浙教版八年级数学上册中考试试题(3)
初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3
![初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3](https://img.taocdn.com/s3/m/64ce91f277a20029bd64783e0912a21614797f3e.png)
浙教版数学八年级上册第3章《一元一次不等式》测试考生须知:●本试卷满分120分,考试时间100分钟。
●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
●保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列是不等式的是( ) A.2x+yB.3x>11C.2x+3=7D.x 2y 22.若x <0,xy ≥0,则y 的取值范围是( ) A.y >0B.y <0C.y ≥0D.y ≤03.关于x 的不等式12-4x >0的非负整数解共有( )个。
A.2B.3C.4D.54.“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( ) A.3x-x ≥1 B.3x-(-x )≥1 C.3x-x >1D.3x-(-x )>15.不等式125323-+≤+x x 的解集表示在数轴上是( ) A.B. C. D.6.如果关于x 的不等式(a+2020)x-a >2020的解集为x <1,那么a 的取值范围是( ) A .a >-2020B.a <-2020C.a >2020D.a <20207.已知关于x 、y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中-3≤a ≤1,给出下列说法:①当a=1时,方程组的解也是x+y=2-a 方程的解;②当a=-2时,x 、y 的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( ) A.①②③④B.①②③C.②④D.②③8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。
甲说:“至少12元。
”乙说“至多10元。
”丙说“至多8元.”小明说:“你们三个人都说错了。
浙教版初中数学八年级上册期中测试卷(标准难度)(含答案)
![浙教版初中数学八年级上册期中测试卷(标准难度)(含答案)](https://img.taocdn.com/s3/m/4b9e8c1242323968011ca300a6c30c225901f0da.png)
浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图,E是BC边上的一点,AB⊥BC于点B,DC⊥BC于点C,AB=BC,∠A=∠CBD,AE与BD相交于点O.有下列结论: ①AE=BD; ②AE⊥BD; ③BE=CD; ④△AOB的面积等于四边形CDOE的面积.其中正确的是( )A. ① ③B. ② ④C. ① ② ④D. ① ② ③ ④2.如图,点D,E,F分别在△ABC的三边上,E是AC的中点,AD,BE,CF相交于点G.已知BD=2DC,S△BDG=8,S△AGE=3,则△ABC的面积为( )A. 25B. 30C. 35D. 403.如图,已知AE⊥AB且AE=AB,BC⊥CD且BC=CD,按照图中所标注的数据,则图中实线所围成的阴影图形的面积S是( )A. 50B. 62C. 65D. 684.已知AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC及中线AD的取值范围分别是( )A. 4<BC<20,2<AD<10B. 4<BC<20,4<AD<20C. 2<BC<10,2<AD<10D. 2<BC<10,4<AD<205.如图,CE平分∠ACB,且CE⊥DB,∠DAB=∠DBA,又知AC=18,△CDB的周长为28,则BD的长为( )A. 7B. 8C. 9D. 106.如图,AB=AC,AD=AE,∠B=50∘,∠AEC=120∘,则∠DAC的度数等于( )A. 120∘B. 70∘C. 60∘D. 50∘7.直线l1//l2//l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图放放置,顶点A、B、C恰好分别落在三条直线上,则△ABC的面积为( )A. 254B. 252C. 12D. 258.在△ABC中,若∠A:∠B:∠C=2:3:5,则△ABC是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形9.已知a,b为实数,则解可以为−2020<x<2021的不等式组是( )A. {ax>1,bx>1B. {ax<1,bx<1C. {ax>1,bx<1D. {ax<1,bx>110.不等式组{x+9<5x+1,x>a+1的解集是x>2,则a的取值范围是( )A. a≤2B. a≥2C. a≤1D. a>111.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用量x(千瓦时)电费价格(元/千瓦时)0<x≤2000.48200<x≤4000.53x>4000.78七月是用电高峰期,李叔叔计划七月电费支出不超过200元,则李叔叔家七月最多可用电(用电量x取整数)( )A. 100千瓦时B. 396千瓦时C. 397千瓦时D. 400千瓦时12.把一些书分给几名同学,如果每人分3本,那么余6本;如果每人分5本,那么最后一人分到的书不足3本,则书的本数和同学的人数分别为( )A. 27,7B. 24,6C. 21,5D. 18,4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图,在△ABC中,∠A=52∘,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是.14.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18cm2,则EF边上的高线长_________cm.15.如图,直线a,b相交于点O,∠1=50°,点A是直线a上的一个定点,点B在直线b上运动,若以点O,A,B为顶点的三角形是等腰三角形,则∠OAB的度数是.16.五条长度均为整数的线段a1,a2,a3,a4,a5,满足a1<a2<a3<a4<a5,其中a1=1,a5=9,且这五条线段中任意三条都不能构成三角形,则a3=.三、解答题(本大题共9小题,共72分。
浙教版八年级数学上册中考试试题.docx
![浙教版八年级数学上册中考试试题.docx](https://img.taocdn.com/s3/m/b98b3ea0ccbff121dd3683b7.png)
2014学年上学期初二年级(9、12、13、15班)期中考试数学试卷(满分100分 时间90分钟)命题:刘辉亮一.选择题 (每小题3分,共24分) 1、要使函数13--=x x y 有意义,则x 应该满足( ▲ )A .1<xB .1>xC .1≤xD .1≥x2、如果三角形的两边长分别是方程01582=+-x x 的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( ▲ )A .5.5B .5C .4.5D .43、若关于x 的一元一次不等式组⎩⎨⎧>+<-202m x m x 有解,则m 的取值范围为( ▲ )A .32->m B .32≤m C .32>m D .32-≤m 4、如图,已知OP 平分AOB ∠,ο60=∠AOB ,2=CP ,CP ∥OA ,OA PD ⊥于点D ,OB PE ⊥于点E .如果点M 是OP 的中点,则DM 的长是( ▲ ) A .2 B .2 C .3 D .32(第4题) (第5题)5、如图,正比例函数1y 与反比例函数2y 的图象相交于点E (-1,2).若021>>y y ,则x 的取值范围在数轴上表示正确的是( ▲ ) A .B .C .D .6、在同一直角坐标系中,函数m mx y +=和222++-=x mx y (m 是常数,且0≠m )的图象可能是( ▲ )A .B .C .D .7、甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)014122通过计算可知两组数据的方差分别为0.22=甲S ,7.22=乙S ,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。
其中正确的有( ▲ )A .1个B . 2个C .3个D .4个8、如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,AEF ∆是等边三角形,连接AC 交EF 于G ,下列结论:①DF BE =,②ο15=∠DAF ,③AC 垂直平分EF ,④EF DF BE =+,⑤ABE CEF S S ∆∆=2.其中正确结论有( ▲ )个.A .2B .3C .4D .5(第8题)二.填空题 (每小题3分,共24分) 9、计算:2123-的结果是__▲______. 10、已知2-=x 是方程062=-+mx x 的一个根,则方程的另一个根是__▲____。
浙教版八年级上数学期中检测试卷及答案
![浙教版八年级上数学期中检测试卷及答案](https://img.taocdn.com/s3/m/bec4373426fff705cd170ace.png)
浙教版八年级上数学期中检测试卷及答案(总5页)-本页仅作为预览文档封面,使用时请删除本页-DCB A米C1.如图1A.2.如图2A.3. A. 三棱锥 B. 立方体 C. 球体 D. 四面体4.下列说法错误的是( )A.等腰三角形两腰上的中线相等B.等腰三角形顶角平分线上任一点到底边两端的距离相等C.等腰三角形的中线与高重合D.5.右图几何体的俯视图是( )6. 到三角形三边距离相等的点是三角形三条( )A. 中线的交点B. 角平分线的交点C. 高的交点D. 垂直平分线的交点7.右图是某地的长方形广场的示意图,如果小明要从A 角走到C ) A. 90米 B. 100米 C. 120米 D. 140米 8.如果等腰三角形的一个外角等于100度,那么它的顶角等于( )A. 100︒B. 80︒C. 8040︒︒或D. 8020︒︒或 9.与红砖、足球类似的几何体分别是( )A. 长方形、圆B.长方体、球C.长方形、球D. 长方体、圆 10.若等腰三角形的顶角为α,则它一腰上的高与底边的夹角等于( )A. 2α B. 902α︒+ C. 902α︒- D. 90α︒-1132456二、填空题(每小题3分,共30分)11. 两条平行线被第三条直线所截,得到的一对同位角的平分线的位置关系是___. 12. 直五棱柱的底面是____边形.13. AD 是等腰三角形ABC 底边上的高,请写出一个正确的结论:________. 14. 有两棵树,一棵树高8米,另一棵树高2米,两棵树相距8米,一只小鸟从一棵树梢飞到另一棵树梢,至少要飞_____米.15.直角三角形两条直角边的长分别为24和7,则斜边上的中线等于_____16.如图是一个立方体表面展开图,将图折叠起来,得到一个立方体,则3的对面是____(填数字)17.如果一个三角形是轴对称图形,且有一个角是60度,那么这个三角形有___条对称轴. 18. 画三视图必须遵循的法则是长对正,高平齐,_____。
浙教版八年级数学上册期中测试卷(附答案)
![浙教版八年级数学上册期中测试卷(附答案)](https://img.taocdn.com/s3/m/8ed0da1f3a3567ec102de2bd960590c69ec3d88c.png)
浙教版八年级数学期中测试卷班级: _________ 姓名: _________ 得分: _________一、仔细选一选(本题有10小题,每小题3分,共30分)1.下列命题是真命题的是()A.如果两个角不相等,那么这两个角不是对顶角B.两个互补的角一定是邻补角C.如果a2=b2.那么a = bD.如果两个角是同位角,那么这两个角一定相等2.已知等腰三角形一腰上的中线将它的周长分成6 cm和12 cm脚部分,则等腰三角形的底边长为()A.2 cmB. 10 cmC.6 cm或4 cmD.2 cm或10 cm3.下列语句不是命题的是()A.x与y的和等于0吗B.不平行的两条直线有一个交点C.两点之间线段最短D.对顶角不相等4.如图,∠ABC = ∠ACB,∠A = ∠ADB,则不可能是∠A的度数的是()A.55°B.65°C.75°D.85°5.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC= CD= BD= BE,∠A= 50°.则∠CDE的度数为()A.50°B.51°C.51.5D.52.5°6.如图所示的正方形网格中,网格线的交点称为格点.已知A.B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是 ( )A.6B.7C.8D.9第4题第5题第6题第7题7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE = 13∠BAE,∠DBF =13∠ABF,则∠ADB的度数是 ( )A.45°B.50°C.60°D.无法确定8.在△ABC中,AB = 3,AC = 4,延长BC至点D,使CD = BC,连结AD,则AD的长的取值范围( )A.1 < AD < 7B.2 < AD < 14C.2.5 < AD < 5.5D.5 < AD < 119.如图,已知AB = AC = BD,那么∠1与∠2之间的关系是 ( )A.∠1 = 2∠2B.2∠1 + ∠2 = 180°C.∠1+3∠2=180°D.3∠1 -∠2 = 180°第9题第10题第13题10.如图,△ABC和△ADE都是等腰直角三角形,∠EAD= ∠BAC= 90°,∠DAB= 45°.连结BE.DC.EC.则下列说法正确的有()①BE = DC ②AD∥BC ③EC = DC ④BE = ECA.①③B.②①C.①③④D.①②③④二、认真填一填(本题有6小题,每小题4分,共24分)11.如果一个三角形的三边之比是1:3:2.则这个三角形的形状是 _________ .12.下刚命题:①钝角的补角是锐角:②两个无理数的商仍为无理数:③相等的角是对顶角:④若x是实数,则x2+ 1 > 0;⑤一个锐角与一个钝角的和等于一个平角.是真命题的有 _________ .(用序号表示)13.如图,在△ABC中,点D是BC的中点,作射线AD.在线段AD及其延长线上分别取点E,F,连结CE.BF.添加一个条件,使得△BDF≌△CDE.你添加的条件是 _________ .(不添加辅助线)第14题第16题14.三个等边三角形的位置如图所示,若∠3 = 40°,则∠1 + ∠2 = _________ °.15.在一张长为8 cm,宽为6 cm的矩形纸片上,现要剪下一个腰长为5 cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为 _________ cm2.16.如图,D,E分别是△ABC边AB,BC上的点,AD= 2BD.BE= CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC = 6,则S1-S2的值为 _________ .三、全面答一答(本题有7小题,共66分)17.(6分)如图,在△ABC中,∠C= 90°,边AB的垂直平分线交AB,AC边分别为点D,点E,连结BE.(1)若∠A = 40°,求∠CBE的度数;(2)若AB = 10,BC = 6.求△BCE的周长.18.(8分)如图,∠BAD = ∠CAE.AB = AD,AC = AE.(1)试说明△ABC ≌△ADE:(2)若∠B = 20°,DE = 6,求∠D的度数及BC的长.19.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC= 60°.∠BCE= 40°.求∠ADB的度数.20.(10分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B = 90°,∠A= 30°;图②中,∠D= 90°,∠F= 45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D,E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F,C两点间的距离逐渐 _________ ;连结FC,∠FCE的度数逐渐 _________ ;(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE的度数之和是否为定值,请加以说明;(3)能否将△DEF移动至某位置,使F,C的连线与AB平行?若存在,请求出∠CFE的度数.21.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB = ∠ECD = 90°,点D为AB边上一点,求证:(1)△ACE ≌△BCD;(2)AD2 + DB2 = DE2.22.(12分)已知在△ABC中,∠C= 90°,沿过B的一条直线BE折叠这个三角形,使点C与AB 边上的一点D重合,如图所示.(1)要使D恰为AB的中点,还应添加一个什么条件?(请写出一个你认为正确的添加条件)(2)将(1)中的添加条件作为题目的补充条件,试说明其能使D为AB中点的理由.解:(1)添加条件: _________ ;(2)说明:23.(12分)如图,在△ABC中,∠C= Rt∠,AB= 5 cm,BC= 3 cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1 cm,设出发的时间为ts.(1)出发2s后,求△ABP的周长;(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2 cm,若P,Q两点同时出发,当P,Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC 的周长分成相等的两部分?。
浙教版八年级数学上册第3章 测试卷附答案
![浙教版八年级数学上册第3章 测试卷附答案](https://img.taocdn.com/s3/m/6e0b10e8a300a6c30d229f52.png)
第3章 测试卷一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( ) A .5+4>8B .2x -1C .2x ≤5D.1x -3x ≥02.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B.x 3>y3C .x +3>y +3D .-3x >-3y3.下列选项中的不等式,其解集是在如图所示的数轴上表示的是( )A .x +1<0B .x -1≤0C .x -1<0D .x -1>04.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( ) A .m >92 B .m <0 C .m <92D .m >05.若不等式组⎩⎨⎧x -a >2,b -2x >0的解集是-1<x <2,则(a +b )2 019=( )A .1B .-1C .2 019D .-2 0196.不等式组⎩⎨⎧x <4,x >m 无解,则m 的取值范围是( )A .m <4B .m >4C .m ≥4D .m ≤47.若关于x 的不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎨⎧2x +y =k +1,x +2y =3的解满足0<x +y <1,则k 的取值范围是( )A .-4<k <0B .-1<k <0C .-4<k <-1D .k >-49.一次智力测验,有20道选择题,评分标准:答对1题给5分,答错1题扣2分,不答题不给分也不扣分,小明有两道题未答,他最后的总分不低于60分,则小明至少答对的题数是( )A .14道B .13道C .12道D .11道10.我们定义⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,其中的运算为通常的减法和乘法,例如⎪⎪⎪⎪⎪⎪2 34 5=2×5-3×4=-2,若x 满足-2≤⎪⎪⎪⎪⎪⎪423x <2,则x 的整数值有( ) A .0个 B .1个 C .2个 D .3个 二、填空题(每题3分,共24分)11.x 与23的差的一半是正数,用不等式表示为____________.12.如图是某机器零件的设计图纸(单位:mm ),用不等式表示零件长度的合格尺寸,则合格零件长度l 的取值范围是________________.13.不等式2x +3<-1的解集为________.14.用“>”或“<”填空:若a <b <0,则-a 5________-b 5;1a ________1b ;2a -1________2b -1.15.不等式6-4x ≥3x -8的非负整数解有________个.16.某校规定期中考试成绩的40%与期末考试成绩的60%的和作为学生的学期总成绩.该校李红同学期中考试数学考了86分,她希望自己这学期数学总成绩不低于95分,她在期末考试中数学至少应考多少分?设她在期末考试中数学考x 分,可列不等式为__________________. 17.不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.18.已知实数x ,y 满足2x -3y =4,并且x ≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.解下列不等式或不等式组,并把它们的解集在数轴上表示出来. (1)5x +15>4x -13; (2)2x -13≤3x -46;(3)⎩⎨⎧x -5>1+2x ,①3x +2<4x ;② (4)⎩⎪⎨⎪⎧x -x -22≤1+4x 3,①1+3x >2(2x -1).②20.若式子5x +46的值不小于78-1-x3的值,求满足条件的x 的最小整数值.21.先阅读,再解题. 解不等式:2x +5x -3>0.解:根据两数相除,同号得正,异号得负,得 ①⎩⎨⎧2x +5>0,x -3>0或②⎩⎨⎧2x +5<0,x -3<0.解不等式组①,得x >3,解不等式组②,得x <-52. 所以原不等式的解集为x >3或x <-52.参照以上解题过程所反映的解题思想方法,试解不等式:2x -31+3x<0.22.若关于x ,y 的方程组⎩⎨⎧x +y =30-k ,3x +y =50+k的解都是非负数.(1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.23.今年某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(1)当n=500时,①根据信息填表(用含x的式子表示):树苗类型甲种树苗乙种树苗购买树苗数量(单位:棵) x购买树苗的总费用(单位:元)②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.24.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元购买设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本?(结果精确到个位)答案一、1.C 2.D 3.C4.A 【点拨】方程4x -2m +1=5x -8的解为x =9-2m .由题意得9-2m <0,则m >92. 5.A 6.C7.A 【点拨】不等式组⎩⎨⎧x <1,x >m -1的解集为m -1<x <1.又∵不等式组⎩⎨⎧x <1,x >m -1恰有两个整数解,∴-2≤m -1<-1,解得-1≤m <0.8.C 【点拨】两个方程相加得3x +3y =k +4,∴x +y =k +43,又∵0<x +y <1,∴0<k +43<1,∴-4<k <-1. 9.A10.B 【点拨】根据题意得-2≤4x -6<2,解得1≤x <2,则x 的整数值是1,共1个.故选B. 二、11.12⎝ ⎛⎭⎪⎫x -23>012.39.8 mm≤l ≤40.2 mm 13.x <-2 14.>;>;< 15.3 16.86×40%+60%x ≥95 17.018.1≤k <3 【点拨】由已知条件2x -3y =4,k =x -y 可得x =3k -4,y =2k -4.又∵x ≥-1,y <2,∴⎩⎨⎧3k -4≥-1,2k -4<2,解得⎩⎨⎧k ≥1,k <3.∴k 的取值范围是1≤k <3. 三、19.解:(1)移项,得5x -4x >-13-15,所以x >-28.不等式的解集在数轴上表示如图.(2)去分母,得2(2x -1)≤3x -4,去括号、移项,得4x -3x ≤2-4,所以x ≤-2.不等式的解集在数轴上表示如图.(3)解不等式①,得x <-6;解不等式②,得x >2.不等式①②的解集在数轴上表示如图.所以原不等式组无解.(4)解不等式①,得x ≥45;解不等式②得,x <3.故原不等式组的解集为45≤x <3.不等式组的解集在数轴上表示如图.20.解:由题意得5x +46≥78-1-x 3,解得x ≥-14,故满足条件的x 的最小整数值为0.21.解:根据两数相除,同号得正,异号得负,得①⎩⎨⎧2x -3>0,1+3x <0或②⎩⎨⎧2x -3<0,1+3x >0. 不等式组①无解,解不等式组②,得-13<x <32,所以原不等式的解集为-13<x <32. 22.解:(1)解关于x ,y 的方程组 ⎩⎨⎧x +y =30-k ,3x +y =50+k ,得⎩⎨⎧x =k +10,y =20-2k , ∴⎩⎨⎧k +10≥0,20-2k ≥0,解得-10≤k ≤10. 故k 的取值范围是-10≤k ≤10.(2)M =3x +4y =3(k +10)+4(20-2k )=110-5k ,∴k =110-M 5,∴-10≤110-M 5≤10,解得60≤M ≤160,即M 的取值范围是60≤M ≤160.23.解:(1)①500-x ;50x ;80(500-x ) ②50x +80(500-x )=25 600, 解得x =480,500-x =20.答:甲种树苗购买了480棵,乙种树苗购买了20棵.(2)依题意,得90%x +95%(n -x )≥92%×n ,解得x ≤35n .又50x +80(n -x )=26 000,解得x =8n -2 6003,∴8n -2 6003≤35n ,∴n ≤4191131.∵n 为整数,∴n 的最大值为418.24.解:(1)设年降水量为x 万m 3,每人年平均用水量为y m 3.由题意, 得⎩⎨⎧12 000+20x =16×20y ,12 000+15x =(16+4)×15y ,解得⎩⎨⎧x =200,y =50.答:年降水量为200万m 3,每人年平均用水量为50 m 3. (2)设该镇居民人均每年用水量为z m 3才能实现目标. 由题意,得12 000+25×200=(16+4)×25z ,解得z =34, 50-34=16(m 3).答:该镇居民人均每年需节约16 m 3水才能实现目标.(3)设该企业n 年后能收回成本.由题意,得[3.2×5 000×70%-(1.5-0.3)×5 000]×300n 10 000-40n ≥1 000,解得n ≥81829. 答:该企业至少9年后能收回成本.解题归纳:本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,建立等量关系与不等关系.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分) 1.4的算术平方根是( )A .±2B. 2C .±2D .22.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A.x+1 B.1x+1C.x-1 D.xx-18.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a +1aB.a a -1C.a a +1D.a -1a14.以下命题的逆命题为真命题的是( )A .对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
