【2年模拟】(新课标)版高考数学一轮复习 9.6直线、圆锥曲线的综合问题
2024届高考一轮复习数学课件(新教材人教A版强基版):圆锥曲线中的综合问题全文
所以B→D=(x1-2,y1),B→E=(x2-2,y2),
则(x1-2)(x2-2)+y1y2=0,
将x1=ky1+m,x2=ky2+m代入上式得
(k2+1)y1y2+k(m-2)(y1+y2)+(m-2)2=0,
将
①
代
入
上
式
得
(k2+
1)
m2-4 k2+4
+
k(m
-
2)
-k2+2km4 +
(m
x1+x2=-8 267m,x1x2=4m227-3, y1y2=6x1x2+ 6m(x1+x2)+m2=24m2-3-2748m2+27m2, ∵O→A·O→B=0,∴x1x2+y1y2=0, 代入根与系数的关系得 m2=12,m=±2 3,满足 Δ>0, ∴直线 l 的方程为 y= 6x±2 3.
4k2+1
又直线 OP 的斜率为--12--00=12,且直线 OP 与 MQ 不重合,
所以MQ∥OP.
题型二 定点与定值
例 2 (2022·济南模拟)已知椭圆 C:ax22+by22=1(a>b>0)的左、右顶点分别为 A,B,点 P(0,2),连接 PA,PB 交椭圆 C 于点 M,N,△PAB 为直角三角 形,且|MN|=35|AB|. (1)求椭圆的标准方程;
设经过点F且斜率为k(k≠0)的直线的方程为y=kx+1,与曲线C的方 程联立得 y=kx+1, x32+y42=1, 消去 y 整理得(4+3k2)x2+6kx-9=0, Δ=36k2+4×9×(4+3k2)=144(1+k2)>0恒成立, 设M(x1,y1),N(x2,y2),
则|MN|= 1+k2|x1-x2|= 1+k2×4+Δ3k2=124+1+3kk22, x1+x2=-4+6k3k2,
直线和圆、圆锥曲线综合测试卷(新高考专用)(解析版)—2025年高考数学一轮复习
直线和圆、圆锥曲线综合测试卷专练(考试时间:120分钟;满分:150分)注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
则由椭圆的中心对称性可知可知AF1BF2为平行四边形,则可得△ABF2的周长为|AF当AB位于短轴的端点时,当围成的等腰三角形底边在x轴上时,当围成的等腰三角形底边在直线l因为tanα=2tanα21―tan2α2=2,且tanα2>所以k=tanθ=tanα2=5―12,或故选:B.5.(5分)(2024·西藏拉萨的最小值为()A.1453【解题思路】先设点的坐标,结合轨迹方程求参,再根据距离和最小值为两点间距离求解即可6.(5分)(2024·湖南邵阳点B在C上且位于第一象限,B.8 A.453【解题思路】由点A―1,8由点A―1,8在抛物线y23所以抛物线C的方程为y2设B(x0,y0),则x0>0,y0>由题意知F p2,0,又OP 显然直线AB的斜率不为由y2=2pxx=ty+p2,得y2―2pty显然直线BD的斜率不为由y2=2pxλp,得y2故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
如图,因为K OA=∠PDA=∠ODB,所以×|PA|⋅S△PAB=12故选:ABD.11.(6分)(2024·福建龙岩|AB|=8.过焦点F的直线C的准线与坐标轴的交点,则(A.若MF=3FN,则直线C.∠MON为钝角设M(x1,y1),N(x2,y 得y2―8my―16=所以y1y2=―16,x1∴x1x2+y1y2=4⟨⟩三、填空题:本题共3小题,每小题5分,共15分。
【3年高考】(新课标)版高考数学一轮复习 9.6直线、圆锥曲线的综合问题
【3年高考】(新课标)2016版高考数学一轮复习 9.6直线、圆锥曲线的综合问题A组2012—2014年高考·基础题组1.(2014课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.2.(2014辽宁,10,5分)已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为( )A. B. C. D.3.(2013课标全国Ⅰ,10,5分)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E 于A,B两点.若AB的中点坐标为(1,-1),则E的方程为( )A.+=1B.+=1C.+=1D.+=14.(2012福建,8,5分)已知双曲线-=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. B.4 C.3 D.55.(2012山东,10,5分)已知椭圆C:+=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为( )A.+=1B.+=1C.+=1D.+=16.(2012北京,12,5分)在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则△OAF的面积为.7.(2014北京,19,14分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点.若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.8.(2014天津,18,13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l 与该圆相切.求直线l的斜率.9.(2014广东,20,14分)已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.10.(2014陕西,20,13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.B组2012—2014年高考·提升题组1.(2014福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.62.(2014湖北,9,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.23.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.4.(2012课标全国,20,12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.5.(2014安徽,19,13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O 的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1∥A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.6.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.7.(2013辽宁,20,12分)如图,抛物线C1:x2=4y,C2:x2=-2py(p>0).点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O).当x0=1-时,切线MA的斜率为-.(1)求p的值;(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).8.(2013课标全国Ⅰ,20,12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.9.(2014湖南,21,13分)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.A组2012—2014年高考·基础题组1.D 易知直线AB的方程为y=,与y2=3x联立并消去x得4y2-12y-9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=-.S△OAB=|OF|·|y1-y2|=×==.故选D.2.D 易知p=4,直线AB的斜率存在,抛物线方程为y2=8x,与直线AB的方程y-3=k(x+2)联立,消去x整理得ky2-8y+16k+24=0,由题意知Δ=64-4k(16k+24)=0,解得k=-2或k=.因为直线与抛物线相切于第一象限,故舍去k=-2,故k=,可得B(8,8),又F(2,0),故k BF==,故选D.3.D 直线AB的斜率k==,设A(x1,y1),B(x2,y2),则①-②得=-·.即k=-×,∴=.③又a2-b2=c2=9, ④由③④得a2=18,b2=9.所以椭圆方程为+=1,故选D.4.A ∵抛物线y2=12x的焦点为F(3,0),∴c=3,又a=2,∴b=,∴双曲线的渐近线为y=±x,∴F到渐近线的距离d==,∴选A.5.D 由题意知a2=4b2,故椭圆C的方程为+=1.(*)又双曲线的一条渐近线方程为y=x,设它与椭圆的一个交点坐标为(m,m),由对称性及题意知8×m2=16,得m2=4,∴(2,2)在椭圆上,代入(*)式得b2=5,从而a2=20,故选D.6.答案解析由题意得kAB=tan 60°=,焦点F的坐标为(1,0),∴直线AB的方程为y-0=(x-1),由y=(x-1)与y2=4x联立解得x A=3.如图,作AM垂直于抛物线的准线,垂足为M.由抛物线定义知|AF|=|AM|=3+1=4.又|OF|=1,∠AFO=120°,∴S△OAF=|AF|·|OF|·sin 120°=×4×1×=.7.解析(1)由题意知,椭圆C的标准方程为+=1.所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c=.故椭圆C的离心率e==.(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.因为OA⊥OB,所以·=0,即tx0+2y0=0,解得t=-.当x0=t时,y0=-,代入椭圆C的方程,得t=±,故直线AB的方程为x=±.圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为y-2=(x-t),即(y0-2)x-(x0-t)y+2x0-ty0=0.圆心O到直线AB的距离d=.又+2=4,t=-,故d===.此时直线AB与圆x2+y2=2相切.综上,直线AB与圆x2+y2=2相切.8.解析(1)设椭圆右焦点F 2的坐标为(c,0).由|AB|=·|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则=.所以椭圆的离心率e=.(2)由(1)知a2=2c2,b2=c2.故椭圆方程为+=1.设P(x0,y0).由F1(-c,0),B(0,c),有=(x0+c,y0),=(c,c).由已知,有·=0,即(x0+c)c+y0c=0.又c≠0,故有x0+y0+c=0.①又因为点P在椭圆上,故+=1.②由①和②可得3+4cx0=0.而点P不是椭圆的顶点,故x0=-c,代入①得y0=,即点P的坐标为.设圆的圆心为T(x1,y1),则x1==-c,y1==c,进而圆的半径r==c.设直线l的斜率为k,依题意,直线l的方程为y=kx.由l与圆相切,可得=r,即=c,整理得k2-8k+1=0,解得k=4±.所以直线l的斜率为4+或4-.9.解析(1)由题意知c=,e==,∴a=3,b2=a2-c2=4,故椭圆C的标准方程为+=1.(2)设两切线为l1,l2,①当l1⊥x轴或l1∥x轴时,l2∥x轴或l2⊥x轴,可知P(±3,±2).②当l1与x轴不垂直且不平行时,x0≠±3,设l1的斜率为k,且k≠0,则l2的斜率为-,l1的方程为y-y0=k(x-x0),与+=1联立,整理得(9k2+4)x2+18(y0-kx0)kx+9(y0-kx0)2-36=0,∵直线l1与椭圆相切,∴Δ=0,即9(y0-kx0)2k2-(9k2+4)·[(y0-kx0)2-4]=0,∴(-9)k2-2x0y0k+-4=0,∴k是方程(-9)x2-2x0y0x+-4=0的一个根,同理,-是方程(-9)x2-2x0y0x+-4=0的另一个根,∴k·=,整理得+=13,其中x0≠±3,∴点P的轨迹方程为x2+y2=13(x≠±3).经检验P(±3,±2)满足上式.综上,点P的轨迹方程为x2+y2=13.10.解析(1)在C 1,C2的方程中,令y=0,可得b=1,且A(-1,0),B(1,0)是上半椭圆C1的左,右顶点.设C1的半焦距为c,由=及a2-c2=b2=1得a=2.∴a=2,b=1.(2)由(1)知,上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x-1)(k≠0),代入C1的方程,整理得(k2+4)x2-2k2x+k2-4=0.(*)设点P的坐标为(x P,y P),∵直线l过点B,∴x=1是方程(*)的一个根.由求根公式,得x P=,从而y P=,∴点P的坐标为.同理,由得点Q的坐标为(-k-1,-k2-2k).∴=(k,-4),=-k(1,k+2).∵AP⊥AQ,∴·=0,即[k-4(k+2)]=0,∵k≠0,∴k-4(k+2)=0,解得k=-.经检验,k=-符合题意,故直线l的方程为y=-(x-1).B组2012—2014年高考·提升题组1.D 设Q(cos θ,sin θ),圆心为M,由已知得M(0,6),则|MQ|====≤5,故|PQ|max=5+=6.2.A 解法一:设椭圆方程为+=1(a1>b1>0),离心率为e1,双曲线的方程为-=1(a2>0,b2>0),离心率为e2,它们的焦距为2c,不妨设P为两曲线在第一象限的交点,F1,F2分别为左,右焦点,则易知解得在△F1PF2中,由余弦定理得(a1+a2)2+(a1-a2)2-2(a1+a2)·(a1-a2)cos 60°=4c2,整理得+3=4c2,所以+=4,即+=4.设a=,b=,∴+=a·b≤|a|·|b|=×=×=,故+的最大值是,故选A.解法二:不妨设P在第一象限,|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理得m2+n2-mn=4c2.设椭圆的长轴长为2a1,离心率为e1,双曲线的实轴长为2a2,离心率为e2,它们的焦距为2c,则+===.∴===,易知-+1的最小值为.故=.故选A.3.B 依题意不妨设A(x1,),B(x2,-),则·=2⇒x1x2-=2⇒=2或=-1(舍去).当x1=x2时,有x1=x2=2,则S△ABO+S△AFO=2+=;当x1≠x2时,直线AB的方程为y-=(x-x1),则直线AB与x轴的交点坐标为(2,0).于是S△ABO+S△AFO=×2×(+)+×=+≥2=3当且仅当=时取“=”,而>3,故选B.4.解析(1)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA|=p.由抛物线定义可知A到l的距离d=|FA|=p.因为△ABD的面积为4,所以|BD|·d=4,即·2p·p=4,解得p=-2(舍去)或p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(2)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=|AB|,所以∠ABD=30°,m的斜率为或-.当m的斜率为时,由已知可设n:y=x+b,代入x2=2py得x2-px-2pb=0.由于n与C只有一个公共点,故Δ=p2+8pb=0,解得b=-.因为m的截距b1=,=3,所以坐标原点到m,n距离的比值为3.当m的斜率为-时,由图形的对称性可知,坐标原点到m,n距离的比值也为3.5.解析(1)证明:设直线l 1,l2的方程分别为y=k1x,y=k2x(k1,k2≠0),则由得A1,由得A2.同理可得B1,B2.所以==2p1,==2p2,故=,所以A1B1∥A2B2.(2)由(1)知A1B1∥A2B2,同理可得B1C1∥B2C2,C1A1∥C2A2.所以△A1B1C1∽△A2B2C2.因此=.又由(1)中的=知=.故=.6.解析(1)设直线l的方程为y=kx+m(k<0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0. 由于l与C只有一个公共点,故Δ=0,即b2-m2+a2k2=0,解得点P的坐标为.又点P在第一象限,故点P的坐标为P.(2)由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得d=.因为a2k2+≥2ab,所以≤=a-b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a-b.7.解析(1)因为抛物线C 1:x2=4y上任意一点(x,y)的切线斜率为y'=,且切线MA的斜率为-,所以A点坐标为,故切线MA的方程为y=-(x+1)+.因为点M(1-,y0)在切线MA及抛物线C2上,于是y0=-(2-)+=-,①y0=-=-.②由①②得p=2.(6分)(2)设N(x,y),A,B,x1≠x2,由N为线段AB中点知x=,③y=.④切线MA,MB的方程为y=(x-x1)+,⑤y=(x-x2)+.⑥由⑤⑥得MA,MB的交点M(x0,y0)的坐标为x0=,y0=.因为点M(x0,y0)在C2上,即=-4y0,所以x1x2=-.⑦由③④⑦得x2=y,x≠0.当x1=x2时,A,B重合于原点O,AB中点N为O,坐标满足x2=y.因此AB中点N的轨迹方程为x2=y.(12分)8.解析由已知得圆M的圆心为M(-1,0),半径r 1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M、N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为+=1(x≠-2).(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4.若l的倾斜角为90°,则l与y轴重合,可得|AB|=2.若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则=,可求得Q(-4,0),所以可设l:y=k(x+4).由l与圆M相切得=1,解得k=±.当k=时,将y=x+代入+=1,并整理得7x2+8x-8=0,解得x1,2=.所以|AB|=|x2-x1|=.当k=-时,由图形的对称性可知|AB|=.综上,|AB|=2或|AB|=.9.解析(1)因为e 1e2=,所以·=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2 .而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.。
【3年高考2年模拟】课标版文科数学一轮 第八节 直线与圆锥曲线
应有Δ>0,所以x1,x2(或y1,y2)是方程ax2+bx+c=0(或ay2+by+c=0)的两个根.
