圆的有关概念与性质
圆的基本概念与性质

圆的基本概念与性质圆是几何学中的一个基本概念,在我们的日常生活中也经常出现。
对于圆的概念和性质,我们需要进行深入的探究。
本文将从圆的定义、圆的性质以及圆相关的计算方法等方面进行阐述。
一、圆的定义圆是由一个平面上的所有到一个固定点的距离都相等的点组成的图形。
这个固定点称为圆心,用O表示;到圆心距离相等的点与圆心之间的距离称为半径,用r表示。
圆的边界称为圆周,圆周上的任意两点与圆心之间的距离都相等。
二、圆的性质1. 圆的直径与半径圆的直径是指通过圆心的一条线段,它的两个端点都在圆上。
直径的长度等于半径的两倍,即d=2r,其中d代表直径的长度。
2. 圆的周长圆的周长是圆周的长度,通常用C表示。
周长的计算公式为C=2πr,其中π是一个数学常数,取近似值3.14。
3. 圆的面积圆的面积是指圆所包围的区域的大小,通常用A表示。
面积的计算公式为A=πr²,即圆的面积等于半径的平方乘以π。
4. 圆的弧长圆的弧长是圆周上一部分的长度,通常用L表示。
弧长的计算公式为L=2πr,其中r是弧所对应的半径,即弧长等于弧所对应的圆心角的度数除以360度再乘以周长。
5. 圆的扇形面积圆的扇形是由一个圆心角和与其所对应的弧组成的图形,通常用S 表示。
扇形的面积计算公式为S=πr²θ/360°,其中θ是圆心角的度数,r 是半径。
6. 圆的切线与法线圆上的切线是与圆周只有一个交点的直线,切线的斜率等于半径的斜率。
圆上的法线是与切线垂直,并通过圆心的直线。
三、圆的应用圆在日常生活中具有广泛的应用。
以下是几个常见的应用场景:1. 圆形运动:物体在圆周上做匀速运动时,我们可以利用圆的性质来计算物体的位移、速度、加速度等。
2. 圆的建筑:许多建筑设计中都会使用圆形的建筑物,比如圆形剧场、圆形广场等,给人以艺术美感。
3. 圆的通信:在无线通信中,天线辐射出的信号范围就是一个圆形的区域,我们可以通过圆的性质来计算信号的传播距离与强度。
圆的有关概念及性质

①形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫,线段OA叫做.②描述性定义:圆是到定点的距离等于的点的集合.定点叫,定长叫.(1)弦:连结圆上任意两点的叫做弦.(2)弧:圆上任意两点间的叫做弧,大于半圆的弧叫,小于半圆的弧叫.(3)弦心距:到的距离.(4)等圆:相等的圆叫等圆,半径和圆心都相同的圆叫.(5)等弧:在中,能够的弧叫.(6)同心圆:圆心,半径的两个圆叫同心圆.①圆心角定义:顶点在的角叫做圆心角.②圆周角定义:顶点在,并且两边都和圆的角叫圆周角.①轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴.②中心对称性:圆是中心对称图形,对称中心是.圆具有旋转性,即绕圆心旋转任意角度都与原来的图形重合.垂直于弦的直径,并且平分弦所对的.①垂径定理及其推论实质是指一条直线满足:I、过圆心;II、垂直于弦;III平分弦;IV、平分弦所对的优弧;V、平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用.②圆中常作的辅助线是过圆心作弦的线.BOCA DAB CO ⋅⋅⋅⋅M⋅DOCBA在中,如果两个圆心角、两个圆周角、两条弧、两条弧所对的弦、弦心距中有一组量,那么它们所对应的其余各组量都分别.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的.推论1.在同圆或等圆中,如果两个圆周角,那么它们所对的弧.推论2.半圆(或直弦)所对的圆周角是,900的圆周角所对的弦是.【名师提醒】:作直径所对的圆周角是直角是圆中常作的辅助线.①圆内接四边形的对角;②圆内接四边形的任意一个外角等于它的.例1:如图1,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.C.∠ACD=∠ADC D.OM=MD例2:如图2,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为.例3:如图3,AB是⊙O的弦,OC⊥AB于C.若AB=32,0C=1,则半径OB的长为.例4:如图4,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.例5:如图5,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.图4⋅OFDCEBA图5FAB CO ⋅⋅⋅⋅EAB C图6OO ⋅AB CD图7图1 图2图3BDBC=例6:如图6,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且8==CD AB , 则OP 的长为 .例7:如图7,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧上一点,则APB ∠的度数为( )例8:如图8,⊙O 是ABC ∆的外接圆,AB 是⊙O 的直径,D 为⊙O 上一点,AC OD ⊥,垂足为E ,连结BD ,032=∠A ,则=∠CBD .例9:如图9,OA ,OB 是⊙O 的两条半径,且OB OA ⊥,点C 在⊙O 上,则ACB ∠的度数为 .例10:如图10,AB 、CD 是⊙O 的两条弦,连接AD 、BC .060=∠BAD ,则B CD ∠的度数为 . 例11:如图11,在ABC ∆中,AB 为⊙O 的直径,060=∠B ,0100=∠BOD ,则C ∠的度数为 .例12:如图12,在半径为5的⊙O 中,弦6=AB ,点C 是优弧AB 上一点(不与A ,B 重合), 则cosC 的值为.例13:如图13,四边形ABCD 内接于⊙O,0110=∠C ,则=∠A,BOD ∠= .AMB 图9图10图11图6图4图5图8图7例14:如图14,AB 是⊙O 的直径,弦CD ⊥AB 于点N ,点M 在⊙O 上,∠1=∠C 若BC=4,32sin =M ,则⊙O 的直径AB 的长是 .例15:如图15,△ABC 内接于⊙O ,AB 、CD 为⊙O 直径,DE ⊥AB 于点E ,sinA=12, 则∠D 的度数是 .例16:如图16,⊙O 是△ABC 的外接圆,∠B=60°,OP ⊥AC 于点P ,OP=32,则⊙O 的半径为 . 例17:如图17,△ABC 中,BC=3,以BC 为直径的⊙O 交AC 于点D ,若D 是AC 中点,∠ABC=120°. 则(1)∠ACB 的度数是 .(2)点A 到直线BC 的距离是 .例18:如图18,ABC ∆内接于⊙O ,AB 是⊙O 的直径,030=∠A ,CE 平分ACB ∠交⊙O 于E ,交AB 于点D ,连结BE ,则=∆∆CD A BD E S S : .例19:如图19,AD 是ABC ∆的高,AE 是ABC ∆的外接圆⊙O 的直径,24=AB ,5=AC ,4=AD ,则的直径=AE .例20:如图20,以ABC ∆的边BC 为直径的⊙O ,点A 在⊙O 上,过点A 作BC AD ⊥于D ,53cos =∠CAD ,4=AB,则=AC . 图15图16图17CBAO图20ED∙AEO B DC 图18D ABC图19∙O图12图14⋅ABC图13D O例21:⊙O 的半径为17cm ,弦CD AB //,cm AB 30=,cm CD 16=,则AB 与CD 之间的距离是 .。
圆的概念与性质

