重庆市第一中学2015届高三5月月考数学(文)试题及答案
2016届高三上学期第一次月考数学(文)试题Word版含答案
![2016届高三上学期第一次月考数学(文)试题Word版含答案](https://img.taocdn.com/s3/m/f084b9cc32d4b14e852458fb770bf78a65293a7b.png)
2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。
湖南省长沙市第一中学2023-2024学年高三上学期月考卷(三)历史答案
![湖南省长沙市第一中学2023-2024学年高三上学期月考卷(三)历史答案](https://img.taocdn.com/s3/m/c6d72d0e7f21af45b307e87101f69e314332faa7.png)
长沙市一中2024届高三月考试卷(三)历史参考答案一、选择题(本题共16 小题, 每小题3 分, 共48 分)1 . C 【解析】根据材料"负责保存天子祭祀……布历农时"可知,周朝 "祝史"对周朝的文化、典籍等非常熟悉,所以祝史的流散会将周文化带入迁入地, 有助于文化的传播, 故选C项; " 或因王室衰微流散列国 "说明此时周王室衰微, 分封制逐渐瓦解, 排除 A项 ;周王室衰微是导致祝史流散的一个原因, 排除B 项; 诸侯纷争的主要原因是天子式微, 与祝史无关, 排除D 项。
2 . C 【解析】根据材料, 在春耕时, 国" 资(贷)子之币" , 等到大秋" 子谷大登(熟) " , 谷价大减之时, 让农民以谷还币, 可知借贷有利于劳动者正常生产的进行, 促进社会生产的发展, C项正确; 国家在春耕时" 资子之币" , 是借贷关系, 而非土地兼并, 排除 A项 ;材料提供借贷, 但借贷不一定是高利贷, 排除B 项; 材料涉及" 资(贷)子之币" , 但" 货币经济比较发达" 不符合史实, 排除 D项。
3 . B 【解析】根据题干" 古帝王贤达""上起伏羲" 可知, 北魏时期的元勰和元晖在编纂史籍时, 都记述了中华民族始祖, 据此可知, 对华夏历史的认同在此时得到了发展, 故选B 项; 据所学可知, 自西汉之后, 儒家思想成为社会正统主导思想, 排除 A项 ;题干仅是述及史籍的内容, 并没有述及其 "体例" , 排除C 项; 北魏后来分裂, 因此不能说" 游牧民族统一趋势加强" , 排除 D项。
4. C 【解析】由" 必须于交易完成三日内向市司领取' 市券' " " 有旧病者, 三日内听悔" " 对那些试图伪称所买奴婢或牲畜有旧病以相欺诈者…给予惩罚" 等可知, 唐律的规定表明政府对市场贸易活动有严格的规范进行管理, 故选C 项 ;题干中的信息是对唐朝市场贸易的规范, 而据此没法得出" 抑商" , 更不能体现" 重农" 政策, 排除A 项; 题干是对私人交易行为的法律规范和约束, 而不是对交易规模的严格限制, 排除 B项 ;题干所述不仅有男女奴婢, 还有牛、马、骆驼、骡、驴等牲畜, 将男女奴婢等同于牲畜作为买卖的商品进行规范, 说明并未通过法律手段调整人身关系, 排除D 项。
高三试卷语文-重庆市第一中学2024届高三上学期摸底考试语文试卷及参考答案
![高三试卷语文-重庆市第一中学2024届高三上学期摸底考试语文试卷及参考答案](https://img.taocdn.com/s3/m/0e253f637275a417866fb84ae45c3b3567ecdd33.png)
2023年重庆一中高2024届高三上学期开学语文测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将答题卡交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:在我国传统美学和文论中,“意象”是个古老而又新鲜的话题,是出现得很早并富有深广文化底蕴的一个重要概念,是主观情志与外界客观物象相撞而契合的产物,是指有意味的具体形象,即“意”与“象”的融合。
其在文艺创作和文学鉴赏中的作用与地位都是不可忽视的。
“意”和“象”最早见于《周易·系辞》“书不尽言,言不尽意……圣人立象以尽意”之言。
东汉王充将“意”与“象”合成一个完整的概念。
其在《论衡·乱龙篇》说:“夫画布为熊、麋之象,名布为侯,礼贵意象,示义取名也。
”曹魏时代的王弼《周易略例·明象》“夫象者,出意者也;言者,明象者也。
尽意莫若象,尽象莫若言。
言生于象,故可以寻言以观象;象生于意,故可以寻象以观意。
意以象尽,象以言著”一段文字,阐明了意、象、言三者的关系。
从文学的创作来看,即从内心的“意”到关注的“象”,再至依托的“言”;从文学的欣赏来看,即从依托的“言”到关注的“象”,再至所传达的主观“意”。
将“意”“象”引进文学领域并实现其根本性语义转换的是晋代的挚虞,而南朝梁代的刘勰在《文心雕龙·神思》中则第一次将“意”“象”合为一词而又引进文学理论,使它具有了美学意义。
实际上,刘勰是将营构“意象”作为艺术构思的首要任务来看待的。
从此以后,对“意象”的认识及其在文艺美学上的地位就确定了下来,在文艺创作中,审美意象的营构是艺术家们必须要经过的一个步骤,是“眼中竹”至“胸中竹”的中间环节,即“意象”成为现实生活向艺术作品转化的必不可少的中介;而同样,在艺术欣赏活动之中,“意象”也起着一个读者从作品中获得审美感受的桥梁作用,亦是第二个中介。
湖南省长沙市第一中学2024-2025学年高三上学期月考卷(二)语文(含答案)
![湖南省长沙市第一中学2024-2025学年高三上学期月考卷(二)语文(含答案)](https://img.taocdn.com/s3/m/034feeec85868762caaedd3383c4bb4cf7ecb7ca.png)
长沙市一中2025届高三月考试卷(二)语文得分:_____________ 本试卷共10页,时量150分钟,满分150分。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一中国诗词讲究含蓄,以淡为美。
而英美诗歌则比较奔放,以感情激越为胜。
另外,中国诗词多以歌颂为主,而英美现代诗歌多以揭露为主。
中国诗人或托物言志,或借景抒情,永远把自己的情感埋藏于诗词之中,我们只有通过“感悟”才可能感觉出其美,最突出的例子莫过于马致远的《天净沙·秋思》。
他几乎没有用一个表达感情的词语,只是把“枯藤”“老树”“昏鸦”简单地排列在一起,寥寥几笔便勾勒出一幅凄凉寂寥的景象,后面两句把几种事物列在一处,却恰如其分地渲染了寂寞、惨淡的气氛,“夕阳西下”更是给整幅画面涂上了一层昏黄的颜色,最后一笔带出“断肠人在天涯”,感觉上前后好像并无直接联系,但感情是连贯的,思路也是连贯的。
一口气读下来,仿佛自己就是诗人所描绘的画中的游子,引起强烈的共鸣。
然而几种事物的并列,虽然没有任何的主观感情,却比再多的语言都要强烈地表达了一种孤寂凄清的感情,这正是中国古典诗歌的魅力所在。
相比之下,英美现代诗歌强调写资本主义社会中畸零人的心理,比较直率地把诗人的所要表达的意思表现出来,直抒胸臆而毫无造作,言尽而意亦尽,回味的空间相对缩小了,但这样比较符合西方人的心理特征、思维特征。
(摘编自吕洋《中西方诗歌比较》)材料二①与中国古典诗歌弱化主体的倾向不同,西方诗歌中的主体差不多总是在场的。
以十四行诗为例,主体总是堂而皇之地出现在诗中,站出来讲话。
这样,西方诗歌就形成了与中国诗歌迥然不同的风格。
②诗歌的风格离不开其文化土壤。
在中国,流行的思想是人与自然的和谐,这种观念的形成与中国人的生活方式和生活环境有关。
早在新石器时代,农业经济就已经建立起来。
几千年来,自给自足的经济稳定繁荣,因此,人们非常依赖自然环境,对自然世界的任何微妙变化都很敏感,他们渴望与自然亲密接触。
2021届重庆市第一中学校高三上学期第三次月考数学试题(解析版)
![2021届重庆市第一中学校高三上学期第三次月考数学试题(解析版)](https://img.taocdn.com/s3/m/527a054adcccda38376baf1ffc4ffe473368fdd2.png)
2021届重庆市第一中学校高三上学期第三次月考数学试题一、单选题1.复数z 满足21iz i=-,则复数z 的虚部为()A .﹣1B .1C .iD .﹣i【答案】B【分析】利用复数的除法运算化简211ii i=-+-,再利用复数的代数形式求出结果.【详解】解:∵()()()()2121211112i i i i i z i i i i ++====-+--+,则复数z 的虚部为1.故选:B .【点睛】本题考查复数的除法运算.复数的除法运算关键是分母“实数化”,其一般步骤如下:(1)分子、分母同时乘分母的共轭复数;(2)对分子、分母分别进行乘法运算;(3)整理、化简成实部、虚部分开的标准形式.2.已知集合{}22,A xx x Z =<∈∣,则A 的真子集共有()个A .3B .4C .6D .7【答案】D【分析】写出集合{1,0,1}A =-,即可确定真子集的个数.【详解】因为{}22,{1,0,1}A xx x Z =<∈=-∣,所以其真子集个数为3217-=.故选:D.【点睛】本题考查集合的真子集个数问题,属于简单题.3.已知某圆锥的母线长为4,底面圆的半径为2,则圆锥的全面积为()A .10πB .12πC .14πD .16π【答案】B【分析】首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.【详解】底面周长是:2×2π=4π,则侧面积是:14π48π2⨯⨯=,底面积是:π×22=4π,则全面积是:8π+4π=12π.故选B .【点睛】本题考查了圆锥的全面积计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的()倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.22【答案】B【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg0.1E E =,∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈.故选:B .【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.5.向量,a b 满足||1a = ,a 与b 的夹角为3π,则||a b - 的取值范围为()A .[1,)+∞B .[0,)+∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎫+∞⎪⎢⎪⎣⎭【答案】D【分析】把||a b -用数量积表示后结合函数的性质得出结论.【详解】22222||()2121cos 3a b a b a a b b b b π-=-=-⋅+=-⨯⨯+ 21b b -+= 2134423b ⎛⎫=+≥⎪⎝⎭- ,所以3||2a b -≥ .1||2b = 时取得最小值.故选:D .【点睛】本题考查平面向量的模,解题关键是把模用向量的数量积表示,然后结合二次函数性质得出结论.6.已知三棱锥P ABC -,过点P 作PO ⊥面,ABC O 为ABC ∆中的一点,,PA PB PB PC ⊥⊥,PC PA ⊥,则点O 为ABC ∆的()A .内心B .外心C .重心D .垂心【答案】D【分析】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,可得BC ⊥PA ,由PO ⊥平面ABC 于O ,BC ⊂面ABC ,PO ⊥BC ,可得BC ⊥AE ,同理可以证明CO ⊥AB ,又BO ⊥AC .故O 是△ABC 的垂心.【详解】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,∴BC ⊥PA ,∵PO ⊥平面ABC 于O ,BC ⊂面ABC ,∴PO ⊥BC ,∴BC ⊥平面APE ,∵AE ⊂面APE ,∴BC ⊥AE ;同理可以证明CO ⊥AB ,又BO ⊥AC .∴O 是△ABC 的垂心.故选D .【点睛】本题主要考查了直线与平面垂直的性质,解题时要注意数形结合,属于基本知识的考查.7.设sin5a π=,b =,2314c ⎛⎫= ⎪⎝⎭,则()A .a c b <<B .b a c <<C .c a b<<D .c b a<<【答案】C【分析】借助中间量1和12比较大小即可.【详解】解:由对数函数y x =在()0,∞+单调递增的性质得:1b =>=,由指数函数12xy ⎛⎫= ⎪⎝⎭在R 单调递减的性质得:2413311142212c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<=,由三角函数sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增的性质得1sin sin 562a ππ=>=.所以c ab <<.故选:C.【点睛】本题考查利用函数的单调性比较大小,考查运算能力,化归转化思想,是中档题.本题解题的关键在于借助中间量1和12,尤其在比较a 与c 的大小时,将c 变形得24331142c ⎛⎫⎛⎫= ⎪ =⎪⎝⎭⎝⎭,进而与12比较大小是重中之核心步骤.8.已知三棱锥P ABC -的四个顶点均在同一个确定的球面上,且BA BC ==,2ABC π∠=,若三棱锥P ABC -体积的最大值为3,则其外接球的半径为()A .2B .3C .4D .5【答案】A【分析】由题意分析知三棱锥P ABC -体积的最大时,P ,O ,O '共线且O P '⊥面ABC ,P 在大于半球的的球面上,根据棱锥体积公式求得||O P ',进而应用勾股定理求外接球的半径.【详解】由题意知:AC 中点O '为面ABC 外接圆圆心,若外接球球心为O ,半径为R ,三棱锥P ABC -体积的最大时,P ,O ,O '共线且O 在P ,O '之间,∴1||33P ABC ABC V S O P -'=⋅⋅= ,1||||32ABC S BA BC =⋅⋅= ,即||3O P '=,||||32AC O C '==,所以()22222'|||'|33O C OC OO R R =-=--=,解得2R =,故选:A【点睛】关键点点睛:理解三棱锥P ABC -体积的最大时P 的位置及与球心、底面外接圆圆心的关系,结合棱锥体积公式、勾股定理求球体半径.二、多选题9.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中错误..的是()A .若,,//m n m n αβ⊂⊂,则//αβB .若,m n m α⊂⊥,则n α⊥C .若,m n αα^Ì,则m n ⊥D .若//,,m n αβαβ⊂⊂,则//m n【答案】ABD【分析】根据空间线、面关系,结合空间关系相关图例以及线线、线面、面面间的平行、垂直判定与性质,即可知选项的正误.【详解】A :,,//m n m n αβ⊂⊂,α、β不一定平行,错误.B :,m n m α⊂⊥,n 不一定垂直于α,错误.C :由线面垂直的性质:,m n αα^Ì,则必有m n ⊥,正确.D ://,,m n αβαβ⊂⊂,m 、n 不一定平行,错误.故选:ABD10.下列函数中,在(0,1)内是减函数的是()A .||12x y ⎛⎫= ⎪⎝⎭B .212log y x =C .121=+y x D .2log sin y x=【答案】ABC【分析】根据复合函数的单调性判断确定选项中各函数是否为减函数即可.【详解】A :1(2t y =为减函数,||t x =在(0,1)上为增函数,所以||12x y ⎛⎫= ⎪⎝⎭为减函数;B :12log y t =为减函数,2t x =在(0,1)上为增函数,所以212log y x =为减函数;C :1y t =为减函数,21t x =+在(0,1)上为增函数,所以121=+y x 为减函数;D :2log y t =为增函数,sin t x =在(0,1)上为增函数,所以2log sin y x =为增函数;故选:ABC【点睛】结论点睛:对于复合函数的单调性有如下结论1、内外层函数同增或同减为增函数;2、内外层函数一增一减为减函数;11.下列关于函数1()2sin 26f x x π⎛⎫=+⎪⎝⎭的图像或性质的说法中,正确的为()A .函数()f x 的图像关于直线83x π=对称B .将函数()f x 的图像向右平移3π个单位所得图像的函数为12sin 23y x π⎛⎫=+ ⎪⎝⎭C .函数()f x 在区间5,33ππ⎛⎫-⎪⎝⎭上单调递增D .若()f x a =,则1cos 232a x π⎛⎫-=⎪⎝⎭【答案】AD 【分析】令1262x k πππ+=+得到对称轴,即可判断A ;根据平移变换知识可判断B ;求出其单调增区间即可判断C ;利用配角法即可判断D.【详解】对于A ,令1262x k πππ+=+()k ∈Z ,解得22()3x k k Z ππ=+∈,当1k =时,得83x π=,故A 正确;对于B ,将函数()f x 的图像向右平移3π个单位,得112sin[()]2sin 2362y x x ππ=-+=,故B 错误;对于C ,令122()2262k x k k Z πππππ-+<+<+∈4244()33k x k k Z ππππ⇒-+<<+∈,故C 错误;对于D ,若12sin()26x a π+=,则11cos()sin[()]23223x x πππ-=+-=1sin()262ax π+=,故D 正确.故选:AD【点睛】方法点睛:函数()sin (0,0)y A x B A ωϕω=++>>的性质:(1)max min =+y A B y A B =-,.(2)周期2π.T ω=(3)由()ππ2x k k +=+∈Z ωϕ求对称轴(4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.12.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有()A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】由()()f x f x x '<知:()()0xf x f x x'-<,令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >;A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+;B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+;C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <;D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小.故选:ABC【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<,1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=.2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.三、填空题13.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【解析】由题意,根据球的体积公式343V R π=,则343233R ππ=,解得2R =,又根据球的表面积公式24S R π=,所以该球的表面积为24216S ππ=⋅=.14.设向量a ,b 不平行,向量a b λ+ 与2a b + 平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则{12,k k λ==,所以12λ=.【解析】向量共线.15.一般把数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则第21行从左至右的第4个数字应是____________.【答案】228【分析】由题知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,从左到右第4个数字为228.【详解】观察数据可知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,所以第21行从左到右第4个数字为228.故答案为:228.【点睛】关键点睛:本题考查合情推理、数列的前n 项和,解题关键要善于观察发现数据特征,考查了学生的逻辑思维能力、数据处理能力、运算求解能力,综合性较强,属于较难题型.四、双空题16.已知等比数列{}n a 的公比为q ,且101a <<,20201a =,则q 的取值范围为______;能使不等式12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立的最大正整数m =______.【答案】(1,)+∞4039【分析】根据已知求得1a 的表达式,由此求得q 的取值范围.根据12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立列不等式,化简求得m 的取值范围,从而求得最大正整数m .【详解】由已知201911201911a qa q =⇒=,结合101a <<知2019101q <<,解得1q >,故q 的取值范围为(1,)+∞.由于{}n a 是等比数列,所以1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列.要使12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立则1212111m ma a a a a a +++≤+++ 即()111111111m m a q a q q q⎛⎫-⎪-⎝⎭≤--,将120191a q=代入整理得:40394039m q q m ≤⇒≤故最大正整数4039m =.故答案为:(1,)+∞;4039【点睛】本小题主要考查等比数列的性质,考查等比数列前n 项和公式,属于中档题.五、解答题17.在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,M 是线段AB 的中点,1160,22,2,DAB AB CD DD C M ∠=︒====(1)求证:1//C M 平面11A ADD ;(2)求异面直线 CM 与1DD 所成角的余弦值.【答案】(1)证明见解析;(2)14.【分析】(1)易得1111//,C D MA C D MA =,则四边形11AMC D 为平行四边形,得到11//C M D A ,再利用线面平行的判定定理证明.(2)由//CM DA ,将异面直线CM 与1DD 成的角,转化为 DA 与1DD 相交所成的角,然后在1ADD ,利用余弦定理求解.【详解】(1)因为四边形ABCD 是等腰梯形,且2AB CD =,所以//AB DC .又由M 是AB 的中点,因此//CD MA 且CD MA =.如图所示:连接1AD ,在四棱柱1111ABCD A B C D -中,因为1111//,CD C D CD C D =,可得1111//,C D MA C D MA =,所以四边形11AMC D 为平行四边形.因此11//C M D A ,又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD ,所以1//C M 平面11A ADD .(2)因为//CM DA ,所以异面直线CM 与1DD 成的角,即为 DA 与1DD 相交所成的直角或锐角,在1ADD中,1C M =,所以111,2AD AD DD ===,由余弦定理可得:22211111cos 24AD DD AD ADD AD DD +-∠==-⋅,所以异面直线CM 和1DD 余弦值为14.【点睛】方法点睛:判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.已知数列{}n a 满足:13a =,且对任意的n *∈N ,都有1,1,n n a a +成等差数列.