由根与系数的关系得x1+x2=-
b a
,x1·x2= c
a
或y1
y2
b a
,
y1 y2
c a
,以此结合
弦长公式可整体代入求值.A、B两点间的距离|AB|=⑥ 1 k2 |x1-x2| =
1 k 2 · (x1 x2 )2 4x1x2 (其中k为直线l的斜率),也可以写成关于y的形式,
用点差法求直线AB的斜率,设A(x1,y1),B(x2,y2)(x1≠x2),∵A,B都在椭圆上,
∴
x12 a2
x22
a2
y12 b2
y22 b2
1,两式相减得 x12 x22
a2 1,
+
y12
b2
y22
=0,
∴ (x1 x2 )(x1 x2 ) + ( y1 y2 )( y1 y2 ) =0,
(
)
A.1 B.2 C.1或2 D.0
答案 A 因为直线y= b x+3与双曲线的渐近线y= b x平行,所以它与双
a
a
曲线只有1个交点.
栏目索引
3.双曲线C:
x a
2 2
-
y2 b2
=1(a>0,b>0)的右焦点为F,直线l过焦点F,且斜率为k,则
直线l与双曲线C的左,右两支都相交的充要条件是 ( )
y y
kx 2 4
x
1,
得k2x2+(2k-4)x+1=0,
(*)
当k=0时,方程(*)只有一解,即直线与抛物线只有一个公共点,符合题意,
高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题
第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。
(全国通用版)高考数学一轮复习高考达标检测 圆锥曲线的综合问题——直线与圆锥曲线的位置关系(文)
高考达标检测(三十八) 圆锥曲线的综合问题——直线与圆锥曲线的位置关系一、选择题1.已知过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A ,B 两点,且点A 在第一象限,若|AF |=3,则直线l 的斜率为( )A .1 B. 2 C. 3D .2 2解析:选D 由题意可知焦点F (1,0),设A (x A ,y A ), 由|AF |=3=x A +1,得x A =2,又点A 在第一象限, 故A (2,22),故直线l 的斜率为2 2.2.若直线y =kx +2与抛物线y 2=x 有一个公共点,则实数k 的值为( ) A. 18 B .0 C. 18或0 D .8或0解析:选C 由⎩⎪⎨⎪⎧y =kx +2,y 2=x ,得ky 2-y +2=0,若k =0,直线与抛物线有一个交点,则y =2, 若k ≠0,则Δ=1-8k =0,∴k =18,综上可知k =0或 18.3.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2 B.32 C.355D.52解析:选B 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,两式相减得:x 1+x 2x 1-x 2a2=y 1+y 2y 1-y 2b2,则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 25a2. 由直线AB 的斜率k =15-612-3=1,∴4b 25a 2=1,则b 2a 2=54, ∴双曲线的离心率e =c a=1+b 2a 2=32. 4.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA ―→·MB ―→=0,则k = ( )A.12B.22C. 2D .2解析:选D 如图所示,设F 为焦点,取AB 的中点P ,过A ,B 分别作准线l 的垂线,垂足分别为G ,H ,连接MF ,MP ,由MA ―→·MB ―→=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,所以∠GAM =∠AMP =∠MAP , 又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF , 所以∠AFM =∠AGM =90°,则MF ⊥AB ,所以k =-1k MF=2.5.已知F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,A ,B 分别为其左、右顶点.O 为坐标原点,D 为其上一点,DF ⊥x 轴.过点A 的直线l 与线段DF 交于点E ,与y 轴交于点M ,直线BE 与y 轴交于点N ,若3|OM |=2|ON |,则双曲线的离心率为( )A .3B .4C .5D .6解析:选C 如图,设A (-a,0),B (a,0),M (0,2m ),N (0,-3m ). 则直线AM 的方程为y =2m a x +2m ,直线BN 的方程为y =3max -3m .∵直线AM ,BN 的交点D (c ,y 0), ∴2mc a +2m =3mc a -3m ,则ca=5,∴双曲线的离心率为5.6.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0.则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×4t 2-15=425·5-t 2, 故当t =0时,|AB |max =4105.二、填空题7.焦点是F (0,52),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为__________.解析:设所求的椭圆方程为y 2a 2+x 2b 2=1(a >b >0),直线被椭圆所截弦的端点为A (x 1,y 1),B (x 2,y 2).由题意,可得弦AB 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,且x 1+x 22=27,y 1+y 22=-37.将A ,B 两点坐标代入椭圆方程中,得⎩⎪⎨⎪⎧y 21a 2+x 21b2=1,y 22a 2+x22b 2=1.两式相减并化简,得a 2b 2=-y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-2×-6747=3,所以a 2=3b 2.又c 2=a 2-b 2=50,所以a 2=75,b 2=25. 故所求椭圆的标准方程为y 275+x 225=1.答案:y 275+x 225=18.经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,倾斜角为60°的直线与双曲线有且只有一个交点,则该双曲线的离心率为________.解析:∵经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,倾斜角为60°的直线与双曲线有且只有一个交点,∴根据双曲线的几何性质知所给直线应与双曲线的一条渐近线y =bax 平行, ∴b a=tan 60°=3,即b =3a , ∴c =a 2+b 2=2a ,故e =c a=2. 答案:29.抛物线x 2=4y 与直线x -2y +2=0交于A ,B 两点,且A ,B 关于直线y =-2x +m 对称,则m 的值为________.解析:设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x 2=4y ,x -2y +2=0消去y ,得x 2-2x -4=0.则x 1+x 2=2,x 1+x 22=1.∴y 1+y 2=12(x 1+x 2)+2=3,y 1+y 22=32.∵A ,B 关于直线y =-2x +m 对称, ∴AB 的中点在直线y =-2x +m 上, 即32=-2×1+m ,解得m =72. 答案:72三、解答题10.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,过右焦点F 2(c,0)垂直于x 轴的直线与椭圆交于P ,Q 两点且|PQ |=433,又过左焦点F 1(-c,0)作直线l 交椭圆于两点.(1)求椭圆C 的方程;(2)若椭圆C 上两点A ,B 关于直线l 对称,求△AOB 面积的最大值.解:(1)由题意可知|PQ |=2b 2a =433. ①又椭圆的离心率e =ca=1-b 2a 2=33,则b 2a 2=23, ② 由①②解得a 2=3,b 2=2, ∴椭圆的方程为x 23+y 22=1.(2)由(1)可知左焦点F 1(-1,0),依题意,直线l 不垂直x 轴,当直线l 的斜率k ≠0时,可设直线l 的方程为y =k (x +1)(k ≠0),则直线AB 的方程可设为y =-1kx +m ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =-1k x +m ,x 23+y22=1,整理得(2k 2+3)x 2-6kmx +3k 2m 2-6k 2=0,Δ=(-6km )2-4×(2k 2+3)(3k 2m 2-6k 2)>0,则m 2k 2-2k 2-3<0, ③ x 1+x 2=6km 2k 2+3,x 1x 2=3k 2m 2-6k 22k 2+3. 设AB 的中点为C (x C ,y C ), 则x C =x 1+x 22=3km 2k 2+3,y C =2k 2m2k 2+3. ∵点C 在直线l 上,∴2k 2m 2k 2+3=k ⎝ ⎛⎭⎪⎫3km 2k 2+3+1, 则m =-2k -3k, ④此时m 2-2-3k 2=4k 2+6k2+10>0与③矛盾,故k ≠0时不成立.当直线l 的斜率k =0时,A (x 0,y 0),B (x 0,-y 0)(x 0>0,y 0>0), ∴△AOB 的面积S =12·2y 0·x 0=x 0y 0.∵x 203+y 202=1≥2 x 203·y 202=63x 0y 0,∴x 0y 0≤62. 当且仅当x 203=y 202=12时取等号.∴△AOB 的面积的最大值为62. 11.已知抛物线E :y 2=2px (p >0)的焦点F ,E 上一点(3,m )到焦点的距离为4.(1)求抛物线E 的方程;(2)过F 作直线l ,交抛物线E 于A ,B 两点,若直线AB 中点的纵坐标为-1,求直线l 的方程.解:(1)抛物线E :y 2=2px (p >0)的准线方程为x =-p2,由抛物线的定义可知3-⎝ ⎛⎭⎪⎫-p 2 =4,解得p =2,∴抛物线E 的方程为y 2=4x .(2)法一:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,整理得y 2-y 1x 2-x 1 =4y 2+y 1(x 1≠x 2). ∵线段AB 中点的纵坐标为-1, ∴直线l 的斜率k AB =4y 2+y 1=4-1×2=-2, ∴直线l 的方程为y -0=-2(x -1),即2x +y -2=0. 法二:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0.设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2), ∵线段AB 中点的纵坐标为-1, ∴y 1+y 22 =4m2=-1,解得m =-12, ∴直线l 的方程为x =-12y +1,即2x +y -2=0.12.(2018·海口调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右顶点分别为A ,B ,其离心率e =12,点M 为椭圆上的一个动点,△MAB 面积的最大值是2 3.(1)求椭圆C 的方程;(2)若过椭圆C 右顶点B 的直线l 与椭圆的另一个交点为D ,线段BD 的垂直平分线与y 轴交于点P ,当PB ―→·PD ―→=0时,求点P 的坐标.解:(1)由题意可知⎩⎪⎨⎪⎧e =c a =12,12×2ab =23,a 2=b 2+c 2,解得a =2,b =3,所以椭圆方程为x 24+y 23=1.(2)由(1)知B (2,0),设直线BD 的方程为y =k (x -2),D (x 1,y 1), 把y =k (x -2)代入椭圆方程x 24+y 23=1,整理得(3+4k 2)x 2-16k 2x +16k 2-12=0,所以2+x 1=16k 23+4k 2⇒x 1=8k 2-63+4k 2,则D ⎝ ⎛⎭⎪⎫8k 2-63+4k 2,-12k 3+4k 2, 所以BD 中点的坐标为⎝ ⎛⎭⎪⎫8k 23+4k 2,-6k 3+4k 2,则直线BD 的垂直平分线方程为y --6k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x -8k 23+4k 2,得P ⎝ ⎛⎭⎪⎫0,2k 3+4k 2. 又PB ―→·PD ―→=0,即⎝ ⎛⎭⎪⎫2,-2k 3+4k 2·⎝ ⎛⎭⎪⎫8k 2-63+4k 2,-14k 3+4k 2=0,化简得64k 4+28k 2-363+4k 22=0⇒64k 4+28k 2-36=0,解得k =±34. 故P ⎝ ⎛⎭⎪⎫0,27或⎝⎛⎭⎪⎫0,-27.1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,设过右焦点的直线l 与椭圆C 交于不同的两点A ,B ,过A ,B 作直线x =2的垂线AP ,BQ ,垂足分别为P ,Q .记λ=|AP |+|BQ ||PQ |,若直线l 的斜率k ≥3,则λ的取值范围为__________.解析:∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,∴⎩⎪⎨⎪⎧2b =2,c a =22,a 2=b 2+c 2,解得a =2,b =c =1,∴椭圆C 的方程为x 22+y 2=1.∵过右焦点的直线l 与椭圆C 交于不同的两点A ,B , ∴设直线l 的方程为y =k (x -1),联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k x -1得(2k 2+1)x 2-4k 2x +2k 2-2=0,设A (x 1,y 1),B (x 2,y 2),y 1>y 2, 则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴λ=|AP |+|BQ ||PQ |=2-x 1+2-x 2y 1-y 2=4-x 1+x 2kx 1-1-k x 2-1=4-x 1+x 2kx 1+x 22-4x 1x 2=4-4k22k 2+1k⎝ ⎛⎭⎪⎫4k 22k 2+12-4×2k 2-22k 2+1=2k 2+2k=2+2k2.∵k ≥3,∴当k =3时,λmax = 2+23=263,当k →+∞时,λmin →2,∴λ的取值范围是⎝⎛⎦⎥⎤2,263. 答案:⎝ ⎛⎦⎥⎤2,263 2.已知动点M 到定点F (1,0)的距离比M 到定直线x =-2的距离小1. (1)求点M 的轨迹C 的方程;(2)过点F 任意作互相垂直的两条直线l 1,l 2,分别交曲线C 于点A ,B 和M ,N .设线段AB ,MN 的中点分别为P ,Q ,求证:直线PQ 恒过一个定点;(3)在(2)的条件下,求△FPQ 面积的最小值.解:(1)由题意可知,动点M 到定点F (1,0)的距离等于M 到定直线x =-1的距离, 根据抛物线的定义可知,点M 的轨迹C 是抛物线, 所以点M 的轨迹C 的方程为y 2=4x .(2)证明:设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2), 则点P 的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.由题意可设直线l 1的方程为y =k (x -1),k ≠0,由⎩⎪⎨⎪⎧y 2=4x ,y =k x -1得k 2x 2-(2k 2+4)x +k 2=0.Δ=(2k 2+4)2-4k 4=16k 2+16>0.因为直线l 1与曲线C 交于A ,B 两点, 所以x 1+x 2=2+4k2,y 1+y 2=k (x 1+x 2-2)=4k.所以点P 的坐标为⎝⎛⎭⎪⎫1+2k2,2k .由题知,直线l 2的斜率为-1k,同理可得点Q 的坐标为(1+2k 2,-2k ).当k ≠±1时,有1+2k2≠1+2k 2,此时直线PQ 的斜率k PQ =2k+2k1+2k2-1-2k2=k1-k2.所以直线PQ 的方程为y +2k =k1-k 2(x -1-2k 2),整理得yk 2+(x -3)k -y =0. 于是直线PQ 恒过定点E (3,0);当k =±1时,直线PQ 的方程为x =3,也过点E (3,0). 综上所述,直线PQ 恒过定点E (3,0). (3)由(2)得|EF |=2,所以△FPQ 面积S =12|EF |⎝ ⎛⎭⎪⎫2|k |+2|k |=2⎝ ⎛⎭⎪⎫1|k |+|k |≥4,当且仅当k =±1时,“=”成立, 所以△FPQ 面积的最小值为4.。
高考数学一轮复习《圆锥曲线》练习题(含答案)
高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。
高中数学 一轮复习 圆锥曲线的综合问题 含答案