【浙教版】八年级数学上期中第一次模拟试题(含答案)(3)
![【浙教版】八年级数学上期中第一次模拟试题(含答案)(3)](https://img.taocdn.com/s3/m/b71692ad2b160b4e777fcf2c.png)
一、选择题1.如图,在平面直角坐标系上有点()1,0A ,点A 第一次跳至点()11,1A -,第二次向右跳动3个单位至点()22,1A ,第三次跳至点()32,2A -,第四次向右跳动5个单位至点()43,2A , ...依此规律跳动下去,点A 第100次跳至点100A 的坐标是( )A .()50,50B .()51,50C .()50,51D .()49,502.在平面直角坐标系中,若m 为实数,则点()21, 2m --在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.如图是小刚画的一张脸,如果用(0,2)表示A 点所在的眼睛,用(2,2)表示B 点所在的眼睛,那么C 点表示的嘴的位置可以表示成( )A .(1,0)B .(-1,0)C .( -1,1)D .(1,-1) 4.点M 在x 轴上方,y 轴左侧,距离x 轴1个单位长度,距离y 轴4个单位长度,则点M 的坐标为( )A .(1,4)B .(﹣1,﹣4)C .(4,﹣1)D .(﹣4,1) 5.估算65 ) A .2 B .3 C .4 D .56.下列各式中,正确的是( ) A 16B .16C 3273-=-D 2(4)4-=- 7.一个正方体的水晶砖,体积为380cm ,它的棱长大约在( )A .45cm cm -之间B .67cm cm -之间C .78cm cm -之间D .89cm cm -之间 8.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( )A .9B .3C .1D .819.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是2,5,1,2.则最大的正方形E 的面积是( )A .10B .8C .6D .15 10.若ABC 的三边长a 、b 、c 满足222681050a b c a b c ++=++-,那么ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形11.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .712.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h =二、填空题13.为了培养学生社会主义核心价值观,张老师带领学生去 参观天安门广场的升旗仪式.如图是张老师利用平面直角坐标系画出的天安门附近的部分建筑分布图,若这个坐标系分别以正东、正北方向为 x 轴、 y 轴的正方向,表示金水桥的点的坐标为(1,﹣2),表示本仁殿的点的坐标为(3,﹣1),则表示乾清门的点的坐标是______.14.在平面直角坐标系中,线段AB 平行于x 轴,且AB=4,若点A 坐标为(-1,2),点B 的坐标为(a ,b ),则a+b=_______15.如图,已知圆柱体底面圆的半径为a π,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)16.请你写出一个比3大且比4小的无理数,该无理数可以是:____.17.若二次根式26a +与33-是同类二次根式,则整数a 可以等于___________.(写出一个即可)18.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是_____寸.19.如图,长方体的长5BE cm =,宽3AB cm =,高6BC cm =,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是__________cm .20.有两根木棒,分别长6cm 、5cm ,要再在7cm 的木棒上取一段,用这三根木棒为边做成直角三角形,则第三根木棒要取的长度是__________.三、解答题21.已知:如图所示.(1)作出△ABC 关于y 轴对称的A B C '''∆并写出A B C '''∆三个顶点的坐标;(2)在x 轴上画出点P ,使PA+PC 最小.22.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A 到B 记为:A→B (+1,+4),从D 到C 记为:D→C (﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C (______,_____),B→C (______,_____),D→_____(﹣4,﹣2); (2)若这只甲虫从A 处去P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D ,请计算该甲虫走过的路程.23.计算:(10316272021-;(2)求x 值:2425x =.24.(1)计算:271223+-; (2)计算:()()6565+-. 25.已知:如图,一块R t △ABC 的绿地,量得两直角边AC =8cm ,BC =6cm.现在要将这块绿地扩充成等腰△ABD ,且扩充部分(△ADC )是以8cm 为直角边长的直角三角形,求扩充等腰△ABD 的周长.(1)在图1中,当AB =AD =10cm 时,△ABD 的周长为 .(2)在图2中,当BA =BD =10cm 时,△ABD 的周长为 .(3)在图3中,当DA =DB 时,求△ABD 的周长.26.△ABC 三边长分别为,AB =25,BC =10,AC =34.(1)请在方格内画出△ABC ,使它的顶点都在格点上;(2)求△ABC 的面积;(3)求最短边上的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),故第100次跳动至点的坐标是(51,50).故选:B.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.2.B解析:B【分析】根据平方数非负数判断出纵坐标为负数,再根据各象限内点的坐标的特点解答.【详解】∵m2≥0,∴−m2−1<0,∴点P(−m2−1,2)在第二象限.故选:B.【点睛】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−)需熟练掌握.3.A解析:A【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出C的位置对应的点的坐标.【详解】解:如图,C的位置可以表示为(1,0).故选:A.【点睛】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.4.D解析:D【分析】由点M在x轴的上方,在y轴左侧,判断点M在第二象限,符号为(-,+),再根据点M 到x轴的距离决定纵坐标,到y轴的距离决定横坐标,求M点的坐标.【详解】解:∵点M在x轴上方,y轴左侧,∴点M的纵坐标大于0,横坐标小于0,点M在第二象限;∵点M距离x轴1个单位长度,距离y轴4个单位长度,∴点的横坐标是-4,纵坐标是1,故点M的坐标为(-4,1).故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.B解析:B【分析】-1,最后两边都加上6,即可求出它的整数部分.【详解】解:253<<,∴-<-,32∴<<,364∴63和4之间,它的整数部分是3,故选:B.【点睛】本题考查了估算无理数的大小,主要考查学生的计算能力,属于基础题,能够确定带根号无理数的范围是解题的关键.6.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4=,此项错误;B、4=±,此项错误;C 3=-,此项正确;D 4==,此项错误;故选:C .【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.7.A解析:A【分析】【详解】解:∵正方体的水晶砖,体积为380cm ,∴3, ∵<< ∴45<<,故选:A .【点睛】本题考查了立方根的估算,找到两个连续整数的立方,一个大于80,一个小于80是解题关键.8.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 9.A解析:A【分析】设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,则由勾股定理可得222+=a b c 及正方形面积公式可得正方形F 的面积为7,同理可求解问题.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,由勾股定理可得222+=a b c ,∴由正方形的面积计算公式可得正方形F 的面积为2+5=7,同理可得正方形H 的面积为1+2=3,正方形E 的面积为7+3=10;故选A .【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理是解题的关键.10.B解析:B【分析】先用完全平方公式进行因式分解求出a 、b 、c 的值,再确定三角形的形状即可.【详解】解:222681050a b c a b c ++=++-,移项得,2226810500a b c a b c ++---+=,2226981610250a a b b c c +++++--=-,222(3)4)(0(5)a b c -+-+-=,30,40,50a b c -=-=-=,3,4,5a b c ===,2229,16,25a b c ===,222+=a b c , ABC 是直角三角形,故选:B .【点睛】本题考查了运用完全平方公式因式分解,勾股定理逆定理,非负数的性质,解题关键是通过等式的变形,恰当的拆数配成完全平方,再根据非负数的性质求边长.11.B解析:B【分析】由勾股定理求出AC =10,求出BE =4,设DE =x ,则BD =8−x ,得出(8−x )2+42=x 2,解方程求出x 即可得解.【详解】∵AB =6,BC =8,∠ABC =90°,∴10=,∵将△ADC 沿直线AD 翻折得△ADE ,∴AC =AE =10,DC =DE ,∴BE =AE−AB =10−6=4,在Rt △BDE 中,设DE =x ,则BD =8−x ,∵BD 2+BE 2=DE 2,∴(8−x )2+42=x 2,解得:x =5,∴DE =5.故选B .【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.12.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长,高为12cm ,由勾股定理可得:杯里面管长=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤故选:B .【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.二、填空题13.(13)【详解】分析:根据金水桥的点的坐标(1-2)确定坐标原点的位置然后建立坐标系进而可确定乾清门的点的坐标位置详解:如图所示:乾清门的点的坐标是(13)故答案为(13)点睛:此题主要考查了坐标确解析:(1,3)【详解】分析:根据金水桥的点的坐标(1,-2)确定坐标原点的位置,然后建立坐标系,进而可确定乾清门的点的坐标位置.详解:如图所示:乾清门的点的坐标是(1,3),故答案为(1,3).点睛:此题主要考查了坐标确定位置,关键是正确建立坐标系.14.5或-3【分析】根据题意求出ab 的值计算即可;【详解】∵AB 平行于x 轴且AB=4点A 坐标为(-12)∴或∴或;故答案是5或-3【点睛】本题主要考查了坐标与图形的性质明确平行于x 轴的直线上的纵坐标相等解析:5或-3【分析】根据题意求出a ,b 的值计算即可;【详解】∵AB 平行于x 轴,且AB=4,点A 坐标为(-1,2),∴2b =,145a =--=-或413a =-=,∴()253a b +=+-=-或235a b +=+=;故答案是5或-3.【点睛】本题主要考查了坐标与图形的性质,明确平行于x 轴的直线上的纵坐标相等是解题的关键.15.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB= 2+4a【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求,在Rt △ABC 中,AB=π•a π=a ,BC=2,则:2222=+=4AC AB BC a +,所以2+4a 2+4a 2+4a .【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图. 16.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:13【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x 916x <<∴x=10或11或12或13或14或15, 1313【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.17.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二 解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.【详解】解:∵26a +与33-∴2623a += 2612a +=∴2612a +=,解得3a ,故答案为:3(答案不唯一).【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.18.101【分析】取AB的中点O过D作DE⊥AB于E根据勾股定理解答即可得到结论【详解】解:取AB的中点O过D作DE⊥AB于E如图2所示:由题意得:OA=OB=AD=BC设OA=OB=AD=BC=r寸则解析:101【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【详解】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=12CD=1寸,∴AE=(r﹣1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故答案为:101【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.19.10【分析】将长方体展开可分三种情况求出其值最小者即为最短路程【详解】如图①:AD=;如图②:AD=;如图③:AD=;∴AD的最小值为故答案为:【点睛】本题依据两点之间线段最短考查了长方体的侧面展开解析:10【分析】将长方体展开,可分三种情况,求出其值最小者,即为最短路程.【详解】如图①:AD=22+=;311130如图②:22+=;8610010如图③:22+=95106∴AD的最小值为10.故答案为:10.【点睛】本题依据“两点之间,线段最短”,考查了长方体的侧面展开图,解答时利用勾股定理进行分类讨论是解题的关键.20.【分析】分2种情况:①是直角边;②是斜边;根据勾股定理求出第三根木棒的长即可求解【详解】解:①是直角边第三根木棒要取的长度是(舍去);②是斜边第三根木棒要取的长度是故答案为:【点睛】考查了勾股定理的11【分析】分2种情况:①6cm是直角边;②6cm是斜边;根据勾股定理求出第三根木棒的长即可求解.【详解】解:①6cm是直角边,22+>(舍去);6561cm7cm②6cm是斜边,226511cm-.11cm.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.三、解答题21.(1)如图见解析,A'(-1,2),B'(-3,1),C'(-4,3);(2)点P如图所示.见解析.【分析】(1)写出点A、B、C关于y轴对称的对应点A′、B′、C′的坐标,然后描点即可;(2)作C点关于x轴的对称点C″,连接AC″交x轴于点P,则PC″=PC,利用两点之间线段最短可判断此时PA+PC最小.【详解】解:(1)如图,△A′B′C′为所作,△A′B′C′三个顶点的坐标分别为(-1,2),(-3,1),(-4,3);(2)如图,点P为所作.【点睛】本题考查了作图-轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.(1) (3,4);(2,0);A;(2)答案见解析;(3)10.【分析】(1)根据规定及实例可知A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.【详解】(1)规定:向上向右走为正,向下向左走为负∴A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)P点位置如图所示.(3)据已知条件可知:A →B 表示为:(1,4),B →C 记为(2,0)C →D 记为(1,﹣2);该甲虫走过的路线长为1+4+2+1+2=10.故答案为(3,4);(2,0);A ;【点睛】本题主要考查了正数与负数,利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.23.(1)0;(2)52x =±. 【分析】(1)先求算术平方根、立方根、0指数,再计算;(2)方程两边除以4,再开方即可.【详解】解:(10316272021-=4-3-1=0(2)2425x =,系数化为1得,2254x =, 开方得,52x =±. 【点睛】本题考查了算术平方根、立方根和0指数,解题关键是熟练的运用相关知识求值,并准确计算,注意:一个正数的平方根有两个.24.(1)52;(2)1【分析】(1)将原式化为最简二次根式,在根据二次根式的加减法则运算即可(2)按平方差公式展开,利用二次根式的性质化简,再进行计算即可【详解】(1271223+3323235=(2)22-=65=-1=【点睛】本题考查了二次根式的混合计算,解题关键是熟练掌握运算法则,准确计算.25.(1)32m;(2)(m;(3)80 3m【分析】(1)利用勾股定理得出DC的长,进而求出△ABD的周长;(2)利用勾股定理得出AD的长,进而求出△ABD的周长;(3)首先利用勾股定理得出DC、AB的长,进而求出△ABD的周长.【详解】:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴6()DC m==则△ABD的周长为:10+10+6+6=32(m).故答案为32m;(2)如图2,当BA=BD=10m时,则DC=BD-BC=10-6=4(m),故AD=则△ABD的周长为:(m;故答案为(m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=7 3∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2780610() 33m ⎛⎫++=⎪⎝⎭【点睛】此题主要考查了勾股定理的应用,根据题意熟练应用勾股定理是解题关键.26.(1)见解析;(2)7;(3)710. 【分析】 (1)根据AB =22252024==+, BC =221031=+,,AC =223435=+,利用勾股定理不难在网格上画出△ABC ;(2)如图,根据S △ABC =ADB BEC AFC ADEF S S S S ---⊿⊿⊿矩形不难得到答案; (3)对各边作出比较,可以找出最短边,然后根据三角形面积公式可求得最短边上的高.【详解】解:(1)如图所示:△ABC 即为所求;(2)如图,S △ABC =5×4﹣122⨯×4﹣12⨯1×3﹣12⨯3×5=7,∴△ABC 的面积是7;(3)∵10<534∴BC 是最短边,作AH ⊥BC ,交CB 延长线于点H ,∵S △ABC =12BC •AH , ∴AH =2ABC S BC =10=105. 710. 【点睛】本题考查三角形面积的综合问题,熟练掌握三角形面积的各种求解方法是解题关键.。
浙教版数学八年级上册期中考试试题及答案
![浙教版数学八年级上册期中考试试题及答案](https://img.taocdn.com/s3/m/2def7e129b89680202d8256e.png)
