水域纳污能力计算规程
重庆市水域纳污能力计算和提出限制排污总量意见-有用的
附件:重庆市水域纳污能力计算和提出限制排污总量意见技术细则重庆市水利局重庆市水文水资源勘测局二○○八年五月一、基本要求1.本次工作的重点是进行水功能区纳污能力计算和提出限制排污总量意见。
水功能区纳污能力计算应严格按照《水域纳污能力计算规程》(SL348-2006)的要求进行计算;限制排污总量意见的提出应充分结合区(县)经济社会发展和水资源保护的需要,提出合理的水功能区限制排污总量意见。
2.本次工作范围应为各区县水功能区划成果和区县重要河流和湖(库)。
3.水功能区水质标准采用《地表水环境质量标准》(GB3838-2002),并参照《渔业水质标准》(GB 11607-89),《景观娱乐用水水质标准》(GB 12941-91)等。
4.江河、湖库的污染物控制指标,全国统一采用化学需氧量(COD)和氨氮;湖库增加总磷和总氮指标,以分析其富营养化情况。
5.市级水功能区纳污能力计算成果应与重庆市水功能区纳污能力计算成果相协调。
6.各区(县)需完成的成果如下:(1)《区(县)水域纳污能力及限制排污总量报告》(2)区(县)水功能区纳污能力计算成果表(3)区(县)水功能区限制排污总量成果表二、水功能区划各区县先后开展了水功能区划,并报区县政府审批。
根据水功能区划要求,水功能区划分为两级区划,一级区分为保护区、缓冲区、开发利用区和保留区。
二级区分为饮用水源区、工业用水区、农业用水区、渔业用水区、景观娱乐用水区、过渡区和排污控制区。
水功能区水质标准采用《地表水环境质量标准》(GB 3838—2002)。
水功能区的复核、补充与调整应以重庆市人民政府批准的水功能区划和区县划定的水功能区为基础进行,根据规划确定需要复核或补充水功能区划工作的水域,补充水功能区划成果,对区划成果的合理性进行检验,必要时可对水功能区类型、长度等进行局部调整。
(一)水功能区复核1.水功能一级区复核首先复核保护区,然后缓冲区和开发利用区,最后复核保留区。
河流纳污能力计算
节点指河流上排污口、取水口、干支流汇合口等造成河道流量、水质发生突变的点,水量与污染物在节点前后满足物质平衡规律。 河段指河流被节点分成的若干段,每个河段内污染物的自净规律符合一阶反应定律。
一维水质模型由河段和节点两部分组成:
河流一维水质模型
图 河流一维模型概化示意图
概化后的排污口位置为: x=(Q1C1x1+Q2C2x2+····+QnCnxn)/(Q1C1+Q2C2+····+QnCn)
(2)距离较远并且排污量比较小的分散排污口,可概化为非点源入河,仅影响水域水质本底值,不参与容量优化分配计算。
上界
下界
上界
下界
1 2 3
x
3、混合区的确定
1、河流简化与模型选取
水质数学模型有零维模型、一维模型、二维模型等。 对每个水功能区,应根据其空间形态、水文、水质特征选择合适的水环境容量计算模型。
二、主要技术问题
1、河流简化与模型选取
二、主要技术问题
断面宽深比大于等于20时,简化为矩形河段; 小河可以简化为矩形平直河流; 大中河流中,当河段弯曲系数小于等于1.3时,可简化为顺直河段,否则视为弯曲河流; 河道特征和水力条件有显著变化的河段,应在显著变化处分段。
图 污水与河流的混合过程:(a)河中排放;(b)岸边排放
(a)
混合区定义
在排污口下游自排污口至功能区控制点或控制断面之间的,使污染物得以进行初始混合与稀释后达到水域功能区水质标准的区域称为混合区。 混合区是污染物自排放口至功能区控制断面达标的过渡区,是允许超标的区域。 混合区越小,意味着控制越严格,混合区消失,意味着不许排放或意味着排放口排出的水质与功能区的水质相等。
水环境容量
水域纳污能力计算:1、河流纳污能力计算1.1、河道类型划分:Q ≥150m 3/s 为大型河段、15—150m 3/s 为中型河段、Q ≤15m 3/s 为小型河段。
1.2、河道特征和水文过程简化:(1)宽/深≥20时简化为矩形河段,(2)弯曲系数≤1.3时简化为顺直河道,(3)河道特征和水力条件有显著变化的河段在显著变化处分段。
1.3、设计水文条件:常年河流采用90%保证率最枯月平均流量或近10年最枯月平均流量作为设计流量、季节性/冰封河流采用不为0的最小月平均流量为样本参照常年河流计算设计流量、流向不定的水网地区/潮汐河流采用90%保证率流速为0时的低水位水量为设计流量、有水利工程的河段采用最小下泄流量或生态基流为设计流量。
1.4 河流模型(1)零维模型:污染物在河段内均匀混合,适用于水网地区的河段或小型河段。
根据入河污染物的分布情况划分不同浓度的均匀混合段,分段计算水域纳污能力。
)/()(0Q Q Q C Q C C p p p +⋅+⋅=C —污染物浓度(mg/L )C p —排放的废污水污染物浓度(mg/L )Q p —废污水排放流量(m 3/s )C 0—初始断面污染物浓度(mg/L )Q —初始断面入流流量(m 3/s )。
)()(0p s Q Q C C M +⋅-=M —水域纳污能力(g/s )C s —水质目标浓度值(mg/L )。
(2)一维模型污染物在河流横断面上均匀混合,适用于Q<150m 3/s 的中小型河段。
u xK x e C C -⋅=0x —沿河段的纵向距离(m )Cx —流经x 距离后的污染物浓度(mg/L )u —设计流量下河道断面的平均流速(m/s )K —污染物综合衰减系数(1/s ))()(p x s Q Q C C M +⋅-=排污口位于河段中部(x=L/2)时,u LK u LK L x e Q m e C C --=⋅+⋅=0 m —污染物入河速率(g/s )C x=L —水功能区下段面污染物浓度(mg/L )(3)二维模型污染物在河段横断面上非均匀混合,适用于Q ≥150m 3/s 的大型河段。
宽浅型河道纳污能力计算方法
收稿日期:2001Ο03Ο20作者简介:韩龙喜(1964—),男,江苏扬州人,副教授,博士,主要从事水力学及水环境科学研究.宽浅型河道纳污能力计算方法韩龙喜1,朱党生2,姚 琪1(1.河海大学水文水资源及环境学院,江苏南京 210098;2.水利部水利水电规划设计总院,北京 100001)摘要:对于宽浅型河道,排放到水体中的污染物质在功能区相应的距离内不能达到横向均匀混合,常用的环境容量计算方法不再适用.针对这一情况,从水资源保护规划出发,对进入河段的污染源沿河长进行了概化.在此基础上,提出了纳污能力的计算方法及公式,并给出宽浅河道不同功能区组合情况下纳污能力的计算方法,为大范围水资源保护规划提供了一种简单、实用的工具.关键词:功能区划;宽浅型河道;污染源概化;纳污能力中图分类号:X522 文献标识码:A 文章编号:1000Ο1980(2001)04Ο0072Ο04对于宽浅型河道,污染物质在排放到水体中后,因宽深比较大,污染物沿流程在很长距离的河段内不能达到断面内均匀混合,污染物浓度在断面上沿横向变化较大,常用的环境容量计算公式不再适用.为考虑浓度在平面上的变化情况,可用二维水质数学模型模拟污染物沿河流纵向、横向的迁移转化规律.因此,不同功能区的纳污能力应以功能区相应的水质目标为依据,以二维水质数学模型数值解或解析解为工具,考虑功能区间的相互衔接关系进行计算.本文采用水质平面二维解析解,导得纳污能力的计算公式.1 宽浅河道二维水质解析解对宽浅型河道,若水深沿纵向、横向变化较小,在水流恒定的情况下,河道内水流可近似地看成均匀流,若排入河道的污染源源强为恒定,则在下游形成恒定的浓度场.