1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.(一中月考)在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )2.(模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( )A.⎝⎛⎭⎫0,23B.⎝⎛⎭⎫-23,0 C.⎝⎛⎭⎫-23,23 D.⎝⎛⎭⎫-∞,-23∪⎝⎛⎭⎫23,+∞4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB |=________.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.(全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.题型二弦长问题设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左,右焦点,过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|P A|=|PB|,求E的方程.题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.命题点2 由中点弦解决对称问题例4 已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围.1.(泰安模拟)斜率为3的直线与双曲线x 2a 2-y 2b 2=1恒有两个公共点,则双曲线离心率的取值范围是( ) A .[2,+∞) B .(2,+∞) C .(1,3) D .(3,+∞)2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( ) A.74 B .2 C.94 D .43.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105 D.81054.(2017·天津质检)直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .05.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( ) A.54 B .5 C.52 D. 56.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .4 2B .8C .8 2D .167.(月考)在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________.8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则|AB |的最大值为________.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B的上方),且与y 轴交于点M ,则|MB ||MA |的取值范围为________.11.(模拟)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心. (1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程.12.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.13.(联考)已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中曲线E 于A ,B 两点,求△AOB 面积的最大值.1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.(2016·黑龙江鹤岗一中月考)在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )答案 D解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b 2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-ab x ,∵a >b >0,∴-ab<0,∴抛物线焦点在x 轴负半轴上,开口向左.2.(2016·青岛模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定答案 A解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( )A.⎝⎛⎭⎫0,23B.⎝⎛⎭⎫-23,0 C.⎝⎛⎭⎫-23,23 D.⎝⎛⎭⎫-∞,-23∪⎝⎛⎭⎫23,+∞ 答案 C解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝⎛⎭⎫-23,23. 4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB |=________. 答案 16解析 直线l 的方程为y =3x +1,由⎩⎪⎨⎪⎧y =3x +1,x 2=4y ,得y 2-14y +1=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=14,所以|AB |=y 1+y 2+p =14+2=16.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________. 答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1得x 2=4(1+m 2),所以x 1=4(1+m 2)=21+m 2,x 2=-21+m 2,所以|AB |=|x 1-x 2|=41+m 2, 所以|AB |=41+m 2≥4,即当m =0时,|AB |有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·烟台模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点;(2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③ 方程③根的判别式Δ=(8m )2-4×9×(2m 2-4) =-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解 (1)由已知得M (0,t ),P ⎝⎛⎭⎫t 22p ,t ,又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =pt x ,代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点. 题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当|AM |=|AN |时,求△AMN 的面积. (2)当2|AM |=|AN |时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 将直线AM 的方程y =k (x +2)(k >0)代入 x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0, 由x 1·(-2)=16k 2-123+4k 2,得x 1=2(3-4k 2)3+4k 2,故|AM |=|x 1+2|1+k 2=121+k 23+4k 2.由题设,直线AN 的方程为y =-1k (x +2),故同理可得|AN |=12k1+k 23k 2+4.由2|AM |=|AN |,得23+4k 2=k3k 2+4,即4k 3-6k 2+3k -8=0, 设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)有唯一的零点,且零点k 在(3,2)内,所以3<k <2.思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. 解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2],即43a =4ab 2a 2+b 2,故a 2=2b 2, 所以E 的离心率e =c a=a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c3.由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)D (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝⎛⎭⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32,选D. (2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2),则x 2136+y 219=1,且x 2236+y 229=1,两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2). 又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12, 故直线l 的方程为y -2=-12(x -4), 即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎨⎧ x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2b mx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,① 将AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2,② 由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则 |AB |=t 2+1·-2t 4+2t 2+32t 2+12.且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12 -2⎝⎛⎭⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围.解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ).再根据抛物线的定义得|AF |=2,即(2x )2+y 2=4,所以轨迹C 的方程为x 2+y 24=1. (2)设弦MN 的中点为P ⎝⎛⎭⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4. 两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝⎛⎭⎫-12=-1,y M +y N =2y 0, y M -y N x M -x N=-1k 代入上式得k =-y 02. 又点P ⎝⎛⎭⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m . 所以m =y 0+12k =34y 0. 由点P (-12,y 0)在线段BB ′上 (B ′,B 为直线x =-12与椭圆的交点,如图所示), 所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.1.(2016·泰安模拟)斜率为3的直线与双曲线x 2a 2-y 2b2=1恒有两个公共点,则双曲线离心率的取值范围是( )A .[2,+∞)B .(2,+∞)C .(1,3)D .(3,+∞) 答案 B 解析 要使直线与双曲线恒有两个公共点,则渐近线的斜率的绝对值应大于3,所以|b a|>3,所以e = 1+b 2a2>2, 即e ∈(2,+∞),故选B.2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( )A.74 B .2 C.94D .4 答案 C解析 易知直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0),∴|AB |为焦点弦.设A (x 1,y 1),B (x 2,y 2),则AB 中点N (x 1+x 22,y 1+y 22), ∴|AB |=x 1+x 2+p =4,∴x 1+x 22=74. ∴AB 中点到直线x +12=0的距离为74+12=94. 3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A .2 B.455 C.4105 D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5. ∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=2·(-85t )2-4×4(t 2-1)5 =425·5-t 2, 当t =0时,|AB |max =4105. 4.(2017·天津质检)直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是( ) A .1 B .2 C .1或2 D .0答案 A解析 因为直线y =b a x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点,故选A.5.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( )A.54 B .5 C.52D. 5 答案 D解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =b ax , 由方程组⎩⎪⎨⎪⎧y =b a x ,y =x 2+1消去y ,得x 2-b ax +1=0有唯一解, 所以Δ=(b a )2-4=0,b a=2, e =c a =a 2+b 2a = 1+(b a )2= 5. 6.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .4 2B .8C .8 2D .16答案 C解析 依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧ y =x -2,y 2=8x , 消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=4,x 1+x 2=12,则||F A |-|FB ||=|(x 1+2)-(x 2+2)|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =144-16=8 2.7.(2016·安顺月考)在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________.答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b ,代入y =x 2中,整理得x 2+x -b =0,令Δ=1+4b >0,所以b >-14. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b , 由(-12,12+b )在直线y =x +3上, 即12+b =-12+3,解得b =2, 联立⎩⎪⎨⎪⎧ y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧ x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1. 8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则|AB |的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,那么|AF |+|BF |=x 1+x 2+2,又|AF |+|BF |≥|AB |⇒|AB |≤6,当AB 过焦点F 时取得最大值6.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________. 答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2,∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3). 即3x +4y -13=0.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B 的上方),且与y 轴交于点M ,则|MB ||MA |的取值范围为________. 