圆的概念与性质圆是几何学中最基本也是最重要的图形之一。
它具有独特的概念与性质,对于几何学研究和实际生活应用都具有重要的意义。
一、圆的概念圆可以通过平面上的一点(圆心)和与这个点距离相等的所有点构成,这个相等的距离称为圆的半径。
圆的边界称为圆周,圆周上的所有点到圆心的距离都相等。
二、圆的性质1. 圆心和半径:圆心是圆的核心位置,半径是从圆心到任意一个点的距离。
所有半径的长度都相等。
2. 直径:直径是通过圆心的一条线段,且两个端点都在圆上。
直径是圆的最长线段,其长度等于半径的两倍。
3. 弧长:弧长是圆上的一段弧对应的圆周长度。
弧长和圆的半径以及所对应的圆心角有关。
4. 弧度:弧度是弧长和半径之间的比值。
一个完整圆的弧长等于2π倍的半径。
角度和弧度之间的转换关系是180°=π弧度。
5. 扇形:扇形是由圆心、圆周上的两个点以及连接这两个点的弧段所构成的图形。
6. 弦:弦是连接圆周上的两个点的线段。
7. 切线:切线是与圆周只有一个交点的直线,切线与半径的夹角是直角。
8. 正切线:正切线是过圆上一点并且与该点的切线垂直相交的直线。
9. 圆的面积:圆的面积是指圆所包围的平面区域。
圆的面积公式是πr²,其中r为圆的半径。
三、圆的应用1. 圆在建筑设计中的应用:圆形的建筑物,例如圆形剧场、圆形体育馆等,不仅美观而且具有良好的音响效果和观看体验。
2. 圆在交通规划中的应用:交通圆环的设计可以提高交通效率,减少交通事故的发生。
3. 圆在制造业中的应用:例如车轮、电机转子等,圆形的设计可以提高工作效率和产品的稳定性。
4. 圆在数学研究中的应用:圆的概念和性质是数学研究中的基础,广泛应用于数学的各个分支,如几何学、代数学等。
总结:圆是几何学中的基本图形,具有独特的概念和性质。
圆的应用广泛存在于我们的生活中,不仅美观而且具有很多实际价值。
对于几何学的学习和实际应用,深入理解圆的概念和性质是非常重要的。
圆的概念和性质

