《线性代数》电子教程之三

合集下载

线性代数3-3(第四版)赵树嫄

线性代数3-3(第四版)赵树嫄

《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
例4 判断向量组
1(1 2 0 1) 2(1 3 0 1) 3(1 1 1 0)
是否线性相关
解 对矩阵(1T 2T 3T)施以初等变换化为阶梯形矩阵
1 1 1 1 1 1 1 1 1 1 1 1
2 0
3 0
1 1
0 0
1 0
1 1
0 0
即1 2线性相关
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
(二)关于线性组合与线性相关的定理
定理37
向量组1 2 s(s2)线性相关的充分必要条件是 其
中至少有一个向量是其余s1个向量的线性组合
定理38
如果向量组1 2 s 线性相关 而1 2 s线性无 关 则向量可由向量组1 2 s线性表示且表示法唯一
定理36 如果向量组中有一部分向量(称为部分组)线性相关 则整
个向量组线性相关 此定理也可叙述为 线性无关的向量组中任何一部分组
皆线性无关 例6 含零向量的向量组线性相关 因零向量线性相关 由定理36可知 该向量组也线性相关
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
(二)关于线性组合与线性相关的定理
k1()k2()k3()0
成立 整理得
(k1k3)(k1k2)(k2k3)0 因为向量组 线性无关 故
k1 k1
k2
k3 0 0
k2 k3 0
该方程组的系数行列式D20
所以该方程组只有零解k1k2k30
从而 线性无关
提示
101 D 1 1 0 20
011
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束

武汉大学《线性代数》03 第三章

武汉大学《线性代数》03 第三章

3 x2 3 x3 4 x4 3, ④
2020/11/2
a
(B1 )
(B2 )
3
② 1
x1
2
③ 5②
④3②
x2 2x3 x2 x3
x4 x4 2 x4
4, ① 0, ② 6, ③
x4 3.④
x1 x2 2 x3 x4 4, ①
④1③
2
x2 x3 x4 0, ② 2x4 6, ③
1 6 4 1 4 0 4 3 1 1
00
12 16
9 12
7 8
1121
a
40
1 6 4 1 4
r3 3r2
0
4
3
1 1
r44r2 0 0 0 4 8 0 0 0 4 8
r4 r3
1 6 4 1 4 0 4 3 1 1 0 0 0 4 8 0 0 0 0 0
2020/11/2
a
6
定义1:下面三类变换称为矩阵的初等行变换:
1 对 调 i, j 两 行 , ri rj
2 以 数 k 0 乘 以第 i 行 的 所 有 元 素, ri k
3 把第 j 行所 有元 素的k 倍加 到第 i 行
对 应 的 元 素 上 去. ri krj
同样可定义矩阵的初等列变换 (把“r”换成 “c”).初等行变换和初等列变换统称初等变换。
0 0
1 0
0 1
2 1
3, 3
3 2
X
A1B
2 1
3 3
.
2020/11/2
a
32
§3 矩阵的秩
定义3:在矩阵 A中,任取 k 行、k 列所得的 k2个 元素不改变它们的相对位置而得的 k 阶行列式, 称为 A的一个 k 阶子式。

线性代数第三章2-3节课件

线性代数第三章2-3节课件

3 2 5 1 6 1 r 3 2 6 0 4 1 ~ B A0 0 2 0 5 0 0 4 1 6 1 0 0 0
R(A0) = 3,计算 A0的前 3 行构成的子式
3
6 11 3 2 6 6 0 11 2 16 0 2 5 2 0 5 2 0 5
证明:因为 (A+E)+ (E-A) = 2E, 由性质“R(A+B)≤R(A)+R(B) ”有 R(A+E)+R(E-A)≥R(2E) = n . 又因为R(E-A) = R(A-E),所以 R(A+E)+R(A-E)≥n .
例:若 Am×n Bn×l = C,且 R(A) = n,则R(B) = R(C) .
§2 矩阵的秩
一、矩阵的秩的概念
定义:在 m×n 矩阵 A 中,任取 k 行 k 列( k ≤ m,k≤n), 位于这些行列交叉处的 k2 个元素,不改变它们在 A中所处 的位置次序而得的 k 阶行列式,称为矩阵 A 的 k 阶子式.
k k 显然,m×n 矩阵 A 的 k 阶子式共有 Cm 个. Cn
可逆矩阵(非奇异矩阵)又称为满秩矩阵. 当|A| = 0 时, R(A) < n ;
不可逆矩阵(奇异矩阵)又称为降秩矩阵.

若 A 为 m×n 矩阵,则 0≤R(A)≤min(m, n) . R(AT) = R(A) .
a11 A a21 a 31
a12 a13 a22 a23 a32 a33
a14 a24 a34
a11 a12 T A a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
矩阵 A 的一个 2 阶子式

线性代数第三章课件

线性代数第三章课件

返回
上页
20
下页
m ( n ) 1 , 2 ,, m 分别是 A 的 是 A 的个彼此不同的特征值,
属于1 , 2 ,, m 的特征向量, 则 1 , 2 ,, m 线性无关。 定理3.5 设 A 是 n 阶方阵, 1 , 2 ,, m 是 A 的 i1 , i 2 ,, isi 是 A 的 m( n) 个彼此不同的特征值, 属于 i (i 1,2,, m) 的线性无关的特征向量组, 则
A E 称为 A 的特征矩阵.
返回 上页
4 下页
说明 (1) 求特征值 ,就是求特征方程 A E 0 的根; (2) A E 0 有 n 个根 (其中有些根可能相同), 其中的 k 重根也称为 k 重特征值. (3)A 的属于特征值 0 的全体特征向量是: ( A 0 E ) x O 的解集中除零向量外的全体解向量. (4) 特征方程可能有复数根,相应的,特征向量也 可能是复向量.
解 A 的特征多项式为
1 A E 4 1 1 3 0 0 0 2 (2 )(1 )2
令 A E 0 ,得 A 的 3 个特征值: 1 2 (单重特征值)
2 3 1 (二重特征值)
返回 上页
9 下页
将特征值分别代入 ( A E ) x O ,求出特征向量:
第一节 矩阵的特征值和特征向量
一、特征值和特征向量的概念 二、特征值和特征向量的性质
1
一、特征值和特征向量的概念
定义 1 设 A 是 n 阶矩阵,如果存在数 和非零向量 x, 使得 Ax x
则称: 是矩阵 A 的特征值;
x ቤተ መጻሕፍቲ ባይዱ A 的对应于(或属于)特征值 的特征向量.

《线性代数》电子教案-第三章

《线性代数》电子教案-第三章
前面第二个问题的一种解答
第三章 矩阵的初等变换与线性方程组
§3.1 初等变换与初等矩阵
对上例的行最简形矩阵再施以初等列变换
1 0 0 0
c4 0 2 0 1 c3 c4+2c1-3c2 1 3 0 2 0 0 1 0 c5-c1+2c2 0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0
行最简形
特点:非零行的第一个非 零元素为1,这些非零元所 在列的其他元素都为0
标准形
特点:左上角是一个单位 矩阵,其余元素全为0
第三章 矩阵的初等变换与线性方程组
§3.1 初等变换与初等矩阵
3. 若mn矩阵 A经过有限次初等变换化为 Er Or(nr) (r ) Emn O(mr)r O(mr)(nr)
( 的形式, 则称 Emr)n 为A的(等价)标准形.
注: 标准形是所有与原矩阵等价的矩阵中 形状最简单的一个。可以证明: 任何一个 矩阵都可以经过有限次初等变换化为标准 形.
前面第二个问题的另一种解答。
第三章 矩阵的初等变换与线性方程组
§3.1 初等变换与初等矩阵
我们知道,线性方程组与线性变换是一一对应,下面我们给初等变 换建立相对应的概念。
刚才的第一个问题得到了回答。
第三章 矩阵的初等变换与线性方程组
§3.1 初等变换与初等矩阵
2. 行阶梯形矩阵与行最简形矩阵
如果矩阵A满足如下条件 若A有零行(元素全为零的行), 且零行位于 最下方, 非零行的非零首元 (自左至右第一个不为 零的元)的列标随行标的递增而递增, 则称A为行阶梯形矩阵。这时称 A 中非零行的 行数为A的阶梯数。例如 1 0 0 0 1 2 0 1 3 2 0 0 2 0 0 0 4 1 1 2 , 0 1 3 0 0 0 0 0 0 0 0 2 0 2 0 0 4 2 3 4

