人教版初中数学知识点总结济南临沂青岛小班一对一辅导机构大智学校2012年中考必看
初中数学知识点归纳总结
初中数学知识点归纳总结
初中数学是一门基础而又重要的学科,它是学习高中数学和更高层次
数学的基础。
以下是初中数学的主要知识点的归纳总结:
1.整数与有理数:
整数的概念和性质、整数的四则运算、有理数的概念和性质、有理数
的加减乘除运算、绝对值的概念和性质
2.代数式与方程:
代数式的概念和性质、代数式的合并与因式分解、一元一次方程的概
念和性质、一元一次方程的解法、两元一次方程的解法
3.直线与角:
点、直线、线段、射线的概念与性质、平行线与相交线、夹角的概念
和性质、正交线的概念和性质
4.平面图形:
平行四边形的概念和性质、矩形、正方形、菱形的概念和性质、三角
形的概念和性质、三角形的周长和面积、相似三角形的概念和性质
5.坐标系与平面向量:
直角坐标系的概念和性质、平面向量的概念和性质、平面向量的运算、平面向量的应用
6.数量关系与函数:
等比数列的概念和性质、函数与方程、函数的概念和性质、函数的表
示与运算、函数的图像与性质
7.直角三角形与三角函数:
直角三角形的概念和性质、三角函数的概念和性质、三角函数的基本
关系、三角函数的图像
8.概率与统计:
事件与概率、概率的运算、统计的概念和性质、统计抽样调查、统计
图表的分析与应用
9.数据的运算:
分数的概念和性质、分数的运算、分数的化简、百分数的概念和性质、百分数的运算。
人教版初中数学重点知识点总结
人教版初中数学重点知识点总结一、数与代数。
1. 有理数。
- 有理数的分类:整数(正整数、0、负整数)和分数(正分数、负分数)。
- 数轴:规定了原点、正方向和单位长度的直线。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数互为相反数,a的相反数是-a,0的相反数是0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫乘方,a^n中a是底数,n是指数。
2. 实数。
- 无理数:无限不循环小数,如√(2)、π等。
- 实数的分类:有理数和无理数。
- 实数与数轴上的点一一对应。
- 平方根:如果x^2 = a(a≥0),那么x叫做a的平方根,记作x=±√(a),其中√(a)是a的算术平方根。
- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x=sqrt[3]{a}。
3. 代数式。
- 代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
人教版初中数学知识点总结
人教版初中数学知识点总结
初中数学是研究数学的重要阶段,对于学生的数学基础和逻辑思维能力的培养具有重要意义。
下面是人教版初中数学的知识点总结:
数与代数
1. 有理数:
- 包括整数、分数和小数;
- 有理数的四则运算,包括加减乘除;
- 有理数的比大小;
- 正数、负数及零的概念。
2. 整式与分式:
- 整式的加减乘除;
- 分式的加减乘除。
3. 一元一次方程与一元一次不等式:
- 一元一次方程的解法,包括整数解、分数解和无解的情况;
- 一元一次不等式的解法,包括整数解集和解集的表示法。
4. 数论:
- 素数与合数;
- 最大公约数与最小公倍数。
几何与图形
1. 平面图形:
- 角的概念,包括锐角、直角、钝角和平角;
- 三角形、四边形和多边形的特性;
- 直线、射线和线段的特性。
2. 空间图形:
- 三棱锥、四棱锥、棱柱、棱台的特性;
- 球、圆柱、圆锥、圆台的特性。
3. 相似与全等:
- 两个图形相似的判定方法和性质;
- 两个图形全等的判定方法和性质。
4. 坐标与直角坐标系:
- 坐标的概念和表示法;
- 直角坐标系的构建和使用。
数据与概率
1. 数据和统计:
- 统计图表的制作和分析;
- 数据的中位数、众数和平均数。
2. 概率与统计:
- 试验、样本空间和事件的概念;
- 事件发生的概率计算。
以上是人教版初中数学的主要知识点总结。
通过掌握这些知识,学生可以建立起坚实的数学基础,并能够运用数学方法解决实际问题。
人教版【初中数学】知识点总结-全面整理(超全)
人教版初中数学知识点总结目录七年级数学(上)知识点 (2)第一章有理数 (2)第二章整式的加减 (7)第三章一元一次方程 (9)第四章图形的认识初步 (11)七年级数学(下)知识点 (12)第五章相交线与平行线 (12)第六章平面直角坐标系 (16)第七章三角形 (17)第八章二元一次方程组 (23)第九章不等式与不等式组 (24)第十章数据的收集、整理与描述 (26)八年级数学(上)知识点 (28)第十一章全等三角形 (28)第十二章轴对称 (30)第十三章实数 (31)第十四章一次函数 (33)第十五章整式的乘除与分解因式 (34)八年级数学(下)知识点 (37)第十六章分式 (37)第十七章反比例函数 (40)第十八章勾股定理 (41)第十九章四边形 (42)第二十章数据的分析 (46)九年级数学(上)知识点 (47)第二十一章二次根式 (47)第二十二章一元二次根式 (49)第二十三章旋转 (51)第二十四章圆 (53)第二十五章概率 (55)九年级数学(下)知识点 (61)第二十六章二次函数 (61)第二十七章相似 (64)第二十八章锐角三角函数 (66)第二十九章投影与视图 (68)七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大的数-小的数 > 0,小的数-大的数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:a.零不能做除数,无意义即13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n=a n 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次方与近似数370的精确度一样.1、错。