圆的概念和性质圆是我们数学中重要的几何概念之一,广泛应用于各个领域。
无论是日常生活中的测量、建筑设计,还是工程技术、科学研究中的模型和计算,都离不开圆的概念和性质。
本文将从圆的定义、常见性质以及应用等方面进行详细的探讨。
一、圆的定义圆可以定义为平面上一组到一个定点的距离都相等的点的集合。
这个定点称为圆心,到圆心的距离称为半径。
以圆心为中心、以半径为半径的线段称为圆的半径。
圆内的任意两点到圆心的距离都小于半径,而圆外的任意一点到圆心的距离都大于半径。
二、圆的性质1. 圆的直径圆的直径是通过圆心并且两端点都在圆上的线段。
直径是圆中最长的线段,并且它的长度等于半径的两倍。
2. 圆的周长圆的周长是圆上一周的长度,也称为圆周。
圆周的长度可以通过圆的直径或者半径与圆周率之间的关系来计算。
根据定义,圆周的长度等于直径乘以π(圆周率)。
3. 圆的面积圆的面积是圆内部的所有点与圆心之间的连线围成的区域。
圆的面积也是通过圆的半径与圆周率之间的关系来计算。
根据定义,圆的面积等于半径平方乘以π。
4. 圆的切点两个圆相切时,它们有一个共同的切点。
切点是两个圆相切时,位于两个圆的切线上的点。
5. 圆的切线圆的切线是与圆只有一个公共点的直线。
圆的切线与半径垂直,并且切线的斜率等于半径与圆心连线的斜率的相反数。
三、圆的应用1. 圆在日常生活中的应用圆在日常生活中有很多应用,比如钟表中的表盘、轮胎的设计、圆桌的使用等。
同时,圆的性质也可以用来解决一些实际问题,比如判断一个物体是否能通过一个洞的尺寸、计算环形花坛的面积等。
2. 圆在几何图形中的应用圆在几何图形中也有广泛的应用。
例如,圆可以用来构造其他几何图形,比如正多边形、扇形、圆锥等。
同时,圆也可以与其他几何图形相交,形成复杂的图形结构。
3. 圆在科学与工程中的应用圆的概念和性质在科学与工程领域中也有重要的作用。
例如,在物理学中,圆的运动轨迹和碰撞规律可以用来描述天体运动、粒子动力学等现象。
第29讲 圆的有关概念及性质

A.①②③
B.②③④
C.①②④
D.仅有①②
2.(2016·海南)如图,AB 是⊙O 的直径,直线 PA 与⊙O 相切于点 A,PO 交⊙O 于点 C,连接 BC,若 ∠P=40°,则∠ABC 的度数为( B )
A.20° C.40°
B.25° D.50°
3. 将一盛 有不足半 杯水的 圆 柱 形 玻 璃 水 杯 拧 紧杯 盖 后 放 倒,水平放置在桌面上.水杯的 底 面 如 图 所 示 , 已 知水 杯 内 径 (图中小圆的直径)是 8 cm,水的最大深度是 2 cm,则 杯底有水部分的面积是( )
A.5 B.7 C.9 D.11
【点拨】因为 ON⊥AB,所以 AN=BN=1AB= 2
12.又在 Rt△ OAN 中, OA= 13,由勾股定理可得
ON= 132-122 =5.故选 A. 【答案】 A
考点二 圆心角、弧、弦的关系
例 2 (2016·兰州)如图,
︵ 在⊙O中,点 C 是AB的中点,
3
【答案】 A
4.如图,AB 是⊙O 的直径,C 为圆上一点,∠A=60°, OD⊥BC,D 为垂足,且 OD=10,则 BC= 20 3 .
5.(2016·呼和浩特)在周长为 26π 的⊙O 中,CD
是⊙O 的一条弦,AB 是⊙O 的切线,且 AB∥CD,若
AB 和 CD 之间的距离为 18,则弦 CD 的长为
直径,AC=4,AB=4 2, ∴∠D=90°.在 Rt△ ABD
中, AD=4, AB=4 2, ∴BD=28.∵∠D=∠C,
5
5
∠DAC = ∠CBE, ∴△ADE∽△BCE.∵AD∶BC =
4∶4=1∶5,∴相似比为 1∶5. 5
小学数学中的圆的概念和性质

小学数学中的圆的概念和性质在小学数学中,圆是一个重要的几何概念,具有一系列独特的性质。
本文将介绍圆的定义、构造方法以及与圆相关的一些性质。
一、圆的定义和构造方法圆是由平面上所有与给定点的距离都相等的点构成的图形。
给定一个点O和一个长度r,以O为中心,以r为半径,在平面上可以画出一个圆。
二、圆的性质1. 圆心和半径:圆心是圆上的任意一点,记作O;半径是圆心到圆上任意一点的距离,记作r。
2. 圆周:圆的边界称为圆周,也称作圆的周长。
3. 直径:直径是通过圆心的一条线段,包含圆上两点,且长度等于半径的两倍。
直径可以任取圆上的两点连接得到。
4. 弦:弦是圆上的一条线段,连接圆上的两点,但不一定经过圆心。
5. 弧:弧是圆上的一段连续弯曲的部分,由弦分割而成。
圆上两点之间的弧有无数条,但长度相等的弧称为等弧。
6. 弧长:弧长是指圆周上的一段弧的长度,通常用字母s表示。
7. 弧度制:用弧长与半径之比的值作为角的度量单位,叫做弧度。
一周的弧度为2π。
8. 正圆和异圆:如果两个圆的半径相等,那么它们是同心圆,同心圆的圆心重合;如果两个圆的圆心重合,但半径不相等,那么它们是异心圆。
三、圆的应用1. 圆的构图:根据圆的定义和构造方法,可以通过已知半径或直径画出一个圆。
2. 圆的测量:可以通过测量圆的直径或半径来求解圆的周长或面积。
3. 圆的运用:圆的形状广泛应用于日常生活中,例如自行车的轮胎、钟表的表盘、球类的运动轨迹等。
四、圆与其他几何图形的关系1. 圆与直线:圆的直径是圆与穿过圆心的直线相交的情况;圆与不穿过圆心的直线相交时,在相交点处与直线垂直的半径作为切线。
2. 圆与三角形:一个三角形的外接圆是将三角形三条边的中点连接起来形成的圆,该圆的圆心是三角形三条边中垂心的交点;一个三角形的内切圆是将三角形的三条边的延长线连接起来形成的圆,该圆与三角形三边都相切。
3. 圆与多边形:一个多边形的外接圆是将多边形所有顶点连接起来形成的圆,该圆的圆心是多边形的重心;一个多边形的内切圆是将多边形的所有边的中点连接起来形成的圆,该圆与多边形的所有边都相切。
圆的基本概念与性质