(1)证明数列{}1n a -等比数列;(2)已知数列{}n b 前n 和为n S ,条件①:()1(21)n n b a n =-+,条件②:11n n n b a +=-,请在条件①②中仅选择一个条件作为已知条件.............来求数列{}n b 前n 和n S .【答案】(1)证明见解析;(2)答案不唯一,具体见解析.【分析】(1)由条件得121n n a a +=-,利用等比数列定义可得证.(2)选条件①得(21)2nn b n =+,选条件②得1(1)()2nn b n =+⋅利用错位相减法可得解.【详解】(1)由条件可知112n n a a ++=,即121n n a a +=-,∴()1121n n a a +-=-,且112a -=∴{}1n a -是以112a -=为首项,2q =为公比的等比数列,∴12nn a -=,∴()21nn a n N*=+∈(2)条件①:()1(21)(21)2nn n b a n n =-+=+,123325272(21)2nn S n =⋅+⋅+⋅+++⋅ 23412325272(21)2n n S n +=⋅+⋅+⋅+++⋅利用错位相减法:123413222222222(21)2nn n S n +-=⋅+⋅+⋅+⋅++⋅+⋅- 118(12)6(21)212n n n S n -+--=++⋅--化简得()12(21)2n n S n n N +*=-+∈条件②:11(1)()12nn n n b n a +==+⋅-231111234(1)2222n nS n =⋅+⋅+⋅+++⋅ 234111111234(1)22222n n S n +=⋅+⋅+⋅+++⋅ 利用错位相减法:23411111111(1)222222n n n S n +=++++-+⋅ 1111[1()]11421(1)12212n n n S n -+-=+-+⋅-化简得()13(3)(2n n s n n N *=-+∈【点睛】错位相减法求和的方法:如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解;在写“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式19.已知椭圆C 的两个焦点分别为12(1,0),(1,0)F F -,短轴的两个端点分别为12,B B .且122B B =.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 与椭圆C 相交于P ,Q 两点,且11F P FQ ⊥ ,求直线l 的方程.【答案】(1)2212x y +=;(2)10x +-=,或10x -=.【分析】(1)由题干条件可得c 和b 的值,进而求出2a 的值,从而求出椭圆方程;(2)首先考虑斜率不存在的情况,不符合题意;当斜率存在时,联立方程,可得()22121222214,2121k k x x x x k k -+=⋅=++,又110F P FQ ⋅= ,向量坐标化可得()()()2221212111110k x x k x x k F P FQ ⋅--==++++uuu r uuu r ,代入1212,x x x x +⋅,化简,即可求出k 的取值,从而求出直线方程.【详解】解(1)由条件可知:1c =,又122B B =,所以1b =,则22a =,所以椭圆C 的方程为2212x y +=(2)当直线l 的斜率不存在时,其方程为1x =,不符合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得()()2222214210k x k x k +-+-=,()2810k ∆=+>,设()()1122,,,P x y Q x y ,则()22121222214,2121k k x x x x k k -+=⋅=++,()()1111221,,1,F P x y F Q x y =+=+ ,∵110F P FQ ⋅= ,即()()()()()22212121212111110x x y y k x x k x x k +++=+--+++=,即()()()222222221411()102121k k kk k k k -+--++=++化简得:2201172k k =+-解得217,77k k ==±.故直线l的方程为10x +-=,或10x --=.【点睛】方法点睛:(1)将向量转化为坐标的关系;(2)联立直线和椭圆,求出两根之和,两根之积;(3)将两根之和和两根之积代入坐标关系中,解出k .20.已知()cossin 222x x x f x ⎛⎫=+ ⎪⎝⎭,记ABC 的内角,,A B C 的对边分别为,,a b c .(1)求()f B 的取值范围;(2)当4a =,433b =,且()f B 取(1)中的最大值时,求ABC 的面积.【答案】(1)30,12⎛+ ⎝⎦;(2)833或433【分析】(1)利用公式对函数化简,根据B 角的范围,求函数值域.(2)由(1)求出B 的大小,利用正弦定理和三角形面积公式即可求出结果.【详解】(1)2()cossin sin cos 222222x x x x x x f x ⎛⎫=+=+ ⎪⎝⎭13(cos 1)3sin sin 2232x x x π+⎛⎫=+=++ ⎪⎝⎭因为B 为三角形的内角,所以(0,)B π∈所以4,333B πππ⎛⎫+∈ ⎪⎝⎭,所以3()0,12f B ⎛∈+ ⎝⎦(2)34()11,,23333f B B B ππππ⎛⎫⎛⎫=++=+∈ ⎪ ⎝⎭⎝⎭,,326B B πππ∴+==,由正弦定理得:4343sin 1sin sin sin 22a b A A B A =⇒=⇒=()0,,3A A ππ∈∴=,或23A π=,若3A π=,则2C π=,183sin 23ABC S ab C ==若23π=A ,则6π=C,1sin 23==ABC S ab C 【点睛】本题考查了三角恒等变换、正弦定理和三角形面积公式等基本数学知识,考查了数学运算能力和逻辑推理能力,属于中档题目.21.在直三棱柱111ABC A B C -中,112,120,,AB AC AA BAC D D ==∠=分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交,AB AC 于点,M N .(1)证明:平面1A MN ⊥平面11ADD A ;(2)求二面角1A A M N --的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)根据线面垂直的判定定理即可证明MN ⊥平面ADD 1A 1;又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)建立空间坐标系,利用向量法求出平面的法向量,利用向量法进行求解即可.【详解】(1)证明:∵AB=AC ,D 是BC 的中点,∴BC ⊥AD ,∵M ,N 分别为AB ,AC 的中点,∴MN ∥BC ,∴MN ⊥AD ,∵AA 1⊥平面ABC,MN ⊂平面ABC ,∴AA 1⊥MN ,∵AD,AA 1⊂平面ADD 1A 1,且AD∩AA 1=A ,∴MN ⊥平面ADD 1A 1∴,又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)设AA 1=1,如图:过A 1作A 1E ∥BC ,建立以A 1为坐标原点,A 1E ,A 1D 1,A 1A 分别为x ,y ,z 轴的空间直角坐标系如图:则A 1(0,0,0),A(0,0,1),∵P 是AD 的中点,∴M ,N 分别为AB ,AC 的中点.则31,,122M ⎛⎫ ⎪ ⎪⎝⎭,31,,122N ⎛⎫- ⎪ ⎪⎝⎭,则131,,122A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,)NM = ,设平面AA 1M 的法向量为(),,m x y z=,则100m AM m A A ⎧⋅=⎪⎨⋅=⎪⎩,得10220x y z z ++=⎨⎪=⎩,令1x =,则y =,则()1,m =,同理设平面A 1MN 的法向量为(),,n x y z=,则100n A M n NM ⎧⋅=⎨⋅=⎩,得310220x y z ++=⎪⎨⎪=⎩,令2y =,则1z =-,则()0,2,1n =-,则()15cos ,5m n m n m n ⋅===-⋅,∵二面角A-A 1M-N 是锐二面角,∴二面角A-A 1M-N 的余弦值是155.【点睛】本题主要考查直线垂直的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.22.已知21()(1)2xf x e ax b x =---.其中常数 2.71828e ≈⋅⋅⋅⋅⋅⋅.(1)当2,4a b ==时,求()f x 在[1,2]上的最大值;(2)若对任意0,()a f x >均有两个极值点()1212,x x x x <,(ⅰ)求实数b 的取值范围;(ⅱ)当a e =时,证明:()()12f x f x e +>.【答案】(1)max ()1f x e =-;(2)(ⅰ)1b >;(ⅱ)证明见解析.【分析】(1)由题得2()4(1)x f x e x x =---,()24x f x e x '=--,()2x f x e ''=-,由[1,2]x ∈,可得()0f x ''>,即()'f x 在[1,2]上单增,且2(2)80f e -'=<,即()0f x '<,可知()f x 在[1,2]上单减,求得max ()(1)1f x f e ==-.(2)(ⅰ)利用两次求导可得(,ln )x a ∈-∞时,()'f x 单减;(ln ,)x a ∈+∞时,()'f x 单增,再由()f x 有两个极值点,知(ln )ln 0f a a a a b =--<',即ln b a a a >-恒成立,构造函数()ln g a a a a =-,利用导数求其最大值,可得实数b 的取值范围;(ⅱ)设()()(2),(1)h x f x f x x ''=--<,求导可得()h x 在(,1)-∞单增,得到()(2)f x f x ''<-,可得()()112f x f x ''<-,()()122f x f x ''->,结合()'f x 在(1,)+∞上单增,可得()()122f x f x >-,得到()()()()2222122222222x x f x f x f x f x e e ex ex e -+>-+=+-+-,构造22()22x x M x e e ex ex e -=+-+-,(1)x >,再利用导数证明()2(1)M x M e >=,即可得到()()12f x f x e+>【详解】(1)由2,4a b ==得,2()4(1)x f x e x x =---,求导()24x f x e x '=--,()2x f x e ''=-,[1,2]x ∈ ,2[,]x e e e ∴∈,20x e ∴->,即()0f x ''>()f x '∴在[1,2]上单增,且2(2)80f e -'=<,即[1,2]x ∀∈,()0f x '<,()f x ∴在[1,2]上单减,max ()(1)1f x f e ∴==-.(2)(ⅰ)求导()x f x e ax b '=--,因为对任意0,()a f x >均有两个极值点12,x x ,所以()0f x '=有两个根,求二阶导()x f x e a ''=-,令()0f x ''=,得ln x a=当(,ln )x a ∈-∞时,()0f x ''<,()'f x 单减;当(ln ,)x a ∈+∞时,()0f x ''>,()'f x 单增,由()0f x '=有两个根12,x x ,知(ln )ln 0f a a a a b =--<',即ln b a a a >-对任意0a >都成立,设()ln g a a a a =-,求导()ln g a a '=-,令()0g a '=,得1a =,当(0,1)x ∈时,()0g a '>,()g a 单增;当(1,)x ∈+∞时,()0g a '<,()g a 单减,max (()1)1g g a =∴=,1b ∴>又0,,()ba b f e x f x a -⎛⎫''-=>→+∞→+∞ ⎪⎝⎭Q ,所以实数b 的取值范围是:1b >.(ⅱ)当a e =时,()x f x e ex b '=--,()x f x e e ''=-,令()0f x ''=,得1x =当(,1)x ∈-∞时,()0f x ''<,()'f x 单减;当(1,)x ∈+∞时,()0f x ''>,()'f x 单增,又12,x x 是()0f x '=的两根,且12x x <,121,1x x <∴>,121x ∴->设()()(2),(1)h x f x f x x ''=--<,即22(2)2()2,(1)xxx xe ex b ee x b e e ex e x h x --⎡⎤=-=-------+<⎣⎦,则2()2220x x h x e e e e e -=+->-='()h x ∴在(,1)-∞单增,()(1)0h x h ∴<=,即()(2)f x f x ''<-又11,x <,()()112f x f x ''∴<-,()()122f x f x ''∴->又()f x ' 在(1,)+∞上单增,122x x ∴->,即1222x x x <-<,又()f x 在()12,x x 上单减,()()122f x f x ∴>-()()()()2222122222222x x f x f x f x f x e e ex ex e-∴+>-+=+-+-令22()22x x M x e e ex ex e -=+-+-,(1)x >则2()22x x M x e e ex e -'=--+,2()20x x M x e e e -''=+-≥()M x '∴在(1,)+∞单增,且(1)0M '=,()0M x '∴>,故()M x 在(1,)+∞单增又21x > ,()2(1)M x M e ∴>=,即()()12f x f x e+>【点睛】方法点睛:本题考查利用导数研究函数的单调性,求极值,最值,以及证明不等式,证明不等式的方法:若证明()()f x g x <,(,)x a b ∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知(,)x a b ∈时,有()0F x <,即证明了()()f x g x <,考查学生的函数与方程思想,化归与转化思想,考查逻辑思维能力与推理论证能力,属于难题.。
辽宁省鞍山市第一中学2024-2025学年高三上学期10月月考数学试题(含答案)
![辽宁省鞍山市第一中学2024-2025学年高三上学期10月月考数学试题(含答案)](https://img.taocdn.com/s3/m/03360a05bf23482fb4daa58da0116c175e0e1e1f.png)
鞍山市第一中学2024-2025学年高三上学期10月月考数学科试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知( )A .1B .2CD .32.为了得到函数的图像,只需把函数的图像( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位3.在中,点在边上,,设,则( )A .B .C .D .4.设函数,其中,则是偶函数的充要条件是( )A .B .C .D .5.已知函数,则不等式的解集为( )A .B .C .D .6.已知函数,若在有唯一的零点,则( )A .1B .2C .3D .47.已知函数在处有极大值,则( )A .1B .2C .3D .48.已知函数的最小正周期为,当时,函数取最小值,则下列结论正确的是( )A .B .C .D .12i ,iz z -==πsin 23y x ⎫⎛=- ⎪⎝⎭πsin 26y x ⎫⎛=+ ⎪⎝⎭π4π4π2π2ABC △M N 、BC BM MN NC ==,AM m AN n == AB = 2m n - 2n m - 2m n - 2n m- ()()cos f x x ωϕ=+0ω>()f x ()01f =()00f =()01f '=()00f '=()112,02,0x x x f x x +-⎧≥=⎨-<⎩()()2f x f x ->(),1-∞-(),1-∞()1,-+∞()1,+∞()()2cos 1f x x a x =-+()f x ()1,1-a =()2()f x x x c =⋅-1x =c =()()sin (,,0)f x A x A ωϕωϕ=+>π6074π3x =()f x ()()()220f f f <-<()()()202f f f -<<()()()022f f f <<-()()()202f f f <<-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。
重庆市南开中学校2025届高三上学期7月月考数学试题(含答案)
![重庆市南开中学校2025届高三上学期7月月考数学试题(含答案)](https://img.taocdn.com/s3/m/6ac8f08cb8f3f90f76c66137ee06eff9aff84970.png)
重庆南开中学高2025级高三7月月考数学试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷和第Ⅱ卷都答在答题卷上.第Ⅰ卷(选择题 共58分)一、单项选择题:本题共8小题,每小题5分,共40分.在每道题给出的四个选项中,只有一项符合题目要求.1.已知集合,集合,则( )A .B .C .D .2.函数的单调递增区间为( )A .B .C .D .3.命题p :“函数在区间上单调递增”是命题q :“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知f (x )是定义在R 上的奇函数,当时,,则()A .4B .C .5D .5.若正实数x ,y 满足,则xy 的取值范围为( )A .(0,4]B .C .D .6.若函数在时有极小值,则( )A .B .C .D .7.已知函数的图象与函数的图象有且只有一个交点,则实数()A .B .1C .D .28.已知函数是R 上的偶函数,且,当时,,函数f (x )在区间的零点个数为( )A .7B .8C .9D .10二、多项选择题:本小题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.{A x y =={}2x B y y ==A B = (](),50,-∞-+∞ [)1,+∞()0,+∞[)[)5,01,-+∞ ()()2ln 1f x x =-()0,+∞(),0-∞()1,+∞(),1-∞()313f x x ax =-[]1,1-1a ≤0x >()21f x x =+()2f '-=4-5-40x y xy +-=[)2,+∞[)4,+∞[)16,+∞()()2e x f x ax b =+1x =2e -ab =2-3-e-1-()()ln f x x m =+()()ln g x x =--m =1-2-()1f x +()()220f x f x ++-=(]0,1x ∈()25log 22f x x ⎛⎫=-+ ⎪⎝⎭[]3,3-9.下列关于幂函数的说法正确的有( )A .函数f (x )的定义域为RB .函数f (x )的值域为C .函数f (x )为偶函数D .不等式的解集为10.已知函数f (x )在定义域内恒大于0,且满足,则下列不等式正确的是()A .B .C .D .11.已知函数(且),则( )A .当时,函数g (x )有3个零点B .当时,函数g (x )在上单调递减C .当函数g (x )在处的切线经过坐标原点时,有或D .当时,若函数恰有两个零点、,则第Ⅱ卷(非选择题 共92分)三、填空题:本题共3小题,每小题5分,共15分.12.若,则f (x )的解析式为______.13.已知函数的值域为,则______.14.已知函数,若且,有恒成立,则实数a 的取值范围是______.四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在点处的切线l 与直线平行.(1)求k 的值及切线l 的方程;(2)求f (x )的单调区间和极值.16.(15分)()43f x x -=()0,+∞()1f x <()1,1-()1,+∞()()ln 0f x xf x x '->()()2ln 33ln 2f f >()()2ln 33ln 2f f <()()224f f >()()224f f <()[)()[]cos ,0,2ππ2sin 1,2π,3πax x x g x a x x ⎧-∈⎪=⎨-∈⎪⎩a ∈R 0a >1a =12a =4π5π,33⎛⎫⎪⎝⎭()00,P x y 0001sin cos 2x x x +=00tan 1x x ⋅=12a ⎡∈⎢⎣()()f x g x t =-1x 2x 122πx x +>()2212f x x x -=-()()sin 1202520252cos 3xf x x x =+-≤≤-[],m M M m +=()()1e ln xf x x x x =--()12,0,x x ∀∈+∞12x x ≠()()122212f x f x a x x ->-()2ln 1f x x x kx =+-+()()2,2f 320x y -=已知函数为偶函数.(1)求a 的值及函数f (x )的值域;(2)设,若,都有恒成立,求实数m 的取值范围.17.(15分)2024年4月26日至10月28日,世界园艺博览会在成都主办,主题为“公园城市,美好人居”.本次展览的主会场内部规划了中华园艺展区,国家园艺展区,天府人居展区,公园城市展区等7个展区.暑假期间,甲乙两人相约游览世园会,恰逢7月6日小署至,“花语成都”诗词活动正在火热进行,一场场沉浸式、高互动的成都行歌正在线下演绎.(1)由于园区太大,甲乙两人决定在7个展区中随机选出3个展区游玩,求他们至少选中中华园艺展区,国家园艺展区,天府人居展区,公园城市展区这4个展区中2个展区的概率.(2)甲乙两人各自独立的参加了诗词活动中的“诗词填白”游戏,参加的人只要准确填出抽中的诗中空白的诗句,则视为闯关成功.已知甲和乙闯关成功的概率分别为p 和.(i )记甲乙两人闯关成功的人数之和为X ,求X 的分布列;(ii )若甲乙两人闯关成功的人数之和的期望大于1,求p 的取值范围.18.(17分)已知椭圆C :,、分别为椭圆C 的左、右焦点,过作与x 轴不重合的直线l 与椭圆交于A 、B 两点.当l 垂直于x 轴时,.(1)求椭圆C 的标准方程;(2)若点D 、E 分别为线段、的中点,点M 、N 分别为线段AE 、BD 的中点.(i )求证:为定值;(ii )设面积为S ,求S 的取值范围.19.(17分)定义可导函数p (x )在x 处的函数为p (x )的“优秀函数”,其中为p (x )的导函数.若,都有成立,则称p (x )在区间D 上具有“优秀性质”且D 为(x )的“优秀区间”.已知.(1)求出f (x )的“优秀区间”;(2)设f (x )的“优秀函数”为g (x ),若方程有两个不同的实数解、()()93x xaf x a +=∈R ()()()()22g x mf x f x m m =++∈R x ∀∈R ()0g x <12112p p ⎛⎫-<< ⎪⎝⎭()222210x y a b a b+=>>()11,0F -()21,0F 2F 3AB =1F A 1F B MNAB1F MN △()()()xq x p x p x '=⋅()p x 'x D ∀∈()1q x >()()e 10xf x x =-≠()()ln e xx m g x +=1x.(ⅰ)求m 的取值范围;(ⅱ)证明:(参考数据:).参考答案一、单选题12345678B CAADBDC二、多选题91011BC ACABD三、填空题12.13.214.四、解答题15.(1),,故f (x )在处的切线斜率为.,解得.因此.故l :,即.(2)f (x )的定义域为.又.令,解得或;令,解得.故f (x )在区间上单调递增,在上单调递减,在上单调递增.