浙教版数学八年级上册期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D . 2.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm 3.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对几道题,总分才不会低于60分,则小明至少答对的题数是( )A .14道B .13道C .12道D .ll 道4.把不等式组13264x x +≥⎧⎨--⎩>﹣中每个不等式的解集在同一条数轴上表示出来,正确的为( ) A . B . C . D . 5.如图,在ABC 中,55A ︒∠=,45B ︒∠=,那么ACD ∠的度数为( )A .110B .100C .55D .456.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC 是特异三角形,∠A=30°,∠B 为钝角,则符合条件的∠B 有( )个. A .1 B .2 C .3 D .47.如图,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积是8,则阴影部分的面积为( )A .2B .4C .6D .88.用反证法证明a b >时,应假设( )A .a b <B .a b ≤C .a b ≥D .a b9.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为( )A .1B .1.5C .D .410.如图,将矩形ABCD 沿EM 折叠,使顶点B 恰好落在CD 边的中点N 上.若AB=6,AD=9,则五边形ABMND 的周长为( )A .28B .26C .25D .22二、填空题 11.在数学课上,老师要求同学们利用一副三角板画出两条平行线.小明的画法如下:步骤一:运用三角板一边任意画一条直线l ;步骤二:按如图方式摆放三角板;步骤三:沿三角板的直角边画出直线AB 、CD ;这样,得到AB ∥CD .小明这样画图的依据是_____.12.x 的35与12的差不小于6,用不等式表示为_____. 13.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.14.如图,在△ABC 中,AB=AC ,以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD ,若∠A=32°,则∠CDB 的大小为_____度.15.如图,四个全等的直角三角形围成一个大正方形ABCD ,中间阴影部分是一个小正方形EFGH ,这样就组成一个“赵爽弦图”.若AB=5,AE=4,则正方形EFGH 的面积为_____.16.如图,将等腰直角三角形ABC (∠B=90°)沿EF 折叠,使点A 落在BC 边的中点A 1处,BC=8,那么线段AE 的长度为__.三、解答题17.解下列不等式(组):(1)2(x+3)>4x-(x-3) (2)()x 2x 52x 3x 28<⎧-⎪⎨⎪--≤⎩18.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).19.已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.20.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.21.如图,在等腰三角形△ABC中,AB=AC,BD平分∠ABC,在BC的延长线上取一点E,使CE=CD,连接DE,求证:BD=DE.22.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.23.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)参考答案1.D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2.B【详解】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.3.A【分析】设小明答对的题数是x道,根据“总分不会低于60分”列出不等式5x﹣2(20﹣2﹣x)≥60,解不等式求得x的取值范围,根据x为整数,结合题意即可求解.【详解】设小明答对的题数是x道,5x﹣2(20﹣2﹣x)≥60,x≥1357,∵x为整数,∴x的最小整数为14,故选A.【点睛】本题了一元一次不等式的应用,关键是设出相应的未知数,以得分做为不等量关系列不等式求解.4.B【详解】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.5.B【分析】根据三角形的外角的性质计算即可.【详解】由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选B.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6.B【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.7.B【分析】根据三角形的中线将三角形分成面积相等的两部分的知识进行解答即可.【详解】∵AD是△ABC的中线,∴S△ABD=S△ACD=12S△ABC,∵点E是AD的中点,∴S△ABE=S△ADE=12S△ABD,S△CDE=S△CAE=12S△ACD,∵S△ABE=14S△ABC,S△CDE=14S△ABC,∴S△ABE+S△CDE=12S△ABC=12×8=4;∴阴影部分的面积为4,故选B.【点睛】本题主要考查了三角形面积及三角形面积的等积变换,三角形的中线将三角形分成面积相等的两部分,此题难度不大.8.B【分析】熟记反证法的步骤,直接填空即可.要注意的是a>b的反面有多种情况,需一一否定.【详解】用反证法证明“a>b”时,应先假设a≤b.故选B.【点睛】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.A【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=5,BC=3,即可推出BD的长度.【详解】延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=5,BC=3,∴CE=3,∴AE=AC-EC=5-3=2,∴BE=2,∴BD=1.故选A.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.10.A【分析】如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.【详解】如图,由题意得:BM=MN(设为λ),CN=DN=3;∵四边形ABCD为矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五边形ABMND的周长=6+5+5+3+9=28,故选A.【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.11.内错角相等,两直线平行.【解析】【分析】由作图知∠ABC=∠BCD=90°,根据“内错角相等,两直线平行”即可判定AB∥CD.【详解】由作图知∠ABC=∠BCD=90°,所以AB∥CD,所以小明这样画图的依据是内错角相等,两直线平行,故答案为:内错角相等,两直线平行.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握平行线的判定.12.35x﹣12≥6.【详解】根据题意得35x﹣12≥6.13.10【解析】(36-20)÷3=2(cm).设放入x小球有水溢出,由题意得2x+30>49,∴x>9.5,∴放入10小球有水溢出.14.37【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据∠ACB=37°.等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=12【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∠ACB=37°,∴∠CDB=∠CBD=12故答案为37.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.15.1【解析】【分析】利用勾股定理求得直角边的较短边,进一步根据正方形EFGH的面积=大正方形面积-4个直角三角形面积即可求得正方形EFGH的面积.【详解】,正方形EFGH的面积=5×5-4×3÷2×4=25-24=1.故答案为:1.【点睛】此题考查勾股定理的运用,掌握勾股定理的推导过程是解决问题的关键.16.5.【详解】分析:由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8-x,且A1B=4,在Rt△A1BE 中,利用勾股定理可列方程,则可求得答案.详解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A 1为BC 的中点,∴A 1B=4,设AE=A 1E=x ,则BE=8-x ,在Rt △A 1BE 中,由勾股定理可得42+(8-x )2=x 2,解得x=5,故答案为5.点睛:本题主要考查折叠的性质,利用折叠的性质得到AE=A 1E 是解题的关键,注意勾股定理的应用.17.(1) x <3;(2)﹣1≤x <2.【解析】试题分析:()1按照解不等式的步骤解不等式即可.()2分别解不等式,找出解集的公共部分即可.试题解析:(1)去括号,得:2643x x x +>-+,移项,得:2436x x x ,-+>-合并同类项,得:3x ,->-系数化为1,得:3x ;<(2)()252328xx x x ①②⎧<-⎪⎨⎪--≤⎩解不等式①,得:2x ,<解不等式②,得:1x ≥-,则不等式组的解集为12x .-≤<18.(1)证明见解析;(2)证明见解析;(3)②.【分析】(1)欲证明AE=CD ,只要证明△ABE ≌△CBD ;(2)由△ABE ≌△CBD ,推出BAE=∠BCD ,由∠NMC=180°-∠BCD-∠CNM ,∠ABC=180°-∠BAE-∠ANB ,又∠CNM=∠ABC ,∠ABC=90°,可得∠NMC=90°; (3)结论:②;作BK ⊥AE 于K ,BJ ⊥CD 于J .理由角平分线的判定定理证明即可.【详解】(1)证明:∵∠ABC=∠DBE ,∴∠ABC+∠CBE=∠DBE+∠CBE ,即∠ABE=∠CBD ,在△ABE 和△CBD 中,AB CBABE CBD BE BD⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CBD ,∴AE=CD .(2)∵△ABE ≌△CBD ,∴∠BAE=∠BCD ,∵∠NMC=180°-∠BCD-∠CNM ,∠ABC=180°-∠BAE-∠ANB ,又∠CNM=∠ABC ,∵∠ABC=90°,∴∠NMC=90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .∵△ABE ≌△CBD ,∴AE=CD ,S △ABE =S △CDB , ∴12•AE•BK=12•CD•BJ ,∴BK=BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△ABM ≌△DBM ,则AB=BD ,显然可不能,故①错误.故答案为②.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.19.等腰三角形各边的长为10cm ,10cm ,1cm .【解析】试题分析:分腰长与腰长的一半是6cm 和15cm 两种情况,求出腰长,再求出底边,然后利用三角形的任意两边之和大于第三边进行判断即可.试题解析:如图所示,在ABC ∆中,AB AC =,AD BD =,设BD x =,BC y =,由题意有6215x y x x +=⎧⎨+=⎩ , 解得51x y =⎧⎨=⎩, 或 1526x y x x +=⎧⎨+=⎩, 解得213x y =⎧⎨=⎩, ∵三角形任意两边之和大于第三边.∴ 5x = , 1y = ,即这个三角形的腰为10cm ,底为1cm .20.(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个;方案①最省钱【详解】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过800元,列式求得解集后得到相应整数解,从而求解.试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得:2319035x y x y +=⎧⎨=⎩解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m +30(20-m )≤800.解得:m ≤10.又∵m ≥8,∴8≤m ≤10.∵篮球的个数必须为整数,∴m 只能取8、9、10.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球10个,排球10个,费用为800元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.21.证明见解析.【分析】求出∠ABC=∠ACB ,求出∠DBC=12∠ABC ,根据等腰三角形性质和三角形外角性质求出∠E=12∠ACB ,推出∠E=∠DBC 即可. 【详解】∵AB=AC∴∠ABC=∠ACB ,∵BD 平分∠ABC ,∴∠DBC=12∠ABC , ∵CD=CE ,∴∠E=∠CDE ,∵∠ACB=∠E+∠CDE ,∴∠E=12∠ACB , ∴∠E=∠DBE ,∴BD=DE .【点睛】本题考查了三角形内角和定理,三角形外角性质和等腰三角形的性质和判定的应用,主要考查学生的推理能力和计算能力.22.(1)7米;(2)15m ;(3)玛丽在荡绳索过程中离地面的最低点的高度MN 为2米.【分析】(1)作差.(2) 作AE ⊥OM ,BF ⊥OM,证明在△AOE 和△OBF 相似,可以计算出OE +OF 长度,最后算出OM 长度.(3)利用勾股定理求出半径长度,作差求MN 长度.【详解】(1)10-3=7(米).(2)作AE ⊥OM 于E,,BF ⊥OM 与F ,∵∠AOE +∠BOF =∠BOF +∠OBF =90°,∴∠AOE =∠OBF ,在△AOE 和△OBF 中,OEA BFO AOE OBF OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OBF (AAS ),∴OE=BF ,AE=OF ,即OE+OF=AE+BF=CD =17(m )∵EF=EM ﹣FM=AC ﹣BD =10﹣3=7(m ),∴2EO+EF =17,则2EO =10,所以OE =5m ,OF =12m ,所以OM=OF+FM =15m.(3)由勾股定理得ON=OA =13,所以MN =15﹣13=2(m ).答:玛丽在荡绳索过程中离地面的最低点的高度MN为2米.【点睛】本题考查全等三角形的判定和性质,作出正确的辅助线构造全等三角形的关键.23.(1)6;(2)【分析】(1)由旋转得到△A′BC,有△A′BA是等边三角形,当点A′A、C三点共线时,A′C=AA′+AC,最大即可;(2)由旋转得到结论PA+PB+PC=P1A1+P1B+PC,只有,A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,根据勾股定理,即可.【详解】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A1D=2,∴在Rt△A1DC中,A1∴AP+BP+CP的最小值是:.【点睛】此题是几何变换综合题,主要考查了图形的旋转的性质,画出图形是解本题的关键,也是难点.。
浙教版初中数学八年级上册期中测试卷(较易)(含答案)
![浙教版初中数学八年级上册期中测试卷(较易)(含答案)](https://img.taocdn.com/s3/m/598d0c2a78563c1ec5da50e2524de518964bd306.png)
浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分)1.观察下列作图痕迹,所作CD为△ABC的边AB上的中线是( )A. B.C. D.2.如图,N,C,A三点在同一条直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,△MNC≌△ABC,则∠BCM:∠BCN等于( )A. 1:2B. 1:3C. 2:3D. 1:43.如图,若AB//EF,CE=CA,∠E=65°,则∠CAB的度数为( )A. 25°B. 50°C. 60°D. 65°4.一个直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线的长是( )A. 5B. 6C. 6.5D. 135.不等式3(1−x)>2−4x的解在数轴上表示正确的是( )A. B.C. D.>x的最大整数解为( )6.不等式4−x3A. x=−1B. x=0C. x=1D. x=27.如图,用尺规作图作“一个角等于已知角”的原理是:因为△D′O′C′≌△DOC,所以∠D′O′C′=∠DOC.由这种作图方法得到的△D′O′C′和△DOC全等的依据是( )A. SSSB. SASC. ASAD. AAS8.如图,在△ABC中,∠ABC与∠ACB的角平分线交于点O.若∠A=α,则∠BOC的度数是.( )A. 180∘−12αB. 90∘+12αC. 90∘−12αD. 12α9.下列命题中,正确的是( )A. 等腰三角形顶角的外角平分线与底边平行B. 等腰三角形的高线、中线、角平分线互相重合C. 顶角相等的两个等腰三角形全等D. 等腰三角形的一边不可以是另一边的2倍10.如图,在△ABC中,∠ACB=90°,∠B=30°,点D为AB的中点,若AC=2,则CD的长为( )A. 2B. 3C. 4D. 511.某不等式的解集在数轴上表示如下,该不等式的解是( )A. x≤−2B. x>−2C. x<−2D. x≥−212.若0<a<1,则下列不等式正确的是( )A. a<1<1a B. a<1a<1 C. 1a<a<1 D. 1<1a<a第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 关于x 、y 的方程组{x −y =a +13x +2y =a 的解满足x +y <1,则a 的取值范围是______.14. 如图,已知∠OAB =∠OBC =∠OCD =90°,AB =BC =CD =1,OA =2,则OD =________.15. 已知:一等腰三角形的两边长x 、y 满足方程组{2x −y =33x +2y =8,则此等腰三角形的周长为 .16. 如图,在△ABC 中,∠BAC =80°,∠B =40°,AD 是∠BAC 的角平分线,则∠ADB =________°.三、解答题(本大题共9小题,共72分)17. 如图,在△ABC 和△DAE 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连结BD ,CE ,求证:△ABD ≌△AEC .18. 一个零件的形状如图,按规定,若∠A 是90°,∠B 和∠C 分别是32°和21°,则零件合格,检验工人量得∠BDC 是149°,就判定这个零件不合格.请运用三角形的有关知识说明零件不合格的理由.19.如图,D为等腰△ABC底边BC上的一点,AD=DC,∠B=30°.试判断△ABD是不是直角三角形,并说明理由.20.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.21.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这倍,购进数量比第一次少了30支.次每支的进价是第一次进价的54(1)第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,则每支售价至少是多少元?22.已知不等式6x−1>2(x+m)−3+1<x+3的解集相同,求m的值;(1)若它的解集与不等式x−52+1<x+3的解,求m的取值范围.(2)若它的解都是不等式x−5223. 已知关于x ,y 的方程组{x −y =−3x +y =1−3a 的解满足3x +y ≥2,求a 的取值范围. 24. 如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.25. 如图,在△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过点C 作CF ⊥AE ,垂足为F ,过点B 作BD ⊥BC ,交CF 的延长线于点D .(1)求证:AE =CD .(2)若AC =12 cm ,求BD 的长.答案和解析1.【答案】B【解析】解:观察作图痕迹可知:A.CD⊥AB,但不平分,所以A选项不符合题意;B.CD为△ABC的边AB上的中线,所以B选项符合题意;C.CD是∠ACB的平分线,所以C选项不符合题意;D.不符合基本作图过程,所以D选项不符合题意.故选:B.根据题意,CD为△ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,连接CD即可判断.本题考查了作图−基本作图、三角形的角平分线、中线和高、线段垂直平分线的性质,解决本题的关键是掌握三角形的中线.2.【答案】D【解析】【分析】本题考查了全等三角形的性质;利用三角形的三角的比,求得三个角的大小是很重要的方法,要注意掌握.利用三角形的三角的比,求出三角的度数,再进一步根据各角之间的关系求出∠BCM、∠BCN的度数可求出结果.【解答】解:在△ABC中,∠A:∠ABC:∠ACB=3:5:10,设∠A=3x°,则∠ABC=5x°,∠ACB=10x°,∵∠A+∠ABC+∠ACB=180°,∴3x+5x+10x=180,解得x=10,则∠A=30°,∠ABC=50°,∠ACB=100°,∴∠BCN=180°−100°=80°,又∵△MNC≌△ABC,∴∠ACB=∠MCN=100°,∴∠BCM=∠NCM−∠BCN=100°−80°=20°,∴∠BCM:∠BCN=20°:80°=1:4.故选D.3.【答案】B【解析】【分析】本题是等腰三角形的性质:等边对等角,与平行线的性质的综合应用.CE=CA即△ACE 是等腰三角形.∠E是底角,根据等腰三角形的两底角相等得到∠E=∠EAC=65°,由平行线的性质得到:∠EAB=115°,从而求出∠CAB的度数.【解答】解:∵CE=CA,∴∠E=∠EAC=65°,又∵AB//EF,∴∠EAB=180°−∠E=115°,∴∠CAB=∠EAB−∠EAC=50°.故选B.4.【答案】C【解析】【分析】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.【解答】解:如图,在△ABC中,∠C=90°,AC=12,BC=5,则根据勾股定理知,AB=√122+52=13,∵CD为斜边AB上的中线,AB=6.5.∴CD=12故选C.5.【答案】A【解析】解:去括号,得:3−3x>2−4x,移项,得:−3x+4x>2−3,合并,得:x>−1,在数轴上表示为,故选:A.根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案.本题主要考查解一元一次不等式以及在数轴上表示不等式的解集,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变以及在数轴上表示注意空心点和实心点.6.【答案】B>x,【解析】解:4−x34−x>3x,−x−3x>−4,x<1,>x的最大整数解是0.∴不等式4−x3故选:B.根据不等式的解法求出不等式的解集,然后再找出最大整数解即可.本题主要考查了一元一次不等式的解法,在解题时要注意解不等式的步骤和符号.7.【答案】A【解析】解:由作法得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△D′O′C′≌△DOC.故选:A.根据作图得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法求解.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质.8.【答案】B【解析】【分析】本题考查了三角形的内角和定理、角平分线的定义等知识.根据BO、CO分别是∠ABC与∠ACB的角平分线,用α的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数.【解答】解:∵∠A=α,∴∠ABC+∠ACB=180°−α,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=12(180°−α)=90°−12α,∴∠BOC=180°−(∠OBC+∠OCB)=90°+1 2α故选B.9.【答案】A【解析】【分析】本题主要考查对于等腰三角形的性质定理的记忆与理解.从各选项提供的已知条件,根据等腰三角形的性质,全等三角形的判定对各个命题进行分析,从而得到答案.【解答】解:A.因为等腰三角形顶角的外角等于两底角的和,作顶角的外角的平分线得到的角就等于等腰三角形的底角,根据内错角相等,两直线平行就可以得到:等腰三角形顶角的外角平分线与底边平行,所以此命题正确;B.应该为等腰三角形底边上的高线,中线,角平分线重合,所以原命题不正确;C.因为顶角相等的两个等腰三角形对应边不一定相等,因而不一定全等,所以原命题不正确;D.等腰三角形的腰可以为底边的两倍,所以原命题不正确;故选A.10.【答案】A【解析】解:∵AC=2,∠B=30°,∠ACB=90°,∴AB=2AC=4,∵点D为AB的中点,AB=2,∴CD=12故选:A.利用直角三角形的性质得到AB长,然后再利用直角三角形斜边上的中线的性质可得答案.此题主要考查了直角三角形斜边上的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.11.【答案】D【解析】【分析】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.根据数轴上不等式的解集得出x≥−2即可.【解答】解:根据数轴上不等式的解集得:x≥−2,故选D.12.【答案】A【解析】【分析】.即可判断出.本题考查了不等式的基本性质,属于基础题.由0<a<1,可得a<1<1a【解答】解:∵0<a<1,∴1<1 aa<1<1 a故选A.13.【答案】a<6【解析】解:{x−y=a+1 ①3x+2y=a ②,①×2+②得:5x=3a+2,即x=3a+25,把x=3a+25代入②得:y=−2a+35,根据题意得:3a+25−2a+35<1,解得:a<6,故答案为a<6.把a看做已知数表示出方程组的解,根据题意不等式求出a的范围即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.【答案】√7【解析】【分析】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.在直角三角形AOB中,由OA与AB的长,利用勾股定理求出OB的长,在直角三角形BOC中,由OB与BC的长,利用勾股定理求出OC的长,在直角三角形OCD中,由OC与CD的长,利用勾股定理即可求出OD 的长.【解答】解:∵∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,∴在Rt△AOB中,根据勾股定理得:OB=√OA2+AB2=√4+1=√5,在Rt△BOC中,根据勾股定理得:OC=√BC2+OB2=√5+1=√6,在Rt△COD中,根据勾股定理得:OD=√OC2+CD2=√6+1=√7.故答案为√7.15.【答案】5【解析】解:解方程组{2x −y =33x +2y =8得{x =2y =1.