人教版初中数学中考复习知识点归纳总结全册
人教版初中数学中考复习知识点归纳总结
全册
第一章:有理数
1. 有理数的概念和表示方法
- 有理数是可以表示为两个整数的比例的数,包括整数、分数
和小数。
- 有理数可以用分数的形式表示,也可以用小数的形式表示。
2. 有理数的比较和大小关系
- 有理数可以通过大小关系进行比较,可以使用大小符号(<, >, =)进行表示。
3. 有理数的加法和减法
- 有理数之间可以进行加法和减法运算,运算结果仍为有理数。
...
第二章:代数式及其计算
1. 代数式的概念和性质
- 代数式是由数、字母和运算符号组成的表达式。
- 代数式可以进行加法、减法、乘法和除法运算。
2. 代数式的加法和减法
- 代数式之间可以进行加法和减法运算,运算结果仍为代数式。
...
第三章:方程及其应用
1. 方程的概念和解的概念
- 方程是含有未知数的等式。
- 方程的解是能使方程成立的值。
2. 一元一次方程
- 一元一次方程是一个未知数的一次方程。
- 解一元一次方程的方法包括移项、合并同类项、化简和求解。
...
(继续列举下一章节的内容)
总结
本文档总结了人教版初中数学中考的重点知识点,包括有理数、代数式及其计算、方程及其应用等多个章节的内容。
每个章节介绍
了该主题的概念、性质和解题方法。
这些知识点是中考数学复习的
重点内容,希望能对同学们的复习提供帮助。
人教版【初中数学】知识点总结-全面整理96516
人教版初中数学知识点总结目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步 四个章节的内容.第一章 有理数二.知识概念1. 有理数:(1) 凡能写成q (p,q 为整数且p 0)形式的数,都是有理数.正整数、0、负整数统称整数; p正分数、负分数统称分数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1) 只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2) 相反数的和为 0a+b=0 a 、b 互为相反数.4. 绝对值: (1) 正数的绝对值是其本身,0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值 的意义是数轴上表示某数的点离开原点的距离; a (a 0) a =0 (a =0) 或 a = a (a 0) ;绝对值的问题经常分类讨 - a (a 0) - a (a0) 论;(2)有理数的分类: 正有理数 ① 有理数零 负有理数 正整数 正分数 有理数 正整数 整数零 负整数 负整数 负分数 分数 正分数负分数(2) 绝对值可表示为: 知识框架5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0 大,负数永远比0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;( 5 )数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是1;a 若ab=1 a 、b 互为倒数;若ab=-1a、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0 相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n 为正偶数时: (-a)n =a n或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0 的精确度与近似数25一样.2.近似数4 千万与近似数4000 万的精确度一样.3.近似数660 万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40 和6.4 是相等的.5.近似数3.7x10 的二次与近似数370的精确度一样.1、错。
人教版初中数学知识点总结(最新最全)
人教版初中数学知识点总结(最新最全)
一、代数
1. 整式
- 整式由常数、变量和运算符组成,可以进行加法、减法、乘法和乘方运算。
- 整式的基本性质包括结合律、交换律和分配律。
2. 一元一次方程
- 一元一次方程是指只含有一个未知数的一次方程。
- 求解一元一次方程的方法包括移项、合并同类项和化简等。
3. 二元一次方程组
- 二元一次方程组是指含有两个未知数的一次方程组。
- 通过消元法和代入法可以求解二元一次方程组。
4. 函数
- 函数是一种特殊的关系,每个自变量唯一对应一个因变量。
- 函数的图象可以用曲线表示,包括线性函数、二次函数和反比例函数等。