答案 (1,7+43)解析 由⎩⎪⎨⎪⎧ y =-2x +m ,3x 2-y 2-3=0,可得x 2-4mx +m 2+3=0, 由题意得方程在[1,+∞)上有两个不相等的实根,设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧ 2m >1,f (1)≥0,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),得x 1=2m -3(m 2-1),x 2=2m +3(m 2-1), 所以|MB ||MA |=x 2x 1=2m +3(m 2-1)2m -3(m 2-1)=-1+42- 3(1-1m2), 由m >1得,|MB ||MA |的取值范围为(1,7+43). 11.(2016·郑州模拟)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心.(1)求椭圆的方程; (2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程.解 (1)圆C 方程化为(x -2)2+(y +2)2=6,圆心C (2,-2),半径r = 6.设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 则⎩⎨⎧ 4a 2+2b 2=1,1-⎝⎛⎭⎫b a 2=⎝⎛⎭⎫222⇒⎩⎪⎨⎪⎧a 2=8,b 2=4. 所以所求的椭圆方程是x 28+y 24=1. (2)由(1)得到椭圆的左,右焦点分别是F 1(-2,0),F 2(2,0),|F 2C |=(2-2)2+(0+2)2=2< 6.所以F 2在C 内,故过F 2没有圆C 的切线,设l 的方程为y =k (x +2),即kx -y +2k =0.点C (2,-2)到直线l 的距离d =|2k +2+2k |1+k2, 由d =6,得|2k +2+2k |1+k 2= 6. 解得k =25或k =-2, 故l 的方程为2x -5y +22=0或2x +y +22=0.12.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. 解 (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1, y 2-y 1x 2-x 1=-1.由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3.因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧ x +y -3=0,x 26+y 23=1,解得⎩⎨⎧ x =433,y =-33或⎩⎪⎨⎪⎧ x =0,y= 3. 因此|AB |=463.由题意可设直线CD 的方程为y =x +n (-533<n <3),设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧ y =x +n ,x 26+y 23=1,得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积S =12|CD |·|AB |=869(9-n 2).当n =0时,S 取得最大值,最大值为863. 13.(2016·广州联考)已知点P 是圆O :x 2+y 2=1上任意一点,过点P 作PQ ⊥y 轴于点Q ,延长QP 到点M ,使QP →=PM →.(1)求点M 的轨迹E 的方程;(2)过点C (m,0)作圆O 的切线l ,交(1)中曲线E 于A ,B 两点,求△AOB 面积的最大值.解 (1)设点M (x ,y ),∵QP →=PM →,∴P 为QM 的中点,又PQ ⊥y 轴,∴P (x 2,y ). ∵点P 是圆O :x 2+y 2=1上的点,∴(x 2)2+y 2=1, 即点M 的轨迹E 的方程为x 24+y 2=1. (2)由题意可知直线l 不与y 轴垂直,故可设l :x =ty +m ,t ∈R ,A (x 1,y 1),B (x 2,y 2).∵l 与圆O :x 2+y 2=1相切, ∴|m |t 2+1=1,即m 2=t 2+1.① 联立⎩⎪⎨⎪⎧ x 24+y 2=1,x =ty +m ,消去x , 得(t 2+4)y 2+2mty +m 2-4=0.其中Δ=(2mt )2-4(t 2+4)(m 2-4)=16(t 2-m 2)+64=48>0.∴y 1+y 2=-2mt t 2+4,y 1y 2=m 2-4t 2+4.② ∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =[t (y 1-y 2)]2+(y 1-y 2)231 =t 2+1(y 1+y 2)2-4y 1y 2. 将①②代入上式得|AB |=t 2+1 4m 2t 2(t 2+4)2-4(m 2-4)t 2+4 =43|m |m 2+3,|m |≥1, ∴S △AOB =12|AB |·1 =12×43|m |m 2+3 =23|m |+3|m |≤2323=1, 当且仅当|m |=3|m |,即m =±3时,等号成立.。
专题9.6 直线与圆锥曲线(练)(解析版)
专题9.6 直线与圆锥曲线1.(四川省成都市龙泉驿区第一中学校2019届高三上入学)已知是抛物线的焦点,是该抛物线上两点,,则的中点到准线的距离为( )A .B . 2C . 3D . 4 【答案】C 【解析】由题意,是抛物线的焦点,所以,准线方程为, 设,所以,解得,所以线段的中点的横坐标为,所以线段的中点到该抛物线的准线的距离为,故选C .2.(2019·湖南高三月考(理))抛物线24y x =的焦点为F ,准线与x 轴的交点为M ,点Q 在抛物线上,且90MQF ∠=,则以MQ 为直径的圆的面积等于( )A.51π- B.51π+ C.()252π-D.()252π+【答案】A 【解析】 如图:设点Q (),x y ,由题可知,点()()1,0,1,0F M -,90MQF ∠=,O 为MF 中点,112OQ MF ∴==,即221x y +=,又24y x =,2221524x y x y x⎧+=⇒=-⎨=⎩ ()()2222211461252MQ x y x x x x =++=++=++=-以MQ 为直径的圆的面积等于25142S MQ ππ-==答案选A3.(2019·天津高考真题(理))已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A 和点B ,且(为原点),则双曲线的离心率为 A.B.C.2D.【答案】D 【解析】 抛物线的准线的方程为,双曲线的渐近线方程为,则有∴,,,∴.故选D.4.(浙江省金华十校2019届高考模拟)已知椭圆C :2214x y +=上的三点A ,B ,C ,斜率为负数的直线BC 与y 轴交于M ,若原点O 是ABC ∆的重心,且BMA ∆与CMO ∆的面积之比为32,则直线BC 的斜率为( )A .24-B .14-C .3-D .3-【答案】C 【解析】设11(,)B x y ,22(,)C x y .(0,)M m .33(,)A x y ,直线BC 的方程为y kx m =+. ∵原点O 是ABC ∆的重心,∴BMA ∆与CMO ∆的高之比为3, 又BMA ∆与CMO ∆的面积之比为32,则2BM MC =.即2BM MC =,1220x x ⇒+=…① 联立2244y kx m x y =+⎧⇒⎨+=⎩()222418440k x mkx m +++-=. 122814km x x k -+=+,21224414m x x k-=+…②,由①②整理可得:22223614m k m k =-+…③ ∵原点O 是ABC ∆的重心,∴()3122814kmx x x k =-+=+,3211222()[()2]14my y y k x x m k=-+=-++=-+. ∵223344x y +=,∴22222282()4()41441414km m k m k k -+=⇒+=++…④. 由③④可得2112k =,∵k 0<.∴36k =-. 故选:C .5.(2019·四川石室中学高三月考(理))已知抛物线C :22(0)y px p =>的焦点为F ,且F 到准线l 的距离为2,直线1l:0x my -=与抛物线C 交于P ,Q 两点(点P 在x 轴上方),与准线l 交于点R ,若||3QF =,则QRF PRFS S ∆∆=________.【答案】67【解析】因为F 到准线l 的距离为2,所以2p =,抛物线C :24y x =,(1,0)F .设11(,)P x y ,22(,)Q x y ,因为||3QF =,即22+1=3=2x x ⇒所以2y =-代入直线1l:0m =⇒=所以直线1l为:0x y --=由22004x y y y y x ⎧--=⎪⇒---=⎨⎪=⎩所以12y y =-,所以12y y -==152x = ,所以2167121==5112QRFPRFS QR QF x S PRPFx ∆∆++===++故填:676.(2019·安徽高三开学考试(理))已知抛物线2:4C x y =的焦点为F ,过F 作直线l 交抛物线于A 、B 两点,且2AF FB λ=(λ为非零常数).以A 为切点作抛物线C 的切线交直线1y =-于M 点,则MF 的长度为________.(结果用含λ式子表示). 【答案】1λλ+【解析】设点()11,A x y 、()22,B x y ,抛物线C 的焦点为()0,1F ,设直线AB 的方程为1y kx =+, 联立直线AB 的方程与抛物线C 的方程214y kx x y=+⎧⎨=⎩,消去y 得2440x kx --=, 由韦达定理得124x x k +=,124x x =-.()11,1AF x y =--,()22,1FB x y =-,2AF FB λ=,212x x λ∴-=,2121x x λ∴=-,2121214x x x λ∴=-=-,得2214x λ=.抛物线C 的函数解析式为24x y =,求导得2x y '=,则抛物线C 在点A 处的切线方程为()1112x y y x x -=-,即21124x x y x =-,联立211124y x x y x =-⎧⎪⎨=-⎪⎩,解得11221x x x y ⎧=-⎪⎨⎪=-⎩,所点112,12x M x ⎛⎫-- ⎪⎝⎭, 因此,1MF λλ====+, 故答案为:1λλ+.7.(2020·黑龙江萨尔图·大庆实验中学月考(文))已知椭圆2222:1x y E a b+=()0a b >>的半焦距为c ,原点O 到经过两点()(),0,0,c b 的直线的距离为12c ,椭圆的长轴长为 (1)求椭圆E 的方程;(2)直线l 与椭圆交于,A B 两点,线段AB 的中点为()2,1M -,求弦长.AB【答案】(1)221123x y +=;(2)10. 【解析】(1)经过两点()(),0,0,c b 的直线为:1x yc b+=即0bx cy bc +-=.由已知:原点到直线的距离12bc d c a ===即12b a =因为2a=,所以b =所以椭圆的标准方程为:221123x y +=(2)当直线l 斜率不存在时,线段AB 的中点在x 轴上,不合题意.所以直线l 的斜率存在,设为k ,则直线()12y k x +=-即为:21y kx k =--设()()1122,,,A x y B x y联立22214120y kx k x y =--⎧⎨+-=⎩得:()()22214821161680k x k k x k k +++++-= ()()22214821161680k xk k x k k +-+++-=显然>0∆ 则()122821414k k x x k++==+,解得12k = 则212216168214k k x x k+-⋅==+所以12AB x =-==8.(2019·天津高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程. 【答案】(I )12;(II )2211612x y +=.【解析】(I )解:设椭圆的半焦距为c 2b =,又由222a b c =+,消去b 得222)a c=+,解得12c a =, 所以,椭圆的离心率为12.(II )解:由(I )知,2,a c b ==,故椭圆方程为2222143x y c c+=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-, 因为点P 在x 轴的上方,所以3(,)2P c c ,由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c=+,解得2t =,因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l2=,解得2c =, 所以椭圆的方程为:2211612x y +=.9. (2020·广西钦州·高二期末(文))已知抛物线()220y px p =>的顶点为O ,焦点坐标为1,02⎛⎫ ⎪⎝⎭.(1)求抛物线方程;(2)过点()1,0且斜率为1的直线l 与抛物线交于P ,Q 两点,求线段PQ 的值. 【答案】(1)22y x =.(2)【解析】(1)∵22y px =焦点坐标为,02P ⎛⎫⎪⎝⎭∴122p =,1p =, ∴抛物线的方程为22y x =.(2)设直线l 方程为1x y =+,设()11,P x y ,()22,Q x y ,联立212x y y x=+⎧⎨=⎩ 消元得2220y y --=,∴120∆=>,122y y +=,122y y =-, ∴21211PQ y y =+-()221212114y y y y =+⋅+-()()221124226=+⋅-⋅-=.∴线段PQ 的值为26.10.(2019·浙江诸暨中学高二月考)如图,A 为椭圆2212x y +=的下顶点.过A 的直线l 交抛物线()220x py p =>于B ,C 两点,C 是AB 的中点.(1)求证:点C 的纵坐标是定值;(2)过点C 作与直线l 倾斜角互补的直线m 交椭圆于M ,N 两点.求p 的值,使得BMN ∆的面积最大. 【答案】(1)证明见解析;(2)914. 【解析】(1)易知()0,1A -,不妨设2,2t B t p ⎛⎫ ⎪⎝⎭,则22,24t t p C p ⎛⎫- ⎪⎝⎭,代入抛物线方程得:222224t t p p p -⎛⎫=⋅ ⎪⎝⎭,得:24t p =,∴42142C p p y p -==为定值. (2)∵点C 是AB 中点,∴BMN AMN S S ∆∆=,∵直线l的斜率()11322kt t--==,直线m斜率3kt'=-,∴直线m的方程:1322t y xt⎛⎫-=--⎪⎝⎭,即32y xt=-+,不妨记3mt=-,则l':2y mx=+,代入椭圆方程整理得:()2221860m x mx+++=,设()11,M x y,()22,N x y,则122821mx xm+=-+,122621x xm=+,22212223122121mMN m x x mm-=+-=++,A∴到MN的距离21dm=+,所以12AMNS MN d∆=⋅⋅22233221mm-=+2232323244242323mm=≤=-+-.取等号时,222323mm-=-,得272m=,所以229187tm==,29414tp==.1.(2020·山西运城·高三月考(理))已知抛物线21:4C y x=的焦点为F,O为坐标原点,点A在抛物线C 上,且2AF=,点P是抛物线C的准线上的一动点,则PA PO+的最小值为().A13B.13C.313D.6【答案】A【解析】抛物线的准线方程为1y=-,||2AF=,A∴到准线的距离为2,故A点纵坐标为1,把1y=代入抛物线方程可得2x=±.不妨设A在第一象限,则(2,1)A,点O 关于准线1y =-的对称点为(0,2)M -,连接AM , 则||||PO PM =,于是||||||||||PA PO PA PM AM +=+故||||PA PO +的最小值为22||2313AM =+=. 故选:A .2.(2019·新疆乌鲁木齐·乌市一中月考)已知两定点A (-1,0)和B (1,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( ) A 5B 10C 25D 210【答案】A 【解析】椭圆C 以A ,B 为焦点,即1c =,221b a =-,故可设椭圆方程为222211x y a a +=-(a >1),联立方程2222113x y a a y x ⎧+=⎪-⎨⎪=+⎩消去y 得(2a 2-1)x 2+6a 2x +10a 2-a 4=0,由题意易知∆=36a 4-4(2a 2-1)(10a 2-a 4)≥0,即42650a a -+≥ 得25a ≥或21a ≤(舍去),解得a 5所以155c e a a ==≤, 所以e 5. 故选:A.3.(2019·山西高三月考(理))已知双曲线C :()22210x y a a-=>与l :1x y +=相交于两个不同的点A 、B ,l 与y 轴交于点P ,若512PA PB =,则a =______. 【答案】1713【解析】由于双曲线C 与直线l 有两个不同的交点,故方程:22211x y a x y ⎧-=⎪⎨⎪+=⎩,有两组不同的实数解,消去y 并整理可得:2222(1)220a x a x a -+-= 所以实数a 应满足:24221048(1)0a a a a ⎧-≠⎨+->⎩ ,解得:02a <<且1a ≠ 设11(,)A x y ,22(,)B x y ,由根与系数关系可得:212221222121a x x a a x x a ⎧+=⎪⎪-⎨⎪=⎪-⎩① 根据题意可知(0,1)P ,由512PA PB =,可得11225(,1)(,1)12x y x y -=-,从而得到12512x x = ② 由①②解得:1713a =±,又 02a <<且1a ≠,所以1713a =故答案为17134.