线性代数pdf

线性代数pdf

第三讲 向量及其线性相关性教学目的与要求:理解n 维向量、向量的线性组合与线性表示、向量组线性相(无)关的概念;了解并会运用向量组线性相(无)关的有关性质及判定法;了解向量组的极大线性无关向量组和秩的概念,会求向量组的极大线性无关向量组及秩,了解向量组等价的概念,以及向量组的秩与矩阵的秩之关系,了解n 维向量空间、子空间、基、维数、坐标等概念,了解基变换与坐标变换公式,会求过渡矩阵.重点:n 维向量、向量组的线性相关性、极大无关组与秩.§1 n 维向量空间设F 为数域(简单地说,一个包含0和1的数集F 若对四则运算(除数不为0)封闭,则F 为数域,如有理数集、实数集和复数集都是数域,分别称为有理数域、实数域和复数域,以下所涉及的数域是实数域R 或复数域C ).1. n 维向量的定义:数域F 上的n 个数组成的有序数组(或) T n a a a α),,,(21L ='21),,,(n a a a L 或称为一个n 维(行或列)向量,其中称为向量),,,(21n a a a αL =i a α的第i 个分量或坐标;当F=R (或C ) 时,称为n 维实(或复)向量;数域F 上的n 维向量全体记为,称为数域F 上的n 维向量空间(或n 维数组空间). nF 注:(1)当n =1、2、3时,n 维向量即几何向量的坐标表示,从而几何意义明显;(2) 0=(称为零向量,称为T)0,,0,0L T n a a a ),,,(21−−−=−L α()T n a a a ...,,,21=α的负向量.(3) n 维行(或列)向量即1×n (或n ×1)矩阵.(4)矩阵的每一行n m ij a A *)(=)...(21in i i i a a a =α为一个n 维行向量,称为矩阵A 的行向量;而A 的每一列为一个m 维列向量,称为矩阵A 的列向量.(Tmj j j j a a a ...21=β) 2.非负实数22221...n a a a +++=α称为向量的模;T n a a a ),...,,(21),...,,(21n a a a 或模为1 的向量称为单位向量. 显然均为n 维单位向量,称为原始单位向量;T n T T e e e )1,,0,0(,,)0,,1,0(,)0,,0,1(21L L L L ===α=0⇔|α|=0.3.向量的线性运算(即矩阵的线性运算)设,),,,(21T n a a a αL =,),,,(21Tn b b b βL=则 Tn n βαβαβαβα)=(±±±±,,,2211L ,()Tn ka ka ka αk ,,,21L =⋅. 4.运算律 设,nF ∈γβα,,,,F l k ∈ 则(1) αββα+=+;(2)(βα+)+γ=)(γβα++;(3)αα=+0;(4)0)(=−+αα;αkl αl k αα)()()6(;1)5(==⋅;(7)αααl k l k +=+)(;(8)βαβαk k k +=+)(.§2 向量组的线性相关性一、3R 中向量的共线与共面 设3,,R ∈γβα 1.两个向量βα,共线使R k ∈∃⇔βα⋅=k 或R l ∈∃使αβ⋅=l l k R l k ,(,∈∃⇔不同时为零)使0=⋅+⋅βαl k .2.三个向量γβα,,共面R l k ∈∃⇔11,使βαγ11l k +=,或,,2222γl αk βR l k +=使∈∃⇔+∈∃γl βk αR l k 3333,=使或存在不全为零的实数h ,k ,l 使0=++γβαl k h .我们称共线的两个向量或共面的三个向量为线性相关的.二、向量组及其线性组合1.向量组:同一个向量空间(如)中的若干个向量nF ,...,...,,21s ααα称为一个向量组.2.向量组的线性组合:表达式s s k k k ααα+++....2211称为向量组s ααα,...,,21的一个线性组合,其中;设),...,2,1(s i F k i =∈),,...,2,1(k ,i s i F F n =∈∃∈若β,...11s s k k ααβ++=使可由向量组则称向量βs ααα,,...,21线性表示.3.显然零向量可由任意的向量组线性表示:L L +⋅++⋅+⋅=s ααα000021; 向量组中任一向量均可由该向量组线性表示:s i i i i αααααα⋅++⋅+⋅+⋅++⋅=+−00100111L L .....,,...A )(......,),,...,2,1(,.42121221121))()=(有解(其中即(向量式)线性方程组线性表示,,由则设T s s s s s n i x x x x b b Ax x x x s i F ====+++⇔=∈βαααβααααααββα 例1 ()()T TT T e e e )100(,010,)001(321321====可由β线性表示即有解线性方程组ββ=++⇔++=332211321321x e x e x e e e e :x 1=1,x 2=2,x 3=3.5.设(A )t s βββααα...,B ,...,,:2121,,):和(为中的两个向量组,如果每一个nF ),...,2,1(t j j =β均可由向量组(A )线性表示,则称向量组(B )可由向量组(A )线性表示;如果向量组(A )也可由向量组(B )线性表示,则称向量组(A )与向量组(B )可以相互线性表示或等价,记为(A )~(B );向量组之间的等价是“等价关系”,即有(1)(A )~(A );(2)若(A )~(B ),则(B )~(A );(3)(A )~(B )且(B )~(C ),则(A )~(C ). 若向量组(A )可由向量组(B )线性表示,则s sj j j j ij k k k t j s i F k αααβ+++===∈∃...),...,2,1;,...2,1(2211使(j=1,2,…,t ),即t s ij s t k K K *2121)(,)...()...(=⋅=其中αααβββ称为表示矩阵.若,则B 的列向量组可由A 的列向量组线性表示,表示矩阵为K . t s s n t n K A B ***⋅= 若,则D 的行向量组可由C 的行向量组线性表示,此时也称H 为表示矩阵. t s s n t n C H D ***⋅= 若A 经行(或列)初等变换成为B ,则A 与B 的行(或列)向量组等价.6. 线性方程组的线性组合、线性表示及等价可类似定义与讨论.三、 向量组的线性相关性 设n s F ∈ααα,,,21L 1.线性相关:若存在一组不全为零的数s s i k k k s i k ααα+++=...),,...,2,1(2211使=0,则称为向量组s ααα,...,,21线性相关;否则称为线性无关.线性相关齐次线性方程组n n F ∈ααα,...,,21⇔0...2211=+++s s x x x ααα有非零解⇔矩阵的秩s R s <),...,,(21ααα例2 (1)例1中的)线性相关(,0)1(321,,321321=−+++ββe e e e e e , 而(;线性无关321,,e e e )00),,()321321332211===⇔==++k k k k k k e k e k e k T(2) 对一个向量α来说,α线性相关⇔α=0;α线性无关⇔α≠0;对两个向量,,βα来说,,,βα线性相关⇔成比例与即=或βααββα),,(F l k l k ∈∃=(共线)⇔的坐标对应成比例;与βα三个向量γβα,,线性相关⇔存在不全为零的数)(0,,共面使=++βγβαk h l k h ; (3)含有零向量的向量组0,...,21s ααα,,必线性相()0010...02=⋅+++s αα;反之,线性无关的向量组必不含零向量. 2.定理2 向量组(A ):)(,...,,21s s s ≥ααα线性相关⇔ (A)中至少有一个向量 (如:i α)能由其余s -1个向量(线性表示),...,,,...,,1121s i i ααααα+−.证 (=>)设(A )线性相关,即存在不全为零的数,),...,2,1(s i k i =使++2211ααk k0...=+s s k α,不放设111111i ...,0+−−−−+−++−=≠i i i i i i i i k k k k k k k αααα则+s is k k α−+.... (<=)设s s i i l i i l l l l ααααα+++++=++−−......111111,则.)(01,0...)1(...111111线性相关其中A l l l l l i s s i i i i i ⇒≠−==+++−+++++−−ααααα3.