设某宽浅河道污染源岸边排放,强度为S ,因河道较宽,可不考虑对岸反射的影响,在下游位置(x ,z )处产生的浓度为[1]C (x ,z )=S/H 4πE z ux exp -uz 24E z x -K x u (1)式中:x ———纵向坐标,代表计算点至排放口的纵向距离;z ———横向坐标,代表计算点至排放口的横向距离;H ———断面平均水深;u ———断面平均流速;K ———污染物的自净系数;E z ———横向紊动扩散系数,可用下式求解:E z =αz HU 3(2)式中:αz ———经验系数;U 3———摩阻流速.2 宽浅河道纳污能力计算方法211 宽浅河道纳污能力定义对宽浅河道,在一定的水量条件下,在保障河道水质满足功能区要求的水质标准情况下,排污口所能容纳的污染物的最大数量称为纳污能力.据此定义可知,在水流条件及水域环境功能确定的情况下,纳污能力与排污口位置有关.由于假定污染物从某一空间点排入水体,即使排污量很小,在排污口的下游水域也存在着一定范围的污染带.因此,与排污口相应的纳污能力允许存在污染带.但污染带范围大小与排污源强有关.因此,要确定纳污能力,必须首先确定允许的污染带的范围.排污口位置、污染带范围一旦给定,纳污能力也就唯一确定.设宽阔水域纳污能力为W ,从理论上讲水域中任一点的水质浓度应为两岸排污的叠加.对宽深比足够第29卷第4期2001年7月河海大学学报JOURNA L OF H OH AI UNI VERSITY V ol.29N o.4Jul.2001大的河道,因B/H 很大,一侧岸边的排污对对岸水质影响很小,功能分区及纳污能力计算可分两岸分别独立进行.212 污染源概化通常情况下,对同一个水功能区划相应的河段而言,污染物排放口不规则地分布于河流的不同断面.功能区控制断面的断面平均浓度将由所有排污口污染源在控制断面产生的浓度叠加得到.而纳污能力应是控制断面在满足水质目标的条件下,在规划准则的引导下,各排污口所能排放的污染物的最大数量.但考虑到此项工作的复杂性及水环境规划本身的要求,可将排污口在功能区内的分布加以概化,即认为污染源源强在同一功能区内沿河长均匀分布.此概化实际上体现了污染物分布的一种平均状况,对某一河段也许存在一定偏差,但从统计、规划的特点来看,却综合反映了若干河段污染物排放的一种平均状态.图1 宽浅河道污染源概化示意图Fig.1 G eneralization of Pollutant sources213 纳污能力计算如图1所示,某功能区宽浅河道长度为L ,断面平均流速为u ,其纳污能力用W 表示.假定污染物沿河岸均匀分布,此功能区的水质标准为C S ,可近似地用出口断面浓度来控制功能区水质.由二维解析解知,连续源d m 在出口断面产生的浓度:d C =2d m 4πE z u (L -x )exp -uz 24E z (L -x )-K L -x u(3)由假设得:d m =W LHd x ,令z =0,可得岸边浓度在纵向的变化d C =W H L πE z u (L -x )exp (-K L -x u )・d x (4)沿岸均匀排放的所有污染物在出口断面产生的浓度应为各微元产生的浓度的累加,数学表示为C =WH L ∫L 0exp (-K L -x u )πE z u (L -x )d x (5)该式难以求解积分,有两种处理方法:第一种方法为用有限求和代替积分.将河长L 分为N 等份,计算任一子河段排放污染源在出口产生的浓度,再进行叠加,计算公式为Δx =L N C =W H L 6N i =1exp [-K L -i Δx u ]πE z u (L -i Δx )Δx (6)令C +C 0exp (-K L u)=C S ,有W =[C S -C 0exp (-K L u )]H L 6Ni =1exp [-K L -i Δx u ]πE z u (L -i Δx )Δx ×86.4×0.365 (t/a )(7)式中C 0为入口断面浓度,取值根据上游功能区划确定.第二种方法是将污染源简化处理,为此近似地认为均匀排放的污染物在出流断面产生的浓度效应与同样的排污量在河段中部岸边排放产生的效应相当,即将区划内各排污口产生的浓度用河段中部集中排放产生的浓度代替,以此计算纳污能力:C 0・exp (-K L u )+W H πE z uL/2exp [-K L/2u ]=C S (8)37第29卷第4期韩龙喜,等 宽浅型河道纳污能力计算方法W =C S -C 0・exp (-KL u )exp [-K L/2u ]H πE z uL/2×86.4×0.365 (t/a )(9)图2 某宽浅河道功能区分布示意图Fig.2 Distribution of functional regions 214 计算方法及步骤图2所示为某宽浅型微弯天然河道功能区分布情况,该河道设计流量为Q ,设计水位为Z.下面给出纳污能力的计算流程及计算方法.各功能区中,饮用水源区、景观区有明确的定义.排污控制区指没有明确水环境功能、水质目标的水域,而过渡区通常设立在低功能区向高功能区过渡段之间,在过渡区内,上游的低功能水体完成向下游高功能水体的过渡,在过渡区的出口断面,水质达到下游高功能区的水质目标.纳污能力的计算流程如图3.图3 纳污能力的计算流程Fig.3 F low ch art of calculation of w ater environment cap acity以第二种算法为例,计算步骤如下:a.确定水力参数Q 和Z ,推求断面面积A ,u ,E z ;b.由C S 景、过渡区实际排污S 过推求排污控制区允许最大出流浓度C 排max .因C 排max exp (-K L 过u )+S 过H πE z u L 过/2exp (-K L 过2u )=C S 景,故C 排max =C S 景-S 过H πE z uL 过/2exp (-K L 过2u )exp (-K L 过u )(10) 特别地,若过渡区无排污,则令S 过=0.c.由C S 饮和C 排max 推求排污控制区纳污能力W 排.排污控制区入流浓度即饮用水源区的水质标准,因C S 饮exp (-K L 排u )+W 排H πE z uL 排/2exp (-K L 排2u )=C 排max 有W 排=C 排max -C S 饮exp (-KL 排u )exp (-K L 排2u )H πE z uL 排/2×86.4×0.365 (t/a )(11) d.由饮用水源区入流浓度C 饮入和C S 饮推求饮用水源区纳污能力W 饮.C 饮入取值由上游功能区、饮用水源区水质目标的相互关系确定,对C OD 类的污染因子,有C 饮入=47河 海 大 学 学 报2001年7月min (C SX ,C S 饮),则W 饮=C S 饮-C 饮入exp (-KL 饮u )exp (-K L 饮2u )H πE z uL 饮/2×86.4×0.365 (t/a )(12)若采用第一种方法计算纳污能力,可利用公式(7),采用相同的思路进行求解.2 算 例表1 纳污能力计算值T able 1 C alculated w ater environment cap acity污染源分布纳污能力/(t ・a -1)均匀分布32.3集中分布35.3 某宽浅型河段长2000m ,水面宽400m ,水深1m ,流量为20m 3/s ,功能区划为Ⅲ类水,相应的C OD 水质标准为8mg/L ,上游为饮用水功能区,相应的C OD 水质标准为6mg/L ,下游为农业用水区,C OD 的自净系数为0.1d -1,分别用污染源均匀分布、集中分布两种方法计算纳污能力.污染源概化为均匀分布计算时,河段分为10个子河段.横向分散系数由谢才公式求得水力坡度,再求得摩阻流速,最后由经验公式得到.