(2019·浙江高三学业考试)如图,(1,0)M ,P ,Q 是椭圆2214x y +=上的两点(点Q 在第一象限),且直线PM ,QM 的斜率互为相反数.若2PM QM =,则直线QM 的斜率为__________.15【解析】延长PM ,交椭圆于点N ,由椭圆的对称性和直线PM ,QM 的斜率互为相反数可知:||||QM MN =,如下图所示:设直线PM 的斜率为k ,所以直线PM 的方程为:(1)(0)y k x k =-<,与椭圆方程联立得:22(1)14y k x x y =-⎧⎪⎨+=⎪⎩,消元得,2212430yy k k ⎛⎫++-=⎪⎝⎭, 设()()1122,,,P x y N x y ,根据根与系数关系可得:122214ky y k -+=+,12||2,2||PM y y QM =∴=-,1222214ky y y k -∴+=-=+,所以222222,11414k y x k k =∴=+++,把22221,1414k N kk ⎛⎫+ ⎪++⎝⎭代入椭圆方程中得,2222221441414k k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭,解得25515,1212k k =∴== 所以直线QM 的斜率为156k -=. 5.(2020·山东青岛·高三开学考试)已知直线l :()1y k x =-与抛物线C :()220y px p =>在第一象限的交点为A ,l 过C 的焦点F ,3AF =,则抛物线的准线方程为_______;k =_______. 【答案】1x =- 2 【解析】易知直线l 与x 轴的交点为(1,0),即抛物线的焦点为(1,0)F ,∴准线方程为1x =-,设11(,)A x y ,则11132pAF x x =+=+=,12x =,作AC x ⊥轴于点C ,如图, 则(2,0)C ,1FC =,∴223122AC =-=, ∴直线l 的斜率为22tan 221k AFC =∠==. 故答案为:1x =-;22.6.(2020·江苏如皋·高二月考)已知F 是抛物线()221y px p =>的焦点,(),1N p ,M 为抛物线上任意一点,MN MF +的最小值为3,则p =________;若过F 的直线交抛物线于A 、B 两点,有2AF FB =,则AB =________. 【答案】2 92【解析】过点M 作MP 垂直于抛物线()221y px p =>的准线l ,垂足为点P ,由抛物线的定义可得MP MF =,1p >,则2212p <,则点N 在抛物线内,如下图所示:MN MF MN MP ∴+=+,当点P 、M 、N 共线时,MN MF +取得最小值32pp +=,解得2p =, 所以,抛物线的标准方程为24y x =,该抛物线的焦点为()1,0F ,设点()11,A x y 、()22,B x y ,可知直线AB 不与x 轴重合,设直线AB 的方程为1x my =+,联立214x my y x=+⎧⎨=⎩,可得2440y my --=,216160m ∆=+>恒成立,由韦达定理得124y y m +=,124y y =-,2AF FB =,则()()11221,21,x y x y --=-,122y y ∴=-,所以,1224y y y m +=-=,可得24y m =-,221222324y y y m =-=-=-,可得218m =,因此,()()22221212129114412AB m y y m y y y y m =+-=++-=+=. 故答案为:2;92. 7.(2019·浙江高三月考)如图,过抛物线2:C y x =上的一点()1,1A 作抛物线的切线,分别交x 轴于点D 交y 轴于点B ,点Q 在抛物线上,点E ,F 分别在线段AQ ,BQ 上,且满足AE λEQ =,BF μFQ =,线段QD 与EF 交于点P.(1)当点P 在抛物线C 上,且12λμ==时,求直线EF 的方程; (2)当1λμ+=时,求:PAB QAB S S △△的值.【答案】(1)432y x +=-或432y x -=-.(2)1:3. 【解析】(1)过抛物线上点A 的切线斜率为122x y x ='==,切线AB 的方程为21y x =-, 则B ,D 的坐标分别为(0,1)-,1,02⎛⎫ ⎪⎝⎭,故D 是线段AB 的中点.设(,)P x y ,()200,Q x x ,()11,E x y ,()22,F x y ,显然P 是ABQ △的重心.由重心坐标公式得2001,33x x P ⎛⎫+ ⎪⎝⎭,所以2200133x x +⎛⎫= ⎪⎝⎭, 则013x +=,故3323,66P ⎛⎫++ ⎪ ⎪⎝⎭或3323,66P ⎛⎫-- ⎪ ⎪⎝⎭因为EF AB ∥,所以2EF k =,所以直线EF 的方程为4326y x +=-或4326y x -=-. (2)由解(1)知,AB 的方程为21y x =-,(0,1)B -,1,02D ⎛⎫⎪⎝⎭,D 是线段AB 的中点 令||||QD m QP =,1||1||QA t QE λ==+,2||1||QB t QF μ==+, 因为QD 为ABC △的中线,所以22OAB OAD GBD S S S ==△△△而12||||1||||QEF QABSQE QF S QA QB t t =⋅=△△, 1212111322222QEFQEP QFPQEP QFP QABQADQADQBDS S S S S S S S S t m t m t t m+⎛⎫==+=+= ⎪⎝⎭△△△△△△△△△ 所以1212132t t t t m =,即32m =,所以P 是QAB 的重心,:1:3PAB QAB S S =△△.8.(2019·全国高三月考(理))如图,己知抛物线24x y =,直线1y kx =+交抛物线于,A B 两点,P 是抛物线外一点,连接,PA PB 分别交地物线于点,C D ,且CDAB .(1)若1k =,求点P 的轨迹方程.(2)若2PC CA =,且PA 平行x 轴,求PAB ∆面积. 【答案】(1)2(11)x y =-<<(2)11121【解析】 (1)解法1:CD AB ,设()()()112200,,,,,,PD DB A x y B x y P x y λ=,则()()0011,,,C C C C PC x x y y CA x x y y =--=--,由PC CA λ=可得()01C C x x x x λ-=-,故011C x x x λλ+=+,同理20141C y x y λλ+=+,故201014,11y x x x C λλλλ⎛⎫+ ⎪+ ⎪++ ⎪⎝⎭,代入抛物线得:2201014411y x x x λλλλ++⎛⎫=⋅ ⎪++⎝⎭, 化简得:221010024(1)0x x x y x λλλ-++-=, 同理得:222020024(1)0x x x y x λλλ-++-=,所以12,x x 为方程2200024(1)0x x x y x λλλ-++-=的两根,又由12221241440,44x x k y kx x kx x x x y ⎧+==+⎧⎪⇒--=∴⎨⎨⋅=-=⎪⎩⎩,将1k =代入1200244,2x x x k x +===∴=且200124(1)4y x x x λλ+-==-①,将02x =代入①,得044121(0)4(1)11y λλλλλλ--===-+>+++,故0(1,1)y ∈-.故点P 的轨迹方程为2(11)x y =-<<. 解法2:同解法1知124x x +=1,44D c D CCD AB C D D C y y x x k k x x x x -+====∴+=-,设线段,AB CD 的中点分别为,M N ,易知,,M N P 三点共线, MN MP μ∴=(μ为实数),所以02N M x x x ===. 以下同解法1.(2)由12,x x 为方程2200024(1)0x x x y x λλλ-++-=的两根, 可得:120024,2x x x k x k +==∴=.由(1)得200124(1)4y x x x λλ+-==-,因为2PC CA =,所以2λ=,故20233k y =-.AC x 轴且,A C 在抛物线上,∴,A C 关于y 轴对称. 0112213C x x k x x λλ++==+,11223k x x +∴=-及125kx =-,222,533k k C ⎛⎫∴- ⎪⎝⎭且2225k x =.∵C 在抛物线上,22224533k k ⎛⎫⎛⎫∴=- ⎪ ⎪⎝⎭⎝⎭,解得22511k =. 设AB 的中点为M ,则()2221212212211212424M x x x x x x y k +-⎛⎫+=⋅=⋅=+ ⎪⎝⎭, 所以()22001022=13M y y y y k -=-+,而21020111210(1)2253121PAB k S x x y y k ∆=-⋅-=⋅⨯+=. 9.(2019·全国高三月考)已知抛物线2:4C y x =的焦点为F ,过点(2,0)D 的直线l 与抛物线C 相交于A ,B 两点.(1)若ABF ∆的面积为3,求直线l 的方程;(2)试判断以线段AB 为直径的圆与点F 的位置关系,并说明理由.【答案】(1)240x y --=或240x y +-=;(2)点F 在以线段AB 为直径的圆内. 【解析】(1)由题意知焦点F 的坐标为(1,0).设A ,B 两点的坐标分别为11(,)x y ,22(,)x y ,直线l 的方程为2x my =+.联立方程24,2,y x x my ⎧=⎨=+⎩消去x ,整理得2480y my --=,可得124y y m +=,128y y =-,则2112ABF ADF BDF S S S DF y y ∆∆∆=+=⨯⨯-===由ABF ∆的面积为3,可得3=,解得12m =±,故直线l 的方程为240x y --=或240x y +-=.(2)由(1)知221212416y y x x ==,21212()444x x m y y m -=++=+.又由11(1,)FA x y =-,22(1,)FB x y =-,可得1212122212(1)(1)()1FA FB x x y y x x x x y y ⋅=--+=-++-,224(44)81470m m =-+-+=--<.故AFB ∠为钝角,点F 在以线段AB 为直径的圆内.10.(2019·浙江温州中学高三月考)已知点()00,A x y 在抛物线24y x =上,,P Q 是直线2y x =+上的两个不同的点,且线段,AP AQ 的中点都在抛物线上.(Ⅰ)求0y 的取值范围;(Ⅱ)若APQ 的面积等于20y 的值. 【答案】(Ⅰ)04y >或00y <;(Ⅱ)0222y =±. 【解析】(Ⅰ)设(,2)P a a +,(,2)Q b b +,20(,)4y A y , 则AP 的中点20042(,)82y a y a M +++,代入24y x =得:22000(42)440a y a y y ---++= 同理可得:22000(42)440b y b y y ---++=所以,,a b 是方程22000(42)440x y x y y ---++=的两个根22000(42)4(44)y y y ∴∆=---++2008320y y =->解得:04y >或00y <(Ⅱ)点A 到PQ 的距离200|2|42y y d -+=2042=由韦达定理可知:042a b y +=-,20044ab y y =-++则||2||PQ a b =-=22002()444a b ab y y +-=-1||2APQS PQ d ∆∴==2200004814462242y y y y -+⋅-⋅= 令2004y y t -=,则有:38240t t +-=,即:2(2)(212)0t t t -++=,解得2t =,即200440y y --=,解得:0222y =±1.(2020·全国高考真题(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2 【解析】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2.2.(2019·浙江高考真题)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF的中点在以原点O为圆心,OF为半径的圆上,则直线PF的斜率是_______. 【答案】15【解析】方法1:由题意可知||=|2OF OM|=c=,由中位线定理可得12||4PF OM==,设(,)P x y可得22(2)16x y-+=,联立方程22195x y+=可解得321,22x x=-=(舍),点P在椭圆上且在x轴的上方,求得315,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得3152P⎛-⎝⎭,所以1521512PFk==3.(2020·全国高考真题(文))已知椭圆222:1(05)25x yC mm+=<<15,A,B分别为C的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 (1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率22154115c b m e a a ⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭, 解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=; (2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:22231111055125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:1555522⨯⨯=;②当P 点为(3,1)-时, 故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+ 根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=,综上所述,APQ 面积为:52. 4.(2019·江苏高考真题)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.5.(2019·北京高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. 【答案】(Ⅰ) 24x y =-,1y =; (Ⅱ)见解析. 【解析】(Ⅰ)将点()2,1-代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程为:24x y =-,其准线方程为:1y =. (Ⅱ)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=. 故:12124,4x x k x x +=-=-.设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-, 直线OM 的方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭,易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+-⎪⎝⎭,圆的半径为:1222x x -,且:()1212122222x x k x x x x ++==,12222x x -==则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=,即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.6.(2019·全国高考真题(理))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【答案】(1)见详解;(2) 3或【解析】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以'y x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得112210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2. (2)由(1)得直线AB 的方程为12y tx =+.由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±. 当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或.。
高考数学一轮总复习课件:直线与圆锥曲线的综合问题
谢
谢
观
看
20 22
则(x1+x2)2-4x1x2=|0|,即|-1+8k4k2|=4
2 4k2-1 1+4k2
,
整理得k2=12>14,求得k=±
2 2.