所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以这个等腰三角形的周长为5.故答案为:5.先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案. 本题考查了三角形三边关系及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题.16.【答案】100【解析】【分析】本题考查了角平分线定义和性质、三角形外角性质以及三角形内角和,注意:三角形的一个外角等于和它不相邻的两个内角的和.根据角平分线定义求出∠CAD ,再根据三角形外角性质求出即可.【解答】解:∵在△ABC 中,∠BAC =80°,∠B =40°,AD 是△ABC 的角平分线,∴∠C =60°,∠CAD =40°,∴∠ADB =∠CAD +∠C =100°,故答案为100.17.【答案】证明:∵∠BAC =∠DAE ,∴∠BAC −∠BAE =∠DAE −∠BAE ,即∠BAD =∠CAE ,在△ABD 和△AEC 中,{D =AC ∠BAD =∠EAC AB =AE, ∴△ABD≌△AEC(SAS).【解析】本题考查了全等三角形的判定,判断三角形全等的方法有:SSS ,SAS ,ASA ,AAS ,以及判断两个直角三角形全等的方法HL .根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.18.【答案】解:如图,延长CD交AB于M.∵∠A=90°,∠C=21°,∴∠1=∠A+∠C=90°+21°=111°,∵∠B=32°,∴∠BDC=∠B+∠1=32°+111°=143°.又∵∠BDC=149°,∴这个零件不合格.【解析】延长CD交AB于M,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BDC,然后即可判断.本题考查的是三角形外角的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.19.【答案】【解答】解:△ABD是直角三角形.∵AD=DC,∠B=30°,∴∠DAC=30°,∵△ABC是等腰三角形,∴∠B=∠C=30°,∠BAC=120°,∴∠BAD=∠BAC−∠DAC=120°−30°=90°,∴△ABD是直角三角形.【解析】【解析】本题主要考查了三角形的内角和定理,三角形的性质的综合应用,等腰三角形的判定,等腰三角形的性质,直角三角形的判定及性质.解题关键是利用等腰三角形的性质及判定,利用三角形内角和定理,及已知条件解出∠BAD 的度数,从而判断三角形的形状.20.【答案】解:(1)∠DAC 的度数不会改变;∵EA =EC ,∴∠CAE =∠C ,①∵∠BAE =90°,∴∠BAD =12[180°−(90°−2∠C)]=45°+∠C ,∴∠DAE =90°−∠BAD =90°−(45°+∠C)=45°−∠C ,②由①,②得,∠DAC =∠DAE +∠CAE =45°;(2)设∠ABC =m°,则∠BAD =12(180°−m°)=90°−12m°,∠AEB =180°−n°−m°,∴∠DAE =n°−∠BAD =n°−90°+12m°, ∵EA =EC ,∴∠CAE =12∠AEB =90°−12n°−12m°,∴∠DAC =∠DAE +∠CAE =n°−90°+12m°+90°−12n°−12m°=12n°. 【解析】本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键.(1)根据等腰三角形的性质得到∠CAE =∠C ,①求得∠DAE =90°−∠BAD =90°−(45°+∠C)=45°−∠C ,②;由①,②即可得到结论;(2)设∠ABC =m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.21.【答案】解:(1)设第一次每支铅笔的进价为x 元,则第二次每支铅笔的进价为54x 元. 根据题意列方程得600x −60054x =30, 解得x =4.经检验,x =4是原分式方程的解,即第一次每支铅笔的进价为4元;(2)设售价为y 元,根据题意列不等式为6004(y −4)+6004×54(y −4×54)≥420,解得y≥6,即每支售价至少是6元.【解析】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键,最后不要忘记检验.(1)设第一次每支铅笔进价为x元,则第二次每支铅笔进价为54x元,根据题意可列出分式方程解答;(2)设售价为y元,求出利润表达式,然后列不等式解答.22.【答案】解:6x−1>2(x+m)−3,6x−2x>2m−3+1,4x>2m−2,x>m−1 2(1)x−52+1<x+3,解得:x>−9,∴m−12=−9,解得m=−17;(2)解不等式x−52+1<x+3得,x>−9,由题意可得,m−12≥−9,解得:m≥−17.【解析】(1)分别求出两个不等式的解,然后根据两个不等式的解集相同而得到方程,再解方程即可.(2)根据题意列出不等式,求解即可得出m的取值范围.本题考查了解一元一次不等式,分别求出两个不等式的解集,再列出关于m的不等式是解题的关键.23.【答案】解:{x−y=−3①x+y=1−3a②,①+②,得:2x=−2−3a,解得:x=−1−32a,②−①,得:2y=4−3a,解得:y =2−32a ,∴方程组的解为{x =−1−32a y =2−32a, ∵关于x ,y 的方程组{x −y =−3x +y =1−3a的解满足3x +y ≥2, ∴3(−1−32a)+2−32a ≥2, 去括号得:−3−92a +2−32a ≥2,移项得:−92a −32a ≥2+3−2,合并同类项得:−6a ≥3,系数化为1得:a ≤−12.【解析】本题考查了加减消元法解二元一次方程,解一元一次不等式,二元一次方程组的解.先利用加减消元法得到方程组的解,根据题意即可得到关于a 的一元一次不等式,解不等式即可.24.【答案】解:△AFC 是等腰三角形.理由:在△BAD 与△BCE 中,∵∠B =∠B ,∠BAD =∠BCE ,BD =BE ,∴△BAD≌△BCE ,∴BA =BC ,∴∠BAC =∠BCA ,∴∠BAC −∠BAD =∠BCA −∠BCE ,即∠FAC =∠FCA ,∴△AFC 是等腰三角形.【解析】本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和∠FCA 的关系.因为∠BAD =∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.根据题中的条件:BD =BE ,∠BAD =∠BCE ,△BDA 和△BEC 又有一个公共角,因此两三角形全等,那么AB =AC ,于是∠BAC =∠BCA ,由此便可推导出∠FAC =∠FCA ,那么三角形AFC 应该是个等腰三角形.25.【答案】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC和△ECA中,∵{∠D=∠AEC∠DBC=∠ECA=90∘BC=AC,∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,在Rt△CDB和Rt△AEC中{AE=CDAC=BC,∴Rt△CDB≌Rt△AEC(HL),∴BD=CE,∵AE是BC边上的中线,∴BD=EC=12BC=12AC,且AC=12cm.∴BD=6cm.【解析】本题考查的是全等三角形的判定与性质有关知识.(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=12BC=12AC,且AC=12,即可求出BD的长.。
浙教版初中数学八年级上册期中测试卷(标准难度)(含解析)
![浙教版初中数学八年级上册期中测试卷(标准难度)(含解析)](https://img.taocdn.com/s3/m/3030dbf4370cba1aa8114431b90d6c85ec3a8832.png)
中浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图,已知:AB=DE,∠1=∠2,下列条件中能使△ABC≌△DEF的是( )A. AF=CDB. ED=BCC. AB=EFD. ∠B=∠E2.下面说法正确的个数是( )(1)三角形中最小的内角不能大于60°;(2)三角形的一个外角等于这个三角形的两个内角的和;(3)三角形任意两个内角的和大于第三个内角;(4)直角三角形只有一条高;(5)在同圆中任意两条直径都相互平分;(6)三角形一边上的高小于这个三角形的其他两边.A. 5个B. 4个C. 3个D. 2个3.已知:如图所示,将△ABC的∠C沿DE折叠,点C落在点C′处,若设∠C=α,∠AEC′=β,∠BDC′=γ,则下列关系成立的是( )A. 2α=β+γB. α=β+γC. α+β+γ=180°D. α+β=2γ4. 若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有( )①∠A =∠B −∠C ;②∠A :∠B :∠C =3:4:5;③a 2=(b +c)(b −c);④a :b :c =5:12:13.A. 1个B. 2个C. 3个D. 4个5. 如图,三角形是直角三角形,四边形是正方形,已知正方形A 的面积是64,正方形B 的面积是100,则半圆C 的面积是( )A. 4.5πB. 9πC. 36D. 18π6. 如图,Rt △ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G.若AB =10,BC =8,则点G 到直线AB 的距离为( )A. 83B. 3C. 4D. 2457.如果关于x 的不等式组{x−m2>0x−43−x <−4的解集为x >4,且整数m 使得关于x ,y 的二元一次方程组{mx +y =83x +y =1的解为整数(x,y 均为整数),则符合条件的所有整数m 的和是( )A. −2B. 2C. 6D. 108. 不等式组1≤8−x 3−1<2的解集在数轴上表示正确的是( )A.B.C.D.9. 如果关于x 的不等式{x +8<4x −1x >m的解集是x >3,那么m 的取值范围是( )A. m ≥3B. m ≤3C. m =3D. m <310. 某种商品的进价为200元,商场的标价是300元,后来由于商品积压,商场准备打折销售,为了保证利润率不低于5%,则该商品最多打几折( )中A. 9折B. 8折C. 7折D. 6折11. 若数a 使关于x 的不等式组{x+13≥−1−x 25x −2>x +a有且仅有五个整数解,且使关于y 的方程y+ay−1+2a1−y =2的解为非负数,则符合条件的所有整数a 的和为( ) A. −3 B. −2 C. 1 D. −112. 如图,利用尺规作∠AOB 的平分线,作法如下:①以点O 为圆心,适当长为半径画弧,交OA 于点D ,交OB 于点E ;②分别以点D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部交于点C ; ③画射线OC ,射线OC 就是∠AOB 的平分线. 通过上述作法,可得△OEC≌△ODC ,其依据是( )A. SSSB. ASAC. AASD. SAS第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,AB//CD ,EF 分别与AB ,CD 交于点B ,F.若∠E =30∘,∠EFC =130∘,则∠A = .14. 在△ABC 中,∠A −∠B =35°,∠C =55°,则∠B 等于______°.15. 如图,在Rt △ABC 中,∠ACB =90°,AC =2,BC =4,点P 为AB 上不与A ,B 重合的一个动点,连接CP ,将△ACP 沿CP 折叠得到△QCP ,点A 的对应点为点Q ,连接BQ ,则线段BQ 的取值范围为______.16. 已知方程组{2x +y =m4x +5y =2的解x 、y 满足x +y >1,则m 的取值范围是______.三、解答题(本大题共9小题,共72分。
新浙教版八年级上数学期中考试试题及答案
![新浙教版八年级上数学期中考试试题及答案](https://img.taocdn.com/s3/m/44184eea240c844769eaeeb2.png)
B ′C ′D ′O ′A ′ODC BA(第4题)新浙教版八上数学期中考试一、选择题(每小题3分,共30分)1.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°2.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<A D <7B .2<A D <14C .2.5<AD <5.5 D .5<A D <113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,D E ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .10 4.用直尺和圆规作一个角等于已知角的示意图如下,则说明 ∠A ′O ′B ′=∠AOB 的依据是 A .(S .S .S .)B .(S .A .S .) C .(A .S .A .)D .(A .A .S .5. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60º,∠α的补角∠β=120º,∠β>∠α B.∠α=90º,∠α的补角∠β=900º,∠β=∠α C.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角 (第3题)6. △ABC 与△A´B´C ´中,条件①AB = A´B´,②BC = B´C´,③AC =A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥7.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )A .7对B .6对C .5对D .4对8.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,D E ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm9.如图,△ABC 与△BDE 均为等边三角形,A B <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .A E >CDC .A E <CD D .无法确定10.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( ) A .10° B .80° C .100° D .80°或100°E CDBAH EDC B A 一、填空题(每小题2分,共20分)11.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 12.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌△ ,理由是 .(第1题) (第2题) (第4题)13.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 14.如图,AD 、A´D´分别是锐角△ABC 和△A´B´C´中BC 与B´C´边上的高,且AB = A´B´,AD = A´D´,若使△ABC ≌△A´B´C´,请你补充条件 (只需填写一个你认为适当的条件)15. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合. 16. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度(第16题) (第17题) (第18题)17.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN的最小值为__________.18.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________.19.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm ,则底边BC上的高为___________.20.锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第19题) (第20题)三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为 ,BAEDCE DABC1 2DA BC B´D´A´C´MND CBAFED CB A DC B A EDCBA你得到的一对全等三角形是∆ ∆≅ . 22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF , 已知:EG ∥AF , = , = , 求证: 证明:(第22题)23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. ①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明; (2)用序号再写出三个真命题(不要求证明); (3)真命题不止以上四个,想一想就能够多写出几个真命题EDAC 4321FBEA BD FC25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.28.如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE. (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现).EACFBEAC FB图a 图bOPAMN EB CD FACEFBD图①图②图③参考答案一、1.∠DBE , CA 2.△ACE , SAS , △ACD , ASA (或SAS )3. 64.CD =C´D´(或AC =A´C´,或∠C =∠C´或∠CAD =∠C´A´D´)5.平移,翻折6. 907. 108. 20º9.248- 10. 45二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择BD BC DAB CAB DE CE =∠=∠=、、等条件中的一个.可得到△ACE ≌△ADE 或△ACB≌△ADB 等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系 可选①AB =AC ,②DE =DF ,作为已知条件,③BE =CF 作为结论;推理过程为:∵EG ∥AF ,∴∠GED =∠CFD ,∠BGE =∠BCA ,∵AB =AC ,∴∠B =∠BCA , ∴∠B =∠BGE ∴BE =EG ,在△DEG 和△DFC 中,∠GED =∠CFD ,DE =DF ,∠EDG =∠FDC ,∴△DEG ≌△DFC ,∴EG =CF ,而EG =BE ,∴BE =CF ;若选①AB =AC ,③BE =CF 为条件,同样可以推得②DE =DF , 23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE =CF 还可推得BC =EF ,根据三角形全等的判定方法,可选论断:①AB =DE ,②AC =DF ,④BE =CF 为条件,根据三边对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断③∠ABC =∠DEF ,同样可选①AB =DE ,③∠ABC =∠DEF ,④BE =CF 为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断②AC =DF . 24. (1)如果①②③,那么④⑤证明:如图,延长AE 交BC 的延长线于F 因为AD ∥BC 所以 ∠1=∠F 又因为∠AED =∠CEF ,DE =EC 所以△ADE ≌△FCE ,所以AD =CF ,AE =EF 因为∠1=∠F ,∠1=∠2 所以∠2=∠F 所以AB =BF .所以∠3=∠4 所以AD +BC =CF +BC =BF =AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④. (3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF .(2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°, ∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图② 证法一:如图1,在AC 上截取AG =AE ,连接FG ∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作F G ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EG F ≌△DHF ∴ FE =FD28. (1)AF =BE .证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB. 即∠ACF =∠BCE . ∴△AFC ≌△BEC . ∴AF =BE . (3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.图⑤(4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.。
浙教版八年级数学上册期中考试卷(附答案)
![浙教版八年级数学上册期中考试卷(附答案)](https://img.taocdn.com/s3/m/9e1eca010812a21614791711cc7931b765ce7be8.png)