两种方法所得纳污能力见表1.由表可知,两者结果相当.由此可知,污染源集中分布虽对污染源分布进行了简化处理,但却基本反映了原分布对环境水体的影响.3 结 论a.对宽浅型河流,本文提出了纳污能力的两种计算方法及计算公式,并给出不同功能区组合情况下的纳污能力计算方法,可用于水资源保护规划、水环境管理.b.对不同功能区相互衔接的情况,计算纳污能力时关键在于入、出流断面浓度的取值.对一般功能区,出流断面浓度即本功能区水质标准;对过渡区,出流断面浓度应满足下游功能区水质标准;对排污控制区,无出水水质标准,但其纳污能力通过其下游的过渡区而间接受到过渡区下游功能区的制约.入流断面浓度,受制于本功能区与上游功能区的相互关系,取上游功能区出水水质浓度.参考文献:[1]张书农.环境水力学[M].南京:河海大学出版社,1998.86~87.W ater E nvironment C apacity C alculating Methodfor Shallow 2Broad RiversHAN Long 2xi 1,ZHU Dang 2shen 2,YAO Q i 1(1.College o f Water Resources and Environment ,Hohai Univ.,Nanjing 210098,China ;2.Water Power Planning and Design Institute o f the Ministry o f Water Resources ,Beijing 100011,China )Abstract :When waste water is discharged into a shallow 2broad river ,pollutants cannot be mixed uniformly in the lateral direction ,and only the 2D water quality m odel can be used to calculate pollutant concentration.In this paper ,based on the 2D theoretical s olution ,a formula for the calculation of water environment capacity of shallow 2broad rivers is proposed.K ey w ords :functional regionalization ;shallow 2broad river ;generalization of pollution s ources ;water environment capacity57第29卷第4期韩龙喜,等 宽浅型河道纳污能力计算方法。
新兴江水域河流水功能区纳污能力分析计算
第54卷第4期 2018年4月甘肃水利水电技术GANSU WATER RESOURCES AND HYDROPOWER TECHNOLOGYVol .54,No .4 Apr . ,2018DOI : 10.19645/j .issn 2095-0144.2018.04.003.新兴江水域河流水功能区纳污能力分析计算林鸿敏(广东省水文局肇庆水文分局,广东肇庆526060)摘要:新兴江属珠江水系西江干流的支流,是重要的水上交通要道和农业灌就主渠道,也是沿岸城市的靓丽凤景线。
通 过对新兴江主干流和重要支流已经区划的河流水功能区进行分析,选用合理的纳污能力计算模型,计算新兴江水域各 河流水功能区的纳污能力,为各河流制定排污总量提供基础保障。
关键词:水功能区;纳污能力计算;分析;计算中图分类号:X 522文献标志码:B文章编号:2095-0144(2018)04-0010-03纳污能力是指在设计水文条件下,满足计算水 域的水质目标要求时,所能容纳的某种污染物的量 最大数量!1]。
水功能区是指为满足水资源合理开发 利用和保护的需求,根据水资源的自然条件和开发 利用现状,按照流域综合规划、水资源保护规划和 社会发展要求,依其主导功能划定并执行相应水环 境质量的水域!2]。
影响水体自净过程的因素很多,其 中主要因素包括:水体的水文条件、复氧能力、水 温、微生物数量和种类以及水体中污染物的组成与 浓度等。
河流纳污能力的计算必须综合考虑河流水 量、水质目标以及污染物降解能力等方面的影响, 在此基础上建立河流纳污能力的计算模型。
通过分 析计算得出河流的纳污容量,为水环境保护提供技 术支撑。
1计算范围与内容1.1计算范围新兴江水域目前共区划河流一级水功能区5 个,其中源头保护区1个,开发利用区4个。
二级区 划仅在开发利用区中进行,目前已经区划的河流二 级区共8个。
源头保护区水域需禁止排放污染物, 所以本次纳污能力计算范围为8个河流二级水功 能区[3]。
水功能区水域纳污能力及分阶段限制排污总量控制
第 4期
河北 联合 大 学学 报 ( 自然科 学 版 )
J o u r n a l o f He b e i U n i t e d U n i v e r s i t y( Na t u r a l S c i e n c e E d i t i o n )
业、 工 业 用水 区 3个 , 饮用 、 农业 、 工业 用 水 区 1 个L 2 ] 。
2 水 质达 标 分 析
以2 0 1 0年为 基准 年做 全指 标 ( 地表 水 环 境质 量 标 准 中 的常 规 检 测项 目) 和 双 指标 ( C OD、 NH。 一H) 评 价, 基准 年奉 节县 各 流域水 质较 好 , 水质 评价 为 Ⅱ一 Ⅲ类 , 由达 标分 析结 果可 以看 出 , 基 准 年水 功能 区总 的达 标 率为 8 8 . 8 9 。结 合奉 节县 的实际情 况 , 确定 奉节 县工 作 范 围内的 2 0 1 5 年 水 功能 区总达 标率 不变 , 与 基准 年 相 同仍 为 8 8 . 8 9 , 但 会通 过 控制水 功 能 区污 染 物 减量 使 水 质 有所 改 善 。2 0 2 0年 的水 功 能 区水 质 总 达标 率 提高 到 9 2 . 5 9 。奉 节县 水功 能 区达标 情况 见 表 1 。
3 污 染 源 调 查
据 调查 , 奉节 县 点污 染物 C OD入 河 排 放 总量5 . 6 1吨/ 年; 流域 面积
收 稿 日期 : 2 0 1 4 — 0 5 — 2 6
1 1 6
河 北联 合大 学学 报 ( 自然科 学版 )
河 和新 民河 等河 流上 。奉节 县面 污染 源范 围主要包 括奉 节 县农 业使 用 的 化肥 农 药 、 农村 的生 活 污水 及 生 活
我国现行水域纳污能力计算方法的思考
同期水质状况却未必都是超标 的 . 这种 控制 量对 于管 理工作 也就 失去 了实际
意义 . 因此很有必要 开展不同来水条件
总负荷 的 8 %左 右 。 0
非 点源 污 染 主要 有 以 下特 点 : 发 生具 有 随机 性 : 染物 的 来源 和 排放 污 点不 固定 . 放具 有 间歇 性 : 染 负 排 污
面源 产 生 的 污 染 负 荷 总氮 为 1. 22万
拟 .采 用 的模 拟 工 具 主 要 有 H P S F、
S T、W MM 等 WA S
显 现 出动态 变 化特 征 . 决定 了水体 的
纳 污能 力必 然是 一个 变数 如果仅按 照一个确定 的纳污能力作为控制 标准 . 而且这个量值偏于安全 . 么大多数时 那 段的污染负荷都会超过这个量值 但是
3排污口概化 .