圆的基本概念与性质圆是几何中的一种基本图形,具有独特的性质和特点。
本文将介绍圆的基本概念和性质,探讨其在数学和日常生活中的应用。
一、圆的基本概念圆是由一个平面内距离中心固定点相等的所有点构成的集合。
其中,固定点称为圆心,距离圆心的长度称为半径。
圆由圆心和半径唯一确定。
二、圆的性质1. 圆的直径圆的直径是连接圆上任意两点,并通过圆心的线段。
直径的长度等于圆半径的2倍。
2. 圆的周长圆的周长是指圆上任意两点之间的距离,也可以理解为圆的边界长度。
周长的计算公式为C=2πr,其中C表示周长,r表示半径。
3. 圆的面积圆的面积是指圆内部所有点组成的区域。
面积的计算公式为A=πr^2,其中A表示面积,r表示半径。
4. 弧圆上两点之间的部分称为圆弧。
弧对应的圆心角等于弧所夹的圆心角。
5. 弦圆上连接两点的线段称为弦。
如果弦通过圆心,则称为直径。
否则,称为弦。
6. 切线与圆相切且仅有一个切点的直线称为圆的切线。
切线与半径垂直。
7. 弦切角圆的内部一点与两条相交弦之间的角称为弦切角。
同弧切角相等。
三、圆的应用圆的概念和性质在数学中有广泛应用,也在日常生活中有所体现。
以下为几个常见的应用场景:1. 几何图形圆是许多其他几何图形的基础,例如圆柱体、圆锥体和圆环等。
了解圆的概念和性质,有助于我们更好地理解和应用这些几何图形。
2. 建筑设计在建筑设计中,圆形结构常常被运用。
圆形的建筑物可以提供良好的结构稳定性和美观性。
例如,圆形拱门和圆顶常常用于教堂和宫殿等建筑中。
3. 工程测量圆的性质在工程测量中有重要的应用。
通过测量圆的半径或直径,可以计算出工程中需要的其他参数,如周长、面积和体积。
4. 自然现象许多自然现象中都存在圆形,例如太阳、月亮、风旋涡等。
理解圆的概念和性质,有助于我们更好地解释和研究这些自然现象。
结语圆是几何学中的基本概念之一,具有独特的性质和广泛的应用。
通过了解圆的基本概念和性质,我们能够更好地理解几何学知识,并将其应用于实际生活中。
初中数学知识归纳圆的概念和性质

初中数学知识归纳圆的概念和性质圆是初中数学中的一个重要概念,它有许多独特的性质。
下面将对圆的概念和性质进行归纳。
一、圆的概念圆是由平面上所有到一个固定点的距离都相等的点的集合。
固定点叫做圆心,等距离叫做半径。
圆可以用圆心和半径表示,通常表示为∠O(r),其中O表示圆心,r表示半径。
二、圆的性质1. 圆上任意两点的距离都相等。
即圆上的任意两点A和B,都有AB = r,其中r为圆的半径。
2. 圆的直径是圆上任意两点间的最大距离。
直径d等于半径的两倍,即d = 2r。
3. 相交弧:圆上的两条弧如果有一个公共点,则称它们为相交弧。
4. 弧度:圆心角对应的弧长与圆的半径的比值叫做弧度。
常用弧度符号表示为θ。
5. 弧长:圆周上任意两点间的弧长等于该圆心角的弧度数乘以圆的半径。
即L = θr。
三、圆的相关公式1. 圆的面积公式:S = π * r²,其中S表示圆的面积,r表示半径。
π是一个常数,约等于3.14。
2. 圆的周长公式:C = 2π * r,其中C表示圆的周长,r表示半径。
3. 弓形的面积公式:A = 1/2 * θ * r²,其中A表示弓形的面积,θ表示圆心角的弧度数,r表示半径。
4. 弦与弦的关系公式:如果两条弦相交,且其中一条被另一条平分,则两条弦的乘积等于交叉部分之间的弦的乘积。
即AB * CD = BC * AD。
四、圆的常见问题类型1. 判断关系:判断两个图形是否为圆,判断是否为同心圆等。
2. 计算问题:根据已知条件计算圆的面积、周长等。
3. 推理问题:利用圆的性质进行推理,解决几何问题。
4. 证明问题:根据已知条件进行推导,证明一个几何命题。
5. 应用问题:将圆的概念和性质应用于生活实际,解决实际问题。
五、常见解题思路1. 利用定义:根据圆的定义进行判断或运用相关公式进行计算。
2. 运用性质:根据圆的性质推导出结论,解决几何问题。
3. 运用变换:将圆的问题转化为其他图形的问题,通过转换求解。
圆的基本认识和性质