浙教版八年级数学上册期中考试卷(附答案)一、选择题1.下列图标是节水、绿色食品、回收、节能的标志,其中是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,首尾顺次相连能组成三角形的是()A.2,3,6B.4,4,8C.5,9,14D.6,12,133.若点A(m−n,m−2n)与点B(m−3n,1−12m)关于y轴对称,则点P(m,n)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.某品牌自行车进价为每辆800元,标价为每辆1 200元.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则最多可打()折.A.六B.七C.八D.九5.根据下列已知条件,能画出惟一的△ABC的是()A.AB=3cm,BC=7cm,AC=4cmB.AB=3cm,BC=7cm,△C=40°C.△A=30°,AB=3cm,△B=100°D.△A=30°,△B=100°,△C=50°6.如图,在Rt△ABC中,△C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC,AB于点M,N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=15,则△ABD的面积为()A.15B.30C.45D.607.下列命题:①全等三角形的对应角相等;②线段垂直平分线上的点到线段两端的距离相等;③等腰三角形的两个底角相等.其中逆命题是真命题的个数是()A.0B.1C.2D.38.如图,AF//CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE②AC//BE③∠CBE+∠D=90°④∠DEB=2∠ABC其中正确的有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,BD平分∠ABC交AC于点D,且BD⊥AC,F在BC上,E为AF的中点,连接DE,若BF=DE,AC=2√3DE,BD=6则AB的长为()A.3√6B.4√3C.√42D.910.如图,在平面直角坐标系中,点A的坐标为(4,0),点Q是直线y=√3x上的一个动点,以AQ为边,在AQ的右侧作等边△APQ,使得点P落在第一象限,连接OP,则OP+AP的最小值为()A.6B.4√3C.8D.6√3二、填空题11.已知a,b,c是△ABC的三条边长,化简|a+b−c|+|a−b−c|的结果为.12.如图,在△ABC中∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC.则∠4的度数为.13.如图,已知圆柱的底面直径BC为6π,高AB为5,一只小虫在圆柱表面爬行,从C点爬到A点,则这只小虫爬行的最短路程是.14.如图所示,在△ABC中△BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E和点N在BC 上,则△EAN=.15.关于x的不等式组{2x−3≤5−x+a<2只有4个整数解,则a的取值范围是.16.Rt△ABC中,点D是斜边AB的中点.(1)如图1,若DE⊥BC与E,DF⊥AC于F,DF=4则AB=;(2)如图2,若点P是CD的中点,且CP=52,PA2+PB2=.三、计算题17.解下列不等式组,并把解集在数轴上表示出来:(1){x+1>010−2x>0(2){5x−1>3(x+1) 2x−13−5x+12≤1四、作图题18.如图,在3×6的方格纸中,已知格点P和线段AB.△画一个锐角三角形(顶点均在格点上且不与点A,B重合),使P为其中一边的中点.△再画出该三角形关于直线AB对称的图形.五、解答题19.已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC求证:DE=BC.20.如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE//AB,且CE=BC,连接DE 并延长,分别交AC,AB于点F,G.(1)求证:△ABC△△DCE;(2)若BD=12,AB=2CE,求BC的长度.21.某旅游景点的一个商场为了抓住国庆节长假这一旅游旺季的商机,决定购进甲,乙两种纪念品,若购进甲种纪念品1件、乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品共100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时甲种纪念品又不能超过60件,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?22.下面是小明同学证明定理时使用的两种添加辅助线的方法,选择其中一种,完成证明.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图,在△ABC中∠C=90°,∠A=30°.求证:BC=12AB.方法一证明:如图,延长BC到点D,使得CD=BC,连接AD.方法二证明:如图,在线段AB上取一点D,使得BD= BC,连接CD.23.已知△ABC中AB=AC,BM⊥AC于点M,点D在直线BC上DE⊥AB,垂足为点E,DF⊥AC垂足为点F.(1)如图1,点D在边BC上时,小明同学利用①三角形全等知识和②图形等面积法两种方法发现了DE,DF,BM三线段之间的数量关系,请直接写出三线段之间的数量关系是;(2)如图2,图3,当点D在点B左边或者在点C右边的直线上时,问题(1)中DE,DF,BM三线段的数量关系是否还成立?若成立请选择一个图形进行证明,若不成立,请在图2或图3中选择一个图形,写出三线段新的数量关系,并进行证明.24.已知△ABC.(1)如图1,按如下要求用尺规作图:①作出△ABC的中线CD;②延长CD至E,使DE=CD,连接AE;(不要求写出作法,但要保留作图痕迹.)(2)如图2,若∠ACB=90°,CD是中线.试探究CD与AB之间的数量关系,并说明理由;(3)如图3,若∠ACB=45°,AC=BC,CD是△ABC的中线,过点B作BE⊥AC于E,交CD于点F,连接DE.若CF=4,求DE的长.答案解析部分1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】C6.【答案】B7.【答案】C8.【答案】D9.【答案】A10.【答案】C11.【答案】2b12.【答案】45°13.【答案】√3414.【答案】32°15.【答案】2<a ≤316.【答案】(1)10(2)62.517.【答案】(1)解:{x +1>0①10−2x >0②解不等式①得:x >−1解不等式②得:x <5所以不等式组的解集为−1<x <5.把解集在数轴上表示出来,如图:(2)解:{5x −1>3(x +1)①2x−13−5x+12≤1②解不等式①得x >2解不等式②得x ≥−1所以不等式组的解集为x >2把解集在数轴上表示出来,如图:18.【答案】解:△如图所示,△DCE 即为所求(答案不唯一);△如图所示,△FGH 即为所求.19.【答案】证明:∵DE ∥AC∴∠EDB =∠C∵{∠EDB =∠C ∠E =∠ABC BD =AC∴△BED ≌△ABC(AAS)∴DE =BC .20.【答案】(1)证明:∵CE//AB∴∠B =∠ECD在△ABC 与△DCE 中{AB =CD ∠B =∠ECD BC =CE∴△ABC △△DCE(SAS)(2)解:∵△ABC△△DCE ,∴AB =DC ,BC =CE∵AB =2CE ,∴CD =2BC∴BD =CD+BC =3BC∵BD =12∴BC =421.【答案】(1)解:设购进甲种纪念品每件需要x 元,购进乙种纪念品每件需要y 元根据题意,得{x +2y =1602x +3y =280解得{x =80y =40答:购进甲种纪念品每件需要80元,购进乙种纪念品每件需要40元; (2)解:设购进甲种纪念品m 件,则购进乙种纪念品(100-m)件根据题意得{80m +40(100−m )≥6000m ≤60解得50≤m≤60∵m 为整数∴m=50,51,52,53,54,55,56,57,58,59,60∴该商场共有11种进货方案;(3)解:设利润为w 元则w=30m+12(100-m )=18m+1200∴当m 取最大值时,w 最大∴当m=60时,获得利润最大,最大利润w=18×60+1200=2280元答:购进甲种纪念品60件,乙种纪念品40件时获利最大,最大利润是2280元. 22.【答案】解:若选择方法一:如图:延长BC 到点D ,使得CD =BC ,连接AD∵∠ACB =90°,∠BAC =30°∴∠B =90°−∠BAC =60°,∠ACD =180°−∠ACB =90°∴∠ACD =∠ACB =90°∵AC =AC∴△BCA △△DCA(SAS)∴AD =AB∴△ABD 是等边三角形∴AB =BD∵BC =CD =12BD ∴BC =12AB ; 若选择方法二:如图,在线段AB 上取一点D ,使得BD =BC ,连接CD∵∠ACB=90°,∠A=30°∴∠B=90°−∠A=60°∴△BCD是等边三角形∴BC=BD=DC,∠BCD=60°∴∠DCA=∠ACB−∠BCD=30°∴∠DCA=∠A=30°∴DC=DA∴BC=BD=DA=1 2AB即BC=12AB.23.【答案】(1)BM=DE+DF(2)解:不成立.连接AD.当点D在点B左边的直线上时,如图.∵SΔACD−SΔABD=SΔABC∴12AC⋅DF−12AB⋅DE=12AC⋅BM∵AB=AC∴DF−DE=BM;当点D点C右边的直线上时,如图.∵SΔABD−SΔACD=SΔABC∴12AB ⋅DE −12AC ⋅DF =12AC ⋅BM ∵AB =AC∴DE −DF =BM .24.【答案】(1)解:①如图1所示,线段CD 即为所求. 作法:1.分别以A ,B 为圆心,大于12AB 为半径画弧,交于两点 2.连接这两点与AB 交于点D 3.连接CD线段CD 即为所求.②如图1中,线段DE ,AE 即为所求.作法:1.延长线段CD 至点E ,使DE =CD 2.连接AE线段DE ,AE 即为所求;(2)解:AB 与CD 的数量关系是:AB =2CD ,理由如下: 如图,延长CD 至E ,使DE =DC ,连接BE∵CD 是中线∴AD =BD在△ADC 和△BDE 中{AD =BD ∠ADC =∠BDE DC =DE∴△ADC ≌△BDE(SAS)∴∠E =∠ACD ,AC =BE∴AC∥BE∴∠ACB+∠EBC=180°∵∠ACB=90°∴∠EBC=90°在△ACB和△EBC中{AC=BE ∠ACB=∠EBC CB=BC∴△ACB≌△EBC(SAS)∴AB=CE∵CE=2CD∴AB=2CD.(3)解:如图3中∵BE⊥AC,∠ACB=45°∴∠CEB=∠BEA=90°,∠ECB=∠EBC=45°∴EC=EB∵AC=BC,CD是中线∴CD⊥AB∵∠CEF=∠BDF=90°,∠CFE=∠BFD∴∠ECF=∠ABE在△CEF和△BEA中{∠ECF=∠EBA CE=BE ∠CEF=∠BEA∴△CEF≌△BEA(ASA)∴CF=AB=4∵AD=BD,∠AEB=90°∴DE=12AB=2.。
新浙教版八年级上数学期中考试试题及答案
![新浙教版八年级上数学期中考试试题及答案](https://img.taocdn.com/s3/m/f05465e95fbfc77da269b1ec.png)
B ′C ′D ′O ′A ′ODC BA(第4题)新浙教版八上数学期中考试一、选择题(每小题3分,共30分)1.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°2.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<A D <7B .2<A D <14C .2.5<AD <5.5 D .5<A D <113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,D E ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .10 4.用直尺和圆规作一个角等于已知角的示意图如下,则说明 ∠A ′O ′B ′=∠AOB 的依据是 A .(S .S .S .)B .(S .A .S .) C .(A .S .A .)D .(A .A .S .5. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60º,∠α的补角∠β=120º,∠β>∠α B.∠α=90º,∠α的补角∠β=900º,∠β=∠α C.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角 (第36. △ABC 与△A´B´C ´中,条件①AB = A´B´,②BC = B´C´,③AC =A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥ 7.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )A .7对B .6对C .5对D .4对8.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,D E ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm9.如图,△ABC 与△BDE 均为等边三角形,A B <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .A E >CDC .A E <CD D .无法确定10.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( ) A .10° B .80° C .100° D .80°或100°CH EDC B A一、填空题(每小题2分,共20分)11.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 12.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌△ ,理由是 .(第1题) (第2题) (第4题)13.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 14.如图,AD 、A´D´分别是锐角△ABC 和△A´B´C´中BC 与B´C´边上的高,且AB = A´B´,AD = A´D´,若使△ABC ≌△A´B´C´,请你补充条件 (只需填写一个你认为适当的条件)15. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合. 16. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度(第16题) (第17题) (第18题)17.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN的最小值为__________.18.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________.19.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm ,则底边BC上的高为___________.20.锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第19题) (第20题)MND CBADC B A EDCBA三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为 ,你得到的一对全等三角形是 . 22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF , 已知:EG ∥AF , = , = , 求证: 证明:(第22题)23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. ①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式: ①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明; (2)用序号再写出三个真命题(不要求证明); (3)真命题不止以上四个,想一想就能够多写出几个真命题∆∆≅EA BD FC25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.EDAC 4321FB四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.28.如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE. (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由; (3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现).OP AM N E B C DF A E F B D图① 图② 图③图a 图b参考答案一、1.∠DBE , CA 2.△ACE , SAS , △ACD , ASA (或SAS )3. 64.CD =C´D´(或AC =A´C´,或∠C =∠C´或∠CAD =∠C´A´D´)5.平移,翻折6. 907. 108. 20º9. 10. 45二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择等条件中的一个.可得到△ACE ≌△ADE 或△ACB≌△ADB 等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系 可选①AB =AC ,②DE =DF ,作为已知条件,③BE =CF 作为结论;推理过程为:∵EG ∥AF ,∴∠GED =∠CFD ,∠BGE =∠BCA ,∵AB =AC ,∴∠B =∠BCA , ∴∠B =∠BGE ∴BE =EG ,在△DEG 和△DFC 中,∠GED =∠CFD ,DE =DF ,∠EDG =∠FDC ,∴△DEG ≌△DFC ,∴EG =CF ,而EG =BE ,∴BE =CF ;若选①AB =AC ,③BE =CF 为条件,同样可以推得②DE =DF , 23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE =CF 还可推得BC =EF ,根据三角形全等的判定方法,可选论断:①AB =DE ,②AC =DF ,④BE =CF 为条件,根据三边对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断③∠ABC =∠DEF ,ACFBEAC FB248-BD BC DAB CAB DE CE =∠=∠=、、同样可选①AB =DE ,③∠ABC =∠DEF ,④BE =CF 为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断②AC =DF . 24. (1)如果①②③,那么④⑤证明:如图,延长AE 交BC 的延长线于F 因为AD ∥BC 所以 ∠1=∠F 又因为∠AED =∠CEF ,DE =EC 所以△ADE ≌△FCE ,所以AD =CF ,AE =EF 因为∠1=∠F ,∠1=∠2 所以∠2=∠F 所以AB =BF .所以∠3=∠4 所以AD +BC =CF +BC =BF =AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④. (3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF .(2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°, ∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图② 证法一:如图1,在AC 上截取AG =AE ,连接FG ∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作F G ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线图⑤∴∠2+∠3=60°∴∠GEF=60°+∠1,FG=FH∵∠HDF=∠B+∠1 ∴∠GEF=∠HDF∴△EG F≌△DHF∴FE=FD28. (1)AF=BE.证明:在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60.∴△AFC≌△BEC. ∴AF=BE.(2)成立. 理由:在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACB=∠FCE=60°. ∴∠ACB-∠FCB=∠FCE-∠FCB.即∠ACF=∠BCE. ∴△AFC≌△BEC. ∴AF=BE.(3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.(4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.。
专题三 全等三角形的判定-浙教版八年级数学上册期中复习专题训练
![专题三 全等三角形的判定-浙教版八年级数学上册期中复习专题训练](https://img.taocdn.com/s3/m/4680c6b4763231126fdb110f.png)
浙教版数学(八上)期中复习专题三全等三角形一、选择题1. 下列命题中:①形状相同的两个三角形是全等形;①在两个全等三角形中,相等的角是对应角相等的边是对应边;①全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命的个数为( )。
A.3个B.2个C.1个D.0个【答案】C2. 在下列的条件中,不能说明①ABC①①AB'C'的是( )。
A.①A=①A',①C=①C',AC=A'CB.①A=①A',AB=A'B',BC=B′C′C.①B=①B',①C=①C',AB=A'B′D. AB=A′B′,BC=B′C′,AC=A′C′【答案】B3. 有下列说法:①有一个外角是钝角的三角形是锐角三角形;①有两条边和一个角对应相等的两个三角形全等;①若三条线段ab,满足a≥b≥c,且a<b+C,则这三条线段必能组成一个三角形;①有两个角和一条边彼此相等的两个三角形全等。
其中正确的个数是( )。
A.4个B.3个C.2个D.1个【答案】D4.用尺规作一个角的平分线的示意图如图所示,则能说明①AOC=①BOC的依据是( )。
A. SSSB. ASAC. AASD.角平分线上的点到角两边距离相等【答案】A5.如图所示,点B、C、E在同一条直线上,①ABC与①CDE都是等边三角形则下列结论不一定成立的是( )。
A.①ACE①①BCDB.①BGC①①AFCC.①DCG①①ECFD.①ADB①①CEA【答案】D6.如图,已知①1=①2,则不一定能使①ABD①①ACD的条件是( )。
A. AB=ACB. BD=CDC.①B=①CD.①BDA=①CDA7. 要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明①EDC①①ABC,得ED=AB,因此测得ED的长就是AB的长,判定①EDC①①ABC最恰当的理由是( )。
浙教版-学年度上学期八年级期中数学试卷三(含答案)
![浙教版-学年度上学期八年级期中数学试卷三(含答案)](https://img.taocdn.com/s3/m/fb2744ec760bf78a6529647d27284b73f242364b.png)
浙教版2018-2019学年八年级上期中数学试卷三一.选择题(共10小题,满分40分,每小题4分)1.下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.12.如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD、AE、BE、CD 的大小关系,下列何者正确?()A.AD=AE B.AD<AE C.BE=CD D.BE<CD3.某商店两种商品滞销,分别造成3000元和4000元的资金积压.商店根据市场行情和消费者心理状态,决定将两种商品分别按积压资金的八折和九折降价出售,结果积压的这两种商品很快售完.商店立即将回收的全部资金以相当于零售价的批发价买回一批畅销货.为了支付必要的开支,商店至少得赚回利润1100元,而为了保证这批新货迅速售完,不至于由畅销货变为滞销货,商店拟以低于零售价的价格,将这批新货卖出.设商店应该将这批新进货高出买进价的x%卖出,则()A.x%≥35% B.x%≤40% C.35%<x%≤40% D.35%≤x%<40%4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.如图,在△ABC中,D是CA延长线上一点,∠B=40°,∠BAD=76°,则∠C的度数为()A.36°B.116°C.26°D.104°6.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或30°B.75°C.15°D.75°或15°7.如图,∠EOF内有一定点P,过点P的一条直线分别交射线OE于A,射线OF于B.当满足下列哪个条件时,△AOB的面积一定最小()A.OA=OB B.OP为△AOB的角平分线C.OP为△AOB的高D.OP为△AOB的中线8.用反证法证明“一个三角形中至少有两个锐角”时,下列假设正确的是()A.假设一个三角形中只有一个锐角B.假设一个三角形中至多有两个锐角C.假设一个三角形中没有一个锐角D.假设一个三角形中至少有两个钝角9.如图,在△ABC中,∠A=36°,AB=AC,CD是△ABC的角平分线.若在边AC上截取CE=CB,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个10.如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B运动运动至点C,△B′C′D面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小二.填空题(共6小题,满分30分,每小题5分)11.如图,利用直尺和三角尺过直线外一点画已知直线的平行线.第一步:作直线AB,并用三角尺的一边贴住直线AB;第二步:用直尺紧靠三角尺的另一边;第三步:沿直尺下移三角尺;第四步:沿三角尺作出直线CD.这样就得到AB∥CD.这种画平行线的依据是.12.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.13.藏族小伙小游到批发市场购买牛肉,已知牦牛肉和黄牛肉的单价之和为每千克44元,小游准备购买牦牛肉和黄牛肉总共不超过120千克,其中黄牛肉至少购买30千克,牦牛肉的数量不少于黄牛肉的2倍,粗心的小游在做预算时将牦牛肉和黄牛肉的价格弄对换了,结果实际购买两种牛肉的总价比预算多了224元,若牦牛肉、黄牛肉的单价和数量均为整数,则小游实际购买这两种牛肉最多需要花费元.14.一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值为.15.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为.16.在△ABC中,∠BAC=90°,AB=AC,点D在BC边上,把△ABD沿AD折叠后,使得点B落在点E处,连接CE,若∠DBE=20°,则∠ADC=.三.解答题(共8小题,满分80分)17.(8分)解不等式(组)(1)﹣(x﹣3)>4(2).18.(8分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(8分)在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分成12cm和15cm的两部分,求三角形各边的长.20.(8分)某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B 种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.21.(10分)(1)如图1,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高,且∠B=44°,∠C=68°,求∠CAD、∠EAD的度数.(2)如图2,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A.22.