《 算 规 程》 中对 排 污 口概 化 的 计 规定 为“ 多个 人河排 污 口的水 域 . 有 可
以 根 据 排 污 口 的 分 布 、排 放 量 和 对 水
如 . 磷 为 06 t . 源 污 染 负 荷 占 总 . / 面 6a
域水质 影响进行 简化 ” 对 于如何 简化 并无具 体规定 . 可操 作性 比较差 。 而且
收 稿 日期 : 0 1 1 — 2 2 1- 1 0
作 者 简 介 : 鑫 . 士 , 要从 事流 域 水 环 境 数 值 模 拟 研 究 。 赵 博 主
基 金 项 目 : 利 部 公 益 性 行 业 专 项 经 费 项 目“ 江 中下 游 干 流 纳污 总 量 控 制 研 究 ” 2 1 0 0 6 ; 江 水 利 委 员 会 长 江 科 学 院 中央 级 公 益 性 科 研 水 长 (0 0 1 0 )长 院 所 基 本 科 研 业 务 费 项 目 “ 域 纳污 能 力计 算 关 键 技 术 研 究 ” CK F 0 1 1 / + ) 助 。 水 ( S 2 1 0 0SH HL 资
河流纳污能力计算
QE,CE QR,CR
点细分为n个河段,由公式计算
出第i 河段的水环境容量为:
C0
x,k
CS
图 河段一维问题示意图
QEi CEi … i-1 QRi CRi C0i
QEi+
1
QEi+
2
CEi+1
CEi+2 Ci+2 i+1 … Cs
一、计算步骤
5
计算分析:以控制节点的水质目标为约束条件,(采用试算法) 对选定的水质模型进行反解(即逐步调整功能区内各入河排污口 的入河通量,直到控制节点的水质预测浓度达标为止),即可计 算出该水域的水环境容量。当计算水域内有多个入河排污口时, 试算过程应从现状入河量开始,原则上各入河口按同样的缩放系 数逐步调整其入河排污量。
在同一连续区段中,所有混合区长度总和小于对应大江大
河岸线总长的8%。
混合区浓度计算
(a) 岸边排放混合区示意图 图
图 河流污染带计算坐标示意图
采用二维混合模式:
(b)
污染带的等浓度线结构及功能分区方法
图 某排污口COD浓度场分布示意图
岸边排放,其浓度场的等浓度线沿水流方向成细长半椭圆状
狭长河道:当河流宽度小于200m时,单向河流使用一维断
面平均衰减模型,感潮河段使用潮平均一维衰减模型,感 潮河网采用一维潮平均有限分段水质模型。
大江大河:当河流宽度大于200m时,单向河流选用二维垂
向平均衰减模型,感潮河段使用潮平均二维衰减模型。
西江、东江、北江等河流的流量较大,稀释扩散能力强,
结构。 横断面分区及控制方法:即以任何一个断面(x,0)点为控 制点时,其上游为相应水质标准的污染带混合区,下游为功 能区。
沧州市水功能区纳污能力计算及污染物总量控制建议
化城镇用水管理 。
5 下 一 步 工 作 措 施
根 据 全 市 用 水 管 理 尚存 在 部 门 配 合 、 制 度 尚不 完
善、 规范管理等问题 , 在 今 后 的工 作 中将 进 ~ 步 解 决 , 特 别是超计划用水累进加价收 费问题要重 点抓好 。同时 ,
.
4 8 .水生态环境
水政 , 资 源 2 0 1 4 年第5 期
沧州市水功能区纳污能力计算及 污染物总量控制建议
王 长 明
( 河 北 省 沧州 市水 务局 , 沧州 0 6 1 0 0 0 )
摘 要 : 划 分 沧 州 区域 水 功 能 区 , 即 在 对 水 功 能 区 入 河 排 污 口进 行 系 统 全 面 的 调 查 监 测 与 评 价 基 础 上 , 根 据 水 功 能 区水 质 目标 和 水 体 自然 净 化 能 力 , 以水 功 能 区为 单元 , 计 算 水域 水 体 纳 污能 力 , 确 定 污 染 物 限 制 排 污 总 量
4 以节 水 为 前 提 , 依 靠 科 技 不 断 修 订 完 善 用 水 定 额
2 0 0 3年 天 津 市颁 布 了 用 水 定额 地 方 标 准 《 工业产 品 取水定 额 》 D B 1 2 / T 1 O 1 —2 0 0 3 、 《 农 业 用水 定 额 》 D B 1 2 /
2 0 0 3 , 分别 制定 3 0 6 项 工 业 产 品用 水 定 额 、 6 4项 农 业 用 水 定 额 以及 3 6 项 城市 生 活 用 水 定 额 共 计 4 0 6 项 用 水 定 额 。随 着 用 水 产 品 的 更 新 换 代 , 新 的生 产工 艺 、 生 产 技 术 的 出现 以 及 节 水 措 施 的 改 进 、 节水技 术 水平 的提 高 , 原 有 定 额 中单 位 产 品用 水 量 已经 发 生 了 明 显 变 化 , 定 额 中有 些 规 定 已不 再 适 用 , 为 此 市 水 务 局 在 原有 行 业 产 品
河流纳污能力计算与水环境治理关键技术
河流纳污能力计算与水环境治理关键技术水环境是指自然界中水的形成、分布和转化所处空间的环境。
是指围绕人群空间及可直接或间接影响人类生活和发展的水体,其正常功能的各种自然因素和有关的社会因素的总称。
水环境是乐在水边,宜居在水边。
水环境是有限的纳污,无意识、无概念的任意排污带来的必然是水环境的破坏。
当我们不再将水环境视作无所顾忌的纳污体时,我们就是从思想上慢慢开始重视水环境。
随着人口的不断增长和经济社会的快速发展,河流水“脏”问题已经变得日趋严重,河流生态遭到破坏,水体水质恶化,河流水环境亟待治理。
主要研究内容包括:河流基本资料的调查、排污口污染物的确定、河流纳污能力的计算及水环境治理的关键技术等。
一、河流基本资料。
河流基本资料应包括水文资料、水质资料、入河排污口资料、旁侧出、入流资料及河道断面资料等。
水文资料包括计算河段的流量、流速、比降、水位等。
资料应能满足设计水文条件及数学模型参数的计算要求。
水质资料包括计算河段内各水功能区的水质现状、水质目标等。
资料应能反映计算河段主要污染物,又能满足计算水域纳污能力对水质参数的要求。
入河排污口资料包括计算河段内入河排污口分布、排放量、污染物浓度、排放方式、排放规律以及入河排污口所对应的污染源等。
旁侧出、入流资料包括计算河段内旁侧出、入流的位置、水量、污染物种类及浓度等。
河道断面资料包括计算河段的横断面和纵剖面资料。
资料应能反映计算河段河道简易地形现状。
基本资料应出自有相关资质的单位。
当相关资料不能满足计算要求时,可通过扩大调查收集范围和现场监测获取。
二、污染物的确定。
污染物的确定应根据流域或区域规划要求,应以规划管理目标所确定的污染物作为计算河段水域纳污能力的污染物。
根据计算河段的污染特性,应以影响水功能区水质的主要污染物作为计算水域纳污能力的污染物。
根据水资源保护管理要求,应以对相邻水域影响突出的污染物作为计算水域纳污能力的污染物。
三、河流纳污能力计算。
河流纳污能力计算方法依据水域纳污能力计算规程(GB/T 25173-2010)。
关于现行水域纳污能力计算规程中河流计算模型的探讨