二、几何
1. 直线和角
- 直线是由一系列点组成的无限延伸的几何图形。
- 角是由两条射线共享一个端点形成的图形。
2. 三角形
- 三角形是由三条边和三个角组成的多边形。
- 三角形可以根据边长和角度分类,包括等边三角形、等腰三角形和直角三角形等。
3. 四边形
- 四边形是由四条边和四个角组成的多边形。
- 四边形包括矩形、正方形、菱形和梯形等。
三、概率与统计
- 概率与统计是研究事件发生可能性和数据分析的数学分支。
- 概率可以用来描述事件发生的可能性,统计可以用来分析和总结数据。
以上是人教版初中数学的知识点总结,希望对你有所帮助。
(以上内容仅供参考,具体内容请以教材为准)。
初中数学全部知识点总结
初中数学全部知识点总结
初中数学是中学阶段的基础学科,其知识体系较为丰富。
为了帮助同学们更好地掌握初中数学知识,本文将对初中数学的全部知识点进行总结。
一、数与代数
1.有理数的概念、性质和运算
- 有理数的分类:正数、0、负数
- 有理数的性质:相反数、倒数、绝对值
- 有理数的运算:加法、减法、乘法、除法、乘方
2.二元一次方程及其解法
- 二元一次方程的概念
- 解法:代入法、消元法
3.不等式及其解法
- 一元一次不等式的解法
- 一元一次不等式组的解法
4.函数的概念及性质
- 函数的定义
- 函数的性质:单调性、奇偶性、周期性
- 一次函数、二次函数、反比例函数、正比例函数
二、几何
1.平面几何图形及其性质
- 点、线、面的基本概念
- 三角形、四边形、圆的性质
2.平面几何的证明
- 证明方法:综合法、分析法、反证法
- 几何定理:勾股定理、相似三角形的性质、圆周角定理等3.解析几何
- 坐标系的概念
- 直线、圆的方程
- 点与直线、圆的位置关系
三、概率与统计
1.随机事件及其概率
- 随机事件的定义
- 概率的计算:古典概型、几何概型
2.统计图与统计表
- 条形图、折线图、饼图、频数分布直方图
- 平均数、中位数、众数、方差
四、综合应用
1.解决实际问题的方法
- 列方程
- 画图象
- 构造辅助线
2.数学建模
- 建立数学模型
- 求解数学模型
通过以上总结,相信同学们对初中数学的知识点有了更全面的了解。
新人教版初中数学知识点重难点归纳整理
新人教版初中数学知识点重难点归纳整理一、初中数学知识点总体概述初中数学是数学学科的一个重要组成部分,也是初中学生必修的一门课程。
初中数学的主要任务是培养学生综合运用数学知识,发展数学思维,提高解决数学问题的能力。
初中数学知识点主要包括代数、几何、函数、概率、统计等方面的内容。
其中,数与代数是初中数学的基础;几何涉及图形与空间的运用;函数是初步探讨数与几何之间的联系;概率与统计是初中数学的应用部分。
二、重难点归纳整理1. 代数代数是初中数学的重难点之一。
代数的基础是方程式的解法和一些代数法则的运用。
学生在这个阶段应该掌握以下重点内容:•一元一次方程的解法;•二元一次方程组的解法;•一元二次方程的解法;•代数表达式的化简;•因式分解和分式的运算;•式子的等价变形。
2. 几何几何也是初中数学的重点之一。
初中阶段的几何主要涉及图形的形状、大小、位置、方向和运动等方面的问题。
几何需要学生具备切实地操作能力和抽象迁移能力,尤其是能够通过图形模型解决实际问题。
学生在这个阶段应该掌握以下重点内容:•各种平面图形的构造与性质;•三角形的构造、性质及判定;•直线、角、周长与面积的计算;•勾股定理的运用;•空间几何中的图形与计算;•数轴及其应用。
3. 函数初中数学中的函数是初步掌握数与几何之间联系的一个关键环节。
学生应该学会根据函数的图像或表格来推断函数的性质以及绘制函数的图像,理解函数与自然界和社会现象之间的相互关系。
学生在这个阶段应该掌握以下重点内容:•线性函数的概念、图像及其性质;•平方函数、立方函数、绝对值函数的概念、图像及其性质;•一次函数和二次函数的关系;•函数的复合、反函数及其运算;•不等式中的代数式和函数式;•应用题中的函数建模。
4. 概率与统计概率与统计是初中数学的应用部分。
它对于学生提高对现实问题的理解和解决问题的能力有着非常重要的作用。
学生在这个阶段应该掌握以下重点内容:•概率的概念、计算方法及应用;•随机事件和样本空间的概念;•统计数据的收集、整理、分析及表示方法;•中心趋势度量和离散程度度量的计算及应用;•正态分布的概念、计算和应用。
七年级数学知识点汇总人教版
以下是七年级数学知识点的大致汇总(以人教版为参考):
1. 整数与有理数
- 整数的概念与表示方法
- 整数的加法、减法、乘法、除法运算
- 有理数的概念与表示方法
- 有理数的加法、减法、乘法、除法运算
2. 分数与比例
- 分数的概念与表示方法
- 分数的加法、减法、乘法、除法运算
- 分数与整数的混合运算
- 比例与比例的性质
- 比例的四种关系:等比例、反比例、合比例、复合比例
3. 代数初步
- 代数式的概念与基本运算
- 代数式的简化与展开
- 代数式的乘法公式与因式分解
- 一元一次方程与一元一次方程的应用
4. 几何初步
- 平面图形的基本概念:点、线、线段、角、三角形等- 角的分类与性质
- 三角形的分类与性质
- 直角三角形的勾股定理与应用
- 平行线与平行线的性质
5. 数据的收集与整理
- 数据的收集与整理方法
- 数据的图表展示(直方图、折线图、饼图等)
这仅是七年级数学知识点的大致汇总,具体的内容和深度可能会有些差异,具体以教材为准。