于是直线l的方程为y=± 22x+2. 【答案】 (1)x82+y22=1 (2)y=± 22x+2
例3
(2018·课标全国Ⅰ,理)设椭圆C:
x2 2
+y2=1的右焦点
设A(x1,y1),B(x2,y2),则x1+x2=2+k42,x1x2=1.
由对称性可知,C(x2,-y2), 由抛物线的定义得|AF|=x1+1,|CF|=x2+1. 设直线AB的倾斜角为α,则tanα=k,
∴sin∠AFC=|sin(π-2α)|=|sin2α|=
|2sinαcosα| sin2α+cos2α
=
ta|2nt2aαnα+|1=k22+|k|1,
∴S△AFC=
1 2
(x1+1)(x2+1)|sin∠AFC|=[x1x2+(x1+x2)+
1]·k2|+k| 1=|4k|.
由已知可得|4k|=6,解得k=±23.
∴直线m的方程为y=±23(x-1),即2x±3y-2=0.
【答案】 (1)y2=4x (2)2x±3y-2=0
为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
【思路】
(1)先求出椭圆C:
x2 2
+y2=1的右焦点F的坐标,由于l
与x轴垂直,所以可求出直线l的方程,从而求出点A的坐标,再利用
直线方程的两点式,即可求出直线AM的方程;(2)对直线l分三类讨
高三数学一轮复习圆锥曲线的综合问题
备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2
,
-y0=λy1
高考数学一轮复习圆锥曲线中的综合问题定直线问题
由xy2==m8xy+2,得 y2-8my-16=0,则 yA+yB=8m, xA+xB=m(yA+yB)+4=8m2+4, 所以Q(4m2+2,4m).
所以直线PQ的方程为y=-m(x-4m2-2)+4m,
令x=-2,可得y=4m3+8m,
即P(-2,4m3+8m), 所以|PQ|= (4m2+4)2+(4m3+4m)2=(4m2+4) 1+m2. 又|AB|=p+xA+xB=4+xA+xB=8m2+8,|AQ|=|A2B|=4m2+4, 所以(4m2+4) 1+m2= 2(4m2+4),解得 m=±1. 所以l的方程为x+y-2=0或x-y-2=0.
∴|PF1|= 22+322=52, ∴|PF1|+|PF2|=52+32=4=2a,
∴a=2,∴b= 3, ∴C 的标准方程为x42+y32=1.
1234
索引
(2)设C的左、右顶点分别为A,B,O为坐标原点,直线l过右焦点F2且不与x轴 垂直,l与C交于M,N两点,直线AM与直线BN相交于点Q,证明:点Q在定直
1234
索引
设点A(x1,y1),B(x2,y2),
则y1+y2=4m,y1y2=-4, 矩形 ANOM 和矩形 BDOC 面积分别为 S1=|x1y1|=|y431|,S2=|x2y2|=|y432|, 所以 S1·S2=|y431|·|y432|=|(-164)3|=4.
1234
索引
(2)求证:直线MN与直线CD交点在定直线上.
索引
分层精练 巩固提升
FENCENGJINGLIAN GONGGUTISHENG
【A级 基础巩固】
1.(2023·合肥模拟)如图,过抛物线y2=4x焦点F的直线与抛物线 交于A,B两点,AM,AN,BC,BD分别垂直于坐标轴,垂 足依次为M,N,C,D. (1)若矩形ANOM和矩形BDOC面积分别为S1,S2,求S1·S2的值; 解 抛物线y2=4x的焦点F(1,0), 显然直线AB不垂直于y轴,设其方程为:x=my+1, 由xy2==m4xy+,1, 消去x并整理得的方程为y2-4my-4=0,
2021年高考数学一轮复习 9.6直线、圆锥曲线的综合问题
A组xx年模拟·基础题组1.(xx四川雅安4月,10)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是( )A.4B.3C.4D.82.(xx浙江丽水3月一模,7)斜率为1的直线l与椭圆+y2=1相交于A、B两点,则|AB|的最大值为( )A.2B.C.D.3.(xx河北重点中学期中,14)已知F1,F2是双曲线C1:x2-=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点,若|F1F2|=|F1A|,则C2的离心率是.4.(xx山西临汾4月,14)在△ABC中,||=4,△ABC的内切圆切BC于D点,且||-||=2,则顶点A的轨迹方程为.5.(xx贵州安顺5月,15)在抛物线y=x2上关于直线y=x+3对称的两点M、N(M在N的左边)的坐标分别为.6.(xx广东广州执信中学期中,20)已知椭圆C1:+=1(a>b>0)的离心率为e=,过C1的左焦点F1的直线l:x-y+2=0被圆C2:(x-3)2+(y-3)2=r2(r>0)截得的弦长为2.(1)求椭圆C1的方程;(2)设C1的右焦点为F2,在圆C2上是否存在点P,满足|PF1|=|PF2|?若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.7.(xx北京海淀二模,19)已知椭圆G的离心率为,其短轴两端点为A(0,1),B(0,-1).(1)求椭圆G的方程;(2)若C,D是椭圆G上关于y轴对称的两个不同点,直线AC,BD与x轴分别交于点M,N.判断以MN为直径的圆是否过点A,并说明理由.B组xx年模拟·提升题组限时:40分钟1.(xx辽宁沈阳质检四,9)双曲线-=1(a>0,b>0)的两条渐近线与抛物线y=x2+1有四个公共点,则该双曲线的离心率的取值范围是( )A.(1,)B.C.D.(,+∞)2.(xx北京东城二模,13)若直线y=k(x+1)(k>0)与抛物线y2=4x相交于A、B两点,且A、B两点在抛物线的准线上的射影分别是M、N,若|BN|=2|AM|,则k的值是.3.(xx辽宁五校联考)设点A1,A2分别为椭圆+=1(a>b>0)的左、右顶点,若在椭圆上存在异于点A1、A2的点P,使得PO⊥PA2,其中O为坐标原点,则椭圆的离心率e的取值范围是.4.(xx河北重点中学期中,20)已知定圆M:(x+)2+y2=16,动圆N过点F(,0)且与圆M 相切,记圆心N的轨迹为E.(1)求轨迹E的方程;(2)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC的面积最小时,求直线AB的方程.5.(xx北京朝阳一模,19)已知椭圆C:+=1(a>b>0)经过点,离心率为.(1)求椭圆C的方程;(2)直线y=k(x-1)(k≠0)与椭圆C交于A,B两点,点M是椭圆C的右顶点.直线AM 和直线BM分别与y轴交于点P,Q,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.A组xx年模拟·基础题组1.C ∵抛物线方程为y2=4x,∴F(1,0),l:x=-1,过焦点F且斜率为的直线l 1:y=(x-1),与y2=4x联立,解得A(3,2),∴AK=4,∴S△AKF=×4×2=4.故选C.2.C 设A、B两点的坐标分别为(x1,y1)、(x2,y2),直线l的方程为y=x+t,由消去y,得5x2+8tx+4(t2-1)=0.则Δ=64t2-80(t2-1)>0,x1+x2=-t,x1x2=.∴-5<t<5,|AB|=|x1-x2|=·=·=,∴当t=0时,|AB|取得最大值,|AB|max=.3.答案解析由题意知,|F1F2|=2×=4,又|F1F2|=|F1A|,∴|F1A|=4,又∵由双曲线的定义知|F1A|-|F2A|=2,∴|F2A|=2,∴在椭圆C2中,2a=|F1A|+|F2A|=6,又∵在椭圆C2中,2c=|F1F2|=4,∴C2的离心率是=.故答案为.4.答案-=1(x>)解析以BC的中点为原点,中垂线为y轴建立如图所示的直角坐标系,E、F分别为两个切点.则|BE|=|BD|,|CD|=|CF|,|AE|=|AF|.∴|AB|-|AC|=2,∴点A的轨迹为以B,C为焦点的双曲线的右支(除去顶点),且a=,c=2,∴b=,∴轨迹方程为-=1(x>).5.答案(-2,4)、(1,1)解析设直线MN的方程为y=-x+b,代入y=x2中,整理得x2+x-b=0,则Δ=1+4b>0,∴b>-.设M(x1,y1),N(x2,y2)(x1<x2),则x1+x2=-1,=-+b=+b,由在直线y=x+3上,即+b=-+3,解得b=2,联立得解得6.解析(1)直线l的方程为x-y+2=0,令y=0,得x=-2,即F1(-2,0).(1分)∴c=2,又∵e==,∴a2=6,∴b2=a2-c2=2,∴椭圆C1的方程为+=1.(4分)(2)∵圆心C2(3,3)到直线l:x-y+2=0的距离为d==,又直线l:x-y+2=0被圆C2:(x-3)2+(y-3)2=r2(r>0)截得的弦长为2,∴r===2,故圆C2的方程为(x-3)2+(y-3)2=4.(8分)假设圆C2上存在点P(x,y),满足|PF1|=|PF2|,即|PF1|=3|PF2|,又F 1(-2,0),F2(2,0),则=3,整理得+y2=.∵方程+y2=表示圆心为C,半径是的圆,又|CC2|==,2-<|CC2|<2+,∴圆C与圆C2相交,有两个公共点.∴圆C2上存在点P,满足|PF1|=·|PF2|,且这样的点有两个.(13分)7.解析(1)由已知可设椭圆G的方程为+y2=1(a>1).由e=,可得e2==,解得a2=2,所以椭圆的标准方程为+y2=1.(2)设C(x0,y),且x≠0,则y≠±1,D(-x,y),因为A(0,1),B(0,-1),所以直线AC的方程为y=x+1.令y=0,得x=,所以M.同理,直线BD的方程为y=x-1,得N.则=,=,所以·=+1,因为C(x0,y)在椭圆G:+y2=1上,所以=2(1-),所以·=-1≠0,所以∠MAN≠90°,所以,以线段MN为直径的圆不过点A.B组xx年模拟·提升题组1.B 双曲线的渐近线方程为y=±x.易知过原点且与抛物线y=x2+1相切的直线的斜率为±2,∵两条渐近线与抛物线有四个公共点,则>2⇒e2<,又e>1,从而e∈.故选B.2.答案解析直线y=k(x+1)过定点R(-1,0),且R(-1,0)在准线上,由题意知==,所以点A 是RB的中点.设A(x1,y1),B(x2,y2),则y1=,即y2=2y1,①由⇒y=k,即ky2-4y+4k=0.则Δ=16-16k2>0⇒-1<k<1,由根与系数的关系知y1+y2=,②y 1y2=4,③由①②③解得k=±,又因为k>0,所以k=(满足-1<k<1).3.答案解析由题设知∠OPA2=90°,设P(x,y)(x>0),以OA2为直径的圆的方程为+y2=,与椭圆方程联立,整理得x2-ax+b2=0.此方程有一实根a,由题设知,此方程在区间(0,a)上还有一实根,可得0<<a,化简得0<<1,可得<e2<1,又0<e<1,所以e的取值范围为.4.解析(1)易知点F(,0)在圆M:+y2=16内,∴圆N内切于圆M,又圆M的半径为4,∴|NM|+|NF|=4,又|FM|=2<4,∴点N的轨迹E为椭圆,且2a=4,c=,所以b=1,所以轨迹E的方程为+y2=1.(2)(i)当AB为椭圆E的长轴(或短轴)时,依题意知,点C可为椭圆的上、下顶点(或左、右顶点),此时S△ABC=×|OC|×|AB|=2.(ii)当直线AB的斜率存在且不为0时,设其为k,则直线AB的方程为y=kx,由解得=,=,所以|OA|2=+=.由|AC|=|CB|知,△ABC为等腰三角形,又O为AB的中点,所以OC⊥AB,所以直线OC的方程为y=-x,由解得=,=,∴|OC|2=,∴S△ABC =2S△OAC=|OA|×|OC|=·=,由于≤=,所以S△ABC≥,当且仅当1+4k2=k2+4,即k=±1时等号成立,此时△ABC面积取最小值,是.因为2>,所以△ABC面积的最小值为,此时直线AB的方程为y=x或y=-x.5.解析(1)由题意得又a2=b2+c2,故a=2,b=1.所以椭圆C的方程是+y2=1.(4分)(2)以线段PQ为直径的圆过x轴上的定点.理由如下:由得(1+4k2)x2-8k2x+4k2-4=0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.因为点M是椭圆C的右顶点,所以点M(2,0).因为直线AM的方程为y=(x-2),故点P.因为直线BM的方程为y=(x-2),故点Q.假设以线段PQ为直径的圆过x轴上的定点N(x,0),则·=0恒成立.又因为=,=,所以·=+·=+=0恒成立.精品文档实用文档 又因为(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=-2·+4=,y 1y 2=k(x 1-1)·k(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2=,所以+=+=-3=0,解得x 0=±.故以线段PQ 为直径的圆过x 轴上的定点(±,0).(13分)23112 5A48 婈.26322 66D2 曒33019 80FB 胻36145 8D31 贱28023 6D77 海24089 5E19 帙33828 8424 萤26768 6890 梐{36060 8CDC 賜[ 21495 53F7 号。
2023年新高考数学一轮复习9-6 直线与圆锥曲线(真题测试)解析版