第44卷㊀第2期2018年4月环境保护科学EnvironmentalProtectionScienceVol.44㊀No.2Apr.2018ꎬ32~36收稿日期:2017-09-05基金项目:国家自然科学基金(51479064ꎻ51379060ꎻ51379058)资助作者简介:刘晓东(1972-)ꎬ男ꎬ博士㊁副教授ꎮ研究方向:环境与生态水力学㊁环境模拟等ꎮE-mail:xdliu@hhu edu cn环境综合整治关于现行水域纳污能力计算规程中河流计算模型的探讨刘晓东1ꎬ杨㊀婷1ꎬ石佳佳1ꎬ刘㊀朗2ꎬ吴㊀偲1ꎬ姜翠萍1(1 河海大学环境学院㊀浅水湖泊综合治理与资源开发教育部重点实验室ꎬ江苏㊀南京㊀210098ꎻ2 句容市水利农机局ꎬ江苏㊀句容㊀212400)㊀㊀摘㊀要:水域纳污能力确定是实施水功能区限制纳污的基本工作ꎬ现行的«水域纳污能力计算规程(GB/T25173-2010)»在实际应用中存在一定争议ꎮ文章在综述水域纳污能力计算方法的基础上ꎬ探讨了现行水域纳污能力计算规程中河流计算模型中的若干问题ꎬ推导了改进后的计算模型ꎬ提出相应的修改建议ꎬ为水域纳污能力计算和未来计算规程的修订提供参考ꎮ关键词:水域纳污能力ꎻ河流ꎻ水质模型㊀㊀中图分类号:X26ꎻX522㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀DOI:10.16803/j.cnki.issn.1004-6216.2018.02.006DiscussionoftheCodeofPracticeforComputationonPermissiblePollutionBearingCapacityofWaterBodiesintheCurrentCalculationProceduresLiuXiaodong1ꎬYangTing1ꎬShiJiajia1ꎬLiuLang2ꎬWuSi1ꎬJiangCuiping1(1 KeyLaboratoryofIntegratedRegulationandResourceDevelopmentonShallowLakesꎬMinistryofEducationꎬSchoolofEnvironmentꎬHohaiUniversityꎬNanjing210098ꎬChinaꎻ2 WaterConservancyandAgricultureBureauofJurongCityꎬJurong212400ꎬChina)㊀㊀Abstract:WaterpollutioncapacityisdeterminedtobethebasicworkforimplementationofpollutionlimitationinwaterfunctionalareasꎬandthereisagreatcontroversyinthepracticalapplicationofthecurrentCodeofPracticeforComputationonPermissiblePollutionBearingCapacityofWaterBodies(25173-2010GB/T).InthispaperꎬonthebasisofasurveyofwaterpollutantcapacitycalculationmethodꎬsomeproblemsinthecalculationmodeloftheexistingCodeofPracticeforComputationonPermissiblePollutionBearingCapacityofWaterBodiesarediscussedꎬandtheimprovedcalculationmodelisdeducedꎬwithcorrespondingsuggestionsputforwardsꎬprovidingreferenceforcalculationofwaterpollutioncapacityandrevisionoffuturecalculationprocedures.㊀㊀Keywords:WaterPollutionCapacityꎻRiverꎻWaterQualityModelCLCnumber:X26ꎻX522㊀㊀随着当代社会经济的快速发展和人们生活水平的进一步提高ꎬ使得公众对水环境的关注日益增加ꎬ对水资源的保护意识也逐渐增强ꎮ与此同时ꎬ大量污(废)水排入水体ꎬ使我国河流㊁湖泊等水域的水环境质量越来越差ꎬ也加剧了水资源短缺的情况ꎬ而水域纳污能力作为相关部门对水资源管理和配置的依据ꎬ也日益受到更多的关注ꎮ2011年中央1号文件要求实施最严格水资源管理制度ꎬ提出了 三条红线 的管理目标ꎬ水功能区限制纳污便是其中之一ꎮ而限制纳污则必须要计算出相应的水域纳污能力ꎬ故对纳污能力计算准确性的要求也逐渐提高[1]ꎮ而且由于水域纳污能力是建立在一定时期人们对水环境保护管理目标要求的水环境质量标准之上的ꎬ所以纳污能力具有社会和自然双重属性ꎬ更能反映当前的社会需求ꎬ更具实用性ꎬ所以对水域纳污能力计算的研究意义重大ꎮ纳污能力 一词最早源于1998年的全国水㊀第2期刘晓东㊀等:关于现行水域纳污能力计算规程中河流计算模型的探讨33㊀资源保护规划ꎬ2002年«中华人民共和国水法»首次在法律上明确了水域纳污能力的概念ꎬ并与水域限制排污总量一起构成我国水资源保护行业的重要基础ꎮ 纳污能力 根据个人的理解ꎬ定义也各不相同ꎬ«水域纳污能力计算规程(GB/T25173-2010)»(以下简称为«计算规程»)中ꎬ将 纳污能力 定义为 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域所能容纳的某种污染物的最大数量 ꎮ 纳污能力 概念的提出ꎬ为相关行业管理水资源提供了有效依据ꎮ1㊀水域纳污能力主要计算方法1 1㊀污染负荷计算法水域纳污能力的计算方法主要有两大类:污染负荷计算法和数学模型计算法ꎮ污染负荷计算法是根据现状污染物入河量确定水域纳污能力的方法ꎮ按照污染物入河量计算依据的不同又可以分为实测法㊁调查统计法和估算法ꎮ实测法是通过调查收集或实测入河排污口水量和污染物浓度计算污染物入河量ꎬ确定水域纳污能力ꎮ调查统计法是通过调查收集影响水功能区水质的陆域污染源及其排放量和入河系数计算污染物入河量ꎬ确定水域纳污能力ꎮ估算法是根据调查收集影响水功能区水质的陆域内的人口㊁工业产值㊁第三产业产值等和污染物排放系数计算污染物排放量ꎬ再根据入河系数估算污染物入河量ꎬ确定水域纳污能力ꎮ由于污染负荷计算法依据现状入河量确定水域纳污能力ꎬ其计算前提是在现状排污条件下功能区水质是满足计算水域的水质目标要求的ꎬ因此污染负荷计算方法只适用于水质现状较好㊁水质目标原则上维持现状水质的保护区和保留区以及现状水质较好㊁用水矛盾不突出的缓冲区ꎮ对于水质较差的保护区和保留区或者用水矛盾突出缓冲区ꎬ仍需采用数学模型法计算其纳污能力ꎬ并提出限制排污总量及其削减量意见ꎮ开发利用区的纳污能力根据各二级功能区的设计水文条件和水质目标等参数ꎬ选择数学模型法进行计算ꎮ1 2㊀数学模型计算法数学模型计算法是根据水域特性㊁水质状况㊁设计水文条件和水功能区水质目标值ꎬ应用数学模型计算纳污能力的方法ꎮ根据所采用数学模型的不同可以分为零维模型㊁一维模型㊁二维模型ꎬ文章根据对 满足计算水域的水质目标要求 