圆的基本认识和性质圆是几何中最基本的图形之一,它在我们的日常生活中无处不在。
本文将围绕圆的基本认识和性质展开讨论,帮助读者更好地理解和应用圆的知识。
一、圆的定义圆是由与一个点距离相等的所有点构成的集合。
这个点被称为圆心,与圆心距离相等的线段被称为半径,而通过圆心且连接两个不同点的线段被称为直径。
二、圆的性质1. 圆的特征每一个圆都具有以下几个特征:A. 圆的周长:圆的周长是圆上所有点到圆心的距离之和,由于所有这些距离相等,因此圆的周长等于圆周率π乘以直径。
用公式表示为:C = πd,其中C为圆的周长,d为直径。
B. 圆的面积:圆的面积是圆内部所有点与圆心的距离之和。
用公式表示为:S = πr²,其中S为圆的面积,r为半径。
C. 圆的弧长:圆上的弧是两个点之间的连续线段。
圆的弧长是指圆上弧的长度,其计算方法与周长类似。
2. 圆的内角性质在圆上的任意一条弦所对的圆心角都是相等的,且都等于该弦所对的弧所对的圆心角。
此外,圆上任意一点到圆心的连线,与该点处的切线所构成的角是直角。
3. 圆的切线性质圆上任意一点处的切线与半径的夹角是直角。
此外,切线与半径的夹角是切线切到点的圆弧所对的圆心角的一半。
三、圆的应用1. 圆的测量通过测量圆的直径、半径或弧长,我们可以计算出圆的周长和面积。
这在实际应用中非常重要,例如在建筑、制造和工程等领域。
2. 圆形物体的运动和旋转许多物体在运动或旋转时可近似认为是圆形的,比如车轮、盘子、风车等。
研究这些圆形物体的运动规律对于工程师和物理学家而言是至关重要的。
3. 圆的几何定理运用圆的几何定理,我们可以解决一些复杂的几何问题。
比如,利用圆的内角性质可以证明三角形的内角和等于180度;利用圆的切线性质可以解决与切线相关的问题等。
四、总结通过对圆的基本认识和性质的讨论,我们可以看到圆在几何学中的重要性和广泛应用。
准确理解圆的定义、特征和性质,对于我们解决实际问题和学习更高级的数学概念都具有重要意义。
圆的基本概念与性质

圆的基本概念与性质圆是几何学中最基本的图形之一,它具有独特的形状和性质。
本文将对圆的基本概念和一些重要性质进行详细介绍。
一、圆的定义圆是由平面上距离一个固定点一定距离的所有点组成的集合。
这个固定点被称为圆心,而这个距离被称为半径。
二、圆的常用符号在几何学中,圆常用符号“O”表示圆心,用字母“r”表示半径。
因此,一个圆可以用符号“O(r)”表示。
三、圆的性质1. 圆的对称性由于圆的定义是以一个固定点为中心,所有距离这个点相等的点的集合,因此圆具有天然的对称性。
任意一条直径将圆分成两个等边的半圆,半圆上的所有点与圆心的距离相等。
2. 圆的直径、半径和弦在圆中,直径是通过圆心并且两端点都在圆上的线段;半径是从圆心到圆上的任意一点的线段,它等于圆的半径;弦是圆上连接两个点的线段,不经过圆心。
3. 圆的周长和面积圆的周长定义为圆上的一条完整弧所对应的长度,可以用公式C =2πr来计算,其中C表示周长,r表示半径。
圆的面积定义为圆内所有点所组成的区域的大小,可以用公式A = πr²来计算,其中A表示面积,r表示半径。
4. 圆的切线和法线圆上的切线是与圆相切的直线,它只与圆在切点相交。
切线与半径构成的夹角为90度。
法线是与切线垂直的直线,它通过切点并与切线垂直相交。
5. 圆的弧度制和度数制圆的弧度制是一种用弧长比半径的面度来度量角度的方式。
一个圆的弧长等于半径的弧度数。
度数制是人们常见的度量角度的方式,一个圆被等分为360度,1度等于圆的1/360。
四、圆的相关定理和应用1. 圆上的三角形圆上的三角形是指三个顶点都在圆上的三角形。
它有很多特殊性质,如圆上的两条弧所对应的角相等,半径与割线所包围的弧所对应的角相等等。
2. 切线定理和切割定理切线定理指的是切线与半径的关系,即切线的平方等于切点处外切圆的半径与切点到圆心的距离之积。
切割定理指的是弦分割定理和切线分割定理,它们描述了切线和弦所分割的弧长和线段之间的关系。
高中-圆的有关概念和性质