线性无关定理3 设, 则以下(1)―(8)等价n s F ∈ααα,...,,21(1)向量组(A ):s ααα,....,,21线性无关;(2)不存在不全为零的数使),...,2,1(s i k i ==+++s s k k k ααα...22110; (3)对任一组不全为零的数),...,2,1(s i k i =,0...2211≠+++s s k k k ααα; (4)只有0...,0221121=+++====s s s k k k k k k ααα才使L ; (5)若=+++s s k k k ααα...22110,则021====s k k k L ;(6)(A)中任一向量均不能由其余s -1个线性表示; (7)齐次方程组=+++s s x x x ααα...22110只有零解; (8)矩阵的秩s R s =),.....,,(21ααα.(9)当s =n 时还有:线性无关nn F ∈ααα,...,,21⇔行列式D =|n ααα,,,21L |0. ≠ 例3 (1)在中任意两个向量1F )(),(b a ==βα必然线性相关(共线);(2)在中任意三个向量2F γβα,,必然线性相关(共面);(3)在中任意四个向量3F δγβα,,,必线性相关:(a )若γβα,,线性相关,即存在不全为零的数使321,,k k k 0,04321=取k k k k ++βγ=α,则不全为零的数k i (i=1,2,3,4),使线性相关;βγδαβγα,,,04321k k k k δ⇒=+++(此结论可一般化,即若向量组(A)的一部分组(A 1)线性相关,则(A)线性相关,见定理5(2));(b )若γβα,,线性无关,则仿照空间直角坐标系,以γβα,,为三个坐标轴(不共面)建立空间坐标系(称为仿射坐标系),使得中任一向量3F δ均可表示成γβαδ321k k k ++=,从而δγβα,,,线性相关(其中(k 1,k 2,k 3)称为δ在此(仿射)坐标系下的(仿射)坐标); (4)F n 中任意n +1个向量必线性相关(与(3)类似证明,另见例6(2) ).例4 (1)F n 中()()()1,,0,0,,0,,1,0,0,,0,121L L L L ===n e e e 线性无关;证 若02211=+++n n e k e k e k L 即()()00,,0,0,,,2121====⇒=n Tn k k k k k k L L Ln e e e ,,,21L ⇒线性无关.或每个e i 均不可由其余n -1个线性表示(如的任意线性组合),从而线性无关.121,,,−n e e e L ())1,,0,0(0,,,11111L L L =≠=++−−n Tn n n e k k e k e k n e e e ,,,21L (2),n e e e ,,,21L ()n a a a ,,,21L =β线性相关:n n e a e a e a +++=L 2211β.例5 (1)设321,,ααα线性无关,试证133322211,,ααβααβααβ+=+=+=线性无关.证 设有0332211=++βββx x x ,即0)()()(133322211=+++++ααααααx x x 亦即0)()()(332221131=+++++αααx x x x x x ,由321,,ααα线性无关得,而⎪⎩⎪⎨⎧=+=+=+000322131x x x x x x 02110011101≠==D ,故321321,,0βββ⇒===x x x 线性无关(1994年研招考题实际即本题).(2)设s ααα,,,21L 线性无关,s 为奇数,则111211,,,ααβααβααβ+=+=+=−−s s s s s L 线性无关(证明与(1)类似);(3)设s 为偶数,s ααα,,,21L 为任一向量组,则111211,,,ααβααβααβ+=+=+=−−s s s s s L 线性相关()0121=−++−−s s ββββL((2)、(3)为1998年研招题);(4)()()()1,0,1,1,1,0,0,1,1321===βββTTT 线性无关;而()(,0,1,1,0,0,0,1,121=)=γγ()(1,0,0,1,1,1,0,043==)γγ线性相关;(5)设s 为奇数,s ααα,...,,21为线性无关向量组,则向量组++=2211ααβj j j k k线性无关),...,2,1(...s j k s sj =+α⇔D=0*≠ss ijk (证明与(1)类似);(6)设s 为偶数,s ααα,...,,21为任一向量组,D =0*=ss ijk ,则向量组s sj j j j k k k αααβ+++=...2211(j=1,2,…,s )线性相关.四.线性相关性的性质1.定理4 若s ααα,...,,21线性无关,而s ααα,...,,21,α线性相关,则α可由s ααα,...,,21唯一地线性表示.证 (1)因s ααα,...,,21,α线性相关,即存在一组不全为零的数,k k k k s ,,...,,210...2211=+++ααααk k k k s s +使,则k ≠0(否则,若k =0,即有0...2211=++s s k k k ααα+且不全为零,这与s ,...,,21k k k s ααα,...,,21线性无关矛盾)s s l l l αααα=+++⇒...2211,其中k k l i i −=(i=1,2,…,s ),即α可由s ααα,...,,21线性表示.(2)唯一性:设s s s s l l l k k k ααααααα+++=++=......22112211+,则有由,0)(...)()(222111−++−+−l k l k l k s s s =αααs ααα,...,,21线性无关得k i =l i (i=1,2,…,s ),从而唯一性得证.2.定理5 (1)设, 若 ns s F ∈+121,,,,ααααL s ααα,...,,21线性相关则121,,,,+s s ααααL 必线性相关(由定义立得); (2)若向量组(A )的某个部分组(A 1)线性相关,则向量组(A )必线性相关(即若部分相关,则整体相关); (3)若向量组(A )线性无关,则向量组(A )的任一部分组(A 1)必线性无关(即若整体无关,则部分无关); (4)特别地,若向量组(A )中含有:一个零向量,或有两个成比例(共线)的向量,或有三个“共面”的向量等;则向量组(A )必线性相关. 3.定理 6 设(升维),j=1,2,…,s. T j n nj j j j T j n j jj a a a a a a a )...(,)...(12121+==βα (1)若向量组(A ):s ααα,...,,21线性无关,则向量组(B ):s βββ,...,,21必线性无关; (2)若向量组(B )线性相关,则向量组(A )线性相关.证 (1)向量组(A )线性无关⇒齐次方程组=+++s s x x x ααα...22110只有零解齐次方程组⇒0...2211+++x x x s s =βββ只有零解⇒向量组(B )线性无关.4. 定理7 设有nF 中的向量组(A ):和(B ):r ααα,...,,21s βββ,...,,21; (1)若向量组(A )可由(B )线性表示,且r>s ,则向量组(A )线性相关; (2)若向量组(A )可由(B )线性表示,,且向量组(A )线性无关,则r ; s ≤ (3)若向量组(A )与(B )等价,且均线性无关,则r=s . 证 (1)设(r ααα,...,,21)=(21ββr s ij s k K K *)(,)...=⋅β,且设=即00...2211=+++r r l l l ααα(r ααα,...,,21)=(⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛r l l l M 21s βββ,...,,21)⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛⋅⋅r l l l K M 21因r>s,从而K的r 个列(s 维)向量线性相关,故存在不全为零的数,使=0,从而r l l l ,...,,21⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛⋅r l l l K M 210...=+++l l l 2211r r ααα,因此向量组(A )线性相关.