构: 顺式:λmax=280nm;
εm;εmax=29000
H C C H
O H 3C C OH H 3C C H C H2 C
极性
非极性
n → p*跃迁:兰移; ;e
max(正己烷) max(氯仿)
p → p*跃迁:红移; ;e
max(甲醇) max(水)
pp np
230 329
07:18:51
238 315
237 309
243 305
溶剂的影响
苯 酰 丙 酮 1 1:乙醚 2:水
紫外-可见吸收光谱
6.生化反应动力学的研究
如果某生化反应中一种反应物的浓度发生变化, 则可以利用紫外-可见吸收光谱研究反应进行的快慢 即反应的动力学。例如在酶反应中,底物的减少会使 其吸收幅度下降,产物的吸收峰幅度增加,因此可以 利用底物或产物吸收峰的变化来研究反应的进行情况 及其反应速度。
乳酸脱氢酶
乳酸盐 + NHD+
2. 纯度的检验
如果有机物在紫外可见光区没有明 显的吸收峰,而杂质在紫外区区有较强 的吸收,则可利用紫外光谱检验化合物 的纯度。
3. 样品浓度的测定
根据吸收定律: A=εcl
同一物质的消光系数ε是一定的,因 此在光径相同的样品池中,A与样品浓度c 成正比。
• 比较法
• 标准曲线
配置一系列不同浓度的标准溶液,在波 长最佳处分别测定标准溶液的吸光度A,然后 一浓度为横坐标,以相应的A为纵坐标绘制出 标准曲线。
1. 化合物的鉴定
利用紫外光谱可以推导有机化合物的分子骨架 中是否含有共轭体系,如CH2=CH-CH=CH2 , CH2=CH-CH=O ,CH2=CH-C≡N ,苯环等,利用 紫外光谱鉴定有机化合物远不如利用红外有效,因 为紫外光谱特征性不强。
苯丙氨酸 酪氨酸 色氨酸
具有环状共轭双键
鉴定的方法
时,测量到的透射光的强度与入射光强度之差即为样品 对入射光的吸收。
Io
It
A=lg(Io/It)
二.紫外光谱的特点
1. 紫外吸收光谱所对应的电磁波波长短,能量大, 反映分子中价电子能级跃迁的情况,主要用于
共轭体系及芳香族化合物的分析。
2. 但是由于谱峰宽,重叠多,而不是像红外吸收 光谱或核磁共振谱那样得到的是各个特定化学 键的峰。
丙酮酸盐 + NADH + H+
有机波谱解析-第二章 紫外光谱
C
Hale Waihona Puke n<pOC
C
p*
n > p p*
n
n C
p* p
p*
n
p n 非极性
p
O 非极性
C C
p
极性
极性
n → p*跃迁:兰移; ; pp np
(4)尽量和文献中所用的溶剂一致。
(5)溶剂挥发性小、不易燃、无毒性、价格便宜。
5. 电子跃迁的类型
紫外吸收光谱是由价电子的能级跃迁而产生的,有机化 合物的紫外—可见吸收光谱是三种电子跃迁的结果:σ电子、 π电子、n电子。 s* n p* H C O
s
p E 分子轨道理论:成键轨道—反键轨道。
各种电子能级的能量及电子跃迁类型如右图
3. 紫 外 光 谱 图
横坐标:波长或频率 纵坐标:吸光度(A) 或 透过率(T)
紫外光谱(图)的特点: 吸收谱带少; 吸收谱带宽; 通常以谱带吸收最强的波长表示谱带位置,称 为最大吸收波长(λmax) ,是分子的特征常数, 与分子电子结构相关,可推测化合物中生色团类 型和共轭大小; 吸收强度以最大吸收波长处的摩尔吸光系数 (εmax)表示,也是分子特征常数和鉴定化合物 的重要依据。
H H c H
取代基 红移距离 -SR 45(nm)
c H
max=162nm 助色基团取代 p
-NR2 40(nm) -OR 30(nm)
p*(K带)发生红移。
-Cl 5(nm) CH3 5(nm)
(2)共轭烯烃中的
p → p*
紫外-可见吸收光谱
若d轨道原来是未充满的,则可以吸收电磁波, 电子由低能级的d轨道跃迁到高能级的d*轨道而产 生吸收谱带。所以这类跃迁吸收能量较小,多出现 在可见光区。
分子轨道 对称 波函数ψ 操作
符号不变 符号改变
g型轨道,ψg,对称波函数 u型轨道,ψu,反对称波函数
允许跃迁要求电子只能在对称性不同性的不同能级之间跃迁
例:g→u 允许 g→g 禁阻 u→u 禁阻
1.3.1 有机化合物的电子跃迁类型
现以羰基C=O为例来说明电子跃迁类型。
HC O n
s
Hp
碳上2个电子,氧上4个电子,形成σ、π、n、π*、σ*轨道