高中数学-圆第一节圆的有关概念和性质一【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.④三角形的内心和外心ⓐ:确定圆的条件:同一直线上的三个点确定一个圆.ⓑ:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.ⓒ:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.3.正多边形和圆(1)通过等分圆画正多边形。
(等分圆心角;懂得正三、六;正四、八边形的特殊画法)(2)外接于圆的正多边形的有关概念:正多边形的中心、半径、中心角、边心距;(3)如图,正n边形的有关计算要抓住2n个Rt△OPB,∠B等于正n边形内角的一半,∠BOP=nn1802360 ,BP等于正多边形的边长的一半。
圆的基本概念与性质

圆的基本概念与性质圆是几何学中的重要概念,具有独特的性质。
本文将详细介绍圆的基本概念以及一些常见的性质,以帮助读者更好理解和掌握圆这一几何形状。
一、圆的定义圆是由平面内与一定点之间的距离都相等的所有点的集合构成的几何图形。
二、圆的要素1. 圆心:圆心是圆上所有点到该点的距离相等的点。
通常用字母O 表示圆心。
2. 半径:半径是圆心到圆上任意一点的距离,用字母r表示。
3. 直径:直径是通过圆心的一条线段,两个端点在圆上。
直径的长度是半径的两倍,即d=2r。
三、圆的性质1. 圆的周长:圆的周长是圆上一周的长度,通常用字母C表示。
由于圆上任意两点之间的距离都是一样的,所以圆的周长可由半径或直径表示。
周长公式为:C=2πr或C=πd。
2. 圆的面积:圆的面积是圆内部的所有点的集合。
用字母A表示。
根据圆的性质,圆的面积可由半径或直径表示。
面积公式为:A=πr²或A=π(d/2)²。
3. 圆的弧长:圆的弧是圆上两点之间的一段弧,圆弧长度即为弧长。
弧长与圆心角的大小有关,公式为:L=2πr × (θ/360°),其中θ为圆心角的度数。
4. 圆的扇形面积:扇形是由圆心、圆上两点以及与圆心连线的弧所围成的图形。
扇形的面积是圆的一部分面积。
扇形面积与圆心角的大小有关,公式为:S=πr² × (θ/360°)。
5. 圆的切线:切线是与圆相切且仅切于圆上一个点的直线。
切线与半径垂直,相切点就是切线与圆的唯一公共点。
6. 圆的切点:切点是切线与圆相交的点。
由于切线仅与圆相交于一个点,所以切点也是圆上的唯一点。
7. 圆的弦:弦是圆上两点之间的线段。
弦的长度可以小于、等于或大于直径。
直径是弦的特殊情况,即直径是连接圆上任意两点的弦。
8. 圆与直线的关系:直线可以与圆有三种不同的关系:相离、相切和相交。
如果直线与圆没有相交点,则称直线与圆相离;如果直线只有一个切点,则称直线与圆相切;如果直线与圆有两个相交点,则称直线与圆相交。
圆的概念与性质

圆的概念与性质圆是初等几何学中的基本图形之一,它具有独特的几何性质和重要的应用价值。
本文将介绍圆的概念和性质,并探讨它在现实生活中的应用。
一、圆的概念圆是由平面上的一点到另一点距离不变的点集合。
其中,确定圆的两个点是圆心和圆上的任意一点,圆心到圆上任意一点的距离称为圆的半径。
用数学符号表示,圆可以写为O(A,r),其中O表示圆心,A 表示圆上的一点,r表示圆的半径。
二、圆的性质1. 圆周与圆心之间的关系:圆周上的点与圆心的距离都相等,即圆周上的任意两点到圆心的距离相等。
2. 圆的直径和半径:圆的直径是通过圆心,并且两端点同时在圆周上的线段,直径的长度是半径的两倍。
即d = 2r。
3. 圆的周长和面积:圆的周长是指圆周的长度,记为C,可以通过公式C = 2πr计算得到。
其中,π是一个常数,约等于3.14159,它代表圆周率。
圆的面积是指圆内部的所有点的集合,记为S,可以通过公式S = πr²计算得到。
4. 弧、弦和扇形:圆周上的弧是由两个点确定的圆上的一段弧线,弧的长度与圆的周长成比例。
圆上两点间的线段称为弦,弦的长度小于或等于直径。
圆周上通过圆心的两条弦将圆分成了两个部分,每个部分叫做扇形。
扇形的面积由圆心角的大小决定。
5. 切线和切点:圆周上的一条直线称为圆的切线,切线与半径的夹角为90度,也就是说切线垂直于半径。
切点是切线与圆的交点,一个圆可能有多个切点。
三、圆的应用圆作为一种基本的几何形状,在现实生活中有许多应用,以下介绍几个常见的例子:1. 圆形建筑和雕塑:圆形的建筑和雕塑在城市的景观中非常常见,如圆形剧场、罗马竞技场等。
圆形的外形能够给人以稳定和和谐的感觉。
2. 车轮和飞盘:车轮和飞盘都是圆形的,这是因为圆形对于旋转和滚动更加稳定和效果好。
车轮的直径也决定了车辆的速度和行驶稳定性。
3. 钟表和指南针:许多钟表面和指南针刻度都是圆形的,便于阅读时间和方向。
钟表的指针也是围绕圆盘转动。
初中数学:有关圆的概念及性质