例6 (1)nF 中(线性无关)的任一部分组(仍线性无关)若能由向量组n e e e ,,,21L r i i i e e e ,...,,21s βββ,...,,s 21线性表示,则r ≤;(2) 设s βββ,...,,21为nF 中线性无关的向量组,因s βββ,...,,21可由线性表示,则s ≤n ;反之若n<s ,则n e e e ,...,,21s βββ,...,,21线性相关;特别地,nF 中任意n +1个向量必线性相关; (3) nF 中若能由线性无关的向量组n e e e ,,,21L s βββ,...,,21线性表示,(因s βββ,...,,21可由e 线性表示),则二者等价,从而s =n .n e e ,...,,21§3 向量组的秩一、向量组的秩1.定义 设有向量组(A ),若(A )中存在部分向量组r A ααα,,,:)(210L 满足: (1)(A 0)线性无关,(2)(A )中任意r +1个向量(如果有的话)都线性相关;则称(A 0)为(A )的一个最(或极)大线性无关向量组,而正整数r 称为向量组(A )的秩,记为rankA 或R (A ).并规定仅含零向量的向量组的秩为0,即R (0)=0.例 1 (1),则)(11,10,01221F e e ∈⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=ααα,;,;,2121e e e e 均为α,,21e e 的极大无关组,从而2),,(21=αe e R .(2)因(B ):线性无关,而F T n T T e e e )1,,0,0(,,)0,,1,0(,)0,,0,1(21L L L L === n 的任意n +1个向量均线性相关,故(B )为F n 的一个最大无关组,从而R (F n )=n ; (3)F n 中任意n 个线性无关的向量都构成F n 的一个最大无关组.2.向量组(A )与其任一最大无关组(A 0)等价;从而向量组(A )的任意两个最大线性无关组等价.证 因(A 0)线性无关,而对)(A ∈∀α,)A (0与α线性相关)A (0可由α⇒线性表示可由(A )(A ⇒0)线性表示;而(A 0)显然可由(A )线性表示;故(A )与(A 0)等价.二、向量组的秩与矩阵的秩的关系1.定理1 矩阵A 的秩与它的行向量组的秩R r (A )、列向量组的秩R c (A )都相等. 证 设),,,(21m A αααL =,r A R =)(,并设A 的r 阶子式0≠r D ,记B r 为A 中D r 所在的r 列所成的矩阵,则,即 B r B R r =)(r 的r 个列向量(也是A 中D r 所在的r 个列向量)线性无关;而A 中所有r +1阶子式全为0,由定理6(2)知A 中任意r +1个列向量线性相关,因此A 中D r 所在的r 个列向量(即B r 的r 个列向量)是A 的列向量组的一个最大线性无关向量组,故.同理可证.r A R c =)(r A R r =)(推论 若矩阵A 的某个s 阶子式0≠s D ,则A 中D s 所在的s 个行(或列)向量线性无关.例2 设,求A 的列向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−=97963422644121121112A 51ααL 的最大无关组(A 0)和秩,并把其余向量用(A 0)表示.解 由,而三个非零行的非零首元分别在第1,2,4列,故3)()(00000310000111041211A 11==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−⎯⎯→⎯A R A R A 知=行变421,,ααα为其最大无关组.再由. 421521321334,00000310003011040101A ααααααα−+=−−=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−⎯⎯→⎯得=行变A 定理2 若矩阵A 经行初等变换成为B ,则(1)A 的行向量组(A )与B 的行向量组(B )等价;(2)A 的列向量组s ααL 1与B 的列向量组s ββL 1具有相同的线性关系,即有⇔=+011s s k k ααL 011=++s s k k ββL ,F k i ∈.证 (1)若A 经一次初等行变换成为B ,则显然B 的行向量组(B )可由A 的行向量组(A )线性表示;反之B 经一次初等行变换(上述逆变换)即成为A ,从而(A )也可由(B )线性表示;因此(A )与(B )等价成立.)1(⇒ (2)设有011=++s s k k ααL ,即为齐次线性方程组AX =0的解,也是的解,即有T s k k x )(1L =T s k k x )(1L =⇒0=BX 011=++ss k k ββL .推论 若矩阵A 经初等列变换成为B ,则(1)A 的列向量(A )与B 的列向量组(B )等价;(2)A 的行向量组与B 的行向量组有相同的线性关系.三、向量组之间的秩关系定理3 若向量组(B )可由向量组(A )线性表示,则)()(A R B R ≤.证 设s A αα,,:)(10L 和r B ββ,,:)(10L 分别为(A )和(B )的最大无关组,则s A R =)(,,且可由线性表示,即r B R =)()(0B )(0A r s ij k K ×=∃)(使K s r ⋅=)()(11ααββL L .假设r>s ,因,则方程组r s K R <≤)(0=⋅x K 有非零解,⇒方程组0)(1=Kx s ααL ,即0)(1=x s ββL 有非零解,这与s B ββ,,:)(10L 线性无关矛盾;故s r ≤.推论(1)等价的向量组有相同的秩(显然);(2)设,则n s s m n m B A C ×××⋅=)}(),(min{)(B R A R C R ≤;(3)设向量组(A )的部分组(A 0)线性无关,且(A )可由(A 0)线性表示,即从(A )中任意加一个向量到(A 0)后即线性相关,则(A 0)为(A )的极(或最)大无关组.证 (2)C 的列向量组可由A 的列向量组线性表示,B 为此表示的系数阵:;又C 的行向量组可由B 的行向量组线性表示,.)()()()(11A R C R B s n ≤⇒⋅=ααγγL K )()(B R C R ≤⇒ (3)设(A 0)含有r 个向量,则R(A 0)=r ,而(A )可由(A 0)线性表示,从而A 中任意r +1个向量都线性相关,⇒(A ⇒=≤r A R A R )()(00)为(A )的极大无关组. 注:推论(3)可作为极(或最)大无关组的(等价)定义.例3 设向量组(B )可由(A )线性表示,且).(~)(),()(B A B R A R 则= 证法1 只要证(A )可由(B )线性表示,从而(A )~(B ).设R(A)=R(B)=r ,且设A ,B 的一组最大无关组分别为(A 0):r r B ββαα,,:)(,,101L L 和.因(B 0)可由(B )表示,(B )可由(A )表示,而(A )可由(A 0)表示, 表示,即)()(00A B 可由⇒r r K ×∃使K A B 00⋅=,r K R K R B R r =⇒≤=⇒)()()()(A ),(B 0r 10r 10ααββL L ==,即K 可逆,即(A 111)()(−⋅=⇒K r r ββααL L 0)可由(B 0)线性表示(A )可由(B )线性表示(A )~(B ).⇒⇒证法2 设向量组(A )和(B )一起构成向量组(C ).则因(B )能由(A )表示得(C )可由(A )表示.而(A )能由(C )表示r C R C A =⇒⇒)()(~)(.于是(B )的任一最大无关组(B 0)也是(C )的最大无关组⇒(C) ~( B 0) ~(B) (A )~(B ). ⇒例4.已知.证明向量组TT T T )5,3,4,4(,)9,5,6,5(,)1,1,2,3(,)3,1,3,2(1121−−=−−=−−=−=ββαα2121,,ββαα与等价.证法1 只要证明使22×∈∃F Y X ,Y X )()(,)()(21212121ββααααββ==,先求X ,类似于求解线性方程组的方法,对增广矩阵()2121ββαα施行初等行变换化为行最简形矩阵: ()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−⎯⎯→⎯⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−−−−−=000000002310120159133511462045322121行变ββαα即得. ⎟⎟⎠⎞⎜⎜⎝⎛−−=2312X 因01≠=X ,故X 可逆,取,即为所求.