综上所述,f (x )的单调递增区间为和,单调递减区间为.且在处取得极大值,在处取得极小值.16.(1)∵f (x )为偶函数,,,,()212x x x <121ln x x m e++< 2.718e ≈()22x x f x 2=+1,2⎛⎤-∞ ⎥⎝⎦()12f x x k x '=+-()922f k '=-2x =92k -9322k ∴-=3k =()2ln 2461ln 21f =+-+=-()()3ln 2122y x --=-3ln 242y x =+-()0,+∞()()()2211123123x x x x f x x x x x---+'=+-==()0f x '>1x >12x <()0f x '<112x <<10,2⎛⎫ ⎪⎝⎭1,12⎛⎫ ⎪⎝⎭()1,+∞10,2⎛⎫ ⎪⎝⎭()1,+∞1,12⎛⎫⎪⎝⎭12x =111ln 224f ⎛⎫=- ⎪⎝⎭1x =()11f =-()()f x f x ∴=-9919333x x xx x xa a a --+++⋅∴==919x x a a ∴+=+⋅即对恒成立,.(当且仅当时取等)故值域为.(2),令,则.对恒成立,即对恒成立.,故原式子又等价于对恒成立.令,则,则h (t )在上单调递增.故,.故m 的取值范围为.17.(1)记“他们至少选中其中的两个园区”为事件A .则.(2)(ⅰ)由可知:X 可取0,1,2.列出分布列如下:X 012P(ⅱ)由(ⅰ)可知,解得.18.(1)在椭圆C 中,令,可得,故有,而,,解得,,,故椭圆C 的标准方程为.(2)(ⅰ)设l :,将l 与C 联立可得:.设,,则,.()191xa a -⋅=-x ∀∈R 1a ∴=()1323x x f x ∴=+≥=0x =[)2,+∞()()()2233233x x x x g x m m --=++++()332xxt t -=+≥222332x x t -+=-()()2220g x m t t m ∴=-++<2t ∀≥()2120m t t -+<2t ∀≥210t -> 221tm t <--2t ∀≥()221th t t =--()()2222201t h t t +'=>-()2,+∞()()423h t h ≥=-43m ∴<-4,3⎛⎫-∞- ⎪⎝⎭()11343437C C C 22C 35P A +==()()()201121242P X p p p p ==---=-+⎡⎤⎣⎦()()()()21121121451P X p p p p p p ==--+--=-+-⎡⎤⎣⎦()()22212P X p p p p==-=-2242p p -+2451p p -+-22p p-()()()22145122311E X p p p p p =⋅-+-+⋅-=->213p >>x c =2b y a =±223b a =1c =222a b c =+24a =23b =21c =22143x y +=1x ty =+()2234690t y ty ++-=()11,A x y ()22,B x y 122634t y y t -+=+122934y y t -=+则,,,.①当l 与x 轴垂直时,,此时,故;②当l 与x 轴不垂直时,也有.综上,.故,而,故.(ⅱ)由(ⅰ)可知:,故:.令,解得.恒过定点.设到MN 与AB 的距离分别为与,的面积为,则.故令,则,因为在上单调递增,故,则.综上所述,S 的取值范围为.19.(1)当时,.令,则,令,解得;令,解得.111,222x y D ⎛⎫-⎪⎝⎭221,222x y E ⎛⎫- ⎪⎝⎭12121,24424x x y y M ⎛⎫+-+ ⎪⎝⎭21211,24424x x yy N ⎛⎫+-+ ⎪⎝⎭12x x =13144M N x x x =-=MN AB ∥1212121244M N MNAB M N y y y y y y k k x x x x x x ---====---MN AB ∥MN AB ∥2AB y =-14N MN y AB =-=14MN AB =MN AB ∥MN l 1212124224x x y y x t y ⎛⎫⎛⎫⎛⎫-+-=--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0y =121212121111124424244242x x y y ty ty y y x t t ++⎛⎫⎛⎫=+--+=+--+= ⎪ ⎪⎝⎭⎝⎭MN l 1,02R ⎛⎫⎪⎝⎭1F 1d 2d 1F AB △1S 111122113214162MN d F R S S F F AB d ===112121233131616216S S F F y y y y ==⋅⋅-=-=94==)1r r =≥()2299911443143143r r S r r r r=⋅=⋅=⋅+-++13y r r =+[)1,+∞134r r +≥916S ≤90,16⎛⎤⎥⎝⎦()e 1xf x =-()()1e 1e 11e 1e 1xxx x x x g x -+-=-=--()()1e 1xh x x =-+()e xh x x '=()0h x '>0x >()0h x '<0x <当时,h (x )单调递减;当时,h (x )单调递增,故.当时,,则,f (x )不具有“优秀性质”;当时,,则,f (x )具有“优秀性质”.故f (x )的“优秀区间”为.(2)(ⅰ)原式.令,,令,解得;令,解得.故当时,k (x )单调递减;时,k (x )单调递增.当时,;时,,,故.即m 的取值范围为.(ⅱ)由、为方程的两个解可知:,则,令,,令,,则N (x )在单调递增,故.令,解得.故M (x )在(0,1)上单调递减,上单调递增.则.令,,令,则,故G (x )在上单调递增,.即,故Q (x )在上单调递增.故(),0x ∈-∞()0,x ∈+∞()()00h x h >=(),0x ∈-∞e 10x -<()10g x -<()0,x ∈+∞e 10x ->()10g x ->()0,+∞()e ln 1ln 1e 1ln 0e 1x xx x x x m x x x mx m x--⇔+=⇔---=⇔=-()e ln 1x x x k x x --=()()()21e 1x x k x x --'=()0k x '>1x >()0k x '<01x <<()0,1x ∈()1,x ∈+∞0x →()k x →+∞x →+∞()k x →+∞()11k e =-1m e >-()1,e -+∞1x 2x 2222e 1ln x m x x x =--1201x x <<<()1212212222221e 1e 11ln ln ln x x x x m x x x x e x x x x e++<=--⇔<---()e 11x M x x x x e =---()()()21e 1xx x M x x ---'=()e 1xN x x =--()e 10xN x '=->()0,+∞()()00N x N >=()0M x '>1x >()1,+∞()()22121 2.72 2.710.89120e e M x M e e e e e---⨯-≥=--=>=>()()()11Q x k x k x x ⎛⎫=-> ⎪⎝⎭()()()()221e e 111x xx x x Q x k x k x x x --+-⎛⎫'''=+= ⎪⎝⎭()e e 1,1x x G x x x x =-+->()1111e e e 1e e e 10x xx xx x G x x x x x'=-++>-++>()1,+∞()()10G x G >=()0Q x '>()1,+∞,即,成立.因为,则,又,,k (x )在(0,1)单调递减,则,即,故.所以.()()10Q x Q >=()1k x k x ⎛⎫> ⎪⎝⎭1x ∀>1201x x <<<()()1221k x k x k x ⎛⎫=>⎪⎝⎭101x <<2101x <<121x x <121x x <()12ln 0x x <()212222e 11ln 0x x x x x x e <<---。
2025届赤峰市红山区高三数学上学期10月第二次月考试卷附答案解析
![2025届赤峰市红山区高三数学上学期10月第二次月考试卷附答案解析](https://img.taocdn.com/s3/m/8c452e16f56527d3240c844769eae009591ba25c.png)
赤峰二中 2022级高三上学期第二次月考数学试题一、单项选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集U =R ,集合{}50,2x A x B x x x ⎧⎫-=<=>⎨⎬⎩⎭,则图中阴影部分表示的集合为( )A. {}25x x << B. {}25x x ≤<C. {}02x x << D. {}02x x <≤【答案】D 【解析】【分析】确定集合A ,然后根据文氏图的概念及集合的运算求解.【详解】由题意5{|0}{|05}x A x x x x-=<=<<,{|2}U B x x =≤ð阴影部分为{|02}U A B x x =<≤ ð.故选:D .2. 命题“3[0,),0x x x ∀∈+∞+≥”的否定是 ( )A. 3(,0),0x x x ∀∈-∞+< B. 3(,0),0x x x ∀∈-∞+≥C. [)30,,0x x x ∞∃∈++< D. 3[0,0x x x ∃∈+∞+≥),【答案】C 【解析】【分析】利用全称量词命题的否定判断即可.【详解】命题“3[0,),0x x x ∀∈+∞+≥”是全称量词命题,其否定是存在量词命题,所以命题“3[0,),0x x x ∀∈+∞+≥”的否定是[)30,,0x x x ∞∃∈++<.故选:C3. 已知0a b c >>>,则下列不等式正确的是( )A 2a c b+> B. 2b ac> C. ()()110a b --> D. ()()a c a b c b->-【答案】D 【解析】【分析】运用特殊值判断A,B,C,运用不等式性质推断D.【详解】取4a =,3b =,1c =,则2a c b +<,故A 错误;取5a =,2b =,1c =,则2b ac <,故B 错误;取2a =,12b =,则()()110a b --<,故C 错误;因为0a b c >>>,所以a c b c ->-,所以()()a c a b c b ->-,故D 正确.故选:D4. 设0.13592,lg ,log 210a b c ===,则( ).A. b c a >> B. b a c>> C. a c b>> D. a b c>>【答案】D 【解析】【分析】依题意可得1a >,01b <<,0c <,进而可得结果.【详解】因为0.10221a =>=,50lg lg1012b <=<=,339log log 1010c =<=,所以a b c >>.故选:D.5. 数列{}n a 满足11a =,且对于任意的n *∈N 都满足 131nn n a a a +=+,则数列{}1n n a a +的前n 项和为( )A.131n + B.31+n n C.132n - D.32n n -【答案】B 【解析】【分析】根据给定条件,利用构造法求出数列{}n a 的通项,再利用裂项相消法求和即可.【详解】依题意,由131n n n a a a +=+,得1113n n a a +=+,故数列1{}na 是首项为1,公差为3的等差数列,所以113(1)32n n n a =+-=-,则111111((32)(31)33231n n a a n n n n +==--+-+,.所以数列{}1n n a a +的前n 项和为11111111111[((()((1)31447710323133131n n n n n -+-+-++-=-=-+++ .故选:B6. 中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经研究可知:在室温25C 下,某种绿茶用85C 的水泡制,经过min x 后茶水的温度为C y ,且()0.9227250,R xy k x k =⋅+≥∈.当茶水温度降至60C 时饮用口感最佳,此时茶水泡制时间大约为( )(参考数据:ln20.69,ln3 1.10,ln7 1.95,ln0.92270.08≈≈≈≈-)A. 6min B. 7minC. 8minD. 9min【答案】B 【解析】【分析】根据初始条件求得参数k ,然后利用已知函数关系求得口感最佳时泡制的时间x .【详解】由题意可知,当0x =时,85y =,则8525k =+,解得60k =,所以600.922725x y =⨯+,当60y =时,60600.922725x =⨯+,即70.922712x=,则0.92277ln7ln 7ln1212log 12ln 0.9227ln 0.9227x -===ln 72ln 2ln 3 1.9520.69 1.107ln 0.92270.08---⨯-=≈≈-,所以茶水泡制时间大的为7 min.故选:B.7.函数||()1x f x e =--的大致图象为A.B.C. D.【答案】C 【解析】分析】先研究函数的奇偶性,得到()f x 是偶函数,研究当0x ≥时函数的单调性,又(0)0f =,即得解.【详解】||||()2||12||1()x x f x e x e x f x --=---=--= 故()f x 是偶函数,当0x ≥时,()21x f x e x =--,()2x f x e '=-,令()0f x '>,解得ln 2x >;令()0f x '<,解得ln 2x <即()f x 在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,又(0)0f =,故选:C【点睛】本题考查了通过函数的奇偶性,单调性研究函数的图像和性质,考查了学生综合分析,数形结合的能力,属于中档题.8. 若定义在R 上的函数()f x 满足()()4()2f x x f f ++=,()21f x +是奇函数,11()22f =则( )A.17111(22k f k =-=-∑B. 1711()02k f k =-=∑C. 171117()22k kf k =-=-∑ D.171117()22k kf k =-=∑【答案】D 【解析】【分析】根据给定条件,求出函数()f x 的周期,及(1)(1)0f x f x -+++=和(2)()0f x f x ++=,再逐项计算判断得解.【详解】由()4(()2)f f f x x ++=,得()4((24))f x x f f +++=,则(4)()f x f x +=,即函数()f x 的周期为4,【由(21)f x +是R 上的奇函数,得(21)(21)f x f x -+=-+,即(1)(1)0f x f x -+++=,于是13()()022f f +=,5751()()(()02222f f f f +=+-=,即1357(()()()02222f f f f +++=,因此17113571()()(2()](1622222111()4[()22k f k f f f f f f =-==++++=+∑,AB 错误;由()4((24))f x x f f +++=,取0x =,得(2)0f =,则(4)(0)(2)0f f f ==-=,因此(2)()0f x f x ++=,取32x =,得37((022f f +=,于是1357135737(2(3()4()[(()]3[()()](()022********f f f f f f f f f f +++=+++++=,则17113571()2(3()4(17(162222117()4[222k k f f f f f f k =++=+-=++∑,C 错误,D 正确.故选:D【点睛】思路点睛:涉及抽象函数等式问题,利用赋值法探讨函数的性质,再借助性质即可求解.二、多项选择题(本大题共3小题,每小题6分,共18分. 在每小题给出的四个选项中,有多个选项是符合题求的,全部选对的得6分,有选错的得0分)9. 已知p :260x x +-=;q :10ax +=.若p 是q 的必要不充分条件,则实数a 的值可以是( )A. ﹣2B. 12-C.13D. 13-【答案】BC 【解析】【分析】根据集合关系将条件进行化简,利用充分条件和必要条件的定义即可得到结论.【详解】由题意得{: 3 2}p A =-,,当0a =时,q B =∅:,当0a ≠时,1q B a ⎧⎫=-⎨⎬⎩⎭:,因为p 是q 的必要不充分条件,所以B A ,所以0a =时满足题意,当13a -=-或12a -=时,也满足题意,解得13a =或12a =-,故选:BC【点睛】本题考查利用集合间的关系判断命题间充分必要条件,属于中档题.10. 已知0,0a b >>且2a b +=, 则下列不等式恒成立的是( ).A. ²²a b +的最小值为2B. 12a b+的最小值为3+C. ab 的最大值为 1D.的最大值为2【答案】ACD 【解析】【分析】配方后使用基本不等式可判断A ;利用常数代换可判断B ;直接使用基本不等式可判断C ;先利用基本不等式求2的最大值,然后可判断D .【详解】对A ,()22²²24222a b a b a b ab +⎛⎫+=+-≥-= ⎪⎝⎭,当且仅当1a b ==时等号成立,A 正确;对B ,()(1211212133222b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,当且仅当21b a a b a b ⎧=⎪⎨⎪+=⎩,即1,2a b =-=-时等号成立,B 错误;对C ,212a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当1a b ==时等号成立,C 正确;对D,()224a b a b =++≤+=,当且仅当1a b ==时等号成立,2≤,D 正确故选:ACD11. 设正项等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,则下列选项正确的是( )A. 4945S S q S =+B. 若20252020T T =,则20231a =C. 若194a a =,则当2246a a +取得最小值时,1a =D. 若21()n n n a T +>,则11a <【答案】AB 【解析】【分析】由前n 项和的定义以及等比数列性质分析判断A ;由题意结合等比数列性质分析判断B ;根据题意.结合基本不等式知:当且仅当462a a ==时,2246a a +取得最小值,进而可得结果判断C ;举反例说明即可D.【详解】由数列{}n a 为正项等比数列,得10,0,0n a q T >>>,对于A ,9123456789S a a a a a a a a a =++++++++()4441234545S q a a a a a S q S =+++++=+,即4945S S q S =+,A 正确;对于B ,由20252020T T =,得5202520212022202320242025202320201T a a a a a a T =⋅⋅⋅⋅==,则20231a =,B 正确;对于C ,由19464a a a a ==,得22446628a a a a +≥=,当且仅当462a a ==时取等号,若2246a a+取得最小值,则462a a ==,即34156122a a q a a q ⎧==⎨==⎩,解得121a q =⎧⎨=⎩,C 错误;对于D ,例如11,2a q ==,则12n n a -=,()101112121222222n n n n n nT a a a --++⋅⋅⋅+-=⋅⋅⋅=⨯⨯⋅⋅⋅⨯==,得22(1)2221()(2)2,[2]2n n n n nn nnn naT --+====,而*n ∈N ,22n n n >-,则2222n n n->,即21()n n n a T +>,符合题意,但11a =,D 错误.故选:AB【点睛】关键点点睛:本题判断选项D 的真假,构造符合条件的数列,计算判断是关键.三、填空题(本大题共3小题,每小题5分,共15分. 把答案填在题中横线上)12. 若曲线e x y =在点(0,1)处的切线也是曲线()ln 1y x a =++的切线,则a =_________.【答案】1【解析】【分析】先求出曲线e x y =在(0,1)的切线方程,再设曲线()ln 1y x a =++的切点为0(x ,0ln(1))x a ++,求出y ',利用公切线斜率相等求出0x 表示出切线方程,结合两切线方程相同即可求解【详解】由e x y =,得e x y '=,001|e x y ===',故曲线e x y =在(0,1)处的切线方程为1y x =+;由()ln 1y x a =++,得11y x '=+,设切线与曲线ln(1)y x a =++相切的切点为0(x ,0ln(1))x a ++,由两曲线有公切线得0111y x '==+,解得00x =,则切点为(0,)a ,切线方程为y x a =+,根据两切线重合,解得1a =.故答案为:1.13. 已知[]x 表示不超过x 的最大整数,如[1.3]1=,[ 1.5]2-=-,[3]3=.若1111222x x ++⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则x 的取值范围是_________.【答案】[)1,3【解析】【分析】依题意可得则112x +⎡⎤=⎢⎥⎣⎦且11022x ⎡+⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,从而得到不等式组,解得即可.【详解】解:依题意,因为1111222x x ++⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,若102x +⎡⎤≤⎢⎥⎣⎦,则11022x ⎡+⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦,不符题意;若122x +⎡⎤≥⎢⎥⎣⎦,则11122x ⎡+⎤⎡⎤≥⎢⎥⎢⎥⎣⎦⎣⎦,不符题意;若112x +⎡⎤=⎢⎥⎣⎦,则11022x ⎡+⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,满足条件,则1122x +≤<.解得13x ≤<,即[)1,3x ∈.故答案为:[)1,3.【点睛】本题考查新定义运算,不等式的解法,属于中档题.14. 已知实数()()1,0ln 1,0x e x f x x x x -⎧>⎪=⎨⎪-≤⎩,若关于x 的方程()()2340f x f x t -+=有四个不同的实数根,则t 的取值范围为___________.【答案】[)0,1【解析】【分析】画出f(x)的图象,根据图象特点,要想方程()()2340fx f x t -+=有四个不同的实数根,需要令()f x m =,这样2340m m t -+=有两个不同的实数根1m ,2m ,且11m >,201m ≤<,才会有四个交点.【详解】当0x ≤时,()()ln 1f x x =-,单调递减,当0x >时,()1x e f x x -=,()()121x e x f x x --'=,当1x >时,()0f x ¢>,()1x ef x x-=单调递增,当01x <<时,()0f x ¢<,()1x ef x x-=单调递减,在1x =时,f(x)取得最小值,()11f =画出f(x)的图象如图所示:令()f x m =,则方程为2340m m t -+=,要想方程()()2340fx f x t -+=有四个不同的实数根,结合f(x)的图象可知需要满足:2340m m t -+=有两个不同的实数根1m ,2m ,且11m >,201m ≤<,令()234g m m m t =-+,则()()161201000t g g ∆=->⎧⎪<⎨⎪≥⎩ ,解得:01t ≤<t 的取值范围[)0,1故答案为:[)0,1【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步骤)15.已知()sin cos 0,πθθθ+=∈.(1)求sin cos θθ-的值;(2)求()()cos 22025πtan 2025πθθ+++的值.