希望对您有所帮助!。
人教版【初中数学】知识点总结-全面整理
人教版初中数学知识点总结目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
人教版初中数学知识点总结(精华)
人教版初中数学知识点总结(精华)人教版初中数学知识点总结(精华)总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,为此我们要做好回顾,写好总结。
总结怎么写才不会千篇一律呢?下面是小编为大家整理的人教版初中数学知识点总结(精华),仅供参考,希望能够帮助到大家。
人教版初中数学知识点总结(精华)11.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。
2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
4.圆是定点的距离等于定长的点的集合。
5.圆的内部可以看作是圆心的距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的点的集合。
6.不在同一直线上的三点确定一个圆。
7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
10.经过切点且垂直于切线的直线必经过圆心。
11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
12.切线的性质定理圆的切线垂直于经过切点的半径。
13.经过圆心且垂直于切线的直线必经过切点14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
15.圆的外切四边形的两组对边的和相等外角等于内对角。
16.如果两个圆相切,那么切点一定在连心线上。
17.①两圆外离d>R+r②两圆外切d=R+r③两圆相交d>R-r)④两圆内切d=R-r(R>r)⑤两圆内含d=r)18.定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
完整版)初中数学知识点全总结(齐全)
完整版)初中数学知识点全总结(齐全)本文介绍了人教版七年级数学上册的四个章节,包括有理数、整式的加减、一元一次方程和图形的认识初步。
第一章介绍了有理数的相关知识。
有理数是指能写成分数形式的数,包括正整数、负整数、正分数、负分数和零。
数轴是一条直线,规定了原点、正方向和单位长度。
相反数是指符号相反的两个数,它们的和为0.绝对值是数轴上表示某数的点离开原点的距离,可表示为两种形式。
有理数比大小有一些规则,如正数的绝对值越大,这个数越大等。
此外,文章还介绍了互为倒数和有理数加、减、乘法的法则和运算律。
同号两数相加,异号两数相减,两数相乘时同号为正,异号为负。
有理数加法满足交换律和结合律,有理数减法等于加上相反数。
任何数同零相乘都得零。
本章主要介绍了有理数的基本概念和运算法则,以及科学记数法、有效数字、近似数精确位等相关概念。
重点强调了有理数的实际应用和解决实际问题的能力。
在教学中,应注重情境创设,培养学生的观察、归纳和概括能力,使学生建立正确的数感和解决实际问题的能力。
第二章主要介绍了整式的加减,包括单项式、多项式的概念,以及它们的系数和次数的定义。
通过本章的研究,应该使学生掌握整式的基本运算法则,提高他们的代数计算能力。
1.理解单项式、多项式和整式等概念,明确它们之间的区别和联系。
2.理解同类项,掌握合并同类项的方法,了解去括号时符号的变化规律,正确合并和去括号后进行整式的加减运算。
3.理解整式中字母的表示,整式的加减运算建立在数的运算基础上。
合并同类项和去括号的依据是分配律。
数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用含有字母的式子表示出来。
在本章研究中,老师可以采用小组讨论和合作研究等方式,帮助学生形成概念,培养他们的观察、分析、抽象和概括能力,以及应用意识。
第三章:一元一次方程一。
知识框架二。
知识概念1.一元一次方程:只有一个未知数,未知数的次数为1,并且未知数项的系数不为零的整式方程。
人教初中数学知识点总结
人教初中数学知识点总结初中数学主要分为四个部分:数与代数、几何与图形、函数与方程、统计与概率。
下面是对这四个部分的数学知识点进行总结。
一、数与代数:1.数的性质:自然数、整数、有理数、无理数等的性质。
2.整数的运算:加、减、乘、除及其混合运算。
3.分数的运算:加、减、乘、除及其混合运算;分数与整数的运算。
4.正数、负数的相互转化。
5.百分数与百分数的计算。
6.平方根、立方根及其运算。
7.实数的比较与排列。
8.代数式:运算、化简、因式分解、展开。
二、几何与图形:1.点、线、面的基本概念。
2.二维图形:线段、射线、角、三角形、四边形、平行四边形、平行线、垂直线、相交线等的性质与判定。
3.三维图形:球体、长方体、正方体、棱柱、棱锥等的性质与计算。
4.图形的相似、全等、对称性质的判断和应用。
5.图形的投影。
三、函数与方程:1.一元一次方程、一元一次方程组的基本概念。
2.一元一次方程及其应用:解方程、方程实际问题的应用。
3.一元二次方程与不等式:解方程、解不等式、方程与不等式的关系。