因此向量组⎟⎟⎠⎞⎜⎜⎝⎛==−23121X Y 2121ββαα与等价(而且将此两个向量组相互线性表示出来:2122112122112,32;2,32ββαββαααβααβ+=+=+−=−=).证法2 对()21,αα和()21,ββ分别施行初等列变换化为列最简形矩阵:()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−⎯⎯→⎯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=411234521100113112032,21列变αα,()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−⎯⎯→⎯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−=411234521100159354645,21列变ββ可见二者由相同的列最简形,于是()21αα可经初等列变换成为()21ββ,由定理2的推论知向量组2121ββαα与等价.证法3 显然21,αα线性无关(二者不成比例),21,ββ线性无关,且由法1知()212121212ββααββαα与⇒=R 都是212,1,,ββαα的最大无关组,从而等价.例5 求向量组54321,,,,ααααα的极大无关组:.()⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−−−−−−−−=3110222121022201211121011,,,,54321ααααα 解()⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−−⎯⎯→⎯⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−−−−−−−⎯⎯→⎯00000000002001011100201010*********200201110021011,,,,54321行变行变ααααα(3,,,,R 54321=)ααααα⇒;其极大无关组有7组(为什么?):421,,ααα;,,;,,;,,;,,;,,;,,;532542531521321541αααααααααααααααααα且有421541322,ααααααα−+=−=.例6(1992-Ⅰ,II )设321,,ααα线性相关,432,,ααα线性无关.问:(1)1α能否由32,αα线性表出?(2)4α能否由321,,ααα线性表出? 证明你的结论. 解 (1)1α能由32,αα线性表出.因为32,αα4,α线性无关⇒32,αα线性无关,而321,,ααα线性相关⇒1α能由32,αα线性表出.(2)4α不能由321,,ααα线性表出.否则,若4α能由321,,ααα线性表出,由(1)1α能由32,αα线性表出⇒4α能由32,αα线性表出,与432,,ααα线性无关矛盾.故4α不能由321,,ααα线性表出.例7(1995-Ⅳ)已知向量组(Ⅰ)321,,ααα (II) 4321,,,αααα (III) 5321,,,αααα的秩分别为.证明向量组(Ⅳ)4)(,3)()(===ⅢⅡⅠR R R 45321,,,ααααα−的秩为4. 证 因线性无关,(II)线性相关)(3)()(ⅠⅡⅠ⇒==R R 4α⇒可由321,,ααα唯一地线性表出3322114ααααk k k ++=.假设)()(0332211454332211454332211ααααααααααααk k k l l l l l l l l l ++−+++=−+++= 54334322421141)()()(ααααl k l l k l l k l l +−+−+−=, 由即4)(=ⅢR 5321,,,αααα线性无关得0434324241==−=−=−l k l l k l l k l l 04321====⇒l l l l即45321,,,ααααα−线性无关,故4)(=ⅣR .§4 向量空间设F 是数域,V=F n 为F 上的向量空间,它是数域F 上的线性空间,即其中向量有加法和数乘这两个线性运算,且满足是八条运算律(详见教材第六章).一、三维实向量空间的基与坐标 (复习与推广)1. 由空间解析几何知道,在R 3中建立直角坐标系(即取定成右手系的相互垂直的单位向量i , j , k )后,向量组e 1=()001T , e 2=()010T , e 3=()100T 为R 3的一个极大无关组,即e 1,e 2,e 3线性无关,且=(α∀a 1 a 2 a 3) T ∈R 3均可由e 1,e 2,e 3唯一地线性表示:α=a 1e 1+a 2e 2+a 3e 3,或R 3可由e 1,e 2,e 3线性生成,故称e 1,e 2,e 3为R 3的一组基,且称R 3为3维实向量空间.2. 称a i (i=1,2,3)为向量α=(a 1a 2a 3)T 在基e 1,e 2,e 3下的第i 个坐标(分量),且称(a 1 a 2 a 3)T 为α在基e 1,e 2,e 3下的坐标(表示).3. R 3中任意3个线性无关的向量α1 、α2 、α3均构成R 3的一组极大无关向量组,都可作为R 3的一组基,∈∀α R 3均可由α1 、α2 、α3唯一地线性表示:α=b 1α1+b 2α2+b 3α3 称b i 为 在基α1 、α2 、α3下的第i 个坐标,且称(b 1,b 2,b 3)T 为α在基α1 、α2 、α3下的坐标(表示).例1 (1) α1=( )001T ,α2=( )011T ,α3=( )111T ,为R 3的一组基,α∀=(a 1a 2a 3)∈R 3在此基下的坐标为(a 1-a 2,a 2-a 3,a 3):α=(a 1-a 2)α1+(a 2-a 3)α2+a 3α3.(2)β1=()111T ,β2=( )110T ,β3=( )100T ,为R 3的一组基,α∀=(a 1a 2 a 3)∈R 3在此基下的坐标为(a 1,a 2-a 1,a 3-a 2):α=a 1β1+(a 2-a 1)β2+(a 3-a 2)β3.二、向量空间的基、维数和坐标1.基与维:向量空间V=F n 的任一极大线性无关组(必含有n 个向量)称为V 的一组基,于是称n 为V 的维数,记为dimV ,即dimV=n2.坐标:设α1,...,αn 为V 的一组基,∈∀αV 可由α1,...,αn 唯一地线性表示: α=a 1α1+...+a n αn ,称a i 为α在基α1,...,αn 下的第i 个坐标(分量),称(a 1,...,a n )T 为α在基α1,...,αn 下的坐标(向量),记为α=(α1 ...αn )(a 1 ...a n )T 例2、设V=F n ,则(1)e 1=()001L T ,e 2=()010L T ,e n =()100L T , 为V 的基,∈∀αV ,α=(a 1a 2a L n )T ,则α=(e 1e 2e L n )(a 1a 2a L n )T ;(2)α1=()001L T ,α2=()011L T ,=()n α,L 111L T ,为V 的基, α∀=(a 1a 2a L n )T ∈V ,则α=(α1α2αL n )( a 1-a 2 a 2-a 3 L a n-1-a n a n )T , β1=()111L T ,β2=( )110L T ,L βn =( )100L T 为V 的基,=∀α(a 1a 2a L n )T ∈V ,则α=(β1β2L βn )( a 1 a 2-a 1 L a n-1-a n-2 a n-1-a n )T .3.基变换 设V=F n 的两组基(E ):e 1e 2L e n 和(D ):d 1d 2L d n ,则d j =t 1j e 1+t 2j e 2+L +t nj e n(j=1,2, L n);若记T =(t ij )n ×n 则有(d 1d 2L d n )=(e 1e 2L e n )T L (1)并且T 可逆(记T =(t 1t 2 L t n ),t j ∈F n 为T 的第j 个列向量,设(t 1t 2 L t n )(k 1k 2L k n )T =k 1t 1+k 2t 2+k L n t n =0,k ⇒1d 1+k 2d 2++k L n d n =(d 1d 2L d n )( k 1k 2L k n )T =(e 1e 2L e n )( t 1t 2L t n )( k 1k 2L k n )=0,而d T 1 d 2 L d n 线性无关⇒k 1=k 2= L =k n =0 t ⇒1,t 2, L ,t n 线性无关 T 可逆),于是有(⇒e 1e 2L n e =(d 1d 2L d n )T -1L (2)(1)式和(2)式分别称为从旧基(E ):e 1e 2L e n 到新基(D ):d 1d 2L d n 和从新基(D )到旧基(E )的基变换公式,其中T 称为从旧基(E )到新基(D )的过度矩阵.