(12分)一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图1所示,量得连杆OA长为10cm,雨刮杆AB长为45cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图2所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(2)求雨刮杆AB扫过的最大面积.23.(12分)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)24.(14分)如图1,已知△ABC,以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE,连结BE、CD,则有BE=CD;(1)如图2,已知△ABC,以AB、AC为边分别向外作等腰直角三角形ABD和等腰直角三角形ACE,连结BE、CD,猜想BE与CD有什么数量关系?并说明理由;(2)运用图(1),图(2)中所积累的经验和知识,完成下题:如图(3),要测量池塘两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长(结果保留根号).参考答案与试题解析1.解:(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选:B.2.解:∵∠C<∠B,∴AB<AC,∵AB=BD AC=EC∴BE+ED<ED+CD,∴BE<CD.故选:D.3.解:设新进货应高出买进价的x%,由题意得,则3000+4000+1100解得:,即35%≤x%≤40%故选:D.4.解:∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:,故选:C.5.解:由三角形的外角的性质可知,∠C=∠BAD﹣∠B=36°,故选:A.6.解:当等腰三角形是锐角三角形时,如图1所示∵CD ⊥AB ,CD=AC , ∴sin ∠A==,∴∠A=30°, ∴∠B=∠C=75°;当等腰三角形是钝角三角形时,如图2示,∵CD ⊥AB ,即在直角三角形ACD 中,CD=AC , ∴∠CAD=30°, ∴∠CAB=150°, ∴∠B=∠C=15°. 故选:D .7.解:当点P 是AB 的中点时S △AOB 最小;如图,过点P 的另一条直线CD 交OE 、OF 于点C 、D ,设PD <PC ,过点A 作AG ∥OF 交CD 于G ,在△APG 和△BPD 中,,∴△APG ≌△BPD (ASA ), S 四边形AODG =S △AOB . ∵S 四边形AODG <S △COD , ∴S △AOB <S △COD ,∴当点P 是AB 的中点时S △AOB 最小; 故选:D .8.解:用反证法证明“一个三角形中至少有两个锐角”时,应先假设“一个三角形中最多有一个锐角”或者假设一个三角形中至少有两个钝角.故选:D.9.解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选:D.10.解:如图,作B′H⊥DC′于H.设BD=DB′=x,则CD=DC′=6﹣x.∵∠A=60°,∴∠B+∠C=120°,由翻折不变性可知:∠B=∠DB′B,∠C=∠DC′C,∴∠BDB′+∠CDC′=120°,∴∠B′DC′=60°,∴B′H=x,∴S=(6﹣x)=﹣(x﹣3)2+,△DB′C′的值先增大后减小,∴S△DB′C′故选:D.11.解:∵∠BAE=∠DEF,∴AB∥DE.故答案为:同位角相等,两直线平行.12.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.13.解:设牦牛肉和黄牛肉的单价分别为每千克x元和(44﹣x)元,购买牛肉牦牛肉和黄牛肉的数量分别为m千克和n千克;由题意:m(44﹣x)+nx﹣(mx+n(44﹣x)=224,∴x(m﹣n)=22(m﹣n)﹣112,∵实际购买这两种牛肉的价格=mx+n(44﹣x)=x(m﹣n)+44n=22(m+n)﹣112,∵m+n≤120,∴当m+n=120时,22(m+n)﹣112有最大值,最大值=2528(元),答:小游实际购买这两种牛肉最多需要花费2528元.14.解:①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.15.解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为4,∴b2=4,∴正方形ABCD的面积=4a2+b2=9b2=36,故答案为:3616.解:如图1中,当点E在直线BC的下方时,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵△ADB≌△ADE,∴BD=DE,∠ABD=∠AED=45°,∠DAB=∠DAE,∴∠DBE=∠DEB=20°∴∠ABE=∠AEB=65°,∴∠DAB=(180°﹣130°)=25°,∴∠ADC=∠ABC+∠BAD=70°如图2中,当点E在直线BC的上方时,易知∠ABE=∠AEB=45°﹣20°=25°,∴∠BAD=(180°﹣50°)=65°,∴∴∠ADC=∠ABC+∠BAD=110°,故答案为70°或110°.17.解:(1)x﹣3<﹣8,x<﹣5;(2)解不等式(1),得x<﹣2,解不等式(2),得x≥﹣5,所以原不等式组的解集为﹣5≤x<﹣2.18.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.19.解:如图,∵AB=AC,BD是AC边上的中线,即AD=CD,∴|(AB+AD)﹣(BC+CD)|=|AB﹣BC|=15﹣12=3(cm),AB+BC+AC=2AB+BC=12+15=27cm,若AB>BC,则AB﹣BC=3cm,又∵2AB+BC=27cm,联立方程组并求解得:AB=10cm,BC=7cm,10cm、10cm、7cm三边能够组成三角形;若AB<BC,则BC﹣AB=3cm,又∵2AB+BC=27cm,联立方程组并求解得:AB=8cm,BC=11cm,8cm、8cm、11cm三边能够组成三角形;∴三角形的各边长为10cm、10cm、7cm或8cm、8cm、11cm.20.解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,则:,解之得.答:A种型号的衣服每件90元,B种型号的衣服100元;(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,可得:,解之得,∵m为正整数,∴m=10、11、12,2m+4=24、26、28.答:有三种进货方案:(1)B型号衣服购买10件,A型号衣服购进24件;(2)B型号衣服购买11件,A型号衣服购进26件;(3)B型号衣服购买12件,A型号衣服购进28件.21.解:(1)∵在△ABC中,∠B=44°,∠C=68°,∴∠BAC=180°﹣44°﹣68°=68°.∵AE是∠BAC的角平分线,∴∠CAE=∠BAC=×68°=34°.∵AD是BC边上的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣68°=22°,∴∠EAD=∠CAE﹣∠CAD=34°﹣22°=12°.(2)∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得:∠A=21°.22.解:(1)雨刮杆AB旋转的最大角度为180°,如图2,连接OB,过O点作AB的垂线交BA的延长线于E,∵∠OAB=120°,∴∠OAE=60°在Rt△OAE中,∵∠OAE=60°,OA=10cm,∴sin∠OAE==,∴OE=5cm,AE=5cm∴EB=AE+AB=50cm,在Rt△OEB中,∵OE=5cm,EB=50cm,∴OB===(cm);(2)∵雨刮杆AB 旋转180°得到CD ,即△OCD 与△OAB 关于点O 中心对称, ∴△BAO ≌△OCD , ∴S △BAO =S △OCD ,∴雨刮杆AB 扫过的最大面积S=π(OB 2﹣OA 2)=1237.5π(cm 2).23.解:(1)如图2,∵△ABP 逆时针旋转60°得到△A′BC , ∴∠A′BA=60°,A′B=AB ,AP=A′C ∴△A′BA 是等边三角形, ∴A′A=AB=BA′=2,在△AA′C 中,A′C <AA′+AC ,即AP <6,则当点A′A 、C 三点共线时,A′C=AA′+AC ,即AP=6,即AP 的最大值是:6; 故答案是:6.(2)如图3,∵Rt △ABC 是等腰三角形,∴AB=BC .以B 为中心,将△APB 逆时针旋转60°得到△A'P'B .则A'B=AB=BC=4,PA=P′A′,PB=P′B , ∴PA +PB +PC=P′A′+P'B +PC .∵当A'、P'、P 、C 四点共线时,(P'A +P'B +PC )最短,即线段A'C 最短, ∴A'C=PA +PB +PC , ∴A'C 长度即为所求.过A'作A'D ⊥CB 延长线于D . ∵∠A'BA=60°(由旋转可知), ∴∠1=30°. ∵A'B=4, ∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).24.解:(1)BE=DC,理由如下:∵△ABD和△ACE都为等腰直角三角形,∴AD=AB,AE=AC,∠DAB=∠EAC=90°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS)∴BE=DC,(2)在AB的外侧作AD⊥AB,使AD=AB,连结CD,BD,∴∠DAB=90°,∴∠ABD=∠ADB=45°.∵∠ABC=45°,∴∠ABD+∠ABC=45°+45°=90°,即∠DBC=90°.∴∠CAE=90°,∴∠DAB=∠CAE,∴∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.在△ADC和△ABE中,∴△ADC≌△ABE(SAS),∴CD=BE.∵AB=100m,在直角△ABD中,由勾股定理,得BD=100.∴CD==100,∴BE=CD=100,答:BE的长为100米。
【浙教版】八年级数学上期中试卷(带答案)(3)
![【浙教版】八年级数学上期中试卷(带答案)(3)](https://img.taocdn.com/s3/m/e4090c39ad51f01dc381f155.png)
一、选择题1.已知点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1,那么点P 的坐标为( )A .(﹣1,2)B .(﹣2,1)C .(﹣1,﹣2)D .(﹣2,﹣1) 2.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( )A .1-B .1C .0D .2021- 3.已知点P (a ,3)、Q (﹣2,b )关于y 轴对称,则a b a b +-的值是( ) A .15- B .15 C .﹣5D .5 4.如图,一个机器人从点O 出发,向正西方向走2m 到达点A 1;再向正北方向走4m 到达点A 2,再向正东方向走6m 到达点A 3,再向正南方向走8m 到达点A 4,再向正西方向走10m 到达点A 5,按如此规律走下去,当机器人走到点A 9时,点A 9在第( )象限A .一B .二C .三D .四5.已知实数x 、y 满足|x -8y -0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 6.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .81111911=713( )A .1与2之间B .2与3之间C .3与4之间D .5与6之间 8.已知|a+b ﹣220a b +-=,则(a ﹣b )2017的值为( )A .1B .﹣1C .2015D .﹣2015 9.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a ,较短直角边长为b ,大正方形面积为S 1,小正方形面积为S 2,则(a +b )2可以表示为( )A .S 1﹣S 2B .S 1+S 2C .2S 1﹣S 2D .S 1+2S 2 10.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是2,5,1,2.则最大的正方形E 的面积是( )A .10B .8C .6D .1511.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D .122CD BC AB =+ 12.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论: ①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③二、填空题13.在平面直角坐标系中有两点A(5,0),B(2,1),如果点C 在坐标平面内,且由点A 、O 、C 连成的三角形与△AOB 全等(△AOC 与△AOB 不重合),则点C 的坐标是_________ 14.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,则△ABC 周长的最小值是_____.15.数轴上A 点表示的数是1-,点B ,C 分别位于点A 的两侧,且到A 的距离相等,若B 表示的数是3-,则点C 表示的数是 ____________.16.已知10+3的整数部分是x ,小数部分是y ,求x ﹣y 的相反数_____.17.若3109,b a =-且b 的算术平方根为4,则a =__________.18.直角三角形纸片的两直角边长分别为6,8.现将ABC 如图那样折叠,使点A 与点B 重合,折痕为DE .则CE CB的值是__________.19.如图,一架长2.5m 的梯子斜靠在垂直的墙AO 上,这时AO 为2m .如果梯子的顶端A 沿墙下滑0.5m ,那么梯子的底端B 向外移动_________m .20.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB OA ⊥,使3AB =(如图);再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数是____________.三、解答题21.如图,在4×4的方格中(每个小正方形的边长均为1),标有A ,B 两点(A ,B 在格点上),请你用两种不同的方法表示点B 相对点A 的位置.22.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-;(2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.23.2775(25)(25)3-. 24222121212121(21)(21)21-====-++-- 3232(32)(32)=++-223232323232===--(1)从计算过程中找出规律,可知23=+ ;用含有n (n 是正整)的等式表示上述变化规律 ;(2)利用上述变化规律计算: (21324310099)++++++++的值. 25.如图,ABC 中,∠C=90°,BC=5厘米,AB=55厘米,点P 从点A 出发沿AC 边以2厘米/秒的速度向终点C 匀速移动,同时,点Q 从点C 出发沿CB 边以1厘米/秒的速度向终点B 匀速移动,P 、Q 两点运动几秒时,P 、Q 两点间的距离是210厘米?26.如图,在△ABC 中,∠C=90°,M 是BC 的中点,MD ⊥AB 于D ,求证:222AD AC BD =+.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据第三象限点的横坐标与纵坐标都是负数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答即可.【详解】解:∵点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1,∴点P 的横坐标为﹣1,纵坐标为﹣2,∴点P 的坐标为(﹣1,﹣2).故选:C .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键,也是最容易出错的地方.2.A解析:A【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 3.C解析:C【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点P (a ,3)、Q (-2,b )关于y 轴对称,∴2a =,3b =, 则23523a b a b ++==---. 故选:C .【点睛】本题主要考查了关于x ,y 轴对称点的性质,正确得出a ,b 的值是解题关键.注意:关于y 轴对称的点,纵坐标相同,横坐标互为相反数. 4.C解析:C【分析】每个象限均可发现点A 脚标的规律,再看点A 9符合哪个规律即可知道在第几象限.【详解】由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.【点睛】本题考查规律型:点的坐标问题,解题的关键是发现规律,利用规律解决问题,本题的突破点是判定A9在第三象限,属于中考常考题型.5.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.6.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.7.C解析:C【分析】【详解】解:<34∴<<,故选:C .【点睛】本题考查无理数的估算,掌握几个非负整数的算术平方根的大小比较方法是解决问题的关键.8.A解析:A【详解】解:由题意得122a b a b +=⎧⎨+=⎩解得:10a b =⎧⎨=⎩()()20172017101a b ∴-=-=故选A . 9.C解析:C【分析】根据图形和勾股定理可知S 1=c 2=a 2+b 2,再由完全平方公式即可得到结果.【详解】解:如图所示:设直角三角形的斜边为c ,则S 1=c 2=a 2+b 2S 2=(a ﹣b )2=a 2+b 2﹣2ab ,∴2ab =S 1﹣S 2,∴(a +b )2=a 2+2ab +b 2=S 1+S 1﹣S 2=2S 1﹣S 2,故选:C【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.10.A解析:A【分析】设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,则由勾股定理可得222+=a b c 及正方形面积公式可得正方形F 的面积为7,同理可求解问题.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,由勾股定理可得222+=a b c ,∴由正方形的面积计算公式可得正方形F 的面积为2+5=7,同理可得正方形H 的面积为1+2=3,正方形E 的面积为7+3=10;故选A .【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理是解题的关键.11.B解析:B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM ⊥BC 于M ,DN ⊥CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒.故此选项说法正确;B 、∵DM ⊥BC ,DN ⊥CA∴∠DNC =∠DMC =90°,∵CD 平分∠ACB ,∴∠DCN =∠DCM =45°.∴∠DCN =∠CDN =45°.∴CN=DN .则△CDN 是等腰直角三角形.同理可证:△CDM 也是等腰直角三角形,∴=.,∴DM=DN= CM=CN ,∠MDN =90°.∵DE 垂直平分AB ,∴BD=AD ,AB=2BE .∴Rt △BDM ≌△ADN ,∴∠BDM=∠AND .∴∠BDM+∠ADM =∠AND+∠ADM =∠MDN .∴∠ADB=90°.∴=.即.∵在Rt △AND 中,AD 是斜边,DN 是直角边,∴AD >DN.∴2BE >CD .故此选项说法错误.C 、∵BD=AD ,∠ADB=90°,∴△ABD 是等腰直角三角形.∴DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∴AC=12AB . ∴DE=AC .故此选项说法正确.D 、∵Rt △BDM ≌△ADN ,∴BM=AN .∴CN=AC+AN=AC+BM=CM .∴BC=BM+CM=AC+2BM .∵, ∴.∵AC=12AB , ∴12AB+BC .故此选项说法正确. 故选:B .【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.12.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,,所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒.因此AFB ≌()AEC ASA △,所以CE BF =.故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD , 因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==.故②正确.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =,又在Rt FBE △中,22222CE BE BF BE FE +=+=又AEF △是以EF 为斜边的等腰直角三角形,所以22EF 2AE =因此,222CE BE 2AE +=.故④正确.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积. 二、填空题13.或或【分析】设点C 的坐标为先根据两点之间的距离公式可得的值再根据全等三角形的性质建立方程组解方程组即可得【详解】设点C 的坐标为由题意分以下两种情况:(1)当时则即解得或则此时点C 的坐标为或(与点B 重 解析:(2,1)-或(3,1)-或(3,1)【分析】设点C 的坐标为(,)C a b ,先根据两点之间的距离公式可得2222,,,AC OC AB OB 的值,再根据全等三角形的性质建立方程组,解方程组即可得.【详解】设点C 的坐标为(,)C a b , (5,0),(0,0),(2,1)A O B ,222(5)AC a b ∴=-+,222OC a b =+,222(25)(10)10AB =-+-=,222(20)(10)5OB =-+-=,由题意,分以下两种情况:(1)当AOC AOB ≅时,则,AC AB OC OB ==,2222,AC AB OC OB ∴==,即2222(5)105a b a b ⎧-+=⎨+=⎩, 解得21a b =⎧⎨=-⎩或21a b =⎧⎨=⎩, 则此时点C 的坐标为(2,1)C -或(2,1)C (与点B 重合,不符题意,舍去);(2)当OAC AOB ≅时,则,AC OB OC AB ==,2222,AC OB OC AB ∴==,即2222(5)510a b a b ⎧-+=⎨+=⎩, 解得31a b =⎧⎨=-⎩或31a b =⎧⎨=⎩, 则此时点C 的坐标为(3,1)C -或(3,1)C ;综上,点C 的坐标为(2,1)-或(3,1)-或(3,1),故答案为:(2,1)-或(3,1)-或(3,1).【点睛】本题考查了两点之间的距离公式、全等三角形的性质、利用平方根解方程等知识点,熟练掌握全等三角形的性质,并正确分两种情况讨论是解题关键.14.【分析】作AD ⊥OB 于D 则∠ADB =90°OD =1AD =3OB =3得出BD =2由勾股定理求出AB 即可;由题意得出AC+BC 最小作A 关于y 轴的对称点连接交y 轴于点C 点C 即为使AC+BC 最小的点作轴于E 解析:513+【分析】作AD ⊥OB 于D ,则∠ADB =90°,OD =1,AD =3,OB =3,得出BD =2,由勾股定理求出AB 即可;由题意得出AC+BC 最小,作A 关于y 轴的对称点A ',连接A B '交y 轴于点C ,点C 即为使AC+BC 最小的点,作A E x '⊥轴于E ,由勾股定理求出A B ',即可得出结果.【详解】解:作AD ⊥OB 于D ,如图所示:则∠ADB =90°,OD =1,AD =3,OB =3,∴BD =3﹣1=2,∴AB 222+3=13要使△ABC 的周长最小,AB 一定,则AC+BC 最小,作A 关于y 轴的对称点A ',连接A B '交y 轴于点C ,点C 即为使AC+BC 最小的点,作A E x '⊥轴于E ,由对称的性质得:AC =A C ',则AC+BC =A B ',A E '=3,OE =1,∴BE=4,由勾股定理得:A B'5=,∴△ABC..【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.15.【分析】根据数轴上两点的中点求法即两数和的一半直接求出即可【详解】解:设点C所表示的数为c则解得:故答案为:【点睛】此题主要考查了数轴上两点之间中点求法我们把数和点对应起来也就是把数和形结合起来二者解析:-2【分析】根据数轴上两点的中点求法,即两数和的一半,直接求出即可.【详解】解:设点C所表示的数为c,则1-=解得:2-+故答案为:2-【点睛】此题主要考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.16.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x=11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】<,解:∵12∴1,10+1=11,即x=11,∴10∴101011﹣1,即y1,∴x ﹣y =111)=111=12∴x ﹣y 的相反数为﹣(1212.12.