【答案】(1)sin cos θθ-=(2)115-【解析】【分析】(1)已知式平方后,结合平方关系确定sin ,cos θθ的符号后,再利用平方关系求得sin cos θθ-;(2)(1)小题结论与已知联立方程组解得sin ,cos θθ,由商数关系得tan θ,再利用诱导公式、二倍角公式化简变形后求值.【小问1详解】因为sin cos θθ+=22(sin cos )5θθ+=,所以212sin cos 5θθ+=,即32sin cos 05θθ=-<.因为()0,πθ∈,则sin 0θ>,所以cos 0,sin cos 0θθθ<->,因为28(sin cos )12sin cos 5θθθθ-=-=,所以sin cos θθ-=【小问2详解】由sin cos sin cos θθθθ⎧+=⎪⎪⎨⎪-=⎪⎩解得sin θθ==,所以sin tan 3cos θθθ==-;所以()()229111cos 22025πtan 2025πcos2tan sincos tan 310105θθθθθθθ+++=-+=-+=--=-.16. 已知数列{}n a 的前n 项和为{}n S ,其中11a =,且112n n a S -=.(1)求{}n a 的通项公式.(2)设n n b na =,求{}n b 的前n 项和n T .【答案】(1)21,113,222n n n a n -=⎧⎪=⎨⎛⎫⋅≥ ⎪⎪⎝⎭⎩ (2)132(2)(2n n T n -=+-⋅【解析】【分析】(1)根据题意,得到2n ≥时,132n n a a +=,再由211122a S ==,结合等比数列的通项公式,即可求解;(2)由(1)得到21,113,222n n nb n n -=⎧⎪=⎨⎛⎫⋅⋅≥ ⎪⎪⎝⎭⎩,结合乘公比错位法求和,即可求解.【小问1详解】由112n n a S -=,可得12n n a S -=,则12n n a S +=,两式相减,可得122n n n a a a +-=,即123n n a a +=,又由211111222a S a ===,易知0n a ≠,所以当2n ≥时,132n n a a +=,所以数列{}n a 的通项公式为21,113,222n n n a n -=⎧⎪=⎨⎛⎫⋅≥ ⎪⎪⎝⎭⎩.【小问2详解】因为n n b na =,可得21,113,222n n n b n n -=⎧⎪=⎨⎛⎫⋅⋅≥ ⎪⎪⎝⎭⎩,则01221313131312(3(4(()22222222n n T n -=+⋅⋅+⋅⋅+⋅⋅++⋅⋅ ,所以123133131313132(3(4((2222222222n n T n -=+⋅⋅+⋅⋅+⋅⋅++⋅⋅ ,两式相减得12321111333313[()()()()]()222222222n n n T n ---=+++++-⋅⋅212133[1()]11131331322([1()](322222222212n n n n n n -----=+⨯-⋅⋅=-⋅--⋅⋅-,所以21133313[()1]()2(2)(222n n n n T n n ---=--⋅-+⋅=+-⋅.17. 已知函数31()3x x f x a+=+为奇函数.(1)解不等式()2f x >;(2)设函数33()log log 39x x g x m =⋅+,若对任意的1[3,27]x ∈,总存在2(0,1]x ∈,使得12()()g x f x =成立,求实数m 的取值范围.【答案】(1)(0,1);(2)94m ≥.【解析】【分析】(1)根据奇偶性的定义直接可得参数值,化简不等式,结合指数函数性质解不等式.(2)由(1)可得2()f x 的值域A ,再利用换元法设3log t x =,可得1()g x 的值域B ,根据B A ⊆,列不等式可得解.【小问1详解】函数31()3x x f x a+=+中,30x a +≠,由()f x 是奇函数,得()()0f x f x +-=,即3131033x x x x a a--+++=++,整理得(1)(332)0x x a -+++=,解得1a =-,函数312()13131x x x f x +==+--定义域为(,0)(0,)-∞+∞ ,由()2f x >,得21231x +>-,即2131x >-,整理得0312x <-<,解得01x <<,所以不等式()2f x >的解集为(0,1).【小问2详解】因为函数31x y =-在(]0,1上单调递增,故当01x <≤时,0312x <-≤,由(1)得31()31+=-x x f x 在(0,1]x ∈的值域[2,)A =+∞,又3333g 39()log log (log 1)(lo 2)x x g x m x x m =⋅+=--+,[3,27]x ∈设3log t x =,则[]1,3t ∈,2(1)(2)32y t t m t t m =--+=-++,当32t =时,min 14y m =-+,当3x =时,max 2y m =+,因此函数()g x 在[3,27]x ∈上的值域1[,2]4B m m =-++,由对任意的1[3,27]x ∈,总存在2(0,1]x ∈,使得12()()g x f x =成立,得B A ⊆,于是124m -+≥,解得94m ≥,所以实数m 的取值范围是94m ≥.18. 已知函数()2ln f x x mx =-,()212g x mx x =+,R m ∈,令()()()F x f x g x =+.(1)讨论函数()f x 的单调性;(2)若关于x 的不等式()1F x mx ≤-恒成立,求整数m 的最小值.【答案】(1)答案见解析(2)2【解析】【分析】(1)求导,分0m ≤与0m >分类讨论,然后利用导函数的正负来确定单调性即可;(2)构造函数()()()()211ln 112G x F x mx x mx m x =--=-+-+,利用导数求函数()G x 的最大值,然后将恒成立问题转化为最值问题即可;【小问1详解】因为()()2ln 0f x x mx x =->,所以()21122mx f x mx x x -='=-,当0m ≤时,()0f x '>,所以()f x 在区间(0,+∞)上单调递增;当0m >时,令()0f x '>,即2120mx ->,又0x >,解得0x <<令()0f x '<,即2120mx -<,又0x >,解得x >,综上,当0m ≤时,()f x 的增区间为(0,+∞),无减区间;当0m >时,()f x的增区间为⎛⎝,减区间为∞⎫+⎪⎪⎭【小问2详解】令()()()()211ln 112G x F x mx x mx m x =--=-+-+,所以()()()21111mx m x G x mx m x x-+-+=-+-='.当0m ≤时,因为x >0,所以()0G x '>.所以()G x 在()0,∞+上是单调递增函数,又因为()()2131ln11112022G m m m =-⨯+-+=-+>,所以关于x 不等式()0G x ≤不能恒成立,即关于x 的不等式()1F x mx ≤-不能恒成立.当m >0时,()()()21111m x x mx m x m G x x x ⎛⎫--+ ⎪-+-+⎝⎭=='.令()0G x '=,得1x m =,所以当10,x m ⎛⎫∈ ⎪⎝⎭时,()0G x '>;当1,x m ∞⎛⎫∈+ ⎪⎝⎭时,()0G x '<.因此函数()G x 在10,x m ⎛⎫∈ ⎪⎝⎭是增函数,在1,x m ∞⎛⎫∈+ ⎪⎝⎭是减函数.故函数()G x 的最大值为()2111111ln 11ln 22G m m m m m m m m ⎛⎫⎛⎫=-⨯+-⨯+=- ⎪ ⎪⎝⎭⎝⎭.令()1ln 2h m m m =-,()2112h m m m=-'-,当()0,m ∞∈+时,()0h m '<所以()h m 在()0,m ∞∈+上是减函数,又因为()1102h =>,()12ln204h =-<,所以当2m ≥时,()0h m <,所以()0G x <恒成立,即()1F x mx ≤-恒成立所以整数m 的最小值为2.的【点睛】关键点点睛:第(1)小问的关键是分0m ≤与0m >进行分类讨论,第(2)的关键是通过移项构造函数()()21=ln 112G x x mx m x -+-+,把恒成立问题转化为求函数()G x 的最值问题.19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为n a ;若n 为奇数,则对31n +不断地除以2,直到得出一个奇数,记这个奇数为n a .若1n a =,则称正整数n 为“理想数”.(1)求20以内的质数“理想数”;(2)已知9m a m =-.求m 的值;(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列{}n b ,记{}n b 的前n 项和为n S ,证明:()*7N 3n S n <∈.【答案】(1)2和5为两个质数“理想数”(2)m 的值为12或18(3)证明见解析【解析】【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道9m a m =-必为奇数,则m 必为偶数,结合整除知识得解;(3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】20以内的质数为2,3,5,7,11,13,17,19,212=,故21a =,所以2为“理想数”;33110⨯+=,而1052=,故3不是“理想数”;35116⨯+=,而41612=,故5是“理想数”;37122⨯+=,而22112=,故7不是“理想数”;311134⨯+=,而34172=,故11不是“理想数”;313140⨯+=,而4058=,故13不是“理想数”;317152⨯+=,而52134=,故17不是“理想数”;319158⨯+=,而58292=,故19不是“理想数”;2∴和5为两个质数“理想数”;【小问2详解】由题设可知9m a m =-必为奇数,m ∴必为偶数,∴存在正整数p ,使得92p m m =-,即9921p m =+-:921p ∈-Z ,且211p -≥,211p ∴-=,或213p -=,或219p -=,解得1p =,或2p =,1991821m ∴=+=-,或2991221m =+=-,即m 的值为12或18.【小问3详解】显然偶数"理想数"必为形如()*2k k ∈N 的整数,下面探究奇数"理想数",不妨设置如下区间:((((022*******,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦ ,若奇数1m >,不妨设(2222,2k k m -⎤∈⎦,若m 为"理想数",则(*3112s m s +=∈N ,且)2s >,即(*213s m s -=∈N ,且)2s >,①当(*2s t t =∈N ,且)1t >时,41(31)133t t m -+-==∈Z ;②当()*21s t t =+∈N 时,2412(31)133t t m ⨯-⨯+-==∉Z ;(*413t m t -∴=∈N ,且)1t >,又22241223t k k --<<,即1344134k t k -⨯<-≤⨯,易知t k =为上述不等式的唯一整数解,区间(2222,2k k -]存在唯一的奇数"理想数"(*413k m k -=∈N ,且)1k >,显然1为奇数"理想数",所有的奇数"理想数"为()*413k m k -=∈N ,∴所有的奇数"理想数"的倒数为()*341k k ∈-N ,1133134144441k k k ++<=⨯--- 1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭21111171111124431124⎛⎫<⨯++++<+⨯= ⎪⎝⎭-- ,即()*73n S n <∈N .【点睛】知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。
重庆市第一中学校2024届高三下学期5月月考测试数学试题(含答案与解析)_6502
![重庆市第一中学校2024届高三下学期5月月考测试数学试题(含答案与解析)_6502](https://img.taocdn.com/s3/m/f8ace4a9c9d376eeaeaad1f34693daef5ef713bc.png)
重庆第一中学2024届高三下期5月月考试题数 学本试卷满分150分,考试时间120分钟注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.作答时,务必将答案写在答题卡上,写在本卷或者草稿纸上无效.3.考试结束后,请将本试卷和答题卡一并交回.满一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2,3A =,{}2log 1B x x =<,则A B ⋂=R ð( )A. {}3B. {}2,3C. {}1,2,3D. {}0,2,32. 已知{}n a 是实数集内的等比数列,满足21a =,681a =,则4a =( ) A. 3B. 3-或3C. 9D. 9-或93. 已知圆锥的轴截面为正三角形,该圆锥的侧面积数值与其体积数值相等,则该圆锥的底面积为( ) A. 3πB. 12πC. 27πD. 48π4. 已知定义在R 上函数()f x 是奇函数,且当0x ≥时,()()2log 3x a f x =++,则()3f -=( ) A. 1B. 1-C. 2D. 2-5. 如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有( )种.A. 10B. 20C. 60D. 1206. 已知正数a ,b 满足111a b+=,则3ab b +的最小值为( ) A. 8B. 9C. 10D. 12的7. 已知直线y x =与函数()ln y x a b =++的图象相切(,a b ∈R ),则e a b +(e 为自然对数的底数)的最小值为( ) A. 0B. 1C. 2D. e8. “四二一广场”是重庆第一中学校文化地标(如图1),广场中心的建筑形似火炬宛若花开,三朵“花瓣”都是拓扑学中的莫比乌斯带(如图2).将莫比乌斯带投影到平面上,会得到无穷大符号“∞”.在平面直角坐标系中,设线段AB 长度为2a (0a >),坐标原点O 为AB 中点且点A ,B 均在x 轴上,若动点P 满足2PA PB a ⨯=,那么点P 的轨迹称为双纽线,其形状也是无穷大符号“∞”(如图3).若1a =,点P 在第一象限且3cos 4POB ∠=,则PA =( )A.12B.C.D. 2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知随机变量X 和Y ,下列说法正确是( )A. X 和Y 是分类变量,则2χ值越大,则判断“X 与Y 独立”的把握越大B. 若()()E X E Y =,则()()D X Y D =C. 若1~9,3X B ⎛⎫ ⎪⎝⎭,则()2D X = D. 若()2~0,Y N σ,则()()11P Y P Y <=>-10. 已知中心在原点,焦点在x 轴上的双曲线两个焦点分别为1F ,2F ,过2F线相交于点P,若12PF F =,则双曲线的离心率可能是( )A.B.1+C.1+D.2的的11. 冒泡排序是一种计算机科学领域的较简单的排序算法.其基本思想是:通过对待排序序列{}12,,,n x x x 从左往右,依次对相邻两个元素{}1,k k x x +(1k =,2,L,n 1-)比较大小,若1k k x x +>,则交换两个数的位置,使值较大的元素逐渐从左移向右,就如水底下的气泡一样逐渐向上冒,重复以上过程直到序列中所有数都是按照从小到大排列为止.例如:对于序列{}2,1,4,3进行冒泡排序,首先比较{}2,1,需要交换1次位置,得到新序列{}1,2,4,3,然后比较{}2,4,无需交换位置,最后比较{}4,3,又需要交换1次位置,得到新序列{}1,2,3,4,最终完成了冒泡排序.同样地,序列{}1,4,2,3需要依次交换{}4,2,{}4,3完成冒泡排序.因此,{}2,1,4,3和{}1,4,2,3均是交换2次的序列.现在对任一个包含n 个不等实数的序列进行冒泡排序(3n ≥),设在冒泡排序中序列需要交换的最大次数为n a ,只需要交换1次的序列个数为n b ,只需要交换2次的序列个数为n c ,则下列说法正确的有( ) A. ()12n n n a -=B. 1n b n =-C. 11n n c c n +=+-D. 222n n n c --=三、填空题:本题共3小题,每小题5分,共15分.12. 已知复数z 的共轭复数是z ,若20242i i z z z ⋅=⋅+,则z =___________. 13. 已知()()cos 2sin f x x x ϕ=++的最大值为3,则tan2ϕ=___________.14. 如图,已知棱长均为4正四棱锥P -ABCD 中,M 和N 分别为棱AB 、PC 的中点,过M 和N 可以作平面α使得//PB α,则平面α截正四棱锥P -ABCD 所得的截面面积为___________.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且1cos 2a C cb -=. (1)求A 的大小;的(2)若sin 3sin C B =,BC 边上的中线AD,求ABC 的面积.16. 在一种新能源产品的客户调查活动中发现,某小区10位客户有4人是该产品的潜在用户,小刘负责这10人的联系工作,他先随机选择其中5人安排在上午联系,剩余5人下午联系. (1)设上午联系的这5人中有ξ个潜在用户,求的ξ分布列与期望;(2)小刘逐一依次联系,直至确定所有潜在用户为止,求小刘6次内即可确定所有潜在用户的概率. 17. 如图,直三棱柱111ABC A B C -侧棱长为2,2AC =,AB BC =,D ,E ,F 分别为11A B ,1BB ,BC 的中点.(1)证明:平面DEF ⊥平面11ACC A ;(2)若直线DE 与平面ABC 所成的角大小为π4,求二面角A DE F --的余弦值. 18. 已知()2,0F -,()3,0A ,直线l :92x =-,动点P 到l 的距离为d ,满足32PF d =,设点P 的轨迹为C ,过点F 作直线1l ,交C 于G ,H 两点,过点F 作与1l 垂直的直线2l ,直线l 与2l 交于点K ,连接AG ,AH ,分别交直线l 于M ,N 两点. (1)求C 的方程; (2)证明:KN KM =;(3)记GMK ,HNK 的面积分别为1S ,2S ,四边形AGKH 的面积为3S ,求312S S S +的范围.19. 函数极限是现代数学中非常重要的概念,函数()f x 在0x x =处的极限定义如下:0∀ε>,存在正数δ,当00x x δ<-<时,均有()f x A ε-<,则称()f x 在0x x =处的极限为A ,记为()lim f x A =,例如:()2f x x =在1x =处的极限为2,理由是:0∀ε>,存在正数2εδ=,当01x δ<-<时,均有222122x x εε-=-<⨯=,所以()lim 22x =.已知函数()()2e g x a x=-,的()(]()()ln ,0,e ,e,xx h x x g x x ∞⎧∈⎪=⎨⎪∈+⎩,(0a >,e 为自然对数的底数).(1)证明:()g x 在e x =处的极限为e a ;(2)若21e=a ,()()12h x h x =,12x x <,求1112x x x ⋅的最大值; (3)若()e lim x A f x →=,用函数极限的定义证明:()()()elim e x f x x g A a →+=+. 参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2,3A =,{}2log 1B x x =<,则A B ⋂=R ð( )A. {}3B. {}2,3C. {}1,2,3D. {}0,2,3【答案】D 【解析】【分析】解对数不等式求出集合B ,然后由集合的补集运算和交集运算可得. 【详解】由2log 1x <解得()0,2B =,所以(][),02,B ∞∞=-⋃+R ð, 所以{}0,2,3A B ⋂=R ð. 故选:D2. 已知{}n a 是实数集内的等比数列,满足21a =,681a =,则4a =( ) A. 3 B. 3-或3C. 9D. 9-或9【答案】C 【解析】【分析】由等比中项的性质即可求解.【详解】由等比中项可得,242681a a a ==,又22420a a q q ==>, 于是49a =. 故选:C.3. 已知圆锥的轴截面为正三角形,该圆锥的侧面积数值与其体积数值相等,则该圆锥的底面积为( ) A. 3π B. 12πC. 27πD. 48π【答案】B 【解析】【分析】由轴截面正三角形可得2,l r h ==,进而由圆锥的侧面积数值与其体积数值相等可求半径,从而可得圆锥的底面积. 【详解】几何体如图所示:因为轴截面PAB 是正三角形,所以2,l r h ==.圆锥的侧面积等于2π2πrl r =,圆锥的体积等于231π3r h r =,由圆锥的侧面积数值与其体积数值相等,得232ππr r =,得r =. 故圆锥的底面积为2π12πr =. 故选:B.4. 已知定义在R 上的函数()f x 是奇函数,且当0x ≥时,()()2log 3x a f x =++,则()3f -=( ) A. 1 B. 1-C. 2D. 2-【答案】B 【解析】【分析】定义在R 上的函数()f x 是奇函数,所以()00f =,由此可得a 的值,进而由()3f 可得()3f -的值.【详解】因为()f x 是定义在R 上的奇函数,所以()2log 003a f =+=, 解得2log 3a =-,则()()22log 3lo 3g f x x =+-,()222log log 1o 3632l g f ===-,所以()()331f f -=-=-. 故选:B.5. 如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有( )种.A. 10B. 20C. 60D. 120【答案】A 【解析】【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果. 【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=. 故选:A.6. 已知正数a ,b 满足111a b+=,则3ab b +的最小值为( ) A. 8 B. 9C. 10D. 12【答案】B 【解析】【分析】将111a b +=变形为ab a b =+,代入3ab b +,再通过常数代换和基本不等式可得. 【详解】因为111a b+=,所以ab a b =+,所以()114344559b a ab b a b a b a b a b ⎛⎫+=+=++=++≥+= ⎪⎝⎭,当且仅当33,2a b ==时,等号成立,所以3ab b +的最小值为9.故选:B7. 已知直线y x =与函数()ln y x a b =++的图象相切(,a b ∈R ),则e a b +(e 为自然对数的底数)的最小值为( ) A. 0 B. 1 C. 2 D. e【答案】C 【解析】【分析】设切点为()00,Q x y ,根据切点在切线和曲线上,以及切点处的导数等于切线斜率,联立求解可得1a b +=,则e e 1a a b a +=-+,构造函数()e 1xf x x =-+,利用导数求最小值即可.【详解】设直线y x =与函数()ln y x a b =++的图象相切于点()00,Q x y ,则()0000ln y x y x a b =⎧⎨=++⎩,所以()00ln x a b x ++=,又()1ln x a b x a '⎡⎤++=⎣⎦+,所以011x a =+,即01x a +=,所以0ln1b x +=,即0b x =,所以1a b +=,所以e e 1a a b a +=-+, 令()e 1xf x x =-+,则()e 1xf x '=-,当0x <时,()0f x '<,()f x 在(),0∞-上单调递减; 当0x >时,()0f x '>,()f x 在()0,∞+上单调递增. 