初中数学:有关圆的概念及性质一、圆的基本概念及性质(1)圆的有关概念①圆:平面. 上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆. 上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形:其对称轴是任意一条过圆心的直线:圆是中心对称图形,对称中心为圆心。
②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有-组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角: 90”的圆周角所对的弦是直径.④三角形的内心和外心确定圆的条件:不在同一直线上的三个点确定一个圆.⑥:三角形的外心:三角形的三个顶点确定-一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的- -半.(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一一个外角等于它相邻内角的对角.圆的性质1、圆是轴对称图形,对称轴是任意一条过圆心的直线。
2、垂径定理:垂直于弦的直径平分这条弦,并粗平分弦所对的弧。
垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并平分弦对的弧。
圆的概念与性质

圆的概念与性质圆是几何学中的重要概念之一,具有独特的性质和广泛的应用。
本文将从圆的定义、性质以及相关应用三个方面,对圆进行深入探讨。
一、圆的定义圆是由平面上的一点到另一点距离恒定的所有点的集合。
其中,距离恒定的两个点称为圆的中心和半径。
以此为基础,我们可以得出圆的一些重要定义和性质。
二、圆的性质1. 半径与直径的关系:直径是连接圆上两个点,并通过圆心的线段。
圆的直径是半径的两倍,即直径等于2倍半径。
2. 弧与弦的关系:弧是圆上的一段曲线,而弦是连接圆上两个点的线段。
对于相同的弧,弦越长,对应的圆心角就越大。
3. 弧度制:弧度制是一种用弧长来度量角度的单位制。
一圆周的弧度为2π,通常用符号“rad”表示。
4. 圆的面积:圆的面积由半径决定,可以通过公式A = πr²计算得到。
其中,π是一个常数,约等于3.14159。
5. 圆的周长:圆的周长也称为圆周,可以通过公式C = 2πr计算得到。
三、圆的应用圆作为几何学中的基础概念,广泛应用于各个领域,包括数学、物理、工程等。
1. 数学应用:圆被广泛运用于解决几何问题,比如测量与计算圆的面积和周长,利用弧与弦的关系求解圆心角,以及在三角函数中的应用。
2. 物理应用:在物理学中,圆常用于描述物体的运动轨迹,如行星、卫星绕星球的轨道就是圆形或近似圆的。
此外,光的传播也符合圆的特性,如光的折射和反射。
3. 工程应用:圆形结构在工程设计中经常出现,比如建筑设计中的圆形柱、圆形桥梁等。
此外,在制造业中,如汽车制造和工业加工中,也需要利用圆的特性来完成各类工艺和设计。
总结:圆作为一个基本的几何概念,具有独特的定义和性质。
了解圆的概念和性质,有助于我们进一步理解几何学的其他相关知识,并将其应用于实际问题的解决。
无论是数学领域的计算,物理领域的运动描述,还是工程领域的设计应用,圆都扮演着重要的角色,为我们解决问题提供了有力的工具。
同时,深入理解圆的概念与性质,有助于我们更好地掌握几何学的基础知识,为未来的学习与应用打下坚实的基础。
第一讲 与圆有关的概念及性质

模块六 圆第一讲 与圆有关的概念及性质知识梳理 夯实基础知识点1:与圆有关的概念1.圆的定义如图,在平面内,线段OA 绕它固定的一个端点O 旋转一周,则另一个端点A 所形成的封闭曲线叫做圆,固定的端点O 叫做圆心,线段OA 的长为r,叫做半径.以点O 为圆心的圆,记作“ O”,读作“圆O”.注:圆也可以看成到定点的距离等于定长的点的集合.2.圆的有关概念同心圆圆心相同、半径不同的圆叫做同心圆。
等圆能够重合的两个圆叫做等圆半圆圆的任意一条 的两端点把圆分成两条弧,每一条弧都叫做半圆。
弧圆上任意两点间的部分叫做圆弧,简称弧,用符号“ ”表示。
大于半圆的弧叫做 ,如 ABC ;小于半圆的弧叫做 ,如AB .等弧在同圆或等圆中,能够互相重合的弧叫做等弧。
弦连接圆上任意两点的叫做弦,如弦AC弓形由弦及其所对的弧组成的图形叫做弓形。
直径经过 的弦叫做直径,如直径BC 。
圆心角顶点在 的角叫做圆心角,如∠AOB 。
圆周角顶点在圆上,并且 都与圆还有另一个交点的角叫做圆周角,如∠ACB 。
3.确定圆的条件不在同一条直线上的三个点确定一个圆。
4.圆的对称性(1)圆的轴对称性:圆是轴对称图形,对称轴是圆所在的平面内任意一条过圆心的直线.(2)圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少度,都能与自身重合,旋转中心为圆心,圆的这种性质叫做圆的旋转不变性.(3)圆的中心对称性:圆是中心对称图形,对称中心是圆心.知识点2:垂径分弦1.垂径定理:垂直于弦的直径 ,并且 弦所对的两条弧。
注意:垂径定理使用时必须具备两个条件:一是直径;二是垂直,二者缺一不可。
2.垂径定理的逆定理:平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧。
注意:定理中括号内“非直径”这三个字不能省略,否则定理不成立。
知识点3:圆心角、弧、弦、弦心距之间的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦相等,所对弦的弦心距相等。
圆学圆的定义与性质