专题9.6 直线与圆锥曲线(真题测试)一、单选题1.(全国·高考真题(理))已知椭圆22x a +22y b =1(a>b>0)的右焦点为F(3,0),过点F 的直线交椭圆于A 、B两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .245x +236y =1B .236x +227y =1C .227x +218y =1D .218x +29y =12.(全国·高考真题(文))设抛物线C:y 2=4x 的焦点为F ,直线l 过F 且与C 交于A, B 两点.若|AF|=3|BF|,则l 的方程为( ) A .y=x -1或y=-x+1 B .X -1)或y=x -1) C .x -1)或y=x -1) D .x -1)或y=x -1)【答案】C【详解】设A(x 1,y 1),B(x 2,y 2), 又F(1,0),则AF =(1-x 1,-y 1),FB =(x 2-1,y 2), 由题意知AF =3FB ,因此()1212131,{3,x x y y -=--= 即121243,{3,x x y y =-=-又由A 、B 均在抛物线上知()()2222224,{3443.y x y y =-=-3.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b +=>>的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B 2C .12D .13故选:A .4.(2022·四川广安·模拟预测(文))已知抛物线()2:20C y px p =>的焦点F 与椭圆2212516x y +=的右焦点重合.斜率为()0k k >直线l 经过点F ,且与C 的交点为A ,B .若3AF BF =,则直线l 的方程是( )A0y --= B.40y --= C .390x y --= D .330x y --=||3|AF =123x x +=0,k >∴3x y --故选:A.5.(2022·安徽·高三开学考试)过抛物线2:2(0)E y px p =>的焦点F 的直线l 与E 交于,A B 两点,若3AF FB =,则l 的倾斜角θ=( ) A .2π B .4π或34π C .6π或56π D .3π或23π 3AF FB =,得y 【详解】因为焦点222y pmy p --=,3AF FB =,所以6.(2022·全国·高三专题练习)斜率为1的直线l 与椭圆2212x y +=相交于A ,B 两点,则||AB 的最大值为( ) A .2 B C D7.(2022·河南·模拟预测(文))已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为2,直线l 与C 交于,P Q 两点,D 为线段PQ 的中点,O 为坐标原点,则l 与OD 的斜率的乘积为( ) A .2B .3C .4D .6【答案】B 【分析】设出P ,Q ,D 的坐标,利用点差法,结合D 为线段PQ 的中点,以及两点之间的斜率8.(2020·全国·高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-=C .210x y -+=D .210x y ++=PAMS=圆系的知识即可求出直线【详解】圆的方程可化为PAMS =:1MP y -二、多选题9.(2022·湖南湘潭·高三开学考试)已知直线 ()():10l y k x k =-≠ 与抛物线 2:4C y x = 交于 A B , 两点, 点 O 为坐标原点, 若线段AB 的中点是(),1M m , 则( ) A .2k = B .3m =C .5AB =D .OA OB ⊥,所以1OA OB x x ⋅=⋅:AC .10.(2022·云南昆明·高三开学考试)椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F ,上、下顶点分别为2B ,1B ,11B F 与C 的另一交点为M ,21B F 与C 的另一交点为N ,若直线1B M 与直线2B M 的斜率之积为925-,则( ) A .C 的离心率为45B .17cos 25MF N ∠=C .12MF F △的周长为18D .设1△MNF 的面积为1S ,112B F F △的面积为2S 941=设()1:B Mbl y x c c =-+,联立()22221b y x c c x y ab ⎧=-+⎪⎪⎨⎪+=⎪⎩, 12MF F C=所以1S 11.(2022·湖南·宁乡市教育研究中心模拟预测)在平面直角坐标系xOy 中,已知双曲线()2222:10,0x y C a b a b -=>>,且双曲线C 的右焦点在直线320x y +-上,A 、B 分别是双曲线C 的左、右顶点,点P 是双曲线C 的右支上位于第一象限的动点,记PA 、PB 的斜率分别为1k 、2k ,则下列说法正确的是( ) A .双曲线C 的渐近线方程为12y x =±B .双曲线C 的方程为2214x y -= C .12k k 为定值12 D .存在点P ,使得122k k +=【答案】ABD12.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为B .||||OB OF =33选项;由0OA OB ⋅<,0MA MB ⋅<求得,易得(,0)2p F ,由AF AM =,3(4p OA OB⋅=又6(,42p pMA MB⋅=-360AOB AMB OAM∠+∠+∠,则180∠,D正确故选:ACD.三、填空题13.(2022·广东佛山·高三阶段练习)已知圆的方程为221x y+=,抛物线的方程为28 3y x=,则两曲线的公共切线的其中一条方程为_____________.14.(2021·全国·高考真题(文))已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________. 【答案】8【分析】根据已知可得12PF PF ⊥,设12||,||PF m PF n ==,利用勾股定理结合8m n +=,求出mn ,四边形12PFQF 面积等于mn ,即可求解.【详解】因为,P Q 为C 上关于坐标原点对称的两点, 且12||||PQ F F =,所以四边形12PFQF 为矩形, 设12||,||PF m PF n ==,则228,48m n m n +=+=, 所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.15.(2020·海南·C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:16316.(2022·全国·高考真题)已知直线l 与椭圆22163x y +=在第一象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.故答案为:2220x y +-=四、解答题17.(2022·北京·高考真题)已知椭圆:2222:1(0)x y E a b a b +=>>的一个顶点为(0,1)A ,焦距为(1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.18.(2021·全国·高考真题)在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.2联立1221()2116y n k xyx⎧-=-⎪⎪⎨⎪-=⎪⎩, 119.(2020·北京·高考真题)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.20.(2021·全国高考真题)已知椭圆C的方程为22221(0)x ya ba b+=>>,右焦点为F,(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线MN与曲线222(0)x y b x+=>相切.证明:M,N,F三点共线的充要条件是||MN=【答案】(1)2213xy+=;(2)证明见解析.【分析】(1)由离心率公式可得a=2b,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN直线():,0MN y kx b kb=+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k=±,即可得解.【详解】(1)由题意,椭圆半焦距c=cea=,所以a=又2221b a c=-=,所以椭圆方程为2213xy+=;(2)由(1)得,曲线为221(0)x y x+=>,当直线MN的斜率不存在时,直线:1MN x=,不合题意;当直线MN的斜率存在时,设()()1122,,,M x y N x y,必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN =所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ===化简得()22310k -=,所以1k=±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN =21.(2020·山东·高考真题)已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A +,求直线l 的方程. 联立,并利用韦达定理表示OM ON +,并利用()12//OM ON B A +,求直线的斜率,验证后,即可得到直线21y +=可知2a ,21b =,)2,0,2所以抛物线的标准方程为28y x =.2x则(1OM ON x +=+因为()12//OM ON B A +,且12(2,0)B A =所以2284820k k k--⨯=, 解得26k =-+或26k =--,11k -<<,且0k ≠,22.(2022·全国·高考真题)已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.故PAQ △的面积为11623⨯=。
高考理科数学一轮复习《第9章平面解析几何》9.9 直线与圆锥曲线的综合问题试题
A 组 专项基础训练(时间:40分钟)1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( )A .至多为1B .2C .1D .0 【解析】 由题意知:4m 2+n 2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2. 【答案】 B2.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0【解析】 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.【答案】 A3.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x轴上的射影恰好是椭圆的右焦点F ,则m 的值为( )A .2B .2 2C .8D .2 3 【解析】 根据已知条件得c =16-m 2,则点(16-m 2,2216-m 2)在椭圆x 216+y 2m 2=1(m >0)上,∴16-m 216+16-m 22m 2=1,可得m =2 2.【答案】 B4.(2017·丽水一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455C.4105D.8105【解析】 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2,当t =0时,|AB |max =4105. 【答案】 C5.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们到直线x =-2的距离之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在 【解析】 抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x =-1,设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2), 则A ,B 到直线x =-1的距离之和为x 1+x 2+2. 设直线方程为x =my +1,代入抛物线y 2=4x , 则y 2=4(my +1),即y 2-4my -4=0,∴x 1+x 2=m (y 1+y 2)+2=4m 2+2. ∴x 1+x 2+2=4m 2+4≥4.∴A ,B 到直线x =-2的距离之和x 1+x 2+2+2≥6>5. ∴满足题意的直线不存在. 【答案】 D6.(2017·大连名校联考)已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________.【解析】 由题意知,椭圆的右焦点F 1的坐标为(1,0),直线AB 的方程为y =2(x -1).由方程组⎩⎪⎨⎪⎧y =2(x -1),x 25+y 24=1消去y ,整理得3x 2-5x =0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=53,x 1x 2=0.则|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+22)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫532-4×0=553. 【答案】5537.(2017·安顺月考)在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________.【解析】 设直线MN 的方程为y =-x +b , 代入y =x 2中,整理得x 2+x -b =0,令Δ=1+4b >0, ∴b >-14.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1, y 1+y 22=-x 1+x 22+b =12+b ,由⎝⎛⎭⎫-12,12+b 在直线y =x +3上, 即12+b =-12+3,解得b =2, 联立得⎩⎪⎨⎪⎧y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1.【答案】 (-2,4),(1,1)8.(2017·江苏盐城模拟)设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的短轴长为________.【解析】 由题意可得,抛物线y 2=8x 的焦点为(2,0),∴c =2.∵椭圆的离心率为12,∴a=4,∴b =a 2-c 2=23,即n =23,∴椭圆的短轴长为4 3.【答案】 4 39.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. 【解析】 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2],即43a =4ab 2a 2+b 2,故a 2=2b 2,所以E 的离心率e =ca=a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c3. 由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.10.(2017·山西山大附中模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,短轴两个端点为A ,B ,且四边形F 1AF 2B 是边长为2的正方形.(1)求椭圆方程;(2)若C ,D 分别是椭圆长轴的左、右端点,动点M 满足MD ⊥CD ,连接CM ,交椭圆于点P ,证明:OM →·OP →为定值.