理解的不同ꎬ可以分为总体达标法㊁断面控制法㊁混合区范围控制法㊁«计算规程»中的计算方法等ꎬ见图1ꎮ图1㊀水域纳污能力计算方法分类体系㊀㊀总体达标法是基于满足水域总体平均水质达标的前提下计算水域纳污能力的方法ꎮ该方法假设计算水域水质完全混合ꎬ数学模型大多采用零维水质模型ꎬ计算过程不考虑排污口位置分布ꎬ计算结果可以保证水域体积平均水质能够满足水功能区水质目标要求ꎮ如ꎬ梁音等[2]利用总体达标法计算了苏南运河水环境容量ꎮ控制断面达标法是基于满足控制断面达标的前提下计算水域纳污能力的方法ꎮ该方法认为功能区控制断面的水质达标ꎬ即为 满足计算水域的水质目标要求 ꎮ由于考虑了污染物空间不均匀性和控制断面位置差异ꎬ数学模型多采用一维水质模型或二维水质模型ꎮ在二维情况下即为控制点达标法ꎮ计算过程与概化排污口和控制断面的位置有关ꎬ根据断面的位置不同可分为段首控制法㊁段中控制法和段尾控制法3种[3-4]ꎮ计算结果可以保证控制断面水质能够满足水功能区水质目标要求ꎬ但不能保证水质总体达标ꎬ排污口下游至控制断面之间的水域存在超标现象ꎮ控制断面达标法由于与当前水功能区管理的目标较为一致ꎬ在水资源管理实践中得到了广泛的应用ꎮ如路雨等[4]ꎬ在一维河流水质模型下ꎬ探讨不同排污口位置㊁不同控制断面设定㊁不同稀释容量分配情景下的河流纳污能力计算方法ꎬ并以温州市飞云江河段为例ꎬ分析不同计算方法对河流纳污能力34㊀环境保护科学第44卷㊀计算结果的影响ꎻFangXiaoboetal[5]以75%和90%的基流量为设计流量ꎬ利用传统一维水质模型和QUAL2K模型分析钱塘江的纳污能力ꎻ孙昊元等[6]采用控制断面达标法计算了内秦淮河中段的纳污能力ꎻ吴慧秀[7]为克服实测排污资料的失真问题及无资料地区等问题ꎬ根据现有一维模型ꎬ推导出不含排污资料的纳污能力计算模型ꎮ混合区范围控制法是基于混合区范围控制的计算水域纳污能力的方法ꎮ该方法认为污染物排入河流后形成的混合区在一定范围内ꎬ即为 满足计算水域的水质目标要求 ꎮ数学模型多采用一维水质模型或二维水质模型ꎬ计算结果与排污口位置和混合区范围控制准则有关ꎮ对于一维水域ꎬ通常通过混合区长度来控制ꎬ对于二维水域ꎬ可以通过混合区长度㊁宽度或面积来控制ꎮ该方法主要应用于宽浅型水域ꎬ如向军[8]采用二维水质模型ꎬ选择化学需氧量㊁氨氮作为污染指标ꎬ对柳州市柳江进行纳污能力计算ꎻ马欢[9]使用一维和二维水质模型对松花江哈尔滨段水环境容量进行计算ꎻ王胜艳等[10]根据长江秦州段水动力特征和实际情况建立二维非稳态水量 水质数值模型ꎬ并计算该江段纳污能力ꎻWangFei-er[11]等在水质分析模拟程序的帮助下ꎬ制定污染物总量控制方案ꎬ并计算了西城河的纳污能力ꎮ现行的«计算规程»为我国水功能区限制纳污管理发挥了重要的指导作用ꎬ但在实际应用中也存在一定争议[1]ꎮ«计算规程»中的纳污能力计算方法是基于污染物稀释扩散原理来计算水域纳污能力ꎬ其基本计算公式如下:M=Q(Cs-Cx)式中:M为水域纳污能力ꎬg/sꎻQ为初始断面的入流流量ꎬm3/sꎻCs为水功能区水质目标ꎬmg/LꎻCx为计算水域代表断面(点)的水质浓度ꎬmg/Lꎮ该方法使河流㊁湖泊等水体纳污能力的计算简单㊁便捷ꎬ在水环境保护和水资源管理工作中得到广泛应用ꎮ如罗慧萍等[12]ꎬ针对河网区和湖库区分别采用一维㊁二维模型ꎬ计算了江苏省太湖流域水功能区纳污能力ꎮ但该方法在实际应用中存在较大争议ꎬ主要表现在:①计算公式来源于污染物均匀混合稀释假定ꎬ许多水体不满足这一假定ꎻ②计算公式在零维模型时没有考虑污染物的自净能力ꎬ而污染物自净能力是纳污能力的重要组成部分ꎻ③该方法没有与纳污能力的概念联系起来ꎬ物理意义不明确ꎬ计算结果难以保证 满足计算水域的水质目标要求 ꎮ2㊀关于«计算规程»中河流计算模型若干问题的探讨2 1㊀关于 水域纳污能力 的概念«计算规程»中给出的水域纳污能力的定义为 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域所能容纳的某种污染物的最大数量 ꎮ其中 最大数量 是指计算时段内该区域所能容纳的某种污染物的最大数量还是单位时间内所能容纳的最大数量ꎬ其表意不明ꎬ可能会造成不必要的误解ꎬ故建议修改为 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域单位时间内所能容纳的某种污染物的最大数量 或者 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域单位时间内所能容纳的某种污染物的最大负荷 ꎮ明确的指出该定义中的 最大数量 是在单位时间内的数量ꎬ使该定义更加明确ꎮ2 2㊀关于河流零维模型的讨论零维是一种理想状态ꎬ把所研究的水体如一条河或一个湖库看成一个完整的体系ꎬ当污染物进入这个体系后ꎬ立即完全均匀的分散到这个体系中ꎬ污染物的浓度不会随空间的变化而变化ꎮ适用于污染物均匀混合的小型河段ꎮ2 2 1㊀«计算规程»中纳污能力计算方法㊀河段污染物浓度按式(A 1)计算:c=(Qc0+QPcP)/(Q+QP)(A.1)式中:c为污染物浓度ꎬmg/Lꎻc0为初始断面的污染物浓度值ꎬmg/LꎻcP为排入该河段的废污水污染物浓度ꎬmg/LꎻQP为现有废污水的排放流量ꎬm3/sꎻQ为初始断面的入流流量ꎬm3/sꎮ相应的水域纳污能力按式(A.2)计算:M=(cs-c0)(Q+Qp)(A.2)㊀第2期刘晓东㊀等:关于现行水域纳污能力计算规程中河流计算模型的探讨35㊀式中:M为水域纳污能力ꎬg/sꎻcs为水质目标浓度值ꎬmg/Lꎮ2 2 2㊀修改建议㊀«计算规程»式(A.1)只考虑了水量稀释ꎬ没有考虑水体的自净能力ꎮ根据物质守恒定律ꎬ污染物转化只考虑综合降解ꎬ零维模型的基本方程为:Qc0+m=(Q+Qp)c+KVC式中:K为污染物综合衰减系数ꎬs-1ꎻV为该计算河段的体积ꎬm3ꎻm为污染物入河速率ꎬg/sꎮ从而推导出:c=(Qc0+m)/(Q+QP+KV)=(Qc0+QPcP)/(Q+QP+KV)(B.1)令c=cSꎬ相应的水域纳污能力修正式为:M=Q(cs-c0)+Qp(cs-cp)+KVCs=Q(cs-c0)+Qpcs+KVCs-m(B.2)相对于公式(A.2)ꎬ该公式考虑了污染物自净和功能区现有的污染物入河量对纳污能力的影响ꎮ2 3㊀关于河流一维模型的讨论2 3 1㊀«计算规程»中纳污能力计算方法㊀河段污染物浓度按式(A.3)计算:cx=c0exp(-Kxu)(A.3)式中:cx为流经x距离后的污染物浓度ꎬmg/Lꎻx为沿河段的纵向距离ꎬmꎻu为河道断面平均流速ꎬm/sꎮ相应水域纳污能力按式(A.4)计算:M=(cs-cx)(Q+Qp)(A.4)入河排污口位于计算河段的中部时(即x=L/2时ꎬL为计算河段的长度)ꎬ水功能区下断面的污染物浓度及其相应的水域纳污能力按式(A.5)和(A.6)计算:cx=L=c0exp(-KLu)+mQexp(-KLu)(A.5)M=(cs-cx=L)(Q+Qp)(A.6)2 3 