圆学圆的定义与性质圆学圆是几何学中的一个重要概念,它是我们经常接触到的几何形状之一。
在本文中,我们将对圆的定义及其性质进行详细介绍。
一、圆的定义圆是由平面上到一个固定点距离相等的所有点组成的集合。
这个固定点被称为圆心,到圆心距离相等的定长被称为半径。
以圆心为中心,半径为半径的圆称为圆。
二、圆的性质1. 圆上的任意两点与圆心的距离相等。
这是圆的最基本性质之一。
对于圆上的任意两点A和B,它们与圆心的距离相等,即AO = BO。
这一性质也可以用作圆上的点的判定标准,只需要计算其到圆心的距离即可。
2. 圆上的线段是等长的。
从圆的定义可以很容易地推导出圆上的线段是等长的。
任取圆上的两点A和B,连接圆心O与AB的连线,我们可以得到三角形OAB。
根据三角形的定点定理,OA = OB,因此线段AB与圆心的距离相等,即AB = r。
3. 圆的周长与面积圆的周长是圆上的一条线段,也称为圆的周长。
我们知道,圆的周长是通过圆心O与圆周上一点A的连线所得到的线段。
根据前面的性质,这个线段的长度等于半径r,所以圆的周长C等于直径d与圆周率π的乘积,即C = πd或C = 2πr。
圆的面积是指圆内部所包围的平面区域的大小。
我们可以通过计算圆内部的某个参数来得到圆的面积。
根据定义,圆的面积S等于半径r的平方与圆周率π的乘积,即S = πr^2。
4. 圆的内切与外切问题圆在几何学中的一个重要应用是与其他几何形状进行内切或外切。
内切是指一个几何形状与圆相切于圆的内部,而外切是指一个几何形状与圆相切于圆的外部。
对于任意一个圆和直线,我们都可以找到它们的内切和外切问题。
总结:圆是几何学中的一个重要概念,它由平面上到一个固定点距离相等的所有点组成。
圆的性质包括圆上的任意两点与圆心的距离相等、圆上的线段是等长的、圆的周长与面积的计算公式以及圆的内切与外切问题。
了解这些圆的性质不仅可以帮助我们更好地理解圆,也能应用到实际问题中,具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、跟踪练习: 如图1,AB是⊙O的弦,OD⊥AB于D 交⊙O于E,则下列说法错误的是( ) A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE
图1
⊙O的直径AB垂直弦CD于点P, 且P是半径OB的中点,CD=6cm, 则直径AB的长是( )
图2
⊙O的弦AB=6,M是AB上任意一点, 且OM最小值为4,则⊙O的半径为( ) A. 5 B. 4 C. 3 D. 2
已知AB是⊙O的直径,点C是⊙O上一点, 连结BC,AC,过点C作直线CD⊥AB于点D ,点E是AB上一点,直线CE交⊙O于点F, 连结BF,与直线CD交于点G.求证:
BC BG BF
2
1、.知识梳理 1) 圆上各点到圆心的距离都等于 . 2) 圆是 对称图形,任何一条直径所在的直线 都是它的 圆又是 对称图形, 是它的 对称中心. 3) 垂直于弦的直径平分 ,并且平分 ; 平分弦(不是直径)的 垂直于弦,并且平 分 . 4) 在同圆或等圆中,如果两个圆心角,两条弧, 两条弦,两条弦心距,两个圆周角中有一组量 , 那么它们所对应的其余各组量都分别 . 5)同弧或等弧所对的圆周角 ,都等于它所对的 圆心角的 . 6)直径所对的圆周角是 ,90° 所对的弦是 .
在⊙O中,∠ACB=20°, 则∠AOB=______度
AB是⊙O的直径,弦CD⊥AB于点E, ∠CDB=30°,⊙O的半径为,则弦CD的长为 ( )
△ABC内接于⊙O,若∠OAB=28° 则∠C的大小为( ) A.28° B.56° C.60° D.62°
AB是⊙O的直径,C是弧BD的中点, CE⊥AB,垂足为E,BD交CE于点F. (1)求证: CF=BF; (2)若AD=2,⊙O的半径为3,求BC的长.