【解析】 (1)由题意知a =2,b =c , ∵a 2=b 2+c 2, ∴b 2=2.∴椭圆方程为x 24+y 22=1.(2)证明 由题意知C (-2,0),D (2,0), 设M (2,y 0),P (x 1,y 1), 则OP →=(x 1,y 1),OM →=(2,y 0). 直线CM :x -24=y -y 0y 0,即y =y 04x +12y 0.代入椭圆x 2+2y 2=4, 得⎝⎛⎭⎫1+y 208x 2+12y 20x +12y 20-4=0.∵x 1·(-2)=4(y 20-8)y 20+8, ∴x 1=-2(y 20-8)y 20+8,∴y 1=8y 0y 20+8.∴OP →=⎝⎛⎭⎪⎫-2(y 20-8)y 20+8,8y 0y 20+8. ∴OP →·OM →=-4(y 20-8)y 20+8+8y 20y 20+8=4y 20+32y 20+8=4(定值).B 组 专项能力提升 (时间:25分钟)11.(2017·大连双基测试)过抛物线y 2=2px (p >0)焦点F 的直线l 与抛物线交于B ,C 两点,l 与抛物线准线交于点A ,且|AF |=6,AF →=2FB →,则|BC |等于( )A.92B .6 C.132D .8 【解析】 不妨设直线l 的倾斜角为θ,其中0<θ<π2,点B (x 1,y 1),C (x 2,y 2),则点B在x 轴的上方,过点B 作该抛物线的准线的垂线,垂足为B 1,于是有|BF |=|BB 1|=3,|AF ||AB |=p |BB 1|,由此得p =2,抛物线方程是y 2=4x ,焦点F (1,0),cos θ=p |AF |=p 6=26=13,sin θ=1-cos 2θ=223,tan θ=sin θcos θ=22,直线l :y =22(x -1).由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x 消去y ,得2x 2-5x +2=0,x 1+x 2=52,|BC |=x 1+x 2+p =52+2=92,选A.【答案】 A12.(2017·绵阳中学月考)已知抛物线E :y 2=2px (p >0)经过圆F :x 2+y 2-2x +4y -4=0的圆心,则抛物线E 的准线与圆F 相交所得的弦长为________.【解析】 圆的标准方程为(x -1)2+(y +2)2=32,圆心为F (1,-2).代入抛物线方程可得p =2,所以其准线方程为x =-1.圆心到直线x =-1的距离d =2,所以抛物线E 的准线与圆F 相交所得的弦长为232-22=2 5.【答案】 2 513.(2017·西安中学模拟)如图,过抛物线y =14x 2的焦点F 的直线l 与抛物线和圆x 2+(y-1)2=1交于A ,B ,C ,D 四点,则AB →·DC →=________.【解析】 不妨设直线AB 的方程为y =1,联立⎩⎪⎨⎪⎧y =1,y =14x 2,解得x =±2,则A (-2,1),D (2,1),因为B (-1,1),C (1,1),所以AB →=(1,0),DC →=(-1,0),所以AB →·DC →=-1.【答案】 -114.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=________.【解析】 直线AF 的方程为y =-3(x -2),联立⎩⎪⎨⎪⎧y =-3x +23,x =-2,得y =43,所以P (6,43). 由抛物线的性质可知|PF |=6+2=8. 【答案】 815.(2017·湖北八校4月联考)已知抛物线x 2=2py 上点P 处的切线方程为x -y -1=0. (1)求抛物线的方程;(2)设A (x 1,y 1)和B (x 2,y 2)为抛物线上的两个动点,其中y 1≠y 2且y 1+y 2=4,线段AB 的垂直平分线l 与y 轴交于点C ,求△ABC 面积的最大值.【解析】 (1)设点P ⎝⎛⎭⎫x 0,x 22p , 由x 2=2py得y =x 22p ,则y ′=xp,因为点P 处的切线的斜率为1,所以x 0p =1且x 0-x 202p -1=0,解得p =2,所以抛物线的方程为x 2=4y . (2)设线段AB 的中点为M (x 0,2), 则x 0=x 1+x 22,k AB =y 2-y 1x 2-x 1=x 224-x 214x 2-x 1=14(x 1+x 2)=x 02,∴直线l 的方程为y -2=-2x 0(x -x 0),即2x +x 0(-4+y )=0, ∴l 过定点(0,4),即C (0,4). 直线AB 的方程为y -2=x 02(x -x 0).由⎩⎪⎨⎪⎧y -2=x 02(x -x 0),x 2=4y⇒x 2-2x 0x +2x 20-8=0, 则Δ=4x 20-4(2x 20-8)>0⇒-22<x 0<22, x 1+x 2=2x 0,x 1x 2=2x 20-8, 则|AB |= 1+x 204|x 1-x 2|= ⎝⎛⎭⎫1+x 204(32-4x 20) =(4+x 20)(8-x 20),C (0,4)到AB 的距离d =|CM |=x 20+4,∴S △ABC =12|AB |·d=12 (4+x 20)2(8-x 20)=1212(x 20+4)(x 20+4)(16-2x 20)≤1212×⎝⎛⎭⎫2433=8, 当且仅当x 20+4=16-2x 20,即x 0=±2时取等号,∴S△ABC的最大值为8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 9.6直线、圆锥曲线的综合问题A组2014—2015年模拟·基础题组限时:40分钟1.(2014四川雅安4月,10)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是( )A.4B.3C.4D.82.(2014浙江丽水3月一模,7)斜率为1的直线l与椭圆+y2=1相交于A、B两点,则|AB|的最大值为( )A.2B.C.D.3.(2015河北重点中学期中,14)已知F1,F2是双曲线C1:x2-=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点,若|F1F2|=|F1A|,则C2的离心率是.4.(2014山西临汾4月,14)在△ABC中,||=4,△ABC的内切圆切BC于D点,且||-||=2,则顶点A的轨迹方程为.5.(2014贵州安顺5月,15)在抛物线y=x2上关于直线y=x+3对称的两点M、N(M在N的左边)的坐标分别为.6.(2015广东广州执信中学期中,20)已知椭圆C1:+=1(a>b>0)的离心率为e=,过C1的左焦点F1的直线l:x-y+2=0被圆C2:(x-3)2+(y-3)2=r2(r>0)截得的弦长为2.(1)求椭圆C1的方程;(2)设C1的右焦点为F2,在圆C2上是否存在点P,满足|PF1|=|PF2|?若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.7.(2014北京海淀二模,19)已知椭圆G的离心率为,其短轴两端点为A(0,1),B(0,-1).(1)求椭圆G的方程;(2)若C,D是椭圆G上关于y轴对称的两个不同点,直线AC,BD与x轴分别交于点M,N.判断以MN为直径的圆是否过点A,并说明理由.B组2014—2015年模拟·提升题组限时:40分钟1.(2014辽宁沈阳质检四,9)双曲线-=1(a>0,b>0)的两条渐近线与抛物线y=x2+1有四个公共点,则该双曲线的离心率的取值范围是( )A.(1,)B.C.D.(,+∞)2.(2014北京东城二模,13)若直线y=k(x+1)(k>0)与抛物线y2=4x相交于A、B两点,且A、B 两点在抛物线的准线上的射影分别是M、N,若|BN|=2|AM|,则k的值是.3.(2014辽宁五校联考)设点A1,A2分别为椭圆+=1(a>b>0)的左、右顶点,若在椭圆上存在异于点A1、A2的点P,使得PO⊥PA2,其中O为坐标原点,则椭圆的离心率e的取值范围是.4.(2015河北重点中学期中,20)已知定圆M:(x+)2+y2=16,动圆N过点F(,0)且与圆M相切,记圆心N的轨迹为E.(1)求轨迹E的方程;(2)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC的面积最小时,求直线AB的方程.5.(2014北京朝阳一模,19)已知椭圆C:+=1(a>b>0)经过点,离心率为.(1)求椭圆C的方程;(2)直线y=k(x-1)(k≠0)与椭圆C交于A,B两点,点M是椭圆C的右顶点.直线AM和直线BM 分别与y轴交于点P,Q,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.A组2014—2015年模拟·基础题组1.C ∵抛物线方程为y2=4x,∴F(1,0),l:x=-1,过焦点F且斜率为的直线l1:y=(x-1),与y2=4x联立,解得A(3,2),∴AK=4,∴S△AKF=×4×2=4.故选C.2.C 设A、B两点的坐标分别为(x1,y1)、(x2,y2),直线l的方程为y=x+t,由消去y,得5x2+8tx+4(t2-1)=0.则Δ=64t2-80(t2-1)>0,x1+x2=-t,x1x2=.∴-5<t<5,|AB|=|x1-x2|=·=·=,∴当t=0时,|AB|取得最大值,|AB|max=.3.答案解析由题意知,|F1F2|=2×=4,又|F1F2|=|F1A|,∴|F1A|=4,又∵由双曲线的定义知|F1A|-|F2A|=2,∴|F2A|=2,∴在椭圆C2中,2a=|F1A|+|F2A|=6,又∵在椭圆C2中,2c=|F1F2|=4,∴C2的离心率是=.故答案为.4.答案-=1(x>)解析以BC的中点为原点,中垂线为y轴建立如图所示的直角坐标系,E、F分别为两个切点.则|BE|=|BD|,|CD|=|CF|,|AE|=|AF|.∴|AB|-|AC|=2,∴点A的轨迹为以B,C为焦点的双曲线的右支(除去顶点),且a=,c=2,∴b=,∴轨迹方程为-=1(x>).5.答案(-2,4)、(1,1)解析设直线MN的方程为y=-x+b,代入y=x2中,整理得x2+x-b=0,则Δ=1+4b>0,∴b>-.设M(x1,y1),N(x2,y2)(x1<x2),则x1+x2=-1,=-+b=+b,由在直线y=x+3上,即+b=-+3,解得b=2,联立得解得6.解析(1)直线l的方程为x-y+2=0,令y=0,得x=-2,即F 1(-2,0).(1分)∴c=2,又∵e==,∴a2=6,∴b2=a2-c2=2,∴椭圆C1的方程为+=1.(4分)(2)∵圆心C2(3,3)到直线l:x-y+2=0的距离为d==,又直线l:x-y+2=0被圆C2:(x-3)2+(y-3)2=r2(r>0)截得的弦长为2,∴r===2,故圆C2的方程为(x-3)2+(y-3)2=4.(8分)假设圆C2上存在点P(x,y),满足|PF1|=|PF2|,即|PF1|=3|PF2|,又F1(-2,0),F2(2,0), 则=3,整理得+y2=.∵方程+y2=表示圆心为C,半径是的圆,又|CC2|==,2-<|CC2|<2+,∴圆C与圆C2相交,有两个公共点.∴圆C2上存在点P,满足|PF1|=·|PF2|,且这样的点有两个.(13分)7.解析(1)由已知可设椭圆G的方程为+y2=1(a>1).由e=,可得e2==,解得a2=2,所以椭圆的标准方程为+y2=1.(2)设C(x0,y0),且x0≠0,则y0≠±1,D(-x0,y0),因为A(0,1),B(0,-1),所以直线AC的方程为y=x+1.令y=0,得x=,所以M.同理,直线BD的方程为y=x-1,得N.则=,=,所以·=+1,因为C(x0,y0)在椭圆G:+y2=1上,所以=2(1-),所以·=-1≠0,所以∠MAN≠90°,所以,以线段MN为直径的圆不过点A.B组2014—2015年模拟·提升题组1.B 双曲线的渐近线方程为y=±x.易知过原点且与抛物线y=x2+1相切的直线的斜率为±2,∵两条渐近线与抛物线有四个公共点,则>2⇒e2<,又e>1,从而e∈.故选B.2.答案解析直线y=k(x+1)过定点R(-1,0),且R(-1,0)在准线上,由题意知==,所以点A是RB的中点.设A(x1,y1),B(x2,y2),则y1=,即y2=2y1,①由⇒y=k,即ky2-4y+4k=0.则Δ=16-16k2>0⇒-1<k<1,由根与系数的关系知y1+y2=,②y1y2=4,③由①②③解得k=±,又因为k>0,所以k=(满足-1<k<1).3.答案2=,与椭圆方程解析由题设知∠OPA联立,整理得x2-ax+b2=0.此方程有一实根a,由题设知,此方程在区间(0,a)上还有一实根,可得0<<a,化简得0<<1,可得<e2<1,又0<e<1,所以e的取值范围为.4.解析(1)易知点F(,0)在圆M:+y2=16内,∴圆N内切于圆M,又圆M的半径为4,∴|NM|+|NF|=4,又|FM|=2<4,∴点N的轨迹E为椭圆,且2a=4,c=,所以b=1,所以轨迹E的方程为+y2=1.(2)(i)当AB为椭圆E的长轴(或短轴)时,依题意知,点C可为椭圆的上、下顶点(或左、右顶点),此时S△ABC=×|OC|×|AB|=2.(ii)当直线AB的斜率存在且不为0时,设其为k,则直线AB的方程为y=kx,由解得=,=,所以|OA|2=+=.由|AC|=|CB|知,△ABC为等腰三角形,又O为AB的中点,所以OC⊥AB,所以直线OC的方程为y=-x,由解得=,=,∴|OC|2=,∴S△ABC=2S△OAC=|OA|×|OC|=·=,由于≤=,所以S△ABC≥,当且仅当1+4k2=k2+4,即k=±1时等号成立,此时△ABC面积取最小值,是.因为2>,所以△ABC面积的最小值为,此时直线AB的方程为y=x或y=-x.5.解析(1)由题意得又a2=b2+c2,故a=2,b=1.所以椭圆C的方程是+y2=1.(4分)(2)以线段PQ为直径的圆过x轴上的定点.理由如下:由得(1+4k2)x2-8k2x+4k2-4=0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.因为点M是椭圆C的右顶点,所以点M(2,0).因为直线AM的方程为y=(x-2),故点P.因为直线BM的方程为y=(x-2),故点Q.假设以线段PQ为直径的圆过x轴上的定点N(x0,0),则·=0恒成立.又因为=,=,所以·=+·=+=0恒成立.又因为(x1-2)(x2-2)=x1x2-2(x1+x2)+4=-2·+4=,y1y2=k(x1-1)·k(x2-1)=k2[x1x2-(x1+x2)+1]=k2=, 所以+=+=-3=0,解得x0=±.故以线段PQ为直径的圆过x轴上的定点(±,0).(13分)。