人教版数学九年级上册 25、3 用频率估计概率 教案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25. 3用频率估计概率

教学目标

(1)知识与技能目标

学会依据问题特点,用频率来估计事件发生的概率。

(2)过程与方法目标

提高发现问题、提出问题、分析问题、解决问题的能力,体会概率的基本思想,感受到概率在问题决策中的重要作用,进一步树立数据的观念。

(3)情感态度价值观目标

养成学数学、用数学的意识,体验数学的应用价值。

目标解析:1、能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性. 知道大量重复试验时频率可作为事件发生概率的估计值.

2、结合生活实例,能进一步明晰频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.

3、在经历用试验的方法探究概率的过程中,培养学生的动手能力、处理数据的能力,进一步增强统计意识、发展概率观念,同时培养学生实事求是的态度、勇于探索的精神及交流与协作精神.

教学重、难点

重点:了解用频率估计概率的必要性和合理性.

难点:教师要注意提问的准确性,并且举恰当的例子,使学生深入理解用频率估计概率,避免出现不必要的枝节。

三、教学问题诊断分析

1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件(如:认为姚明一次罚篮的结果进与不进是等可能的)会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.

2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率. 概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关. 频率与概率是从量变到质变,是对立统一的. 对于初学者,对两者关系的理解,还需要一个循序渐进的过程.

3、容易忽略“大量重复试验”这个用频率估计概率前提条件. 这一问题的出现也是对概率思想的内涵把握不够所致. 概率是针对大量重复试验而言的,如果试验次数太少,试验频率可能会与理论概率值产生较大的偏差,进而不能合理的估计概率.

教学流程

(一)情景引入:

问题1:姚明罚篮一次命中概率有多大?

播放“NBA”(美国男子篮球职业联赛)火箭队VS老鹰队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:姚明罚进的概率有多大?

学生先思考、讨论、发言后媒体出示甲、乙、丙的说法:

甲:100% 姚明是世界明星嘛!乙:50% 因为只有进和不进两种结果,所以概率为50%. 丙:80% 姚明很准的,大概估计有80%的可能性.

同学们,你们同意谁的观点?

学生充分交流后,老师对不同说法进行适当的评价,并借机复习用列举法求概率的条件,引

导学生分析进与不进的可能性不相等,不能用列举法来求概率.

师:那它究竟有没有规律,或者说还有没有其它的办法探求概率呢?

屏幕上闪烁显示08—09赛季姚明罚篮命中率86. 6%.

师:姚明的命中率从何而来?(统计结果)

怎么统计的?(罚中个数与罚球总数的比值)这个比值叫什么?(这实际上就是频率,这种方法实际上就是用频率估计概率)

在此基础上,导出课题.

(二)试验探究

问题2:怎样用频率估计概率?

1、抛掷一枚硬币正面(有数字的一面)向上的概率是二分之一,这个概率能否利用刚才计算命中率方法──通过统计很多掷硬币的结果来得到呢?

2、试验一(掷硬币试验)(配合亲切童声播放)

全班共分10个小组,每小组8人,共抛50次,推荐组长一名,组长不参与抛掷.

表1(个人抛掷情况统计表)

表2(小组抛掷情况统计表)

表3(硬币抛掷统计表)

问题3:分析试验结果及史上数学家大量重复试验数据,大家有何发现?

3、分析数据

全班填写表3得到硬币正面向上频率的同时,教师在黑板上绘制折线图,完成后教师提问:

①随着抛掷次数的增加,“正面向上”的频率在哪个数字的左右摆动?

②随着抛掷次数的增加,“正面向上”的频率在0. 5的左右摆动幅度有何规律?(学生从折线图1中难以发现)

师:接下来,我们增加试验次数,看看有什么新的发现,历史上有许多数学家为了弄清其中

的规律,曾坚持不懈的做了成千上万次的掷硬币试验.

引导学生关注数学家的严谨,师:还有一位数学家,做了八万多次的试验.

观察频率在0. 5附近摆动幅度有何规律?

观察折线图2:

③请大家分析,两个折线图反映的规律有何区别?什么原因造成了不同?学生得出:图一,试验次数少一些,“正面向上”的频率在0. 5左右摆动的幅度大一些.

④你们认为出现的规律与试验次数有何关系?(试验次数越多频率越接近0. 5,即频率稳定于概率.)

⑤数学家为什么要做那么多试验?

⑥当“正面向上”的频率逐渐稳定到0. 5时,“反面向上”的频率呈现什么规律?概率与频率稳定值的关系是什么呢?

师生共同小结:至此,我们就验证了可以用计算罚篮命中率的方法来得到硬币“正面向上”的概率.

(三)揭示新知

问题4:为什么可以用频率估计概率?

师:其实,不仅仅是掷硬币有规律,人们在大量的生产生活中发现:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率也总在一个固定数附近摆动,显示出一定的稳定性.

引出瑞士数学家雅各布·伯努利最早阐明频率具有稳定性,介绍其家族前后三代共出13位大数学家和大物理学家,进行数学史的教育.

师:由于大量重复试验的频率具有稳定性,由此可根据这个稳定的频率来估计概率.

归纳:一般地,在大量重复试验中,如果事件A发生的概率m/n会稳定在某个常数p附近,那么事件A发生的概率P(A)=P.

教师指出这是从统计的角度给出了概率的定义,也是探求概率的一种新方法,列举法仅限于

相关文档
最新文档