圆的有关概念和性质总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的有关概念和性质
知识考点:
1、理解圆的定义,掌握点与圆的位置关系;
2、理解弦、弧、半圆、优弧、同心圆、等圆、等弧、弓形、圆心角、圆周角等与圆有关的概念;
3、掌握圆心角、弧、弦、弦心距之间的关系,并会运用这些关系解决一些几何证明题和计算题。
圆的形成性描述:在一个平面内,线段OA绕它固定的O一端旋转一周,另一端点A所形成的图形叫做圆,固定的端点叫做圆心,线段OA叫做半径。
以点O为圆心的圆记作“”
1.圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、圆的外部可以看作是圆心的距离大于半径的点的集合
圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径
4、同圆或等圆的半径相等
5、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
6、到已知角的两边距离相等的点的轨迹,是这个角的平分线
7、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
8、不在通一条直线上的三点确定一个圆
垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
12、推论2:圆的两条平行弦所夹的弧相等
13、圆是以圆心为对称中心的中心对称图形
14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
圆心角定义:顶点在圆心上,角的两边与圆周相交的角叫圆心角
圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
推论:
在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。
圆周角定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
圆周角定理:
同弧或等弧所对圆周角等于它所对圆心角的一半。这一定理叫做圆周角定理。
定理证明
已知在⊙O中,∠BOC与圆周角∠BAC同对弧BC,求证:∠BOC=2∠BAC.
证明:
情况1:
如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:
图1
∵OA、OC是半径
解:∴OA=OC
∴∠BAC=∠ACO(等边对等角)
∵∠BOC是△AOC的外角
∴∠BOC=∠BAC+∠ACO=2∠BAC
情况2:
如图2,,当圆心O在∠BAC的内部时:
连接AO,并延长AO交⊙O于D
图2
∵OA、OB、OC是半径
解:∴OA=OB=OC
∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)
∵∠BOD、∠COD分别是△AOB、△AOC的外角
∴∠BOD=∠BAD+∠ABO=2∠BAD
∠COD=∠CAD+∠ACO=2∠CAD
∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC
情况3:
如图3,当圆心O在∠BAC的外部时:
图3
连接AO,并延长AO交⊙O于D
解:∵OA、OB、OC、是半径
∴∠BAD=∠ABO(等边对等角),∠CAD=∠ACO(OA=OC)∵∠DOB、∠DOC分别是△AOB、△AOC的外角
∴∠DOB=∠BAD+∠ABO=2∠BAD
∠DOC=∠CAD+∠ACO=2∠CAD
∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC
定理推论:
1.一条弧所对的圆周角等于它所对的圆心角的一半;
2.圆周角的度数等于它所对的弧度数的一半;
3.在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。
4.半圆(直径)所对的圆周角是直角。
5.90°的圆周角所对的弦是直径。
注意:在圆中,同一条弦所对的圆周角有两个,一个是优弧所对的角,一个是劣弧所对的角
一、点和圆的位置关系
1、如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.
(1)d>r点在圆外;
(2)d=r点在圆上;
(3)d 2、确定圆的条件 不在同一直线上的三个点确定一个圆. 3、三角形的外接圆 (1)定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆. 三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形. (2)三角形外心的性质: ①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等. ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合. 锐角三角形的外心在三角形内 直角三角形的外心在斜边的中点 钝角三角形的外心在三角形外 4、三角形的内切圆与三角形的内心 ①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形. ②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.