4.一元二次函数的性质与图像。
5.一元线性不等式、一元线性不等式组的基本概念。
四、统计与概率:1.数据的收集、整理与处理:频率分布表、频率直方图、折线图、扇形图等的绘制与应用。
2.四种中心大小的计算:平均数、中位数、众数、百分位数。
3.概率:简单随机事件与概率、事件的运算、概率的简单计算、概率与计数原理。
这些是人教版初中数学的主要知识点总结,详细内容还需根据各个年级和教材进行具体分析和补充。
【精编】人教版初中数学知识点总结(完整版)
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1. 有理数:(1) 凡能写成qp (p、 q为整数且p0) 形式的数、都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0 即不是正数、也不是负数;-a 不一定是负数、+a 也不一定是正数;不是有理数;(2) 有理数的分类: ①有理数正有理数零负有理数正整数正分数负整数负分数②有理数正整数整数零负整数分数正分数负分数2. 数轴:数轴是规定了原点、正方向、单位长度的一条直线.3. 相反数:(1) 只有符号不同的两个数、我们说其中一个是另一个的相反数;0 的相反数还是0;(2) 相反数的和为0 a+b=0 a、b 互为相反数.4.绝对值:(1) 正数的绝对值是其本身、0 的绝对值是0、负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: aa (a 0(a a (a 0)0) 或 a 0)a(a 0)a ( a 0);绝对值的问题经常分类讨论;5. 有理数比大小: ( 1)正数的绝对值越大、这个数越大; ( 2)正数永远比 0 大、负数永远比 0 小;( 3)正数大于一切负数; ( 4)两个负数比大小、绝对值大的反而小; (5)数轴上的两个数、右边的数总比左边的数大; ( 6)大数 -小数 > 0、小数 -大数 < 0.1 6. 互为倒数: 乘积为 1 的两个数互为倒数; 注意:0 没有倒数; 若 a ≠0、那么 a 的倒数是a若 ab=1 a 、b 互为倒数;若 ab=-1 a 、b 互为负倒数 .7. 有理数加法法则:( 1)同号两数相加、取相同的符号、并把绝对值相加;( 2)异号两数相加、取绝对值较大的符号、并用较大的绝对值减去较小的绝对值; ( 3)一个数与 0 相加、仍得这个数 . 8.有理数加法的运算律:( 1)加法的交换律: a+b=b+a ;( 2)加法的结合律: ( a+b ) +c=a+ (b+c ) . 9.有理数减法法则:减去一个数、等于加上这个数的相反数;即 a-b=a+ ( -b ) .10 有理数乘法法则:( 1)两数相乘、同号为正、异号为负、并把绝对值相乘; ( 2)任何数同零相乘都得零;( 3)几个数相乘、有一个因式为零、积为零;各个因式都不为零、积的符号由负因式的个数决定 .11 有理数乘法的运算律:( 1)乘法的交换律: ab=ba ;( 2)乘法的结合律: ( ab ) c=a ( bc ); ( 3)乘法的分配律: a (b+c ) =ab+ac .12 .有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数、a即 无意义 . 013.有理数乘方的法则: ( 1)正数的任何次幂都是正数;( 2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时 : (-a)nn 或(a-b) n=-(b-a) n、 当 n 为正偶数时 : (-a) n=a n或 (a-b) n=(b-a) n. 14.乘方的定义:( 1)求相同因式积的运算、叫做乘方;( 2)乘方中、相同的因式叫做底数、相同因式的个数叫做指数、乘方的结果叫做幂;15.科学记数法: 把一个大于 10 的数记成 a3 10n的形式、其中 a 是整数数位只有一位的数、 这种记数法叫科学记数法 .16. 近似数的精确位:一个近似数、四舍五入到那一位、就说这个近似数的精确到那一位 .17. 有效数字:从左边第一个不为零的数字起、到精确的位数止、所有数字、都叫这个近似=-a ;数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
(完整版)人教版【初中数学】知识点总结-全面整理(超全)(最新整理)
第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次方与近似数370的精确度一样.1、错。
前者精确到十分位(小数点后面一位),后者精确到个位数。
2、错。
4千万精确到千万位,4000万精确到万位。
3、对。
4、错。
人教版初中数学知识点总结[1]
人教版初中数学知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版初中数学知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版初中数学知识点总结(word版可编辑修改)的全部内容。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。