2㊀修改建议㊀由于式(A.3)中的c0是指排污口完全混合断面的浓度ꎬ与«计算规程»中功能区初始断面浓度不是同一个概念ꎬ建议采用另一符号表示ꎬ如cᶄ0ꎮ式(A.3)可以修改为:cx=cᶄ0exp(-Kxu)(B.3)式中:cᶄ0为排污口完全混合断面浓度ꎬmg/Lꎻx为沿河段距排污口的纵向距离ꎬmꎮ式(A.4)存在问题前面已经分析过ꎮ公式(A.5)存在错误ꎬ建议修改为式(B.4):cx=L=QQ+Qpc0exp(-KLu)+mQ+Qpexp(-KL2u)(B.4)若忽略Qpꎬ公式简化为:cx=L=c0exp(-KLu)+mQexp(-KL2u)(B.5)按照功能区末断面达标的要求ꎬ推导出水域纳污能力按式(B.6)计算:M=(cs-QQ+Qpc0exp(-KLu))exp(KL2u) (Q+Qp)-m(B.6)若忽略Qpꎬ公式简化为:M=(cs-c0exp(-KLu))exp(KL2u)Q-m(B.7)2 4㊀关于河流二维模型的讨论2 4 1㊀«计算规程»中纳污能力计算方法㊀对于顺直河段ꎬ忽略横向流速及纵向离散作用ꎬ且污染物岸边排放且不随时间变化时ꎬ二维对流扩散方程为式(A.7):u∂C∂x=∂∂y(Ey∂C∂y)-KC(A.7)式中:Ey为污染物的横向扩散系数ꎬm3/sꎻy为计算点到岸边的横向距离ꎬmꎮ忽略污水流量的影响ꎬ式(A.7)的解析解按式(A.8)计算:c(xꎬy)=c0+mhπEyxuexp-vy24Eyxæèçöø÷æèçöø÷exp-Kxvæèçöø÷(A.8)式中:c(xꎬy)为计算点污染物垂线平均浓度ꎬmg/Lꎻh为水深ꎬmꎮ以岸边污染物浓度作为下游控制断面的控制浓度时ꎬ即y=0ꎬ岸边污染物浓度按式(A.9)计算:36㊀环境保护科学第44卷㊀c(xꎬ0)=(c0+m/hπEyxv)exp(-Kx/v)(A.9)相应的水域纳污能力按式(A.10)或式(A.11)计算:M=(cs-c(xꎬy))Q(A.10)当y=0时ꎬM=(cs-c(xꎬ0))Q(A.11)2 4 2㊀修改建议㊀式(A.8)和式(A.9)中的v和式(A.7)中的u是同一物理量ꎬ均为计算河道的纵向平均流速ꎬ故应统一用u来表示ꎮc0用cᶄ0代替ꎬ表示排污口处断面浓度ꎮ式(A.8)㊁(A.9)建议修改为式(B.8)和(B.9)ꎮc(xꎬy)=cᶄ0+mhπEyxuexp-uy24Eyxæèçöø÷æèçöø÷exp-Kxuæèçöø÷(B.8)c(xꎬ0)=cᶄ0+mhπEyxuæèçöø÷exp-Kxuæèçöø÷(B.9)同样依据功能区末断面达标推导水域纳污能力计算公式ꎬ将入河排污口概化为计算河段的中部(即x=L/2)时ꎬ水域纳污能力计算公式为:M=(csexp(KL2u)-c0exp(-KL2u))ˑhπEyLu/2-m(B.10)3㊀算例某水域功能区河段长10kmꎬ水面宽400mꎬ水深1mꎬ河流设计流量为20m3/sꎬ功能区划为«地表水质量标准»(GB3838-88)中的Ⅲ类水ꎬ相应的COD水质标准为8mg/Lꎬ上游为饮用水功能区ꎬ相应的COD水质标准为6mg/Lꎬ下游为农业用水区ꎬCOD的自净系数为0 1d-1ꎬ功能区污水流量为0 1m3/sꎬ污染物浓度为100mg/Lꎮ排污口概化在河段中部ꎬ分别用«计算规程»中的计算模型和文中提出修改后的计算模型其纳污能力ꎮ横向扩散系数根据经验公式估算为0 7m2/sꎬ两类方法在3种不同的模型下所得的纳污能力见表1ꎮ表1㊀纳污能力计算值计算模型水域纳污能力/g s-1«计算规程»中的计算模型修改后的模型零维100 2127 8一维117 6123 1二维120 4186 5㊀㊀由表1可知ꎬ采用文中修改后的方法计算得到的纳污能力略大于用«计算规程»中方法计算得的结果ꎬ这是由于前者充分考虑了自净能力ꎬ而后者没有考虑或未充分考虑水体的自净能力ꎮ4㊀结论针对«计算规程»中的河流计算模型存在的未充分考虑污染物自净能力㊁物理意义不明确的问题ꎬ采用总体达标法和控制断面达标法推导了改进的河流纳污能力计算模型ꎬ提出了相应的修改建议ꎮ算例计算结果表明ꎬ改进后的计算模型由于充分考虑了水体自净能力ꎬ计算结果略大于依据«计算规程»的计算结果ꎮ相对于原模型ꎬ计算结果更科学㊁物理意义更明确ꎬ为水域纳污能力计算规程的进一步修订提供参考ꎮ参考文献[1]赵㊀鑫ꎬ黄㊀茁ꎬ李青云.我国现行水域纳污能力计算方法的思考[J].中国水利ꎬ2012(1):29-32.[2]梁㊀英ꎬ唐㊀扬ꎬ吴娅明ꎬ等.基于MIKE11的苏南运河镇江至无锡段水环境容量计算与污染物削减模型研究[J].污染防治技术ꎬ2016ꎬ29(3):5-9.[3]周孝德ꎬ郭瑾珑ꎬ程㊀文ꎬ等.水环境容量计算方法研究[J].西安理工大学学报ꎬ1999ꎬ15(3):1-6.[4]路㊀雨ꎬ苏保林.河流纳污能力计算方法比较[J].水资源保护ꎬ2011ꎬ27(4):5-9.[5]FangXiaoboꎬZhangJianyingꎬMeiChengxiaoꎬetal.Theassimilativeca ̄pacityofQiantangRiverwatershedꎬChina[J].WaterandEnvironmentJournalꎬ2014ꎬ28(2):192-202.[6]孙昊元ꎬ李昊宸ꎬ缪国斌.南京市内秦淮河中段水环境容量的计算与研究[J].江苏水利ꎬ2012(9):34-36.[7]吴慧秀.无排污资料感潮河段纳污能力一维模型推导研究[J].辽东学院学报(自然科学版)ꎬ2016ꎬ23(2):108-110.[8]向㊀军.柳州市柳江纳污能力计算[J].人民珠江ꎬ2006(4):51-53.[9]马㊀欢.松花江哈尔滨段水环境容量研究[D].哈尔滨:哈尔滨工业大学ꎬ2006.[10]王胜艳ꎬ王为攀ꎬ黄㊀勇.长江泰州段水域纳污能力研究分析[J].水资源开发与管理ꎬ2017ꎬ2(9):29-32.[11]WangFeierꎬLiYananꎬYangJiaꎬetal.ApplicationofWASPmodelandGinicoefficientintotalmasscontrolofwaterpollutants:acasestudyinXichengCanalꎬChina[J].DesalinationandWaterTreat ̄mentꎬ2016ꎬ57(7):2903-2916.[12]罗慧萍ꎬ逄㊀勇ꎬ徐心彤.江苏省太湖流域水功能区纳污能力及限制排污总量研究[J].环境工程学报ꎬ2015ꎬ9(4):1559-1564.。
柳州市柳江纳污能力计算
州 市 水 资 源 综 合规 划 的 重要 内容之 一 。 关键 词 : 质 模 型 ; 解 系数 ; 污 能 力 ; 江 水 降 纳 柳
中图分类号 : 82 X 3
文献标识码 : B
文章 编号 :0 1 25 2o 14o5.3 10. 3 (o6 o-o  ̄ 9 0 其 中, c 即水功 能区的水 质 目标 。
4 ㈩ 式 中 —/A设 计 流 速 , /s p— — 设 计 流 量 , ssA— —() U= Q— m ; m/ ; 过
水 断面面积, 2 m。
根据柳 州水文站 的流量 及流速推 算 出各 计算单 元的设
计 流 量及 设 计 流速 , 果 见 表 1 成 。 3 计 算原 则 3 1 排 污 口 的概 化 .