所以,当0x =时,()f x 取得最小值()()min 02f x f ==, 所以e a b +的最小值为2. 故选:C8. “四二一广场”是重庆第一中学校文化地标(如图1),广场中心的建筑形似火炬宛若花开,三朵“花瓣”都是拓扑学中的莫比乌斯带(如图2).将莫比乌斯带投影到平面上,会得到无穷大符号“∞”.在平面直角坐标系中,设线段AB 长度为2a (0a >),坐标原点O 为AB 中点且点A ,B 均在x 轴上,若动点P 满足2PA PB a ⨯=,那么点P 的轨迹称为双纽线,其形状也是无穷大符号“∞”(如图3).若1a =,点P 在第一象限且3cos 4POB ∠=,则PA =( ) 的A.12B.C.D. 2【答案】C 【解析】【分析】设(),P x y ,根据双纽线的定义求出点P 的轨迹方程,设,OP r POB θ=∠=,则()cos ,sin P r r q q ,代入方程求出OP ,再在POB 中,利用余弦定理求出PB ,即可得解.【详解】()()1,0,1,0A B -,设(),P x y , 由双纽线的定义得1PA PB ⨯=,1=,化简得()()222222x y x y +=-,显然1OB =,设,OP r POB θ=∠=,则()cos ,sin P r r q q , 代入方程()()222222x y x y +=-,得()422222cos sin 2cos 2r r r θθθ=-=,所以()22912cos 222cos 1221164r θθ⎛⎫==-=⨯⨯-= ⎪⎝⎭,由余弦定理得22211312cos 1214242PB OP OB OP OB POB =+-∠=+-⨯⨯⨯=,所以PB =,所以1PA PB==. 故选:C.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知随机变量X 和Y ,下列说法正确的是( )A. X 和Y 是分类变量,则2χ值越大,则判断“X 与Y 独立”的把握越大B. 若()()E X E Y =,则()()D X Y D =C. 若1~9,3X B ⎛⎫ ⎪⎝⎭,则()2D X = D. 若()2~0,Y N σ,则()()11P Y P Y <=>-【答案】CD 【解析】【分析】根据2χ的意义可判断A ;根据平均数与方差的意义可判断B ;由二项分布的方差公式求解可判断C ;由正态分布的对称性可判断D .【详解】对于A ,2χ值越大,X 和Y 有关系的可能性就越大,则“X 与Y 独立”的把握越小,A 错误; 对于B ,平均数相等,数据的分散程度不一定相等,即方差不一定相等,B 错误; 对于C ,若1~9,3X B ⎛⎫ ⎪⎝⎭,则()129233D X =⨯⨯=,C 正确; 对于D ,若()2~0,Y N σ,则由正态分布的对称性可知()()11P Y P Y <=>-,D 正确.故选:CD10. 已知中心在原点,焦点在x 轴上的双曲线两个焦点分别为1F ,2F ,过2F线相交于点P ,若12PF F =,则双曲线的离心率可能是( )A.B.1+C.1+D.2【答案】AD 【解析】【分析】根据题意,分双曲线的渐近线的斜率ba <和b a>2PF x =,结合余弦定理和双曲线的定义,求得x 的值,进而求得双曲线的离心率,得到答案.【详解】由题意,可得122F F c =,因为12PF F =,则1PF =,设2PF x =,①若双曲线的渐近线的斜率b a <,则2e =<,如图(1)所示,因为过2F 112π3PF F ∠=, 由余弦定理得2222π12422cos3c c x c x =+-⨯⋅⋅,整理得22280x cx c +-=,解得2x c =或4x c =-(舍去),所以1221)a PF PF c =-=-,可得1)a c =-,所以离心率为2c e a ===<,满足题意,所以A 正确;②若双曲线的渐近线的斜率b a >2e =>,如图(1)所示,因为过2F 11π3PF F ∠=, 由余弦定理得222π12422cos3c c x c x =+-⨯⋅⋅,整理得22280x cx c --=,解得4x c =或2x c =-(舍去),所以122(4a PF PF c =-=-,可得(2a c =,所以离心率为22c e a ===+>,满足题意,所以C 正确, 故选:AD.11. 冒泡排序是一种计算机科学领域的较简单的排序算法.其基本思想是:通过对待排序序列{}12,,,n x x x 从左往右,依次对相邻两个元素{}1,k k x x +(1k =,2,L,n 1-)比较大小,若1k k x x +>,则交换两个数的位置,使值较大的元素逐渐从左移向右,就如水底下的气泡一样逐渐向上冒,重复以上过程直到序列中所有数都是按照从小到大排列为止.例如:对于序列{}2,1,4,3进行冒泡排序,首先比较{}2,1,需要交换1次位置,得到新序列{}1,2,4,3,然后比较{}2,4,无需交换位置,最后比较{}4,3,又需要交换1次位置,得到新序列{}1,2,3,4,最终完成了冒泡排序.同样地,序列{}1,4,2,3需要依次交换{}4,2,{}4,3完成冒泡排序.因此,{}2,1,4,3和{}1,4,2,3均是交换2次的序列.现在对任一个包含n 个不等实数的序列进行冒泡排序(3n ≥),设在冒泡排序中序列需要交换的最大次数为n a ,只需要交换1次的序列个数为n b ,只需要交换2次的序列个数为n c ,则下列说法正确的有( ) A. ()12n n n a -=B. 1n b n =-C. 11n n c c n +=+-D. 222n n n c --=【答案】ABD 【解析】【分析】根据题意,不妨设序列的n 个元素为1,2,3,,n ,再根据等差数列前n 项和公式即可判断A ;得出只要交换1次的序列的特征即可判断B ;确定元素1n +在新序列的位置,再分类讨论即可判断C ;结合C 选项,利用累加法即可判断D.【详解】不妨设序列的n 个元素为1,2,3,,n , 对于A ,交换次数最多的序列为{},1,,2,1n n - , 将元素n 冒泡到最右侧,需交换n 1-次, 将元素n 1-冒泡到最右侧,需交换2n -次,L故共需要()()()()()1111122122n n n n n n -+---+-+++== ,故A 正确;对于B ,只要交换1次的序列是将{}1,2,3,,n 中的任意相邻两个数字调换位置的序列,故有n 1-个这样的序列,即1n b n =-,故B 正确;对于C ,当n 个元素的序列顺序确定后,将元素1n +添加进原序列, 使得新序列(共1n +个元素)交换次数也是2, 则元素1n +在新序列的位置只能是最后三个位置, 若元素1n +在新序列的最后一个位置,则不会增加交换次数,故原序列交换次数为2(这样的序列有n c 个), 若元素1n +在新序列的倒数第二个位置,则会增加1次交换,故原序列交换次数为1(这样的序列有1n b n =-个), 若元素1n +在新序列的倒数第三个位置,则会增加2次交换,故原序列交换次数为0(这样的序列有1个), 因此111n n n c c n c n +=+-+=+,故C 错误; 对于D ,考虑3n =时,则序列有{}{}{}{}{}{}1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1共6种情况, 交换次数分别为0,1,1,2,2,3,故需要交换2次的序列有{}{}2,3,1,3,1,2共2个,因此32c =, 由C 知1n n c c n +=+,则()()()123121341n n n c c n c n n c n --=+-=+-+-==++++-()()()2122234122n n n n n +---=++++-==,故D 正确. 故选:ABD.【点睛】关键点点睛:在解根数列新定义相关的题目时,理解新定义是解决本题的关键.三、填空题:本题共3小题,每小题5分,共15分.12. 已知复数z 的共轭复数是z ,若20242i i z z z ⋅=⋅+,则z =___________. 【答案】i - 【解析】【分析】设i z a b =+,代入条件中,根据复数相等列方程组求解可得.【详解】设i,,z a b a b =+∈R ,则i z a b =-, 因为()50620244i i 1==,所以()()()2i i i i 1a b a b a b +=+-+,整理得2222i 1b a a b -+=++,所以221220a b b a ⎧++=-⎨=⎩,解得0,1a b ==-,所以i z =-.故答案为:i -13. 已知()()cos 2sin f x x x ϕ=++的最大值为3,则tan 2ϕ=___________.【答案】1- 【解析】【分析】先写出()f x 的展开式,然后利用辅助角公式求最大值,进而得sin 1ϕ=-,从而可得结果. 【详解】()()()cos 2sin cos cos sin 2sin f x x x x x ϕϕϕ=++=+-, 由辅助角公式可得()f x3=,化简得954sin ϕ-=,即sin 1ϕ=-,解得π2π,Z 2k k ϕ=-∈, 所以,()4tanta n 24n ta 1k k ϕππ⎛⎫⎛⎫π-=-=-∈Z ⎪ ⎪⎝⎝⎭=⎭. 故答案为:1-.14. 如图,已知棱长均为4的正四棱锥P -ABCD 中,M 和N 分别为棱AB 、PC 的中点,过M 和N 可以作平面α使得//PB α,则平面α截正四棱锥P -ABCD 所得的截面面积为___________.【答案】【解析】【分析】取AP 中点为E ,取BC 中点为F ,易证明//PB 平面EMFN ,再通过取四等分点G ,可证明截的面就是五边形GEMFN ,最后通过证明四边形EMFN 是矩形,再来计算截面的面积即可.【详解】取AP 中点为E ,取BC 中点为F ,连结四点可得四边形EMFN , 结合题意可知//,//EM PB NF PB ,所以//EM NF ,同理://,//EN AC MF AC ,所以//EN MF ,即四边形EMFN 是平行四边形, 因为//,EM PB EM ⊂平面EMFN , PB ⊄平面EMFN ,所以//PB 平面EMFN , 设MF BD H = ,可得14HB BD =,再在PD 上取点G ,满足14PG PD =,此时//HG PB ,所以//////HG PB EM NF ,可得截面五边形GEMFN , 由正四棱锥可知:PO ⊥平面ABCD ,且MF ⊂平面ABCD ,所以PO MF ⊥,又因为BD MF ⊥,BD PO O = ,BD ⊂平面PBD ,PO ⊂平面PBD ,所以MF ⊥平面PBD , 又因为PB ⊂平面PBD ,所以MF PB ⊥,又因为//NF PB ,所以MF NF ⊥,从而可得四边形EMFN 是矩形,由正四棱锥所有棱长均为4,可知12MF AC ==122EM PB ==,所以四边形EMFN 的面积为2MF EM ⋅==, 再由14HB BD =,//HG PB ,可知:334HG PB ==又因为2EM =,所以三角形EMG 的面积为()32⨯-=12,所以截面五边形GEMFN 的面积为+=故答案为:四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且1cos 2a C cb -=. (1)求A 的大小;(2)若sin 3sin C B =,BC 边上的中线AD ,求ABC 的面积. 【答案】(1)2π3;(2) 【解析】【分析】(1)利用正弦定理边化角,结合sin sin cos cos sin B A C A C =+化简可得;(2)根据正弦定理角化边,由()12AD AB AC =+平方可得2b =,6c =,再由面积公式可得. 【小问1详解】由正弦定理边化角得1sin cos sin sin 2A C CB -=, 又()sin sin sin cos cos sin B A C A C A C =+=+,所以1sin cos sin sin cos cos sin 2-=+A C C A C A C ,即1sin cos sin 2C A C -=,因为()0,π,sin 0C C ∈>,所以1cos 2A =-,因为()0,πA ∈,所以2π3A =. 【小问2详解】由sin 3sin C B =得3c b =,因为()12AD AB AC =+,AD =, 所以()()2222117244AB AC AB AC c b bc =++⋅=+- , 所以2229328b b b +-=,即2b =,所以6c =,所以11sin 2622ABC S bc A ==⨯⨯= 16. 在一种新能源产品的客户调查活动中发现,某小区10位客户有4人是该产品的潜在用户,小刘负责这10人的联系工作,他先随机选择其中5人安排在上午联系,剩余5人下午联系.(1)设上午联系的这5人中有ξ个潜在用户,求的ξ分布列与期望;(2)小刘逐一依次联系,直至确定所有潜在用户为止,求小刘6次内即可确定所有潜在用户概率. 【答案】(1)分布列见详解,()2E ξ=(2)43630【解析】【分析】(1)根据超几何分布的概率公式求出相应概率,即可得分布列,再由期望公式可得期望; (2)6次内确定所有潜在用户有:前4次抽到的全是潜在用户;前4次抽到3个潜在用户,第5次抽到一个潜在用户;前5次抽到3个潜在用户,第6次抽到一个潜在用户,共三种情况,根据组合知识结合古典概型概率公式可得. 【小问1详解】由题知,ξ服从超几何分布,可能取值有0,1,2,3,4,所以()()()504132646464555101010C C C C C C 15100,1,2C 42C 21C 21P P P ξξξ=========, ()()23146464551010C C C C 513,4C 21C 42P P ξξ======.得分布列为:ξ 01 2 3 4P142 521 1021 521 142所以()1510510123424221212142E ξ=⨯+⨯+⨯+⨯+⨯=. 【小问2详解】记确定所有潜在用户所需要的联系次数为X ,则()()()343544456101010C C C 1114,5,6C 210C 63C 21P X P X P X =========. 所以,6次内即可确定所有潜在用户的概率为111432106321630++=. 17. 如图,直三棱柱111ABC A B C -的侧棱长为2,2AC =,AB BC =,D ,E ,F 分别为11A B ,1BB ,BC 的中点.的(1)证明:平面DEF ⊥平面11ACC A ; (2)若直线DE 与平面ABC 所成的角大小为π4,求二面角A DE F --的余弦值. 【答案】(1)证明见解析(2 【解析】【分析】(1)取AC 的中点O ,连接OB ,以点O 为原点建立空间直角坐标系,证明两个平面的法向量垂直即可;(2)建立空间直角坐标系,求出相关点的坐标,利用向量法求解即可. 【小问1详解】取AC 的中点O ,连接OB , 因为AB BC =,所以OB AC ⊥,如图,以点O 为原点,OA OB 所在直线为,x y 轴,在平面11ACC A 内过O 作垂线为z 轴, 建立空间直角坐标系,设OB b =, 则()11,,2,0,,1,,,02222b b D E b F ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,故()1,,1,1,0,222b DE DF ⎛⎫=-=- ⎪⎝⎭,设平面DEF 的法向量为(),,n x y z =,则有102220b n DE x y z n DF x z ⎧⋅=+-=⎪⎨⎪⋅=-=⎩,令2x =,则1,0z y ==, 所以()2,0,1n =,因为y 轴⊥平面11ACC A ,则可取平面11ACC A 的法向量为()0,1,0m =,则0n m ⋅= ,所以n m ⊥ ,所以平面DEF ⊥平面11ACC A ; 【小问2详解】 因为z 轴⊥平面ABC ,则可取平面ABC 的法向量为()0,0,1p =, 因为直线DE 与平面ABC 所成的角大小为π4,所以πcos ,sin4DE p DE p DE p⋅====b =,则()()12,,1,0,02D E A ⎛⎫-- ⎪ ⎪⎝⎭,故111,222DE AD ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设平面ADE 的法向量为()111,,q x y z =,则有1111111021202q DE x y z q AD x y z ⎧⋅=+-=⎪⎪⎨⎪⋅=+=⎪⎩,令1x =111,0y z ==,所以()q =,所以cos ,n q n q n q ⋅===,由图可知二面角A DE F --锐二面角, 所以二面角A DE F --18. 已知()2,0F -,()3,0A ,直线l :92x =-,动点P 到l 的距离为d ,满足32PF d =,设点P 的轨迹为C ,过点F 作直线1l ,交C 于G ,H 两点,过点F 作与1l 垂直的直线2l ,直线l 与2l 交于点K ,连接AG ,AH ,分别交直线l 于M ,N 两点. (1)求C 的方程; (2)证明:KN KM =;(3)记GMK ,HNK 的面积分别为1S ,2S ,四边形AGKH 的面积为3S ,求312S S S +的范围.【答案】(1)22195x y +=(2)证明见解析 (3)2,23⎛⎤ ⎥⎝⎦【解析】【分析】(1)利用坐标公式代入32PF d =得到C 的轨迹方程22195x y +=;(2)利用方程组思想,先求出交点1122(,),,()G x y H x y 满足的韦达定理,再利用这两个坐标写直线方程去求出交点()11159,223y M x ⎛⎫-- ⎪ ⎪-⎝⎭和()22159,223y N x ⎛⎫-- ⎪ ⎪-⎝⎭,最后利用韦达定理去证明2MN K y y y +=,即可; (3)利用所求的坐标去表示()312=AMN S S S S -+ ,然后把312S S S +转化到韦达定理上来,可得到32221+31S m ⎛⎫= ⎪+⎝⎭,然后求出取值范围即可.小问1详解】为【由()2229329242PF d x y x ⎡⎤=⇒++=+⎣⎦,得到:()22294443681x x y x x +++=++, 即:22225945195x y x y +=⇒+=,所以C 的方程为22195x y +=; 【小问2详解】 证明:要证KN KM =,即证明K 为MN 的中点,如图:易知:1l 的斜率不为0,可设直线方程111222,(,),(,),l x my G x y H x y =-: 联立:221952x y x my ⎧+=⎪⎨⎪=-⎩,消元得:()225920250m y my +--=, 得到()222Δ=400100599009000m m m ++=+>,则1212222025,5959m y y y y m m -+==++, 可得AG 方程为()1133y y x x =--,令92x =-,得到()111523y y x =--, 所以()11159,223y M x ⎛⎫-- ⎪ ⎪-⎝⎭,同理:()22159,223y N x ⎛⎫-- ⎪ ⎪-⎝⎭,即()()121212121515152323255M N y y y y y y x x my my ⎛⎫+=--=-+ ⎪----⎝⎭()()221212221212222520252515155959=52520252525255959m m my y y y m m m m m y y m y y m m m m -⎛⎫-⎛⎫ ⎪-+++=-=- ⎪ ⎪ ⎪--++ ⎪⎝⎭-+++⎝⎭, 直线()22l y m x =-+:,令92x =-,得到52K m y =, 所以有2M N K y y y +=,而M N K x x x ==,所以K 为MN 的中点,即KN KM =;【小问3详解】由()12121219191922224S S MK x NK x MN x x ⎛⎫⎛⎫+=+++=++ ⎪ ⎪⎝⎭⎝⎭, ()()3121219=322AMN S S S S MN S S ⎛⎫-+=+-+ ⎪⎝⎭ , 得:()()312121212193151522=11119594MN S S S x x m y y MN x x ⎛⎫+ ⎪⎝⎭-=-=-+++++++ ()2221559112031559m m m m m +=-=-+++ ()22222262322==1+313131m m m m m ++⎛⎫= ⎪+++⎝⎭, 因为22221+,2313m ⎛⎫⎛⎤∈ ⎪ ⎥+⎝⎭⎝⎦,所以3122,23S S S ⎛⎤∈ ⎥+⎝⎦. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.19. 函数极限是现代数学中非常重要的概念,函数()f x 在0x x =处的极限定义如下:0∀ε>,存在正数δ,当00x x δ<-<时,均有()f x A ε-<,则称()f x 在0x x =处的极限为A ,记为()lim f x A =,例如:()2f x x =在1x =处的极限为2,理由是:0∀ε>,存在正数2εδ=,当01x δ<-<时,均有222122x x εε-=-<⨯=,所以()lim 22x =.已知函数()()2e g x a x =-,()(]()()ln ,0,e ,e,x x h x x g x x ∞⎧∈⎪=⎨⎪∈+⎩,(0a >,e 为自然对数的底数).(1)证明:()g x 在e x =处的极限为e a ;(2)若21e =a ,()()12h x h x =,12x x <,求1112x x x ⋅的最大值; (3)若()e lim x A f x →=,用函数极限的定义证明:()()()elim e x f x x g A a →+=+. 【答案】(1)证明见解析(2)2ee e +(3)证明见解析【解析】【分析】(1)要使得()e g x a ε-<,即e x a ε-<,再根据题意即可得证;(2)利用导数求出函数的单调区间,令()()12h x h x m ==,确定m 的范围,再将1112,x x x 分别用m 表示,构造函数,利用导数求出最大值即可;(3)有()e lim x f x A →=结合(1),对任意正数ε,取122εεε==,112212,,δδδδδδδ≤⎧=⎨>⎩,0∀ε>,当0e x δ<-<时,有()()()()()()()e e f x g x A a f x A g x a +-+=-+-,即可得证.【小问1详解】要使得()e g x a ε-<,即()2e e a x a ε--<,即()e a x ε-<,即e x a ε-<,所以0∀ε>,存在整数a εδ=,当0e x δ<-<时,均有()()e e e g x a a x a x a a εε-=-=⋅-<⋅=,所以()elim e x g x a →=; 【小问2详解】 当0e x <≤时,()ln x h x x =,则()21ln 0x h x x '-=≥, 所以函数()h x 在(]0,e 上单调递增, 当e x >时,()()()221212e e e eh x g x x x ==-=-单调递减,因为()()12h x h x =,12x x <,所以120e x x <<<,令()()12h x h x m ==,因为()()1e e eh g ==,0x →时,()h x ∞→-,x →+∞时,()h x ∞→-, 所以1,e m ∞⎛⎫∈- ⎪⎝⎭,由()1h x m =,得11ln x m x =,得11ln x mx =,得()111e e x mx m x ==,得111e x m x =, 由()2h x m =,得222e e x m =-, 所以()11212e 2e e x m x x m ⋅=-, 令()()2e 2e e m p m m =-,1,e m ∞⎛⎫∈- ⎪⎝⎭, 则()()12e e e m p m m +=--',令()0p m '=,得21e m =-, 当21e m <-时,()0p m '>,当211e em -<<时,()0p m '<, 所以函数()p m 在2,1e ∞⎛⎫-- ⎪⎝⎭上单调递增,在211,ee ⎛⎫- ⎪⎝⎭上单调递减, 所以()2ee max21e e p m p +⎛⎫=-= ⎪⎝⎭, 即1112x x x ⋅的最大值为2e e e +;【小问3详解】 因为()elim x f x A →=, 所以10ε∀>,存在正数1δ,当10e x δ<-<时,均有()1f x A ε-<;由(1)知()elim e x g x a →=, 即20ε∀>,存在正数2δ,当20e x δ<-<时,均有()2e f x a ε-<,对任意正数ε,取122εεε==,112212,,δδδδδδδ≤⎧=⎨>⎩, 0∀ε>,当0e x δ<-<时, 有()()()()()()()e e f x g x A a f x A g x a +-+=-+-()()12e f x A g x a εεε≤-+-=+=,所以()()()elim e x f x g x A a →+=+. 【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。
贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)
![贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)](https://img.taocdn.com/s3/m/201bc675905f804d2b160b4e767f5acfa0c78366.png)
数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则( )A. B. C. D.2.下列函数在其定义域内单调递增的是( )A. B.C. D.3.已知等差数列满足,则( )A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为4,则( )A.1或2B.2或4C.2或8D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,是奇函数,则的最小值为( )A.B.C.D.7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为( ){}{}2230,1,2,3,4A xx x B =-->=∣A B ⋂={}1,2{}1,2,3{}3,4{}41y x=-2ln y x =32y x =e xy x ={}n a 376432,6a a a a +=-=1a =A ()2:20C y px p =>A A x p =()23f x -[]2,3()f x (),21xA f -B x A ∈x B ∈()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x ()h x ()f x e 2e51x ⎫⎪⎭A.B. C. D.8.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径为,且与圆相外切,则的最大值为( )A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )20242025A.B.服从两点分布C.D.10.已知函数,下列说法正确的是( )A.的定义域为,当且仅当B.的值域为,当且仅当C.的最大值为2,当且仅当D.有极值,当且仅当11.设定义在上的可导函数和的导函数分别为和,满足,且为奇函数,则下列说法正确的是( )A.B.的图象关于直线对称C.的一个周期是4D.三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安25351323221:220C x y x y +--=x y M N 2C 1C 22C M C N ⋅X ,m n X Pm n1m n +=X ()20242025E X <<()D X mn=()()214log 21f x ax ax =-+()f x R 01a <<()f x R 1a …()f x 1516a =()f x 1a <R ()f x ()g x ()f x '()g x '()()()()11,3g x f x f x g x --=''=+()1g x +()00f =()g x 2x =()f x 20251()0k g k ==∑()0,0(0x y a a =>1)a ≠顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,则的最大值为__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形中实心区域的面积为.(1)写出数列和的通项公式;(2)设,证明.16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,为线段的中点,为线段上的点.(1)若点为线段的中点,求证:平面;(2)若平面分三棱台所成两部分几何体的体积比为,求二面角的正弦值.()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩…123,,x x x 123x x x <<()()()123f x f x f x ==()()()112233x f x x f x x f x ++n n n a n b {}n a {}n b 121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <…111A B C ABC -111A B C V ABC V 111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC H BC H BC 1A B ∥1C GH 1C GH 111A B C ABC -2:511C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点的焦距为.(1)分别求和的方程;(2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D,,判断直线与圆的位置关系.18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;(ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.()2222:10,0x y M a b a b -=>>2222:12x y N m m-=M ()2,2,N M N l M ,A B N C AB CD=l 222:O x y a +=[)[)[)[)[]0,20,20,40,40,60,60,80,80,10022⨯0.01α=P P X ()E X ()P X k =k参考公式:(其中为样本容量)参考数据:0.1000.0500.0100.0052.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.(i )求的取值范围;(ii )若,证明:.()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α3sin33sin 4sin θθθ=-3cos34cos 3cos θθθ=-()323f x x ax a =-+123,,x x x 123x x x <<a 1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.2.对于A 选项,的定义域为,该函数在和上单调递增,在定义域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在上单调递增,在定义域内不单调;对于C 选项,,该函数在定义域上单调递增;对于D 选项,的定义域为,当时,;当时,,在上单调递减,在上单调递增,因此该函数在定义域内不单调,故选C.3.,故选B.4.设点,则整理得,解得或,故选C.5.的定义域为.当时,的定义域为,即.令,解得的定义域为,即.“”是“”的必要不充分条件,故选B.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=1y x=-()(),00,∞∞-⋃+(),0∞-()0,∞+2ln y x =()(),00,∞∞-⋃+(),0∞-()0,∞+32y x ==[)0,∞+e x y x =().1e xy x =+'R (),1x ∞∈--0y '<()1,x ∞∈-+0y '>x e y x ∴=(),1∞--()1,∞-+53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= ()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =()23f x - []2,323x ……()1233,x f x -∴……[]1,3[]1,3A =1213x -……()12,21xx f ∴-……[]1,2[]1,2B =,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以,即时,等号成立,C.7.设的二项展开式的通项公式为,,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.8.由题,,即圆心为,且,为的直径.与相外切,.由中线关系,有,当且仅当时,等号成立,所以的最大值为20,故选A.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;对于D 选项,令,则服从两点分布,,,正确,故选ACD.10.令,对于A 选项,的定义域为或,故A 错误;对于B 选项,的值域为在定义域内的值域为()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x xf x -=+()3e 2e xxf x -=+…3e 2e x x -=12ln 23x =min ()f x ∴=51x ⎫⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭3,4,50,2,4k =1,3,5k =223326C C 2C 5+=221:(1)(1)2C x y -+-=()11,1C ()()2,0,0,2M N MN 1C 1C 2C 12C C ∴=+=()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=…22C M C N =22C M C N ⋅()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 2024Y X =-Y ()()1D Y n n mn =-=()()()2024D X D Y D Y mn ∴=+==()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R 0,01Δ0a a >⎧⇔<⎨<⎩…()f x ()g x ⇔R,故B 正确;对于C 选项,的最大值为在定义域内的最小值为,故C 正确;对于D 选项,有极值在定义域内有极值且,故D 选项错误,故选BC.11.对于A 选项,因为为奇函数,所以,又由,可得,故A 错误;对于B 选项,由可得为常数,又由,可得,则,令,得,所以,所以的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,所以,所以,所以是一个周期为4的周期函数,,所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以,又,又是周期为4的周期函数,所以,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案144【解析】12.设切点坐标为切线方程为.将代入得,可得切点纵坐标为.13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩……()f x ()2g x ⇔()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠()1g x +()10g =()()11g x f x --=()()()101,01g f f -==-()()3f x g x '=+'()()3,f x g x C C =++()()11g x f x --=()()11g x f x --=()()131g x g x C --+-=1x =-()()221g g C --=1C =-()()()13,g x g x g x -=+2x =()1g x +()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=()f x ()1g x +()()()()10,204g g g g ==-=-()()310g g ==()g x 20251()(1)0k g k g ===∑e33e 6-(),,ln ,txt a y a a ='∴ ln x y a a x =⋅(),tt aln tta a t a ⋅=1log e,ln a t a==∴e log e t a a a ==22A 13C余元素共有种排法,故共有种不同的方案.14.设,由的函数图象知,,又,.令在上单调递增,则,的最大值为.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;数列是首项为1,公比为的等比数列,因此,.(2)证明:由(1)可得因为,所以,所以.16.(本小题满分15分)(1)证明:如图1,连接,设,连接,44A 214234A C A 144⋅⋅=()()()123f x f x f x t ===()f x 23t <…1232,ln x x x t +=-= ()()()3112233e ,2e t t x x f x x f x x f x t t =∴++=-+()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴…(]2,3()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-{}n a 11133n n n a --=⨯={}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-2114314411334n n nnn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦413n n c a <…43n n n a c a <…1AC 11AC C G O ⋂=1,HO A G三棱台,则,又,四边形为平行四边形,则.点是的中点,.又平面平面,平面.(2)解:因为平面分三棱台所成两部分几何体的体积比为,所以,即,化简得,此时点与点重合.,且都在平面,则平面,111A B C ABC -11AC ∥AC 122CG AC ==∴11AC CG 1CO OA = H BC 1BA ∴∥OH OH ⊂11,C HG A B ⊄1C HG 1A B ∴∥1C HG 1C GH 111A B C ABC -2:511127C GHC AB V V B C ABC -=-()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅+⋅V V V 12GHC ABC S S =V V H B 1190C CA BCC ∠∠== 11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC又为等腰直角三角形,则.又由(1)知,则平面,建立如图2所示的坐标系则,设平面的法向量,则令,解得,设平面的法向量,则令,解得.设二面角的平面角为,,所以,所以二面角.17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为,解得,即双曲线.因为双曲线与双曲线的离心率相同,不妨设双曲线的方程为,因为双曲线经过点,所以,解得,则双曲线的方程为.ABC V BG AC ⊥1A G ∥1CC 1A G ⊥ABC ,G xyz -()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 1B GH ()()1,,,1,1,2m a b c GB ==- 20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 11C GH B --θcos cos ,m n m n m n θ⋅=<>=== sin θ==11C GH B --N =21m =22:12y N x -=M N M 222y x λ-=M ()2,242λ-=2λ=M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为,联立消去并整理得此时可得,当时,由韦达定理得;当时,由韦达定理得,则,化简可得,由(1)可知圆,则圆心到直线的距离,所以直线与圆相切或相交.18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);在)内有(只);在)内有(只);在)内有(只);在内有(只)由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只l l ()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=()()222222Δ44220,20,2k t k tt k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <2λ=212122224,22kt t x x x x k k--+==--1λ=234342222,22kt t x x x x k k--+==--ABCD ====222t k +=22:2O x y +=O l d ====l O [)0,200.00252020010⨯⨯=[20,400.006252020025⨯⨯=[40,600.008752020035⨯⨯=[60,800.025********⨯⨯=[]80,1000.00752020030⨯⨯=10253570++=指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得.根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”,事件“小白鼠注射2次疫苗后产生抗体”.记事件发生的概率分别为,则,.所以一只小白鼠注射2次疫苗后产生抗体的概率.(ii )由题意,知随机变量,所以.又,设时,最大,所以解得,因为是整数,所以.19.(本小题满分17分)(1)若选①,证明如下:若选②,证明如下:.0H 220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯0.01α=A =B =C =,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====()1P C =-()()10.20.50.9P A P B =-⨯=0.9P =()100,0.9X B ~()1000.990E X np ==⨯=()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩089.990.9k ……0k 090k =()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,当时,恒成立,所以在上单调递增,至多有一个零点;当时,令,得;令,得令,得或所以在上单调递减,在上单调递增.有三个零点,则即解得,当时,,且,所以在上有唯一一个零点,同理所以在上有唯一一个零点.又在上有唯一一个零点,所以有三个零点,综上可知的取值范围为.(ii )证明:设,则.又,所以.此时,方程的三个根均在内,方程变形为,令,则由三倍角公式.因为,所以.()233f x x a =-'0a …()0f x '…()f x (),∞∞-+0a >()0f x '=x =()0f x '<x <<()0f x '>x <x >()f x ((),,∞∞-+()f x (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<04a <<4a +>()()()()32224(4)3445160f a a a a a a a a a +=+-++=++++>()f x )4a +()2220,g a -<-=-=-<()f x (-()f x (()f x a ()0,4()()()()321233f x x ax a x x x x x x =-+=---()212301f a x x x ==-=04a <<1a =()()()()210,130,110,230f f f f -=-<-=>=-<=>3310x x -+=()2,2-3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,所以.123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。
重庆市第一中学2020届高三下学期5月月考试题 文科综合-历史试题 Word版含答案
![重庆市第一中学2020届高三下学期5月月考试题 文科综合-历史试题 Word版含答案](https://img.taocdn.com/s3/m/4a53af80f18583d0496459f0.png)
秘密★启用前【考试时间:5月16日9:00—11:30】2020年重庆一中高2020级高三下期5月月考文科综合能力测试试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将答题卡交回。
24. 公元前632年,晋文公召周襄王与各诸侯会盟于河阳。
《春秋》将这一历史事件记为“天王狩于河阳”(“狩”意为以狩猎为名巡视境内)。
据此可知A. 晋文公恪守礼乐制度B. 周天子丧失了天下共主地位C. 诸侯间兼并战争频繁D. 《春秋》意图维护礼乐秩序25.《仓颉篇》是秦朝李斯编写的识字学书范本,汉代广为流传。
在西汉后期,社会上出现了“《仓颉》多古字,俗师失其读”的局面,朝廷甚至专门派人讲解传授。
这是由于A.文字教育普及程度有限 B.王朝更替造成文化中断C.隶书在社会上普遍使用 D.书法艺术追求个性审美26. 北魏均田制对部曲(家仆)、奴婢均有授田的规定。
在唐代的授田对象中,增加了对杂户、官户、工商业者的授田,取消了对部曲、奴婢的授田。
这反映出唐代A.门阀士族逐渐衰落 B.重农抑商政策渐趋松动C.人地矛盾得到缓解 D.底层民众生存环境恶化27. 明中叶以后,浙江常山地区丁壮“屏(摒)耒耜而事负载,以取日入佣值”,安徽徽州许多农民“执技艺或负贩就食他郡”,福建古田县壮年农民也“多佣之四方”。
这表明上述地区A.租佃关系普遍化 B.农民与市场联系密切C.土地兼并十分严重 D.长途贩运贸易较活跃A.照搬西方,具有盲目性 B.机构杂陈,难有作为C.趋向近代,具有进步性 D.固守传统,维系专制29.1920年,上海共产主义小组创办《劳动界》周刊。
陈独秀、陈望道等人经常以浅显易懂的语言,宣传劳动创造价值、劳动者谋求解放必须进行社会革命等观点。
这反映出,《劳动界》周刊的创办旨在A. 宣传俄国十月革命B. 推动平民教育的发展C. 传播民主科学思想D. 唤醒工人的斗争意识30.1937年7月下旬,拥有300余家工厂的中华国货联合会上书国民政府,表示国货联合会中各工厂愿为政府制造各种军需物资,要求政府尽快组织内迁,派员指导生产。
人教版数学高三期中测试精选(含答案)8
![人教版数学高三期中测试精选(含答案)8](https://img.taocdn.com/s3/m/30a52d0371fe910ef02df84a.png)
【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x
,
y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn
.