【点睛】在1~2之间.17.5【分析】先求出b=16再代入根据立方根的定义即可解答【详解】解:∵的算术平方根为∴b=16∴∴∴a=5故答案为5【点睛】本题考查算术平方根的定义和立方根的定义熟知定义是解题关键解析:5【分析】先求出b=16,再代入3109b a =-,根据立方根的定义即可解答.【详解】解:∵b 的算术平方根为4,∴b=16,∴316109a =-,∴3125a =,∴a =5.故答案为5.【点睛】本题考查算术平方根的定义和立方根的定义,熟知定义是解题关键.18.【分析】先设CE=x 再根据图形翻折变换的性质得出AE=BE=8-x 再根据勾股定理求出x 的值进而可得出的值【详解】解:设CE=x 则AE=8-x ∵△BDE 是△ADE 翻折而成∴AE=BE=8-x 在Rt △B 解析:724【分析】先设CE =x ,再根据图形翻折变换的性质得出AE =BE =8-x ,再根据勾股定理求出x 的值,进而可得出CE CB的值. 【详解】 解:设CE =x ,则AE =8-x ,∵△BDE 是△ADE 翻折而成,∴AE =BE =8-x ,在Rt △BCE 中,BE 2=BC 2+CE 2,即(8-x )2=62+x 2,解得x =74,∴CECB =746=724,故答案为:7 24.【点睛】本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.19.5【分析】由题意先根据勾股定理求出OB的长再根据梯子的长度不变求出OD的长根据BD=OD-OB即可得出结论【详解】解:∵Rt△OAB中AB=25mAO=2m∴;同理Rt△OCD中∵CD=25mOC=解析:5【分析】由题意先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.【详解】解:∵Rt△OAB中,AB=2.5m,AO=2m,∴ 1.5OB m;同理,Rt△OCD中,∵CD=2.5m,OC=2-0.5=1.5m,∴2OD m,∴BD=OD-OB=2-1.5=0.5(m).答:梯子底端B向外移了0.5米.故答案为:0.5.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,解题的关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.20.【分析】根据勾股定理可计算出OB的长度即点P在数轴正半轴表示的数【详解】解:在Rt△OAB中∵OA=2OB=3;∴OB=;∴以点O为圆心OB为半径与正半轴交点P表示的数为故答案为:【点睛】本题考查勾【分析】根据勾股定理可计算出OB的长度,即点P在数轴正半轴表示的数.【详解】解:在Rt△OAB中∵OA=2,OB=3;∴OB=22222313OA OB +=+=;∴以点O 为圆心,OB 为半径与正半轴交点P 表示的数为13.故答案为:13.【点睛】本题考查勾股定理的应用及数轴上点的坐标的表示,根据题意先计算OB 的长度,注意以点O 为圆心以13为半径画弧与数轴由两个交点即13和-13,题目要求与数轴正半轴交点即可得解.三、解答题21.见解析【分析】方法1:用方向和距离表示;方法2:用有序实数对(a ,b )表示.【详解】解:方法一:点B 位于点A 的北偏东45°方向,距离A 点32(或18).方法二:以点A 为原点建立平面直角坐标系,则点B 坐标为(3,3).【点睛】本题考查了确定物体位置的两种方法.无论运用哪种方法表示一个点在平面中的位置,都要用两个数据才能表示.22.(1)见解析;(2)①(1,2)C ;②图见解析,(2,1)D --【分析】(1)根据点A 、B 坐标即可建立坐标系;(2)①由(1)中所作图形即可得;②根据平移的定义作图可得.【详解】(1)建立平面直角坐标系如图所示:(2)①所画图形如图所示,点C 的坐标为(1,2);②如图所示,线段CD 即为所求,点D的坐标为(-2,-1).【点睛】本题主要考查了坐标与图形的性质及平移变换作图,解题关键是根据题意建立直角坐标系,然后根据平移规律找出平移后的对应点.23.1-.【分析】二次根式的混合运算,先算乘除,然后算加减.【详解】(2-+(45)=-3545=--+1=-.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(1)212)9【分析】(1)按照题中给出的形式直接求解即可;(2)结合(1)中总结出的规律,逐项化简,再求和即可.【详解】解:(12===,==--故答案为:21-(2)原式1)...=++++11019==-=【点睛】本题主要考查二次根式分母有理化,能够根据题目所给出的方法进行二次根式的分母有理化是解题关键.25.2秒【分析】设P、Q两点运动x秒时,P、Q两点间的距离是210厘米,先利用勾股定理求出AC的长度,得到AP=2x厘米,CQ=x厘米,CP=(10﹣2x)厘米,再利用勾股定理得到(10﹣2x)2+x2=(210)2求出x的值.【详解】解:设P、Q两点运动x秒时,P、Q两点间的距离是210厘米.在△ABC中,∠C=90°,BC=5厘米,AB=55厘米,∴AC=2222-=-=10(厘米),AB BC(55)5∴AP=2x厘米,CQ=x厘米,CP=(10﹣2x)厘米,在Rt△CPQ内有PC2+CQ2=PQ2,∴(10﹣2x)2+x2=(210)2,整理得:x2﹣8x+12=0,解得:x=2或x=6,当x=6时,CP=10﹣2x=﹣2<0,∴x=6不合题意舍去.∴P、Q两点运动2秒时,P、Q两点间的距离是210厘米.【点睛】此题考查勾股定理,动点问题与几何图形,熟练掌握勾股定理的计算公式并运用解决问题是关键.26.见解析【分析】连接AM得到三个直角三角形,运用勾股定理分别表示出AD²、AM²、BM²进行代换就可以最后得到所要证明的结果.【详解】证明:连接MA,∵MD⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M为BC中点,∴BM=MC.∴AD2=AC2+BD2【点睛】本题考查了勾股定理,三次运用勾股定理进行代换计算即可求出结果,另外准确作出辅助线也是正确解出的重要因素.。
【浙教版】八年级数学上期中试题及答案(3)
![【浙教版】八年级数学上期中试题及答案(3)](https://img.taocdn.com/s3/m/a06a23f26edb6f1afe001f3d.png)
一、选择题1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,…,按这样的运动规律,第2021次运动后,动点2021P 的纵坐标是( )A .1B .2C .2-D .0 2.点A (3,4)关于x 轴的对称点的坐标为( ) A .(3,﹣4)B .(﹣3,﹣4)C .(﹣3,4)D .(﹣4,3) 3.平面直角坐标系中,点P (-2,1)关于y 轴对称点P 的坐标是( ) A .()2,1-B .()2,1-C .()2,1--D .()2,1 4.在平面直角坐标系中,若0a <,则点(﹣2,﹣a )的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 5.下列计算正确的是( ) A .32221=B 1025=C 325=D (4)(2)22-⨯-6.193的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间 7.下列选项中,属于无理数的是( )A .πB .227-C 4D .08.一个正方体的水晶砖,体积为380cm ,它的棱长大约在( )A .45cm cm -之间B .67cm cm -之间C .78cm cm -之间D .89cm cm -之间 9.已知一个直角三角形三边的平方和为800,则这个直角三角形的斜边长为( ) A .20B .40C .80D .100 10.已知Rt ABC 中,A ∠,B ,C ∠的对边分别为a 、b 、c ,若90B ∠=︒,则( ).A .222b a c =+B .222c a b =+C .222a b c =+D .a b c +=11.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB长度为1尺.将它往前水平推送10尺时,即A C'=10尺,则此时秋千的踏板离地距离A D'就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA长为()A.13.5尺B.14尺C.14.5尺D.15尺12.为准备一次大型实景演出,某旅游区划定了边长为12m的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O为中心,A,B,C,D是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l上与点O相距14m处.该喷泉喷出的水流落地半径最大为10m,为避免演员被喷泉淋湿,需要调整的定位点的个数是()A.1个B.2个C.3个D.4个二、填空题13.如图,在平面直角坐标系中,以A(2,0),B(0,1)为顶点作等腰直角三角形ABC (其中∠ABC=90°,且点C落在第一象限),则点C关于y轴的对称点C'的坐标为______.14.已知两点A(-2,m),B(n,-4),若AB//y轴,且AB=5,则m=_______;n=_______________.15.下列说法:①无理数就是开方开不尽的数;②满足﹣2<x <5的x 的整数有4个;③﹣3是81的一个平方根;④不带根号的数都是有理数;⑤不是有限小数的不是有理数;⑥对于任意实数a ,都有2a =a .其中正确的序号是_____.16.下列各式:①a a b b =;②a a b b=;③21633b ab a a =(a >0,b≥0);④3a a a -=--,其中一定成立的是________(填序号).17.若3109,b a =-且b 的算术平方根为4,则a =__________.18.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.19.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的是________________.20.如图,以Rt ABC △的三边为边长分别向外作正方形,若斜边5AB =,则图中阴影部分的面积123S S S ++=________.三、解答题21.已知:如图所示.(1)作出△ABC 关于y 轴对称的A B C '''∆并写出A B C '''∆三个顶点的坐标;(2)在x 轴上画出点P ,使PA+PC 最小.22.如图,在平面直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.(1)作出ABC 关于y 轴的对称图形A B C ''';(2)写出点A ',B ',C '的坐标;(3)在y 轴上找一点P ,使PA PC +最短(不写作法).23.已知2x +3的算术平方根是5,5x +y +2的立方根是3,求x ﹣2y +10的平方根. 24.38642--.25.《九章算术》中有“折竹抵地”问题:今有竹高一丈,末折抵地,去根七尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处距竹子底端7尺远,问折断处离地面的高度是多少尺?26.如图,在四边形ABCD 中, 45,ABC ADC ∠=∠=︒将BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)求证:AE BD ⊥;(2)若1,2AD CD ==,试求四边形ABCD 的对角线BD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环,进而可得经过第2021次运动后,动点P 的坐标.【详解】观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,-2),第4次接着运动到点(4,0),第5次接着运动到点(5,2),第6次接着运动到点(6,0),第7次接着运动到点(7,1),…,按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环,所以2021÷6=336…5,所以经过第2021次运动后,动点P的坐标是(2021,2).故选:B.【点睛】本题考查了规律型-点的坐标,解决本题的关键是观察点的坐标变化寻找规律.2.A解析:A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,-y),得出即可.【详解】点A(3,4)关于x轴对称点的坐标为:(3,-4).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.D解析:D【分析】直接利用关于y轴对称点的特点得出答案.【详解】点P(﹣2,1)关于y轴对称点P的坐标是:(2,1).故选D.【点睛】此题主要考查了关于y轴对称点的特点,正确记忆横纵坐标的符号是解题关键.4.B解析:B【分析】根据各象限的点的坐标特征解答.【详解】解:∵a<0,∴-a>0,∴点(-2,-a)在第二象限.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.D解析:D【分析】二次根式的混合运算,加减法的基础是同类二次根式;除法运算按照法则进行,二次根式的化简,先乘后化简即可.【详解】∵=∴选项A错误;∵2=,2∴选项B错误;∵∴选项C错误;∵∴选项D正确.故选D.【点睛】本题考查了二次根式的混合运算,熟记二次根式混合运算的基本法则,特别是同类二次根式是加减运算的基础是解题的关键.6.C解析:C【分析】先根据19位于两个相邻平方数16和25【详解】解:由于16<19<25,<<,所以45<<,因此738故选:C.【点睛】本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.A解析:A根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.8.A解析:A【分析】【详解】解:∵正方体的水晶砖,体积为380cm,∴3,∵<<∴45<<,故选:A.【点睛】本题考查了立方根的估算,找到两个连续整数的立方,一个大于80,一个小于80是解题关键.9.A解析:A【分析】直角三角形中两直角边的平方和等于斜边的平方,已知三边的平方和可以求出斜边的平方,根据斜边的平方可以求出斜边长.【详解】解:∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为800,则斜边的平方为三边平方和的一半,即斜边的平方为,800÷2=400,∴斜边长,故选:A.【点睛】本题考查了勾股定理在直角三角形中的灵活应用,考查了勾股定理的定义,本题中正确计算斜边长的平方是解题的关键.10.A解析:A【分析】先根据题意画出图形,再根据勾股定理即可得.【详解】由题意,画出图形如下:由勾股定理得:222b a c =+,故选:A .【点睛】本题考查了勾股定理,依据题意,正确画出图形是解题关键.11.C解析:C【分析】设绳索有x 尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x 尺长,则102+(x+1-5)2=x 2,解得:x=14.5.故绳索长14.5尺.故选:C .【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.12.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0)则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;=,不需调整;=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.二、填空题13.【分析】过点C 向y 轴引垂线CD 利用△OAB ≌△DBC 确定DCDO 的长度即可确定点C 的坐标对称坐标自然确定【详解】如图过点C 作CD ⊥y 轴垂足为D ∵∠ABC=90°∴∠DBC+∠OBA=90°∵∠OAB解析:()1,3-【分析】过点C 向y 轴,引垂线CD ,利用△OAB ≌△DBC ,确定DC ,DO 的长度,即可确定点C 的坐标,对称坐标自然确定.【详解】如图,过点C 作CD ⊥y 轴,垂足为D ,∵∠ABC=90°,∴∠DBC+∠OBA=90°,∵∠OAB+∠OBA=90°,∴∠DBC=∠OAB ,∵AB=BC ,∠BDC=∠AOB=90°∴△OAB ≌△DBC ,∴DC=OB ,DB=OA ,∵A (2,0),B (0,1)∴DC=OB=1,DB=OA=2,∴OD=3,∴点C (1,3),∴点C 关于y 轴的对称点坐标为(-1,3),故答案为:(-1,3).【点睛】本题考查了点的坐标及其对称点坐标的确定,熟练分解点的坐标,利用三角形全等,把坐标转化为线段的长度计算是解题的关键.14.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值.【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5,∴2n =-,()45m --=,∴9m =-或1,故答案为:9-或1;2-.【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.15.②③【分析】根据有理数无理数实数的意义逐项进行判断即可【详解】解:①开方开不尽的数是无理数但是有的数不开方也是无理数如:π等因此①不正确不符合题意;②满足﹣<x <的x 的整数有﹣1012共4个因此②正 解析:②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;②2<x 5x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意; ③﹣3是9819,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提. 16.②③④【分析】根据二次根式的性质及运算法则逐项分析即可【详解】①时原式成立否则不成立如:故不一定;②一定成立因为成立时一定满足;③当时故一定成立;④当成立时则故一定成立;故答案为:②③④【点睛】本题解析:②③④【分析】根据二次根式的性质及运算法则逐项分析即可.【详解】①00,a b ≥>≠,故不一定;=00,a b ≥>;③当00,a b >≥333b a a aa ===,故一定成立; ④3a 成立时,0a ≤3a a a a a ,故一定成立; 故答案为:②③④.【点睛】本题考查二次根式的性质以及乘除远算法则,熟练掌握基本性质计算法则是解题关键. 17.5【分析】先求出b=16再代入根据立方根的定义即可解答【详解】解:∵的算术平方根为∴b=16∴∴∴a=5故答案为5【点睛】本题考查算术平方根的定义和立方根的定义熟知定义是解题关键解析:5【分析】先求出b=16,再代入3109b a =-,根据立方根的定义即可解答.【详解】解:∵b 的算术平方根为4,∴b=16,∴316109a =-,∴3125a =,∴a =5.故答案为5.【点睛】本题考查算术平方根的定义和立方根的定义,熟知定义是解题关键.18.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴ 解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度.【详解】解:如图,连接AE ,设CE x =, ∵点D 是线段AB 的中点,且DE AB ⊥,∴DE 是AB 的垂直平分线,∴3AE BE BC CE x ==+=+,∴在Rt ACE 中,222AE AC CE =+,即()22234x x +=+, 解得76x =. 故答案为:76. 【点睛】 本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.19.①②③【分析】①由条件证明△ABD ≌△ACE 就可以得到结论;②由△ABD ≌△ACE 就可以得出∠ABD=∠ACE 就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°由∠解析:①②③【分析】①由条件证明△ABD ≌△ACE ,就可以得到结论;②由△ABD ≌△ACE 就可以得出∠ABD=∠ACE ,就可以得出∠BDC=90°而得出结论; ③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论; ④△BDE 为直角三角形就可以得出BE 2=BD 2+DE 2,由△DAE 和△BAC 是等腰直角三角形就有DE 2=2AD 2,BC 2=2AB 2,就有BC 2=BD 2+CD 2≠BD 2就可以得出结论.【详解】解:①∵∠BAC=∠DAE ,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE .在△ABD 和△ACE 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴BD=CE .故①正确;∵△ABD ≌△ACE ,∴∠ABD=∠ACE .∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°-90°=90°.∴BD ⊥CE ;故②正确;③∵∠BAC=90°,AB=AC ,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③正确;④∵BD ⊥CE ,∴BE 2=BD 2+DE 2.∵∠BAC=∠DAE=90°,AB=AC ,AD=AE ,∴DE 2=2AD 2,BC 2=2AB 2.∵BC 2=BD 2+CD 2≠BD 2,∴2AB 2=BD 2+CD 2≠BD 2,∴BE 2≠2(AD 2+AB 2).故④错误.故答案为:①②③.【点睛】本题考查了全等三角形的性质和判定的应用,垂直的性质和判定的应用,等腰直角三角形的性质的应用,勾股定理的应用,能利用全等三角形的性质和判定求解是解此题的关键. 20.50【分析】根据勾股定理可得AC2+BC2=AB2然后判断出阴影部分的面积=2S1再利用正方形的面积等于边长的平方计算即可得解【详解】∵△ABC 是直角三角形∴AC2+BC2=AB2∵图中阴影部分的面解析:50【分析】根据勾股定理可得AC 2+BC 2=AB 2,然后判断出阴影部分的面积=2S 1,再利用正方形的面积等于边长的平方计算即可得解.【详解】∵△ABC 是直角三角形,∴AC 2+BC 2=AB 2,∵图中阴影部分的面积123S S S ++=2S 1=2⨯52=50,故答案为:50.【点睛】本题考查了勾股定理及正方形面积公式的运用.关键是明确直角三角形的边长的平方即为相应的正方形的面积.三、解答题21.(1)如图见解析,A'(-1,2),B'(-3,1),C'(-4,3);(2)点P 如图所示.见解析.【分析】(1)写出点A 、B 、C 关于y 轴对称的对应点A′、B′、C′的坐标,然后描点即可;(2)作C 点关于x 轴的对称点C″,连接AC″交x 轴于点P ,则PC″=PC ,利用两点之间线段最短可判断此时PA+PC 最小.【详解】解:(1)如图,△A′B′C′为所作,△A′B′C′三个顶点的坐标分别为(-1,2),(-3,1),(-4,3);(2)如图,点P 为所作.【点睛】本题考查了作图-轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.(1)见解析;(2)(1,5)A ',(1,0)B ',3)(4,C ';(3)见解析【分析】(1)根据轴对称的性质确定点,,A B C ''',顺次连线即可得到图形;(2)根据点的位置直接得解;(3)连接AC '与y 轴交于一点即为点P ,连接PC ,此时AP+PC 最短.【详解】解:(1)如图所示,A B C '''为所求作.(2)由图可得,(1,5)A ',(1,0)B ',4,3)C '.(3)如图所示,点P 即为所求作.【得解】此题考查轴对称的性质,轴对称作图,点的坐标,最短路径问题,正确理解轴对称的性质作出图形是解题的关键.23.±9【分析】根据立方根与算术平方根的定义得到5x +y +2=27,2x +3=25,则可计算出x =11,y =﹣30,然后计算x ﹣2y +10后利用平方根的定义求解.【详解】解:因为2x +3的算术平方根是5,5x +y +2的立方根是3,∴23255227x x y +=⎧⎨++=⎩解得:1130x y =⎧⎨=-⎩, ∴x ﹣2y +10=81,∴x ﹣2y +10的平方根为:819=±.【点睛】本题主要考查了算术平方根,平方根与立方根,熟记相关定义是解答本题的关键. 24.4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.25.55尺.【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:x 2+72=(10﹣x )2,解得:x =2.55,∴折断处离地面的高度为2.55尺.【点睛】此题考查勾股定理的实际应用,正确理解题意构建直角三角形利用勾股定理求解是解题的关键.26.(1)见解析;(2)3BD =.【分析】()1证明:由BCD 绕点C 顺时针旋转到ACE △,利用旋转性质得BC=AC ,12∠=∠,由∠ABC =45º,可知∠ACB=90º,由1390∠+∠=︒,可证2490∠+∠=︒ 即可, ()2解:连DE ,由BCD ∆绕点C 顺时针旋转到ACE ∆,得BCD ACE ∠=∠,CD=CE=2,BD=AE ,利用等式性质得90DCE ACB ∠=∠=︒,∠CDE=45º,利用勾股定理,由∠ADC=45º可得∠ADE=90º,由勾股定理可求AE 即可.【详解】()1证明:BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △, ,12BC AC ∴=∠=∠,45,ABC BAC ∴∠=∠=︒18090,ACB ABC BAC ∴∠=︒∠∠=︒--1390,∴∠+∠=︒又34,∠=∠241390,∴∠+∠=∠+∠=︒1802490,ANM ∴∠=︒-∠-∠=︒即AE BD ⊥,()2解:连DE ,BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到,ACEBCD ACE ∴∠=∠,即,2,ACB ACD DCE ACD CD CE BD AE ∠+∠=∠+∠===,90,DCE ACB ∴∠=∠=︒2222228,DE CD CE ∴=+=+=又90,2,DCE CD CE ∠=︒==45,CDE ∴∠=︒90,ADE ADC CDE ∴∠=∠+∠=︒ ()2222183AE AD DE ∴=+=+=,3BD ∴=.【点睛】本题考查旋转的性质和勾股定理问题,关键是掌握三角形旋转的性质与勾股定理知识,会利用三角形旋转性质结合∠ABC=45º证∠ACB=90º,利用余角证AE ⊥BD ,利用等式性质证∠DCE=90º,利用勾股定理求DE ,结合∠ADC=45º证Rt △ADE,会用勾股定理求AE 使问题得以解决.。