当 B>20m时 , 岸反 射项 很小 可忽 略 不记 , 式 简化 为 : 0 对 公
W HT )【( yxk = ( “ c , e(百 t { )p M
( M ) 8 . vx / .6 4 4 ‘
) c 。p 一o e Jx
() 3
收 稿 日期 :060 . ; 回 日期 :0 6 60 20 -1 4 修 2 20- -6 0
二维水质模型进行计算。计算公式如下 :
c,= ( (ye 一 )x p
[ ( )e 一 +p p x (
)o c {+ ) c p_ Fra bibliotek . Q p
) 】 )
式 中 c , ) ( y—— 污染物质 浓度 ; —— 降解系数 ; K ——沿
河道方 向变 量 ;——沿 河 宽 方 向变 量 ; ——流 速 ; y “ C — 排 污 E上 游 污 染 物 质 浓 度 ; 。 — 排 污 E废 水 O — l Q— l 排 放 量 ; p — 排 污 I废 水 排 放 浓 度 ; C— Z l 日— — 平 均 水
大连市主要水功能区水域纳污能力及限制排污总量分析
表 1 涉及河流一览表
序号 河流名称 序号 河流名称 序号 河流名称 序号 河流名称
1 湖里河 8 大沙河 15 马栏河 22 牧城驿河
2 英那河 9 长山河 16 凌水河 23 李屯河
M =(CS -CX=L)(Q+Qp)
(3)
式中:Cx=L为水功 能 区 下 断 面 污 染 物 浓 度,mg/L;L
为计算河段长度,m;m为污染物入河速率,g/s;M 为
水域纳污能力,g/s;Q为初始断面入流流量;Qp为废 污水排放流量,m3/s。
312 湖(库)均匀混合模型
污染物平均浓度按式 4计算:
大连市境 内 河 流 属 黄、渤 海 水 系,河 网 比 较 发 育,多独流 入 海。 域 内 主 要 河 流 为 碧 流 河、复 州 河、 大沙河、庄河、湖里河、英那河、登沙河等。全市多年 平均水 资 源 总 量 330亿 m3,其 中 地 表 水 资 源 量 327亿 m3,地下水资源量 70亿 m3。 13 社会经济
合大连地区实际情况,采用设计水文条件如下:
321 河流的设计流量 采用 1956-2000年 45a实测水文资料枯水期
2020年 第 2期 (第 48卷)
黑 龙 江 水 利 科 技 HeilongjiangHydraulicScienceandTechnology
文章编号:1007-7596(2020)02-0014-03
No22020 (TotalNo48)
大连市主要水功能区水域纳污能力及限制排污总量分析
张 贺
(大连大水规划设计有限公司,辽宁 大连 116000)
SL 348-2006 水域纳污能力计算规程
S L 中华人民共和国水利行业标准 SL 348—2006水域纳污能力计算规程 Code of practice for computation on allowable permittedassimilative capacity of water bodies2006—10—23发布 2006—12—01实施 中华人民共和国水利部 发布前 言根据水利部水利水电技术标准制修订计划安排,按照《水利技术标准编写技术规定》(SL 1-2002),制定《水域纳污能力计算规程》。
《水域纳污能力计算规程》共7章22节111条和1个附录,主要技术内容有:——总则和术语——适用范围和基本程序;——设计水文条件及计算方法;——数学模型计算法的计算条件、模型、参数和方法;——污染负荷计算法的计算条件和方法;——合理性分析与检验。
本标准批准部门:中华人民共和国水利部本标准主持机构:水利部水资源管理司本标准解释单位:水利部水资源管理司本标准主编单位:长江流域水资源保护局本标准出版、发行单位:中国水利水电出版社本标准主要起草人:洪一平 程晓冰 袁弘任 石秋池穆宏强 刘 平 敖良桂 吴国平本标准审查会议技术负责人:朱党生本标准体例格式审查人:金 玲目 次1 总则 (1)2 术语 (2)3 基本程序 (4)4 河流纳污能力数学模型计算法 (6)4.1 一般规定 (6)4.2 基本资料调查收集 (6)4.3 污染物的确定 (7)4.4 设计水文条件 (8)4.5 河流零维模型 (8)4.6 河流一维模型 (8)4.7 河流二维模型 (9)4.8 河口一维模型 (9)5 湖(库)纳污能力数学模型计算法 (10)5.1 一般规定 (10)5.2 基本资料调查收集 (11)5.3 污染物的确定 (12)5.4 设计水文条件 (12)5.5 湖(库)均匀混合模型 (12)5.6 湖(库)非均匀混合模型 (12)5.7 湖(库)富营养化模型 (13)5.8 湖(库)分层模型 (13)6 水域纳污能力污染负荷计算法 (14)6.1 一般规定 (14)6.2 基本资料调查收集 (14)6.3 污染物的确定 (15)6.4 实测法 (15)6.5 调查统计法 (15)6.6 估算法 (16)7 合理性分析与检验 (18)附录 数学模型及参数 (20)条文说明 (34)1 总 则1.0.1 为规范全国水域纳污能力计算技术要求、基本程序和方法,制定本规程。
河流纳污能力计算
成果合理性分析:在水环境容量模型计算的基础上,结合上下游 关系、左右岸关系、水质评价和污染源调查结果、混合区范围等 因素,进行合理性分析。此外,应结合水功能区水质评价和污染 源调查分析,建立污染源与水质目标之间的输入响应关系,进行 参数的校核和反馈调整,核定控制单元内允许纳污量。
二、主要技术问题
只要水质标准和控制点确定之后,其混合区、功能区和等浓度 线即随之确定,应当指出所谓功能区和混合区是针对某一水质 标准相对而言的概念。
4、计算单元和控制节点(断面)
原则上以水功能区为基本单元; 由于容量计算模型中河道流量、流速等参数都是取常数,而
天然河流的中上述参数是沿程变化的; 如果河流的长度较大,当以控制断面达标为约束条件反算容
kn 0.07~0.15
0.07 0.1 0.06~0.2 0.1~0.15 0.03~0.3 无 0.05~0.1 0.1 0.1~0.35 0.05~0.1 0.05
三、案例分析
• 案例1:单一河道水功能区纳污能力计算 • 案例2:河流多个水功能区纳污能力计算 • 案例3:混合区纳污能力计算
三、案例分析
2
水文资料调查及设计水文条件的确定:收集研究水域水下地形、 水文站的水文资料(河宽、水深、流速、流量、坡度和弯曲系数 )等,明确每一个河段或水库的水文设计条件。对没有资料的河 段,采取水文比拟等方法确定其水文条件。
一、计算步骤
3
水质控制节点的确定:根据水功能区划和水域内的水质敏感点位 置分析,确定水质控制断面的位置和控制标准。对于大江大河( 和大型水库),则需根据水体的功能用途和环境管理的要求,确 定混合区的控制边界及水质保护目标。
(3)形状:河流混合区一般为岸边窄长水域距下游控制断 面有足够的安全距离,且不超过河宽的1/3;河流混合 区长度不允许超过1200~1500m。 整个河段的封闭性混合区是不允许的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水域纳污能力计算规程
一、总前提
1、由于水体自身水质无法承受再添加因子限值(见表1),必须根据本污染源给水体带来的污染物质量,进行水体纳污能力的核算;
2、依据《中华人民共和国水污染防治法》精神,以污染物质量折算污染程度进行水体纳污能力核算,可利用以往(实验)数据改进计算;
3、本规程所示计算方法,仅适用于单一污染物的纳污能力计算。
二、评价原理
(1)污染物与水体自身水质要求对比。
根据《国家质量标准:淡水水体自身水质要求》表1中给出的污染物最大允许浓度值与本污染源排放的污染物浓度差值计算,如下式:
A1=∑Cb-C’b
其中:
A1 表示给水体带来的污染程度;
Cb 为表1中给出的污染物最大允许浓度值;
C’b 为本污染源排放的污染物浓度;
(2)A1折算水体纳污能力。
根据水体吸纳污染物容忍能力特征,以SD折算污染程度,如下式:SD=A1/Cb
其中:
SD 表示水体纳污能力;
Cb 为表1中给出的污染物最大允许浓度值。
三、SD计算规程
1、计算方法
以A1折算水体纳污能力的方法即:
SD=A1/Cb
由于SD也代表污染浓度的增加百分比,可根据A1的数值确定污染浓度的增加比例。
2、SD划分
SD值数小于或等于1时,表明水体纳污能力足够,可接受本污染源额定排放;
(1)SD值大于1小于1.25时,表明水体纳污能力较足够,可接受本污染源有一定调整的排放;
(2)SD值大于1.25小于1.5时,表明水体纳污能力有限,只能接受本污染源有较大调整的排放;
(3)SD值大于1.5时,表明水体纳污能力较差,本污染源不能排放,必须停止排放;
(4)SD值大于1.75时,表明水体纳污能力极差,需将排放量减少到
极低,乃至停止排放;
四、核算示例
以XX污染源某月排放水量为200m3/d,污染物浓度分别如表2所示,
按照SD计算规程,求出水体纳污能力。
结果:SD =0.935,∴水体纳污能力足够,可以接受本污染源额定排放。