例3 (1)R 3中基e 1e 2e 3到基α1α2α3和基β1β2β3(同例1)的过度矩阵分别为 T 1=(T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1001101111-1=)和T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−1001100112= (T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1110110012-1=); ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−110011001(2)V=F n 中,从基e 1e 2e L n 到基α1α2αL n 和基β1β2...βn (同例2)的过度矩阵 分别为T 1=,(T ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10000110001111011111L L L L L L L L L L 1-1=) ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−10000110000011000011L L L L L L L L L L 和T 2=(T ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11111011110001100001L L L L L L L L L L 2-1=). ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−11000010000001100001L L L L L L L L L L 4. 坐标变换:设∈αV 在旧基(E )和新基(D )下的坐标分别为x=(a 1a 2a L n )T 和 y=(b 1b 2b L n )T ,即α=(e 1e 2e L n ).x=( d 1d 2d L n ).y ,而(e 1e 2e L n )=(d 1d 2d L n ).T -1,从而( d 1d 2d L n ).y =( d 1d 2d L n ).T -1.x ,由坐标的唯一性知 y=T -1.x ,此式称为由(向量α的)旧坐标x 到新坐标y 的坐标变换公式,而T -1称为由旧坐标x 到新坐标y 的坐标变换矩阵.例4 (1)设α=(a 1a 2a 3)T ∈R 3在基α1α2α3(同例1)下的坐标为x=(x 1 x 2 x 3)T , 即α=(α1α2α3)x =x 1α1+x 2α2+x 3α3,则x =T 1-1 (a 1a 2a 3)T =(a 1-a 2,a 2-a 3,a 3)T (与例1结果相同)设α=(a 1a 2a 3)T ∈R 3在基β1β2β3(同例1)下的坐标为y=(y 1 y 2 y 3)T ,即α=(β1β2β3).y =y 1β1+y 2β2+y 3β3,则y=T 2-1(a 1a 2a 3)T =(a 1,-a 1+a 2,-a 2+a 3),即y 1=a 1,y 2= -a 1+a 2,y 3=-a 2+a 3(与例1结果相同); (2)同理可得α∀=(a 1a 2a L n )T ∈R n 在例2中的新基α1α2αL n 和β1β2βL n 下的坐标分别为x=T 1-1α和y=T 2-1α,即x=(a 1-a 2,a 2-a 3 ,L a n-1-a n ,a n )T 和y=(a 1,-a 1+a 2,L -a n-1+a n )T(3)R 2中由基e 1=()01T ,e 2=()10T 到新基α1= (2121)T ,α2= (2121−)T 的坐标变换即为旋转(4π),其过渡矩阵为T=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−21212121,坐标变换矩阵为T -1=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−21212121,坐标变换公式为⎪⎪⎩⎪⎪⎨⎧+−=+=x x y x x y 21221121212121(4)平面(R 2)上旋转θ角的坐标变换相的过渡矩阵为T=,坐标变换矩阵为T ⎟⎟⎠⎞⎜⎜⎝⎛−θθθθcos sin sin cos -1=,坐标变换公式为 ⎟⎟⎠⎞⎜⎜⎝⎛−θθθθcos sin sin cos ⎪⎩⎪⎨⎧+−=+=θθθθcos sin sin cos 212211x x y x x y 三、向量子空间1. 定义:设≠φV F ⊆n ,如果对F n 中向量的加法和数乘两线性运算封闭,即对∈∀βα,V 及∀k ∈F ,有α+β,k α∈V ,则称V 为F n 的子(向量)空间.注: (1)子(向量)空间本身是一个向量空间,从而有基、维数、坐标等概念.若dimV=m ,(m n )则称V 为F ≤n 的m 维子空间;当m=n 时,即有V=F n .(2)显然O ={0}为F n 的子空间,称为零子空间,其维数为0;V=F n 是F n 的子空间;O 和F n 称为F n 的平凡子空间,而F n 的其它子空间称为非平凡子空间.2. 生成子空间:对∀α1α2αL s ∈F n ,记V=L[α1α2αL s ]={k 1α1+ k 2α2+L + k s αs | k i ∈F,i=1,2,3,s},显然V 对向量的加法和数乘封闭,从而V 为F L n 的子空间,称为由向量α1α2αL s 线性生成(或张成)的子空间;设α1α2αL r 为α1α2αL s 的极大线性无关组,则V 中任一向量均有α1α2αL r 线性表示,从而α1α2αL r 为V 的一组基,于是dimV = r (0≤ rn);若R(≤α1α2αL s )=n ,则V = L(α1α2αL s )=F n .例5 (1)V 1={α=(0 a 2a L n |a i ∈F ,i=2, L n )}为F n 的一个子空间,易证 e 2=()010L T , L ,e n = ()100L T 为V 1的一组基,从而dimV 1=n-1; (2)V 2={α= (1 α2αL n )| a i ∈F,i=2,3, L n}对F n 的加法和数乘都不封闭(α1+α2=(2,)∉V L 2,3α=(3,L )∉V 2),从而V 2不是F 的子空间; n (3)V 3={α= (,2a )|R }对加法封闭,但对数乘不封闭((-1)a T a ∈+α=(-,-2)a a ∉V 3),故V 3不是R 的子空间;2V 4={()b a ,T |=或=2,b a b a ∈a R}对数乘封闭,但对加法不封闭( ()a a ,T +()a a 2,T =()a a 3,2T ∉ V 4),故V 4也不是R 2的子空间.3. 子空间的运算 设V 1,V 2为F n 的两个子空间.(1) 交子空间:V 1∩V 2={α|α∈V i ,i=1,2};(2) 和子空间:V 1+V 2={βα+|α∈V 1 ,β∈V 2};易证:V 1∩V 2和V 1+V 2都对加法和数乘封闭,从而都是F n 的子空间;但是V 1∪V 2 ={α|α∈V 1或α∈V 2}一般不是F n 的子空间.4. 维数公式(1)dim V1+dim V2=dim(V1+V2)+dim(V1∩V2);≥1+dim V2-dimV;(2)dim(V1+V2)≤ dim V1+dim V2;dim(V1∩V2) dim V若dim V1+dim V2 > dimV,则V1∩V2≠0.例6V=R3,V1={α=(a1,a2,0)T| a i∈R,i=1,2 }, V2={β=(0,b1,b2)T|b i∈R,i=2,3 },则V1,V2均为V的2维子空间(即分别为空间坐标系中的xy面和yz面),V1∩V2={γ=(0,c,0)T|c∈R}为1维子空间(即y轴),V1+V2=V,满足dimV1+dimV2=4=3+1=dim(V1+V2)+dim(V1∩V2).。