【浙教版】八年级数学上期中试题带答案(3)
![【浙教版】八年级数学上期中试题带答案(3)](https://img.taocdn.com/s3/m/b87ab80a998fcc22bdd10d3d.png)
一、选择题1.已知A ,B 两点关于x 轴对称,若点A 坐标为(2,-3),则点B 的坐标是( ) A .(2,-3)B .(-2,3)C .(-2,-3)D .(2,3) 2.如图,若象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点( )A .(1,-1)B .(-1,1)C .(-1,2)D .(1,-2) 3.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018,2)B .(2019,0)C .(2019,1)D .(2019,2)4.如图,在48⨯的长方形网格OABC 中,动点(0,3)P 从出发,沿箭头所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P 第2020次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(5,0)C .(6,4)D .(8,3) 5.一个边长为bcm 的正方形的面积与一个长为8cm 、宽为5cm 的长方形的面积相等,则b 的值在( )A .3与4之间B .4与5之间C .5与6之间D .6与7之间 6.132252的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间7.在实数3.14,227-,-9,1.7,5,0,-π中,无理数有( ) A .2个 B .3个 C .4个 D .5个8.下列数中,比3大的实数是( )A .﹣5B .0C .3D .29.学习勾股定理后,老师布置的课后作业为“利用绳子(绳子足够长)和卷尺,测量学校教学楼的高度”,某数学兴趣小组的做法如下:①将绳子上端固定在教学楼顶部,绳子自由下垂,再垂直向外拉到离教学楼底部3m 远处,在绳子与地面的交点处将绳子打结;②将绳子继续往外拉,使打结处离教学楼的距离为6m ,此时测得绳结离地面的高度为 1m ,则学校教学楼的高度为( )A .11 mB .13 mC .14 mD .15 m10.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C .2252cm 2D .225cm 11.如图,已知ABC 中,45ABC ∠=︒,F 是高AD 和BE 的交点,5AC =,2BD =,则线段DF 的长度为( )A .2B .2C 3D .1 12.在平面直角坐标系中,点P(1-,3)到原点的距离是( ) A 10B .4 C .22D .2二、填空题13.已知点()2 6,2P m m -+.(1)若点P 在y 轴上,P 点的坐标为______.(2)若点P 的纵坐标比横坐标大6,则点P 在第______象限.(3)若点P 在过点()2,3A 且与x 轴平行的直线上,则点P 的坐标为______.(4)点P 到x 轴、y 轴的距离相等,则点P 的坐标为______.14.在平面直角坐标系中,(0,1)A 、(0,2)B 、(2,3)C ,则ABC ∆的面积为______. 15.如果2|3|0a b ++-=,那么b a =________.16.若236A ⨯=,则A =_____________.17.化简4102541025-++++=_______.18.如图,一架长2.5m 的梯子斜靠在垂直的墙AO 上,这时AO 为2m .如果梯子的顶端A 沿墙下滑0.5m ,那么梯子的底端B 向外移动_________m .19.如图所示,△ABC 的顶点A 、B 、C 在边长均为1的正方形网络的格点上,BD ⊥AC 于D ,则BD 的长=_____.20.直角三角形的两边长分别为5和3,该三角形的第三边的长为________.三、解答题21.如图,在平面直角坐标系xoy 中,(15)A -,,()10B -,,(43)C -,.(1)在图中作出ABC 关于y 轴的对称图形111A B C △;(2)若以线段AB 为一边作格点△ABD ,使所作的△ABD 与△ABC 全等,则所有满足条件的点D 的坐标是 .22.已知:A (0,1),B (2,0),C (4,3)(1)在坐标系中描出各点,画出△ABC ;(2)求△ABC 的面积;(3)设点P 在y 轴上,且△APB 与△ABC 的面积相等,求P 的坐标.23.计算.(1)503288⨯-; (2)1123273-+. 24.计算: (1)148312+242÷-⨯ (2)已知|2﹣a|+2b -=0,求a 2﹣22a +2+b 2的值.25.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是多少?26.定义:如果一个三角形中有两个内角α,β满足290αβ+=︒,那我们称这个三角形为“近直角三角形”.(1)若ABC 是“近直角三角形”,90B ∠>︒,50C ∠=︒,则A ∠=_____度;(2)如图,在Rt ABC △中,90BAC ∠=︒,3AB =,4AC =.若CD 是ACB ∠的平分线,①求证:BDC 是“近直角三角形”;②求BD 的长.(3)在(2)的基础上,边AC 上是否存在点E ,使得BCE 也是“近直角三角形”?若存在,直接写出....CE 的长;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数即可得答案.【详解】∵A ,B 两点关于x 轴对称,点A 坐标为(2,-3),∴点B 坐标为(2,3),故选:D .【点睛】本题考查了关于x 轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数.2.B解析:B【解析】试题分析:先利用“象”所在点的坐标画出直角坐标系,然后写出“炮”所在点的坐标即可. 解:如图,“炮”位于点(﹣1,1).故选B .考点:坐标确定位置.3.D解析:D【分析】分析点P的运动规律,找到循环次数即可.【详解】解:分析图象可以发现,点P的运动每4次纵坐标循环一次,横坐标等于运动的次数,∴2019=4×504+3,当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2),故选:D.【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.4.B解析:B【分析】根据入射角与反射角的定义作出图形,可知每6次反弹为一个循环组,依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),÷=,∵202063364∴当点P第2020次碰到矩形的边时的坐标与点P第4次反弹碰到矩形的边时的坐标相同,∴点P的坐标为(5,0),故选:B.【点睛】此题考查了直角坐标系中点的坐标的表示方法,动点的运动规律,正确理解题中点的运动变化规律得到点的坐标的规律是解题的关键.5.D解析:D【分析】由于边长为bcm 的正方形的面积与长、宽分别为8cm 、5cm 的长方形的面积相等,根据面积公式列出等量关系式,由此求出b 的值,再估计b 在哪两个整数之间即可解决问题.【详解】解:∵边长为bcm 的正方形的面积与长、宽分别为8cm 、5cm 的长方形的面积相等, ∴b 2=5×8=40,,∵36<40<49,∴67.故选:D .【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6.D解析:D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】解:原式4=== ∵34<<, ∴748<<,故选:D .【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式. 7.A解析:A【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案.【详解】3=-,∴3.14,227-,- 1.7,0都是有理数,5, -π是无理数,共2个,故选:A .【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,5,0.8080080008…(每两个8之间依次多1个0)等形式.8.C解析:C【详解】3 1.732≈ ,A,B,D 选项都比1.732小,只有3>3.故选C.9.C解析:C【分析】根据题意画出示意图,设学校教学楼的高度为x ,可得AC AD x ==,()1AB x m =-,6BC m =,利用勾股定理可求出x .【详解】解:如图,设学校教学楼的高度为x ,则AD x =,()1AB x m =-,6BC m =,左图,根据勾股定理得,绳长的平方223x =+,右图,根据勾股定理得,绳长的平方()2216x =-+,∴()2222316x x +=-+, 解得:14x =.故选:C .【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.10.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,CD=BD=102=EM ,∴EG=GM=52,∴EF=FG=5,∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.11.D解析:D【分析】先证明△BDF ≌△ADC ,得到5【详解】解:∵AD 和BE 是△ABC 的高线,∴∠ADB=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠CAD+∠C=90°, ∴∠DBF=∠CAD ,∵45ABC ∠=︒,∴∠BAD=45°,∴BD=AD ,∴△BDF ≌△ADC ,∴5在Rt △BDF 中,()2222521BF BD -=-=.故选:D【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,证明△BDF ≌△ADC 是解题关键.12.A解析:A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=故选A .【点睛】本题主要考查平面直角坐标系中,两点间的距离公式,掌握“若A(x 1,y 1),B(x 2,y 2),则”,是解题的关键.二、填空题13.(1);(2)二;(3);(4)或【分析】(1)y 轴上点的坐标特点是横坐标为0据此求解可得;(2)由题意可列出等式2m-6+6=m+2求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等根据这个解析:(1)()0,5;(2)二;(3)()4,3-;(4)()10,10或1010,33⎛⎫-⎪⎝⎭ 【分析】(1)y 轴上点的坐标特点是横坐标为0,据此求解可得;(2)由题意可列出等式2m-6+6=m+2,求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等,根据这个性质即可求解. (4)点P 到x 轴、y 轴的距离相等,所以点P 的横坐标与纵坐标相等或互为相反数,据此可解.【详解】解:(1)∵点P 在y 轴上,∴2m-6=0,解得m=3,∴P 点的坐标为(0,5);故答案为(0,5);(2)根据题意得2m-6+6=m+2,解得m=2,∴P 点的坐标为(-2,4),∴点P 在第二象限;故答案为:二;(3)∵点P 在过A (2,3)点且与x 轴平行的直线上,∴点P 的纵坐标为3,∴m+2=3,∴m=1,∴点P 的坐标为(-4,3).故答案为:(-4,3);(4)∵点P 到x 轴、y 轴的距离相等,∴2m-6=m+2或2m-6+ m+2=0,∴m=8或m=43, ∴点P 的坐标为()10,10或1010,33⎛⎫-⎪⎝⎭. 故答案为:()10,10或1010,33⎛⎫-⎪⎝⎭. 【点睛】 本题考查平面直角坐标系中点的特点;熟练掌握平面直角坐标系中坐标轴上点的特点,与坐标轴平行的直线上点的特点是解题的关键.14.【分析】在坐标系内描出各点再顺次连接即可计算出△ABC 的面积【详解】解:在平面直角坐标系中画出ABC 三点的坐标如下图所示:则故答案为1【点睛】本题考查了三角形的面积坐标和图形的性质正确描出各点坐标画 解析:1【分析】在坐标系内描出各点,再顺次连接,即可计算出△ABC 的面积.【详解】解:在平面直角坐标系中画出A 、B 、C 三点的坐标,如下图所示:则11==12=122∆⨯⨯⨯⨯ABC S AB CH , 故答案为1.【点睛】本题考查了三角形的面积,坐标和图形的性质,正确描出各点坐标画出图形是解题的关键.15.【分析】因为一个数的算术平方根为非负数一个数的绝对值为非负数由几个非负数的和为零要求每一项都为零即=0∣b-3∣=0由此求出ab 即可解答【详解】解:∵∴=0∣b-3∣=0∴∴故答案为:-8【点睛】本解析:8-【分析】因为一个数的算术平方根为非负数,一个数的绝对值为非负数,由几个非负数的和为零,=0,∣b -3∣=0,由此求出a 、b 即可解答.【详解】解:∵|3|0b -=, ∴=0,∣b -3∣=0,∴2a =-,3b =, ∴()328b a =-=-.故答案为:-8.【点睛】本题考查了算术平方根和绝对值的非负性,整数指数幂,求出a ,b 的值是解题关键. 16.【分析】利用实数的除法法则计算即可【详解】解:∵∴A=故答案为:【点睛】本题主要考查了实数的运算熟练掌握实数的除法法则是解题关键解析:【分析】利用实数的除法法则计算即可.【详解】解:∵A =∴A==故答案为:【点睛】本题主要考查了实数的运算,熟练掌握实数的除法法则是解题关键. 17.【分析】设将等式的两边平方然后根据完全平方公式和二次根式的性质化简即可得出结论【详解】解:设由算术平方根的非负性可得t≥0则故答案为:【点睛】此题考查的是二次根式的化简掌握完全平方公式和二次根式的性【分析】t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+8=+=+8=+81)=+62=1)∴=.t1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.18.5【分析】由题意先根据勾股定理求出OB的长再根据梯子的长度不变求出OD的长根据BD=OD-OB即可得出结论【详解】解:∵Rt△OAB中AB=25mAO=2m∴;同理Rt△OCD中∵CD=25mOC=解析:5【分析】由题意先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.【详解】解:∵Rt△OAB中,AB=2.5m,AO=2m,∴ 1.5OB m;同理,Rt△OCD中,∵CD=2.5m,OC=2-0.5=1.5m,∴OD m,2∴BD=OD-OB=2-1.5=0.5(m).答:梯子底端B向外移了0.5米.故答案为:0.5.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,解题的关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.19.【分析】先根据勾股定理求出AC的长再利用网格的特点和三角形的面积解答即可【详解】解:如图△ABC的面积=×BC×AE=2由勾股定理得AC==则××BD=2解得BD=故答案为:【点睛】本题主要考查了勾解析:45 5【分析】先根据勾股定理求出AC的长,再利用网格的特点和三角形的面积解答即可.【详解】解:如图,△ABC的面积=12×BC×AE=2,由勾股定理得,AC=2212+=5,则12×5×BD=2,解得BD=455.故答案为:455.【点睛】本题主要考查了勾股定理和利用三角形的面积求高,属于常考题型,熟练掌握勾股定理、明确求解的方法是关键.20.或【分析】本题已知直角三角形的两边长但未明确这两条边是直角边还是斜边因此两条边中的较长边5既可以是直角边也可以是斜边所以求第三边的长必须分类讨论即5是斜边或直角边的两种情况然后利用勾股定理求解【详解解析:434【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为x,①若5是直角边,则第三边x是斜边,由勾股定理得:2253+34②若5是斜边,则第三边x为直角边,由勾股定理得:2253-所以第三边的长为434故答案为:434【点睛】本题考查勾股定理,熟练掌握勾股定理,并且分情况讨论是解题关键.三、解答题21.(1)见解析;(2)作图见解析;点D坐标为(-4,2)、(2,3)、(2,2).【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可;(2)根据网格特点和全等三角形的判定可以找到满足条件的点D.【详解】(1)画出图形如图所示;(2)如图,满足条件的点D有三个,则点D坐标(-4,2)、(2,3)、(2,2),故答案为:(-4,2)、(2,3)、(2,2).【点睛】本题考查了基本作图-轴对称变换、坐标与图形、全等三角形的判定,利用格点判断三角形全等,熟练掌握轴对称变换的画法是解答的关键.22.(1)图详见解析;(2)4;(3)点P的坐标(0,5)或(0,3)【分析】(1)确定出点A 、B 、C 的位置,连接AC 、CB 、AB 即可;(2)过点C 向x 、y 轴作垂线,垂足为D 、E ,△ABC 的面积=四边形DOEC 的面积-△ACE 的面积-△BCD 的面积-△AOB 的面积;(3)当点P 在y 轴上时,根据△ABP 的面积4=可求4AP =,即可得出点P 的坐标.【详解】解:(1)如图所示:(2)过点C 向x 、y 轴作垂线,垂足为D 、E .∴四边形DOEC 的面积3412=⨯=,△BCD 的面积12332=⨯⨯=, △ACE 的面积12442=⨯⨯=, △AOB 的面积12112=⨯⨯=. △ABC 的面积=四边形DOEC 的面积-△ACE 的面积-△BCD 的面积-△AOB 的面积; ∴123414ABC S =---=.(3)当点P 在y 轴上时,△ABP 的面积142BO AP ==,即1242AP ⨯⨯=,解得:4AP =.所以点P 的坐标为(0,5)或(0,3)-.【点睛】本题主要考查的是点的坐标与图形的性质,明确△ABC 的面积=四边形DOEC 的面积-△ACE 的面积-△BCD 的面积-△AOB 的面积是解题的关键.23.(1)22)3【分析】(1)先利用二次根式的乘除法则运算,然后化简后合并;(2)先把二次根式化为最简二次根式,然后合并即可.解:(1=﹣=(2)原式==【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a、b的值,然后将所求式子变形,再将a、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0,∴a=0,b﹣2=0,∴a,b=2,∴a2﹣a+2+b2=(a2+b2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;25.101寸取AB 的中点O ,过D 作DE ⊥AB 于E ,根据勾股定理解答即可得到结论.【详解】解:取AB 的中点O ,过D 作DE ⊥AB 于E ,如图2所示:由题意得:OA=OB=AD=BC ,设OA=OB=AD=BC=r 寸,则AB=2r (寸),DE=10寸,OE=12CD=1寸, ∴AE=(r -1)寸,在Rt △ADE 中,AE 2+DE 2=AD 2,即(r -1)2+102=r 2,解得:r=50.5,∴2r=101(寸),∴AB=101寸.【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.26.(1)20︒,(2)①见解析;②53BD =;(3)52CE =或74=CE . 【分析】(1)先判断出B 不可能是α或β,再根据条件计算即可;(2)①根据DC 平分ACB ∠,得到2ACB BCD ∠=∠,再根据90BAC ∠=︒,即可得到结果;②作DH BC ⊥交于点H ,根据勾股定理得到5AC =,证明ADC HDC △≌△,再根据勾股定理计算即可;(3)根据点E 存在的两种情况分类讨论即可;【详解】(1)B 不可能是α或β,当A α∠=时,50C β∠==︒,290αβ+=︒,不成立;故A β∠=,C α∠=,290αβ+=︒,则20β=︒,(2)①∵DC 平分ACB ∠,∴2ACB BCD ∠=∠,∵90BAC ∠=︒,∴90B ACB ∠+∠=︒,即290B BCD ∠+∠=︒.∴BCD △是“近直角三角形”.②作DH BC ⊥交于点H ,∵3AB =,4AC =,∴5AC =(勾股定理).在ADC 和HDC △中,DAC DHC ∠=∠,ACD HCD ∠=∠,DC DC =,∴ADC HDC △≌△,∴DH DA =,4AC HC ==,∴1BH =.设BD x =,则3DH x =-,在Rt BDH △中,()22231x x =-+, 得53x =,即53BD =. (3)52CE =或74=CE .如图所示,点E 在ABC ∠的角平分线上,作EF BC ⊥,设EC x =,则4AE x =-,则4EF x =-, 根据已知条件可得:3AB BF ==, ∴532FC =-=,在Rt △EFC 中, ()22242x x -+=, 52x =;在AC 上面找一点E ,连接BE ,使得ABE C ∠=∠,延长EA 至G ,使得AE=AG , 根据条件可得:△△ABG ABE ≅,∴GBA EBA C ∠=∠=∠,∵90GBA G ∠+∠=︒,∴90C G ∠+∠=︒,∴90CBG ∠=︒,设EC x =,则4AE AG x ==-, ∴()()222224385BG x x =-+=--,74x =; ∴97444CE AC AE =-=-=; ∴边AC 上存在点E ,使得BCE 也是“近直角三角形”,此时52CE =或74=CE . 【点睛】 本题主要考查了勾股定理和全等三角形的判定与性质,准确计算是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2014-2015学年第一学期期中考试
八年级数学试卷(1-8班+16班)
一、选择题(每小题3分,共30分)
1、以下列各组线段为边,能组成三角形的是( );
A.2cm 、2cm 、4cm
B.2cm 、6cm 、3cm C .8cm 、6cm 、3cm D.11cm 、4cm 、6cm
2、如图工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )
A 、两点之间线段最短;
B 、两点确定一条直线;
C 、三角形具有稳定性;
D 、长方形的四个角都是直角;
3、下列语句是命题的是( )
A .同旁内角互补
B .在线段AB 上取点
C C .作直线AB 的垂线
D .垂线段最短吗?
4、.如图,在△中,点D 是延长线上一点,
=40°,=120°, 则等于( ) A. 60° B.70° C.80° 90°
5、小明同学测量了等腰三角形的腰、底边和高的长,但他把这三个数据与其他数
据弄混了,请你帮他找来﹙ ﹚
A.13,12,12
B.12,12,8
C.13,10,12
D.5,8,4
6、如图,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线相交于点D ,过点D 作直线EF ∥BC ,交AB 于E ,交AC 于F ,图中等腰三角形的个数共有( )
A .3个
B .4个
C .5个
D .6个
7、如图,点P 是∠BAC 的平分线上一点,PB ⊥AB 于B ,且PB =5cm ,AC =12,则△APC 的面积是( )
A .30 cm 2
B .40 cm 2
C .50 cm 2
D .60 cm 2
8、如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF =5,BC =8,则△EFM 的周长是 ( )A .13 B .18 C .15 D . 21。