即 E=Ee+Ev+Er ΔΕe>ΔΕv>ΔΕr
(1) ΔEr=0.005~0.050eV λ = 250~25μm 远红外光谱
(2) ΔEv=0.05~1eV λ = 25~1.25μm 红外吸收光谱
(3) ΔEe=1~20eV λ = 0.06~1.25μm 紫外-可见光谱
分子吸收 光谱的产生
紫外-可见吸收 光谱
组员:贺小云 吕丹丹
第一节 紫外光谱基本原理
1.1 概述 1.2 紫外可见吸收光谱的产生 1.3 电子的跃迁类型 1.4 常用光谱术语及谱带分类 1.5 影响因素
1.1 概述
分子吸收紫外-可见光区190~800nm的电磁波,使其电 子从基态跃迁到激发态,从而产生的吸收光谱称紫外-可见 吸收光谱(Ultraviolet-Visible Absorption Spectra)。简称紫 外光谱(UV-Vis)。又称为电子吸收光谱。
材料表征方法第六章紫外可见光光谱
b. 助色基(团):
有一些含有n电子的基团(如-OH、-OR、-NH2 等),它们本身没有生色功能(不能吸收λ>200nm的 光),但当它们与生色团相连时,就会发生n—π共 轭作用,增强生色团的生色能力(吸收波长向长波 方向移动,且吸收强度增加),这样的基团称为助 色团。
C.红移与蓝移
有机化合物的吸收谱带 常常因引入取代基或改变溶
D + A hυ D+A-
D+、A-为络合物或一个分子中的两个体系,D是 给电子体,A是受电子体。
例如:黄色的四氯苯醌与无色的六甲基苯形成的 深红色络合物。
O
CL
CL
CL
+ CL
O
O
CL
CL
=
CL
CL
O
(黄色) (无色) (深红色)
f、配位体场微扰的d →d*跃迁
过渡元素的 d 或 f 轨道为简并轨道(Degeneration orbit),当与配位体配合时,轨道简并解除,d 或f 轨 道发生能级分裂,如果轨道未充满,则低能量轨道 上的电子吸收外来能量时,将会跃迁到高能量的 d 或 f 轨道,从而产生吸收光谱。
3、电荷转移跃迁;
4、配位体场的d →d*跃迁 产生。
3.常用光谱术语及谱带分类
常用光谱术语:
a、生色基也称发色基(团):
是指分子中某一基团或体系,由于存在能使分子 产生吸收而出现谱带,这一基团或体系即为生色基。
最有用的紫外-可见光谱是由π→π*和n→π*跃迁产 生的。这两种跃迁均要求有机物分子中含有不饱和基 团。这类含有π键的不饱和基团称为生色团。简单的生 色团由双键或叁键体系组成,如乙烯基、羰基、乙炔 基、亚硝基、偶氮基—N=N—等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
紫外可见光吸收光谱原理
当物质受到紫外或可见光照射时,分子中的电子会发生跃迁,从一个
能级跃迁到另一个能级,从而吸收光能。
这种能级跃迁会导致光谱中的吸
收峰。
根据电子跃迁能级的不同,光谱可以分为紫外光谱和可见光谱。
紫外
光谱一般包括200-400纳米范围内的波长,可见光谱则包括400-800纳米
范围内的波长。
紫外光谱和可见光谱通常用紫外可见分光光度计进行测量。
在测量时,我们通常将一束宽频谱的光射入样品中,然后测量透射光强。
一般来说,
透射光强与入射光强成反比,因为样品中的分子会吸收一部分光能。
A = -log10(T)
其中,A为吸光度,T为透射率。
从图谱中,我们可以观察到特定波长下的吸光度峰。
这些峰的位置和
强度可以提供有关样品的信息。
根据分子的所在能级不同,吸收峰的位置也会有所不同。
分子能级越高,吸收峰的波长越短。
这是因为分子在吸收光时,需要克服较大的能量差,而较高能级的跃迁具有更大的能量差。
吸收峰的强度与样品中化合物的浓度有关。
一般来说,化合物浓度越高,吸收峰越强。
这可以通过比较吸光度的绝对值或绘制标准曲线来确定
浓度。
除了测定浓度外,紫外可见光谱还可以提供关于样品结构和化学性质的信息。
根据分子中的不同官能团,我们可以观察到特定的吸收峰。
这可以用于鉴定不同化合物。
总结起来,紫外可见光吸收光谱是一种基于分子吸收能谱原理的分析方法。
通过测量样品在紫外和可见光区域内对光的吸收情况,我们可以获得关于样品结构和化学性质的信息。
这种方法广泛应用于药物、环境、食品和化学分析等领域。