【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .
函数问题的灵魂-定义域问题-学会解题之高三数学多题一解(解析版)
![函数问题的灵魂-定义域问题-学会解题之高三数学多题一解(解析版)](https://img.taocdn.com/s3/m/857a5a0a2e60ddccda38376baf1ffc4ffe47e205.png)
函数问题的灵魂——定义域【高考地位】在函数的三要素中,函数的定义域是函数的灵魂,对应法则相同的函数只有在定义域相同时才算同一函数.定义域问题始终是函数中最重要的问题,许多问题的解决都是必须先解决定义域,不要就会出现问题.通过对近几年高考试题的分析看出,本课时内容也是高考考查的重点之一,题型是选择题、填空题.试题难度较小.方法一 直接法万能模板 内 容使用场景 函数()f x 的解析式已知的情况下解题模板第一步 找出使函数()f x 所含每个部分有意义的条件,主要考 虑以下几种情形:(1) 分式中分母不为0; (2) 偶次方根中被开方数非负; (3) 0x 的底数不为零;(4) 对数式中的底数大于0、且不等于1,真数大于0; (5) 正切函数tan y x =的定义域为{|,}2x x k k Z ππ≠+∈.第二步 列出不等式(组);第三步 解不等式(组),即不等式(组)的解集即为函数()f x 的定义域.【例1】(2023·全国·高三专题练习)函数()21f x x x =-- ) A .[]1,2 B .()1,2C .(]1,2D .[)1,2【答案】C【分析】根据二次根式的性质以及分数分母不为0求出函数的定义域即可.【详解】解:由题意得:1020x x ->⎧⎨-≥⎩ 解得12x x >⎧⎨≤⎩,即()f x 的定义域为(]1,2.故选:C.【变式演练1】(2023·全国·高三专题练习)函数()261xf x x x x =-++-的定义域为( )A .(][)23∞∞--⋃+,,B .[)(]3112-⋃,,C .[)(]2113-⋃,,D .()()2113-⋃,,【答案】C【分析】由具体函数的定义域列出方程式即可得出答案.【详解】由26010x x x ⎧-++≥⎨-≠⎩,解得:23x -≤≤且1x ≠.故选:C例2.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可 【详解】由题意,得2sin102x π-≥,1sin22x π≥,所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B【变式演练2】5.(2023·全国·高三专题练习)若函数()22ln 2y x x a x =+++的定义域为[)1,+∞,则=a ( ) A .-3 B .3C .1D .-1【答案】A【分析】根据题意可知1x =为方程220x x a ++=的一个根,从而可求出a 的值【详解】由22020x x a x ⎧++≥⎨+>⎩,得2202x x a x ⎧++≥⎨>-⎩,由题意可知上式的解集为[)1,+∞,所以1x =为方程220x x a ++=的一个根,所以120a ++=,得3a =-, 故选:A例3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4D .[]0,4【答案】D【分析】分0a =、0a >、0a <讨论即可求解.【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D【变式演练3】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__.【答案】[1,+∞)【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x =++的定义域为R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).方法二 抽象复合法 万能模板 内 容使用场景涉及到抽象函数求定义域解题模板 利用抽象复合函数的性质解答:(1)已知函数的定义域为,求复合函数的定义域:只需解不等式,不等式的解集即为所求函数的定义域.(2)已知复合函数的定义域为,求函数的定义域: 只需根据求出函数的值域,即为函数的定义域.例4.(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( ) A .(0,)+∞ B .(0,1)C .22⎡⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∈函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∈112x -≤≤,1122x ≤+≤∈函数2(log )y f x =中,21log 22x ≤≤ ∈24x ≤≤所以函数2(log )y f x =的定义域为[24,]. 故选:D【变式演练4】(2023·全国·高三专题练习)已知函数()2f x +的定义域为()3,4-,则函数()()31g x x =-的定义域为( ) A .1,43⎛⎫⎪⎝⎭B .1,23⎛⎫ ⎪⎝⎭C .1,63⎛⎫ ⎪⎝⎭D .1,13⎛⎫ ⎪⎝⎭【答案】C【分析】根据抽象函数的定义域的求解,结合具体函数单调性的求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以()f x 的定义域为()1,6-.又因为310x ->,即13x >,所()f x (,)a b [()]f g x ()a g x b <<[()]f g x [()]f g x (,)a b ()f x a x b <<()g x ()f x以函数()g x 的定义域为1,63⎛⎫⎪⎝⎭.故选:C.【变式演练5】11.(2023·全国·高三专题练习)已知函数()21log xf x x-=,()1f x +的定义域为M ,()2f x 的定义域为N ,则( ) A .M N B .M N ⋂=∅C .M ⊆ND .N ⊆M【答案】B【分析】分别求出()1f x +的定义域为M 和()2f x 的定义域为N 即可求解. 【详解】()21log 1xf x x -+=+,则{}10M x x =-<<, ()2122log 2xf x x -=,则102N x x ⎧⎫=<<⎨⎬⎩⎭,所以M N ⋂=∅,故选:B .方法三 实际问题的定义域万能模板 内 容使用场景 函数的实际应用问题解题模板第一步 求函数的自变量的取值范围; 第二步 考虑自变量的实际限制条件;第三步 取前后两者的交集,即得函数的定义域.例5.(2022·全国·高三专题练习)已知等腰三角形的周长为40cm ,底边长()y cm 是腰长()x cm 的函数,则函数的定义域为( ) A .()10,20 B .()0,10C .()5,10D .[)5,10【答案】A【分析】利用两边之和大于第三边及边长为正数可得函数的定义域. 【详解】由题设有402y x =-,由4020402x x x x ->⎧⎨+>-⎩得1020x <<,故选A.【点睛】本题考查应用题中函数的定义域,注意根据实际意义和几何图形的性质得到自变量的取值范围. 【变式演练7】(2021·全国课时练习)一枚炮弹发射后,经过26s 落到地面击中目标,炮弹的射高为845m ,且炮弹距地面的高度h (单位:m )与时间t (单位:s )的关系为.①21305h t t =-求①所表示的函数的定义域与值域,并用函数的定义描述这个函数. 【答案】定义域为{|026}t t ≤≤,值域为{|0845}h h ,描述见解析. 【解析】定义域为{|026}t t ≤≤,值域为{|0845}h h ≤≤, 对于数集{|026}t t ≤≤中的任一个数t ,在数集{|0845}h h ≤≤中都有唯一确定的数21305h t t =-与之对应. 【点睛】本题考查函数的定义域、值域以及函数的定义,需要对函数概念及三要素的灵活掌握,属于基础题.【高考再现】1.【2017山东理】设函数的定义域A ,函数的定义域为B ,则A B ⋂=(A )(1,2) (B ) (C )(-2,1) (D )[-2,1)【答案】D【考点】 1.集合的运算2.函数的定义域3.简单不等式的解法.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.【2016·全国卷①】 下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x【答案】D【解析】 y =10lg x =x ,定义域与值域均为(0,+∞),只有选项D 满足题意. 3.【2014山东.理3】 函数1)(log 1)(22-=x x f 的定义域为( )A .)21,0(B .),2(+∞C .),2()21,0(+∞D .),2[]21,0(+∞ 【答案】C【解析】由已知得22(log )10,x ->即2log 1x >或2log -1x <,解得2x >或102x <<,故选C . 【名师点睛】本题考查函数的概念、函数的定义域.解答本题关键是利用求函数定义域的基本方法,建立不等式组求解.本题属于基础题,注意基本概念的正确理解以及计算的准确性. 4.【2015高考重庆,文3】函数的定义域是( )(A) (B) (C) (D)【答案】D【解析】由解得或,故选D . 【考点定位】函数的定义域与二次不等式.【名师点睛】本题考查对数函数的定义域与一元二次不等式式的解法,由对数的真数大于零得不等式求解.本题属于基础题,注意不等式只能是大于零不能等于零.5.【2015高考湖北,文6】函数的定义域为( )A .B .C .D .【答案】.【解析】由函数的表达式可知,函数的定义域应满足条件:,解之得,即函数的定义域为,故应选.【考点定位】本题考查函数的定义域,涉及根式、绝对值、对数和分式、交集等内容.【名师点睛】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.6.【2020年高考北京卷11】函数1()=ln 1f x x x ++的定义域是__________. 【答案】(0,)+∞【解析】要使得函数1()ln 1f x x x =++有意义,则100x x +≠⎧⎨>⎩,即0x >,∴定义域为(0,)+∞. 【专家解读】本题考查了分式函数、对数函数定义域的求法,考查数学运算学科素养.22(x)log (x 2x 3)f [3,1](3,1)(,3][1,)-∞-+∞(,3)(1,)-∞-+∞0)1)(3(0322>-+⇒>-+x x x x 3-<x 1>x 256()4||lg 3x x f x x x -+=--(2,3)(2,4](2,3)(3,4](1,3)(3,6]-C ()y f x =()f x 2564||0,03x x x x -+-≥>-22,2,3x x x -≤≤>≠()f x (2,3)(3,4]C7.【2015高考山东,理14】已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[]1,0-,则a b += .【答案】32-【解析】若1a >,则()f x 在[]1,0-上为增函数,所以1110a b b -⎧+=-⎨+=⎩,此方程组无解;若01a <<,则()f x 在[]1,0-上为减函数,所以1011a b b -⎧+=⎨+=-⎩,解得122a b ⎧=⎪⎨⎪=-⎩,所以32a b +=-.【考点定位】指数函数的性质.【名师点睛】本题考查了函数的有关概念与性质,重点考查学生对指数函数的性质的理解与应用,利用方程的思想解决参数的取值问题,注意分类讨论思想方法的应用. 8.【2019年高考江苏】函数276y x x =+-的定义域是 ▲ . 【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域.由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤,故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.【反馈练习】1.(2021·天津高三期末)函数的定义域为( ) A . B . C . D .【答案】D【解析】要使函数有意义,只需21020x x x -≠⎧⎨->⎩,解得102x x ≠⎧⎨<<⎩,即函数定义域为{|01x x <<或12}x <<.故选D.2.【云南省昆明市第一中学2020届高三考前第九次适应性训练】设函数21y x =-A ,函数12x y -=的值域为B ,则A B =( )()()221log 21f x x x x =+--()1,2()(),02,-∞+∞()(),11,2-∞()()0,11,2A .()0,1B .(]0,1C .()1,1-D .[]1,1-【答案】A【解析】函数定义域满足:210x ->,即11x -<<,所以{}11A x x =-<<, 函数12x y -=的值域{}0B y y =>,所以()0,1A B =,故选:A. 【名师点睛】本题考查了函数定义域,值域,交集运算,意在考查学生的计算能力和综合应用能力. 3.(2023·全国·高三专题练习)若函数()y f x =的定义域是[]1,3,则函数()()21ln f x h x x-=的定义域是( )A .[]1,3B .(]1,3C .(]1,2D .[]1,2【答案】C【分析】利用复合函数的定义及给定函数式列出不等式组,求出其解集即可作答. 【详解】函数()y f x =的定义域是[1,3], ∈1213x ≤-≤,解得12x ≤≤. 又0x >,且1x ≠,∈(]1,2x ∈. 故函数()h x 的定义域是(]1,2. 故选:C.4.(2023·全国·高三专题练习)已知函数()21f x -的定义域为{}1|0x x <<,则函数()211f x x --的定义域为( ) A .(0,1) B .(1,2)C .()()0,11,2 D .()(),11,1-∞--【答案】C【分析】先求出()f x 的定义域,再根据分母不为零和前者可求题设中函数的定义域. 【详解】因为函数()21f x -的定义域为{}1|0x x <<,故1211x -<-<, 所以()f x 的定义域为()1,1-, 故函数()211f x x --中的x 需满足:211110x x -<-<⎧⎨-≠⎩, 故02,1x x <<≠,故函数()211f x x --的定义域为()()0,11,2.故选:C5.(2021·广东深圳中学高三期中)已知等腰三角形的周长为,底边长是腰长的函数,则函数的定义域为( ) A . B .C .D .【答案】A【解析】由题设有402y x =-,由4020402x x x x ->⎧⎨+>-⎩得1020x <<,故选A.【点睛】本题考查应用题中函数的定义域,注意根据实际意义和几何图形的性质得到自变量的取值范围.6.(2022·福建·上杭一中高三阶段练习)已知函数()f x 的定义域为B ,函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,若x B ∃∈,使得21a x x >-+成立,则实数a 的取值范围为( ) A .13,16⎛⎫-∞ ⎪⎝⎭B .130,16⎛⎫⎪⎝⎭C .13,16⎛⎫+∞ ⎪⎝⎭D .1313,1616⎛⎫- ⎪⎝⎭【答案】C【分析】由复合函数的定义域求得集合B ,记2()1g x x x =-+,问题转化为求()g x 在x B ∈时的最小值,从而得参数范围.【详解】∈()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,∈114x ≤≤,12134x -≤-≤,则12,4B ⎡⎤=-⎢⎥⎣⎦.令()21g x x x =-+,x B ∃∈,使得21a x x >-+成立,即a 大于()g x 在12,4⎡⎤-⎢⎥⎣⎦上的最小值.∈213()24g x x ⎛⎫=-+ ⎪⎝⎭,∈()g x 在12,4⎡⎤-⎢⎥⎣⎦上的最小值为113416g ⎛⎫= ⎪⎝⎭,∈实数a 的取值范围是13,16⎛⎫+∞ ⎪⎝⎭.故选:C .7.(2019·河北张家口中学月考)若函数2()2f x mx mx =-+的定义域为R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞ 【答案】A【解析】∵函数f (x )的定义域为R ,∴不等式mx 2-mx +2>0的解集为R , ①m =0时,2>0恒成立,满足题意;40cm ()y cm ()x cm ()10,20()0,10()5,10[)5,10②m ≠0时,则2080m m m ⎧⎨=-<⎩>,解得0<m <8. 综上得,实数m 的取值范围是[0,8),故选A .【名师点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.8.(2022·全国·高三专题练习)函数()1ln 34y x x=-+的定义域是________ 【答案】()3,00,4∞⎛⎫-⋃ ⎪⎝⎭【分析】根据题意可知3400x x ->⎧⎨≠⎩,由此即可求出结果. 【详解】由题意可知3400x x ->⎧⎨≠⎩,所以()3,00,4x ∞⎛⎫∈-⋃ ⎪⎝⎭. 所以函数的定义域为()3,00,4∞⎛⎫-⋃ ⎪⎝⎭. 故答案为:()3,00,4∞⎛⎫-⋃ ⎪⎝⎭. 9.(2022·全国·高三专题练习)函数()()02112y x x x =++-的定义域是________. 【答案】(3,1)(1,2)--⋃- 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果.【详解】函数()()02lg 2112x y x x x -=+++-的解析式有意义, 由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<,故该函数的定义域为(3,1)(1,2)--⋃-.故答案为:(3,1)(1,2)--⋃-10.(2022·北京市第二十二中学高三开学考试)函数()1f x x=-的定义域为___________. 【答案】(0,1)【分析】根据对数、分式及根式的性质列不等式组求定义域. 【详解】由解析式知:010x x >⎧⎨->⎩可得01x <<, 所以函数定义域为(0,1).故答案为:(0,1)11.(2023·全国·高三专题练习)函数()2lg 1tan π14y x x =+-___________. 【答案】11,42⎛⎫- ⎪⎝⎭【分析】使对数的真数大于零,二次根式的被开方数大于等于零列出不等式组,结合正切函数的性质求解.【详解】由题意得:21tan π0πππ,2140x x k k x +>⎧⎪⎪≠+∈⎨⎪-≥⎪⎩Z ,解得1142x -<<. 故答案为:11,42⎛⎫- ⎪⎝⎭. 12.(2023·全国·高三专题练习)函数()()21lg 2f x x x +-的定义域是_______.【答案】1[,2)2- 【分析】依据题意列出不等式组,解之即可得到函数的定义域【详解】由题意可得,21020x x +≥⎧⎨->⎩,解之得122x -≤< 则函数()()21lg 2f x x x =++-的定义域是1[,2)2- 故答案为:1[,2)2- 13.(2023·全国·高三专题练习)函数()()22log 29142f x x x =-+-的定义域为___________. 【答案】()5,2,2⎛⎫-∞⋃+∞ ⎪⎝⎭ 【分析】根据偶次根号下的被开方数大于等于零,分母不为0,根据真数列出不等式,进行求解再用集合或区间的形式表示出来.【详解】由题意可知()22log 291420x x -+->,而以2为底的对数函数是单调递增的,因此229144x x -+>,求解可得2x <或52x >. 故答案为:()5,2,2⎛⎫-∞⋃+∞ ⎪⎝⎭. 14.(2023·全国·高三专题练习)函数()2lgcos 25f x x x =-的定义域为______.【答案】335,,,52222ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦【分析】由题意可得2cos 0250x x >⎧⎨-≥⎩,解得22,2255k x k k Z x ππππ⎧-+<<+∈⎪⎨⎪-≤≤⎩,分别令k =-1、0、1,综合即可得答案.【详解】由题意得2cos 0250x x >⎧⎨-≥⎩,解得22,2255k x k k Z x ππππ⎧-+<<+∈⎪⎨⎪-≤≤⎩, 令k =-1,解得35,2x π⎡⎫∈--⎪⎢⎣⎭, 令k =0,解得,22x ππ⎛⎫∈- ⎪⎝⎭, 令k =1,解得3,52x π⎛⎤∈ ⎥⎝⎦, 综上,定义域为335,,,52222ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦. 故答案为:335,,,52222ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦ 15.(2021·全国)设计一个水渠,其横截面为等腰梯形(如图),要求满足条件(常数),,写出横截面的面积y 关于腰长x 的函数,并求它的定义域和值域.【答案】定义城为0,2a ⎛⎫ ⎪⎝⎭,值域为23⎛⎤ ⎥ ⎝⎦. 【解析】如图,连接AD ,过,B C 分别作AD 的垂线,垂足为,E F ,因为AB BC CD a ++=,所以20BC EF a x ==->,即02a x <<, 因为120ABC ︒∠=,所以60A ︒∠=,所以2x AE DF ==, 3BE x =,13()2(2)222x x x y BC AD BE a x ⎤=+⋅=-++=⎥⎣⎦)222333333)323a a x x x ax x ⎫-=-=-⎪⎝⎭, 故当3a x =时,y 23,故它的定义城为0,2a ⎛⎫ ⎪⎝⎭,值域为23⎛⎤ ⎥ ⎝⎦. AB BC CD a ++=120ABC ︒∠=【点睛】本题考查了求函数的解析式、定义域和值域的问题,解题时应认真解析题意,建立函数的解析式,求出函数的定义域和值域,是中档题.16.(2023·全国·高三专题练习)如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A 、B 及CD 的中点P 处.20AB =km ,10BC =km .为了处理这三家工厂的污水,现要在该矩形区域内(含边界)且与A 、B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为y km .(1)设BAO θ∠=(弧度),将y 表示成θ的函数并求函数的定义域;(2)假设铺设的污水管道总长度是(10103+km ,请确定污水处理厂的位置. 【答案】(1)2010sin π10,0cos 4y θθθ-=+≤≤ (2)位置是在线段AB 的中垂线上且离AB 的距离是1033km 【分析】(1)依据题给条件,先分别求得OA OB OP 、、的表达式,进而得到管道总长度y 的表达式,再去求其定义域即可解决;(2)先解方程2010sin 1010103cos θθ-+=+,求得π6θ=,再去确定污水处理厂的位置. (1)矩形ABCD 中,20AB =km ,10BC =km ,DP PC =,DC PO ⊥,BAO ABO θ∠=∠=,则()10km,1010tan km cos OA OB OP θθ===-, 201010tan cos y OA OB OP θθ∴=++=+-,则2010sin π10,0cos 4y θθθ-=+≤≤ (2)令2010sin 1010103cos θθ-+=+ π10sin 103cos 20,20sin 20,3θθθ⎛⎫∴+=∴+= ⎪⎝⎭则πsin 1,3θ⎛⎫+= ⎪⎝⎭又π04θ≤≤,即ππ7π3312θ≤+≤,则ππ32θ+=,则π6θ= 此时π101010tan103(km)63OP =-=- 所以确定污水处理厂的位置是在线段AB 的中垂线上且离AB 的距离是1033 km 17.(2022·浙江·高三专题练习)如图,点D 是曲线()22104y x y +=≥上的动点(点D 在y 轴左侧),以点D 为顶点作等腰梯形ABCD ,使点C 在此曲线上,点,A B 为曲线与x 轴的交点.(1)若直线l 过原点,且斜率为-2,与曲线交于点D ,求此时等腰梯形ABCD 的面积;(2)若设2CD x =,等腰梯形ABCD 的面积为()S x ,写出函数()S x 的解析式,并求出函数的定义域. 【答案】(1)12+;(2)()()2211S x x x =+-,定义域为()0,1【分析】(1)联立方程得到2,22D ⎛⎫- ⎪ ⎪⎝⎭,再计算面积得到答案.(2)计算得到()2,21D x x --,根据面积公式得到解析式,再计算定义域得到答案. (1)直线l 方程为:2y x =-,22214y x y x =-⎧⎪⎨+=⎪⎩,解得222x y ⎧=-⎪⎨⎪=⎩,222x y ⎧=⎪⎨⎪=-⎩(舍去), 故2,22D ⎛⎫- ⎪ ⎪⎝⎭,2AB =,()1222122S =+⨯=+(2)2CD x =,()2,21D x x --,故()()()22122212112S x x x x x =+⨯-=+-, ()22104y x y +=≥,2CD x =,故01x <<,故定义域为()0,1.。