第一章 有理数一.知识框架二.知识概念 1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;—a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0a+b=0a 、b 互为相反数。
4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数 > 0,小数-大数 < 0.6。
人教版初中数学知识点总结
人教版初中数学知识点总结一、根本学问一、数与代数A、数与式:1、有理数:①整数→正整数,0,负整数;②分数→正分数,负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
肯定值:①在数轴上,一个数所对应的点与原点的距离叫做该数的肯定值。
②正数的肯定值是他的本身、负数的肯定值是他的相反数、0的肯定值是0。
两个负数比拟大小,肯定值大的反而小。
有理数的运算:带上符号进展正常运算。
加法:①同号相加,取一样的符号,把肯定值相加。
②异号相加,肯定值相等时和为0;肯定值不等时,取肯定值较大的数的符号,并用较大的肯定值减去较小的肯定值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,肯定值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个一样因数A的积的运算叫做乘方,乘方的结果叫幂,A 叫底数,N叫次数或指数。
混合挨次:先算乘法,再算乘除,最终算加减,有括号要先算括号里的。
2、实数无理数无理数:无限不循环小数叫无理数,例如:π=3.1415926…平方根:①假如一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。
②假如一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根;0的平方根为0;负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①假如一个数X的立方等于A,那么这个数X就叫做A的立方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
重点利用有理数的运算法则解决实际问题.体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。
教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
.第二章整式的加减一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第二章一元一次方程一.知识框架. .二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).4.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度=速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率=比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率;.. .(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h. 本章内容是代数学的核心,也是所有代数方程的基础。
丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
第三章 图形的认识初步知识框架本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角. 本章书涉与的数学思想:1.分类讨论思想。
在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。
2.方程思想。
在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。
在研究角的概念时,要充分体会对射线旋转的认识。
在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。
在进行直线、线段、角以与相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
七年级数学(下)知识点人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。
第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质对顶角的性质:对顶角相等。
10垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
.12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以与有关图形平移变换的性质,利用平移设计一些优美的图案. 重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以与这些的组织运用. 难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以与进行图案设计。