辽宁省本溪市第一中学2024-2025学年高三上学期第一次月考数学试卷(含答案)
![辽宁省本溪市第一中学2024-2025学年高三上学期第一次月考数学试卷(含答案)](https://img.taocdn.com/s3/m/71fb0e7c2e60ddccda38376baf1ffc4fff47e25b.png)
本溪市第一中学2024-2025学年高三上学期第一次月考数学试题一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B.C. D.2.设,,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知为锐角,,则( )4.将函数图象上所有的点向左平移个单位长度,再把所有点的横坐标变为原来的后,得到函数的图象,则( )B.C.D.15.已知函数(且),若有最小值,则实数的取值范围是( )A. B. C. D.6.设函数定义域为,为奇函数,为偶函数,当时,,则下列结论错误的是( )A. B.为奇函数{}lg(1)A x y x ==-{}21x B y y ==+{}0A B x x =< A B R = {}1A B x x => A B =∅∅0a >0b >lg()0a b +>lg()0ab >απ3sin 45α⎛⎫-=-⎪⎝⎭sin α=()2sin 26f x x π⎛⎫=-⎪⎝⎭π1212()g x π12g ⎛⎫= ⎪⎝⎭121(2)21,2()2,2x a x a x f x a x --++≤⎧=⎨>⎩0a >1a ≠()f x a 30,4⎛⎤ ⎥⎝⎦31,2⎛⎤ ⎥⎝⎦3(0,1)1,2⎛⎤ ⎥⎝⎦330,1,42⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦()f x R (1)f x -(1)f x +(1,1]x ∈-()f x =21x -+7324f ⎛⎫=-⎪⎝⎭(7)f x +C.在上是减函数D.方程仅有6个实数解7.已知,,,则( )A. B. C. D.8.定义在上的函数的导函数为,当时,且.,.则下列说法一定正确的是( )A.B.C. D.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9.已知的最小正周期是,下列说法正确的是( )A.在是单调递增 B.是偶函数C.的最大值是 D.是的对称中心10.已知函数,则( )A.在上单调递增 B.是函数的极大值点C.既无最大值,也无最小值D.当时,有三个零点11.已知函数,是的导函数,则( )A.“”是“为奇函数”的充要条件B.“”是“为增函数”的充要条件C.若不等式的解集为且,则的极小值为D.若,是方程的两个不同的根,且,则或三、填空题:本题共3小题,每小题5分,共15分.12.如果,是方程两根,则__________.()f x (6,8)()lg 0f x x +=910m =1011m a =-89m b =-0a b>>0a b >>0b a >>0b a>>R ()f x ()f x '[0,)x ∈+∞()2sin cos 0x x f x '⋅->R x ∀∈()()cos 21f x f x x -++=15π32π4643f f ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭15π34π4643f f ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭3π13π4324f f ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭13π3π2443f f ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭2π2π()sin 33f x x x ωω⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭π()f x ππ,32⎛⎫⎪⎝⎭π4f x ⎛⎫-⎪⎝⎭()f x 1+(π,0)()k k Z ∈()f x ()|2|xf x x e a =--()f x (1,2)1x =()f x ()f x (1,2)a ∈()f x 32()2(,,)f x x ax bx c a b c R =-++∈()f x '()f x 0a c ==()f x 0a b ==()f x ()0f x <{1x x <}1x ≠-()f x 3227-1x 2x ()0f x '=12111x x +=0a <3a >tan αtan β2330x x --=sin()cos()αβαβ+=-13.已知函数(且),若对任意,,则实数的取值范围是__________.14.已知函数,则的单调递增区间为__________;若对任意的,不等式恒成立,则实数的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知函数.(1)求的最小正周期和最大值;以及取最大值时相应的x 值;(2)讨论在上的单调性.16.(15分)已知在中,角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求;(2)若外接圆的直径为的取值范围.17.(15分)有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:,,)(1)若,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少?(2)若,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?18.(17分)已知函数,.(1)求的单调区间;(2)设函数.证明:(i )函数有唯一极值点;(ii )若函数有唯一零点,则.2()1xx a f x a =+0a >1a ≠(1,3)x ∈()()242f x f ax ++-<a()e xf x x =-()f x (0,)x ∈+∞ln 2e 1x x ax+-≥a 2π()sin sin 2f x x x x ⎛⎫=+-⎪⎝⎭()f x ()f x π2π,63⎡⎤⎢⎥⎣⎦ABC △cos()cos a B C a A -+-sin cos B A 0=A ABC △2c b -301log lg 2100x v x =-km /min x 0x lg 20.30= 1.23 3.74= 1.43 4.66=02x =km /min 05x = 2.5km /min 1.5km /min 21()ln 2f x x x =-121()(0)2x g x e x ax a -=-->()f x ()()()F x f x g x =+()F x ()F x 0x 012x <<19.(17分)麦克劳林展开式是泰勒展开式的一种特殊形式,的麦克劳林展开式为:,其中表示的阶导数在0处的取值,我们称为麦克劳林展开式的第项.例如:.(1)请写出的麦克劳林展开式中的第2项与第4项;(2)数学竞赛小组发现的麦克劳林展开式为,这意味着:当时,,你能帮助数学竞赛小组完成对此不等式的证明吗?(3)当时,若,求整数的最大值.()f x ()()20(0)(0)(0)()(0)(0)2!!!n n n nn f f f f x f x x x x n n f ∞=''=+++++='∑ ()(0)n f ()f x n ()(0)!n nn f T x n =()f x 1n +234e 12!3!4!xx x x x =+++++ ()sin f x x =ln(1)x +234ln(1)234x x x x x +=-+-+ 0x >2ln(1)2x x x +>-1x ≥31e ln 26xx x mx ++>+m本溪市第一中学2024-2025学年高三上学期第一次月考数学试题答案一、单选题1-4:DBDA5-8:DCAB 二、多选题9:ABD10:BD11:ACD三、填空题12.13.14.;四、解答题15.解:(1)所以的最小正周期,当时,,此时(2)当时,有,从而时,即时,单调递增,时,即时,单调递减,综上所述,单调增区间为,单调减区间为.16.解:(1)由,得,故得,所以,即.32-()[)0,15,+∞ (0,)+∞12a ≤2π()sin sin 2f x x x x ⎛⎫=--⎪⎝⎭1cos sin cos 2)sin 222x x x x x =-+=--πsin 23x ⎛⎫=--⎪⎝⎭()f x πT =πsin 213x ⎛⎫-= ⎪⎝⎭()f x 5ππ()12x k k Z =+∈π2π,63x ⎡⎤∈⎢⎥⎣⎦π02π3x ≤-≤ππ0232x ≤-≤π5π612x ()f x ππ2π23x ≤-≤5π2π123x()f x ()f x π5π,612⎡⎤⎢⎥⎣⎦5π2π,123⎡⎤⎢⎥⎣⎦πA B C ++=(),cos cos()A B C A B C π=-+=-+cos()cos()sin cos a B C a B C B A --+=cos cos sin sin (cos cos sin sin )sin cos a B C a B C a B C B C B A +--=sin sin sin cos a B C B A =由正弦定理,得,显然,,所以,所以.因为,所以.(2)由正弦定理,得,,故.又,所以,,所以.又,所以,所以,所以的取值范围为.17.解:(1)将,,代入函数解析式得,故此时飞行速度为;(2)将,,代入函数解析式得,即,所以,于是,故候鸟停下休息时,它每分钟的耗氧量为466个单位;(3)设雄鸟每分钟的耗氧量为,雌鸟每分钟的耗氧量为,依题意可得:,两式相减得,所以,18.解:(1)由函数可得:,且,当时,,函数单调递减;当时,,函数单调递增,所以函数减区间是,增区间是.(2)(i )因为,的定义域为,sin sin sin sin cos A B C C B A =sin 0C >sin 0B >sin A A =tan A =(0,π)A ∈π3A =2sin sin sin a c bR A C B====b B =c C =2sin )c b C B C B -=-=-πA B C ++=2π3B C =-2π0,3C ⎛⎫∈ ⎪⎝⎭2π3π22sin sin sin 6sin 326c b C C C C C ⎫⎤⎛⎫⎛⎫-=--==-⎪⎪ ⎪⎥⎪⎝⎭⎝⎭⎦⎭2π0,3C ⎛⎫∈ ⎪⎝⎭πππ,662C ⎛⎫-∈- ⎪⎝⎭π26sin (3,6)6c b C ⎛⎫-=-∈- ⎪⎝⎭2c b -(3,6)-02x =8100x =31log 81lg 22lg 2 1.702v =-=-=1.70km /min 05x =0v =310log lg 52100x =-3log 2lg 52(1lg 2) 1.40100x ==-= 1.43 4.66100x==466x =1x 2x 13023012.5log lg 210011.5log lg 2100x x x x⎧=-⎪⎪⎨⎪=-⎪⎩13211log 2x x =129x x =21()ln 2f x x x =-0x >()211(1)(1)x x x f x x x x x -+-'=-==01x <<()0f x '<()f x 1x >()0f x '>()f x ()f x (0,1)(1,)+∞0a >1()ln x F x ex ax -=--(0,)+∞所以,所以在上单调递增.设,则,当时,,所以单调递增,当时,,所以单调递减,所以,所以,即,所以,又,所以存在唯一的,使得,即,当时,,单调递减;当时,,单调递增,所以函数有唯一极值点.(ii )由(i )得,因为函数有唯一零点,所以,所以,即,所以,设,所以,所以在单调递减,因为,,所以.19.(1)因为,,,所以第2项,.(2)设,,因为,所以,单调递增,所以,所以.(3)当时,成立,得出,的最大整数为3.11()x F x e a x-'=--()F x '(0,)+∞()1xh x e x =--()1xh x e '=-0x >()0h x '>()x 0x <()0h x '<()x ()(0)0h x h ≥=10x e x --≥1x e x ≥+111(1)110111a F a e a a a a a a'+=-->+--=->+++(1)0F a '=-<0(1,1)t a ∈+()00F t '=0110t e a t ---=()00,x t ∈()0F x '<()0,x t ∈+∞()0F x '>()F x ()F x ()min 0()F x F t =()F x 0x ()00F t =00x t =011x ea x -=+()00001ln 0F x a x ax x =+--=()00001ln x a x ax x ϕ=+--()0200110x a x x ϕ'=---<()0x ϕ(1,)+∞(1)10ϕ=>1(2)ln 202a ϕ=--<012x <<()cos f x x '=(2)()sin f x x =-(3)()cos f x x =-11cos 01!T x x ==333cos 013!6T x x -==-2()ln(1)2x g x x x =+-+()221111111x x g x x x x x +-'=-+==+++0x >()201x g x x '=>+()g x ()(0)ln1000g x g >=-+=2ln(1)2x x x +>-1x =111e ln126m ++>+1e 3m <+m当时,设,,,当,,单调递增,则,所以,又当时,成立,所以当时.3m =323311()e ln 31ln 3262626xx x x x h x x x x x x =++--=+++++--23()ln 222x h x x x =++-1()220h x x x '=+-≥-=1x >()0h x '>()h x 13()(1)ln12022h x h >=+-+=31e ln 326xx x x ++>+1x =211e ln1326++>+1x ≥31e ln 326xx x x ++>+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年重庆一中高2015级高三下期五月月考
数 学 试 题 卷(文科) 2015.5
一、选择题(每小题5分,共50分)
1.复数()21i +的虚部是( )
A .0
B .2
C .一2
D .2i
2.等差数列{n a }的前n 项和为6,3=S S n ,公差3=d ,则=4a ( )
A .8
B .9
C .11
D .12
3.已知直线1:l 1y kx =+和直线2:l y mx m =+,则“k m =”是“12//l l ”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
4.若椭圆)0(12222>>=+b a b y a x 的离心率为21,则双曲线122
22=-b y a x 的渐近线方程为(
)
A .x y 23
±= B .x y 3±= C .x y 21
±= D .x y ±=
5.阅读右图的程序框图,则输出的S 等于( )
A.14
B.20
C.30
D.55
6.已知向量a ,b 满足2a =,1b =且()a b b +⊥, 则a 与b 的夹角为( )
A. 3π
B.23π
C. 2π
D. 6π
7.若一个几何体的三视图如图所示,则该几何体的
体积为( )
A.332
B.364
C.380
D.3160
8.过点()2,1M 的直线l 与圆25)4()3(:2
2=-+-y x C 交于B A ,两点,C 为圆心,当 ACB ∠最小时, 直线l 的方程是( )
A.032=+-y x B .042=-+y x C.01=+-y x D .03=-+y x
9.函数 32()cos sin cos f x x x x =+-的最大值是 ( )
A .827
B .1
C .3227
D .2
10.如图,正ABC ∆的中心位于点()()2,0,1,0A G ,动点P 从A 点出发沿ABC ∆的边界
按逆时针方向运动,设旋转的角度(02)AGP x x π∠=≤≤,向量OP 在(1,0)a =方向的投影 为y (O 为坐标原点),则y 关于x 的函数()y f x =的图像是( )
二、填空题(每小题5分,共25分)
11.已知集合{ln(3)}A x y x ==-,则A N = .
12.设[]10,0∈a ,则函数()x
a x g 2-=在区间()+∞,0内为增函数的概率为
23π 43
23π 43
A . B
.
13.实数x ,y 满足不等式组010,1220y y x y W x x y ≥⎧-⎪-≥=⎨+⎪--≤⎩
若,则W 的取值范围是 _________ 14.若正数,x y 满足35x y xy +=,则43x y +的最小值
15.已知平面上的点集A 及点P ,在集合A 内任取一点Q ,线段PQ 长度的最小值称为点P
到集合A 的距离,记作()A P d ,.如果集合(){}4,22=+=y x y x A ,点P 的坐标为()
22,22,那么()=A P d , ;如果点集A 所表示的图形是半径为2的圆,那么点集(){}
1,≤=A P d P D 所表示的图形的面积为 .
三、解答题(共75分) 16.(13分)已知数列{}n a 满足2a =5,且其前n 项和n pn S n -=2
. (Ⅰ)求p 的值和数列{
}n a 的通项公式; (Ⅱ)设{
}n b 为等比数列,公比为p ,且其前n 项和n T 满足55S T <,求1b 的取值范围.
17.(13分)现从某100件中药材中随机抽取10件,以这10件中药材的重量(单位:克)作为样本,样本数据的茎叶图如下:
(1)求样本数据的中位数、平均数,试估计这100件中药材的总重量;
(2)记重量在15克以上的中药材为优等品,在该样本的优等品中,随机抽取2件,求 这2件中药材的重量之差不超过2克的概率。
18.(13分)如图,在ABC ∆中,已知D 为BC 边上的中点,且5cos 13B =,3cos 5ADC ∠=-. (1)求sin BAD ∠ 的值;
(2)若5AD =,求边AC 的长.
19.(12分) 如图,已知直三棱柱111ABC A B C -中,Q N M AC AB AC AB AA
,,,,1⊥==分别是1,,CC BC AC 的中点,点P 在线段11A B 上运动,且111A P A B λ=。
(1)证明:无论λ取何值时,总有AM ⊥平面PNQ ;
(2)若1AC =,试求三棱锥P MNQ -的体积
20.(12分)如图,某工厂生产的一种无盖冰淇淋纸筒为圆锥形,现一客户订制该圆锥纸筒,并要求该圆锥纸筒的容积为π.设圆锥纸筒底面半径为r ,高为h .
(1)求出r 与h 满足的关系式;
(2)工厂要求制作该纸筒的材料最省,求最省时
h r
的值.
A D
B C
21.(12分)如图,过椭圆L 的左顶点(3,0)A -和下顶点B 且斜率均为k 的两直线12,l l 分别交椭圆于,C D ,又1l 交y 轴于M ,2l 交x 轴于N ,且CD 与MN 相交于点P .当3k =时,ABM ∆是直角三角形.(1)求椭圆L 的标准方程;
(2) ①证明:存在实数λ,使得λ=AM OP ;
②求OP 的取值范围.。