线性代数教学资料—chapter3共75页文档

线性代数教学资料—chapter3共75页文档
Li Jie
3.1 Introduction
In mathematics and the physical sciences, the term vector is applied to a wide variety of objects. Perhaps the most familiar application of the term is to quantities, such as force and velocity, that have both magnitude and direction. Such vectors can be represented in two space or in three space as directed line segments or arrows. As we will see in chapter 5,the term vector may also be used to describe objects such as matrices , polynomials, and continuous realvalued functions.
Li Jie
In this section we demonstrate that Rn, the set of n-dimensional vectors, provides a natural bridge between the intuitive and natural concept of a geometric vector and that of an abstract vector in a general vector space.
We now introduce two subspaces that have particular relevance to the linear system of equations Ax=b, where A is an (m×n) matrix. The first of these subspaces is called the null space of A (or the kernel of A) and consists of all solutions of Ax=θ. Definition 1:Let A be an (m × n) matrix. The null space of A [denoted N(A)] is the set of vectors in Rn defined by

线性代数第3章

线性代数第3章
第三章 n维向量
与线性方程组解的结构
第一节 第二节 第三节 第四节 第五节
n维向量及其线性运算 向量组的线性相关性和线性无关性 向量组的秩 齐次线性方程组 非齐次线性方程组
第一节 n维向量及其线性运算
线性代数
第三章 n维向量与线性方程组解的结构
第1节 n维向量
定义1 设 a1,a2 ,,an 为数域F中的n个数,则由这
因此结论成立. 此例的结果表明了向量的线性表出关系具有传递性.
线性代数 第三章 n维向量与线性方程组解的结构 第2节 向量组线性关系
定义2 一个向量组 α1,α2 ,,αs (s ≥ 1),如果存在
一组不全为零的常数 k1, k2 ,, ks,使得
k1α1 + k2α2 + + ksαs = 0,就称向量组 α1,α2 ,,αs 线性相关. 若 α1,α2 ,,αs 不线性相关,就称 α1,α2 ,,αs 线性无关.
n个数组成的有序数组 (a1,a2 ,,an ) 称为n维向量,
数 a1,a2 ,,an 为该向量的分量,
记作α
(= a1,a2 ,,an )行向量,或α
a1
a2
列向量
an
注(1):分量均为0的n维向量称为n维零向量, 记作 0n = (0,0,,0) T.
线性代数
第三章 n维向量与线性方程组解的结构
线性表出? = 设 αi
a1i = a2i , (i
ani
1,= , s) β
b1
b2
bn
线性代数 第三章 n维向量与线性方程组解的结构 第2节 向量组线性关系
b1 = b2
bn
a11 a12
ans

第三章线性代数ppt课件

第三章线性代数ppt课件

二. Gauss消元法 • 阶梯形线性方程组的有三中基本类型 2x1+3x2 x3 = 1 2x2+x3 = 2 无解 0=1 x1x2+2x3 = 8 2x2 +x3 = 1 x3 = 5 x1+2x2+x3 + x4 = 2 x3+4x4 = 3 有唯一解
有无穷多解
第三章 ·线性方程组
§3.1线性方程组和Gauss消元法
第三章 线性方程组
§3.3 非齐次线性方程组
§3.3 非齐次线性方程组
一. 非齐次线性方程组的相容性
定理3.4. 设ARmn, bRm, 则
(1) Ax = b有解秩([A, b]) = 秩(A);
(2) 当秩([A, b])=秩(A)=n时, Ax = b有 唯一解; (3) 当秩([A, b])=秩(A)<n时, Ax = b有 无穷多解, 且通解中含有n秩(A) 个自由未知量.
第三章线性代 数
第三章 ·线性方程组
§3.1线性方程组和Gauss消元法
Ax = b 齐次线性方程组( b = 0)
线性方程组的分类 非齐次线性方程组 (b 0)
线性方程组的解
无解 (不相容) 有解 (相容)
唯一解 无穷多解 (通解)
表示全部解的表达式
第三章 ·线性方程组
§3.1线性方程组和Gauss消元法
第三章 线性方程组
§3.2 齐次线性方程组
§3.2 齐次线性方程组 齐次线性方程组 a11x1+a12x2+…+a1nxn = 0 a21x1+a22x2+… a2nxn = 0 … … … … … … … am1x1+am2x2+…+amnxn = 0 零/平凡解, 非零/平凡解

线性代数 ch3.ppt

线性代数 ch3.ppt

求逆矩阵的初等变换法
定理1表明,如果 A ~rB, 即 A 经一系列
初等行变换变为 B,则有可逆矩阵 P,使 PA = B .
那么,如何去求出这个可逆矩阵 P 呢?
由于 PA = B
PA = B PE = P
P(A, E) = (B, P)
( A, E ) ~r ( B, P ),
因此,如果对矩阵 (A, E) 作初等行变换,那么,当
(1)
1 2 3 2
2 x1 2 x1
x2 3x2
x3 x3
x4 2, x4 2,
2 3
(B1 )
3 x1 6 x2 9 x3 7 x4 9, 4
23 3 21
4 31
x1 x2 2 x3 x4 4, 1 2 x2 2 x3 2 x4 0, 2
5 x2 5 x3 3 x4 6, 3
定理1的证明:
(i) 由 A ~r B 的定义和初等行变换的性质,有
A ~r B
A 经有限次初等行变换变成 B
存在有限个 m 阶初等矩阵 P1, P2 , ···, Pl,使P1P2 ···Pl A = B 存在 m 阶可逆矩阵 P,使 PA = B .
类似可证明(ii)和(iii).
推论1 : 方阵 A 可逆的充要条件 A ~r E.
x3 x3
4 3
(行最简形矩阵)
(解线性方程组 只需把增广矩阵化 为行最简形矩阵)
x4 3
取x3为自由未知数,并令x3 c,即得
x1 c 4 1 4
x
x2 x3 x4
c3 c 3
c
1 1 0
3 0 3
,
其中c为任意常数.
行阶梯形矩阵的特点:

线代3.1 线性代数课件

线代3.1 线性代数课件

(2,1,1,1) 的线性组合?
例3:设向量
1
1
1, 2
1 0
,1
1 3
,2
31,
1
1
5
1
问1,
是否可以由
2
1,2
线性表示?
-13-
例4 设向量组 A: 1 (1 ,1,1)T , 2 (1,1 ,1)T , 3 (1,1,1 )T , 向量 (0,3, )T ,问 为何值时, 不能由 A 线性表示; 能由 A 唯一表示; 能由 A 有
无穷多种表示, 并求所有表示方法.
解 记 A [1 ,2 ,3 ] 只需讨论 Ax 解的情况.
具体解方程组过程略。
0 时,方程组无解, 不能由 A 表示. 0 且 3时, 方程组有唯一解, 可由 A 唯一表示.
-14-
3 时, 方程组有无穷多解, 可由 A 无穷多种表示.
第三章 向量空间Rn
§3.1 向量及其线性组合 §3.2 一个n元向量组的线性相关性 §3.3 向量组的秩 §3.4 向量空间 §3.5 欧氏空间Rn
§3.1 向量及其线性组合
三维空间的向量: 有向线段。建立标准直角坐标系后,
P(x, y, z)
O
它由一点 P 或一个三元数组 (x,y,z) 唯一确定。
anen
-10-
线性方程组的向量表示
a11x1 a12x2 a1nxn b1
n元线性方程组
a21x1 a22x2 a2nxn b2
(1)
am1x1am2x2 amnxn bm
可以用向量形式表示为 x11 x22 xnn B
a11
a12
其中
1
a21
,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特别注意
A− B = (aij − bij )m×n
只有两个矩阵是同型矩阵时, 只有两个矩阵是同型矩阵时,这两个矩阵才 能进行加( 能进行加(减)法.
17
例如
20 17 12 22 15 15 A= 30 20 10, B = 26 25 10
y1 = a11 x1 + a12 x 2 + ⋯ + a1n x n , y = a x + a x +⋯+ a x , 2 21 1 22 2 2n n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ym = am 1 x1 + a m 2 x2 + ⋯ + a mn x n ,
y2 ,⋯ , ym
0 1 ⋯ 0 E = (δ ij ) = ⋮ ⋮ ⋮ 0 0 ⋯ 1
y1 = x1 , y = x , 2 2 单位矩阵对应线性变换为恒等变换 ⋯⋯ yn = xn .
10
对角矩阵: 不在对角线上的元素都是0. 这种方 对角矩阵: 不在对角线上的元素都是 阵称为对角矩阵 简称对角阵 对角矩阵, 对角阵, 表示, 阵称为对角矩阵,简称对角阵,用 Λ 表示,即 λ1 0 ⋯ 0 0 λ2 ⋯ 0 Λ= = diag(λ1 , λ2 , ⋯ , λn )
2. 有关概念
实矩阵与复矩阵:元素是实数的矩阵称为实矩阵, 实矩阵与复矩阵:元素是实数的矩阵称为实矩阵, 实矩阵 元素是复数的矩阵称为复矩阵 除特别说明外, 复矩阵; 元素是复数的矩阵称为复矩阵;除特别说明外,都 指实矩阵. 指实矩阵 行矩阵(行向量): 只有一行的矩阵, 行矩阵(行向量): 只有一行的矩阵,记作
0 1 A = (a ij ) = 0 1 1 1 1 0 0 0 1 0 0 0 1 0
2
4
3
用矩阵表示这个图后, 说明 用矩阵表示这个图后,就可以用计算机对 这个图进行分析和计算. 这个图进行分析和计算 8
例4 n 个变量x1 , x 2 , ⋯ , x n 与m 个变 y1 , 量之间的关系式
14
西尔维斯特( ),他是犹太 西尔维斯特(Sylvester, 1814-1897),他是犹太 ), 人,故他在取得剑桥大学数学荣誉会考第二名的优 异成绩时,仍被禁止在剑桥大学任教。 异成绩时,仍被禁止在剑桥大学任教。从1841年起 年起 他接受过一些较低的教授职位,也担任过书记官和 他接受过一些较低的教授职位, 律师。经过一些年的努力, 律师。经过一些年的努力,他终于成为霍布金斯大 学的教授,并于1884年70岁重返英格兰成为牛津 学的教授,并于 年 岁时重返英格兰成为牛津 大学的教授。他开创了美国纯数学研究, 大学的教授。他开创了美国纯数学研究,并创办了 《美国数学杂志》。在长达50多年的时间内,他是 美国数学杂志》。在长达 多年的时间内, 》。在长达 多年的时间内 行列式和矩阵论始终不渝的作者之一。 行列式和矩阵论始终不渝的作者之一。
a11 a 21 ⋮ am1 a12 a 22 ⋮ ⋯ a1n ⋯ a2 n ⋮
a m 2 ⋯ a mn
列矩阵, 矩阵. 称为 m行 n列矩阵,简称 m×n × 矩阵 为表示这 个数表是一个整体,总是加一个括弧, 个数表是一个整体,总是加一个括弧,并用大写黑 体字母表示它, 体字母表示它,记作
3
a11 a 21 A= ⋮ a m1
a ij = bij ( i = 1,2,⋯ , m; j = 1,2,⋯ , n)
6
二、矩阵举例
例2 某厂向三个商店发送四种产品的数量可列成矩阵
a11 A = a 21 a 31 a12 a 22 a 32 a13 a 23 a 33 a14 a 24 a 34
15
卡莱( 卡莱(Cayley 1821-1895)生于一个古老而有才能 ) 的英国家庭,在学校中他就显示了数学才能.他的 的英国家庭,在学校中他就显示了数学才能 他的 老师说服他的父亲送他到剑桥,而不要让他做家务. 老师说服他的父亲送他到剑桥,而不要让他做家务 在剑桥它是数学荣誉会考的一等第一名,并获得 在剑桥它是数学荣誉会考的一等第一名, Smith奖,他当选为剑桥的三一学院的研究员和助 奖 理导师, 年后由于必须担任圣职而离开。 理导师,但3年后由于必须担任圣职而离开。他转 年后由于必须担任圣职而离开 向法律并在这个职业上花费了后来的15年 这期间 向法律并在这个职业上花费了后来的 年.这期间 他用了大量的时间搞数学,并发表了近200篇文章 篇文章. 他用了大量的时间搞数学,并发表了近 篇文章 也是在这时,他和Sylvester开始了长期的友谊和合 也是在这时,他和 开始了长期的友谊和合 作.1863年,他被任命为剑桥新创立的 年 他被任命为剑桥新创立的Sadler数学教 数学教 除去1882年受 年受Sylvester的聘请在霍普金斯大学 授。除去 年受 的聘请在霍普金斯大学 以外,他一直在剑桥,直到逝世. 以外,他一直在剑桥,直到逝世.
(1)
线性变换. 称为从变量 x1 , x 2 , ⋯ , x n到变量y1 , y2 ,⋯ , ym的线性变换 线性变换 (1)的系数 a ij构成矩阵 A = ( a ij ) m×n ; 称为线性变换的系数矩阵 线性变换的系数矩阵, 称为线性变换的系数矩阵,线性变换与矩阵是一一 对应的. 对应的
基本要求
理解矩阵的概念,知道零矩阵、对角矩阵、 理解矩阵的概念,知道零矩阵、对角矩阵、单 位矩阵、对称矩阵等特殊矩阵; 位矩阵、对称矩阵等特殊矩阵; 熟练掌握矩阵的运算及其运算规律. 熟练掌握矩阵的运算及其运算规律
2
一、矩阵的定义与记号
第 一 节
1.定义 由 m × n个数 a ij ( i = 1,2,⋯ m; j = 1,2,⋯ , n) 定义 排成的m 行 n 列的数表
A = (a1 , a 2 ,⋯ , a n )
1×n矩阵
只有一列的矩阵, 只有一列的矩阵,记作 列矩阵(列向量): 列矩阵(列向量): b1 b2 B= ⋮ m×1矩阵 b m
5
方阵: 方阵:行数与列数都等于 n的矩阵称为 n阶矩阵 阶方阵. 或n 阶方阵 n阶矩阵 A 也记作 An . 同型矩阵: 两个矩阵的行数相等、列数也相等时, 同型矩阵 两个矩阵的行数相等、列数也相等时, 就称它们是同型矩阵 同型矩阵. 就称它们是同型矩阵 矩阵相等: 同型矩阵, 矩阵相等: 如果 A = (a ij ) 与 B = (bij ) 是同型矩阵, 并且它们的对应元素相等, 并且它们的对应元素相等,即 那么就称矩阵 与矩阵 B 相等, 那么就称矩阵 A 相等,记作 A= B = .
种产品的数量. 其中 a ij 为工厂向第 i 店发送第 j 种产品的数量. 这四种产品的单价及单件重量也可列成矩阵
b11 b21 B= b 31 b 41 b12 b22 b32 b42
b 种产品的单价, 为第 i 种产品单件重量 种产品单件重量. 其中bi 1 为第 i 种产品的单价, i 2
16
一、矩阵的加减法 第 1. 定义 两个同为m×n的矩阵相加(减)后得一 两个同为 × 的矩阵相加( 矩阵,其元素为两矩阵对应元素的和( 对应元素的和 二 m × n 矩阵,其元素为两矩阵对应元素的和(差). 节
A = (aij )m×n , B = (bij )m×n ,
A+ B = (aij + bij )m×n
a12 a 22 ⋮ am 2
⋯ a1n ⋯ a2 n ⋮ ⋯ a mn
个数称为矩阵 的元素,简称为元,数 a ij 的元素,简称为元, 这 m × n 个数称为矩阵 A 位于矩阵的第 i 行第 j 列,称为矩阵的 (i, j)元. 以 (a 数 a ij 为 (i, j) 元的矩阵可简记作 (a ij ) 或 (a ij ) m×n . m × n 矩阵 A 也记作A ×n. m 注意 (1)矩阵的记号是在数表外加上括弧,与行列式 )矩阵的记号是在数表外加上括弧, 的记号(在数表外加上双竖线)是不同的, 的记号(在数表外加上双竖线)是不同的,这是两 个不同的概念,注意区别. 个不同的概念,注意区别 (2)矩阵的行数和列数不一定相等 )矩阵的行数和列数不一定相等. 4
k 0 ⋯ 0 k ⋯ kE = ⋮ ⋮ 0 0 ⋯
0 0 ⋮ k
13
四、小结
在线性代数里,矩阵是一个主要工具, 在线性代数里,矩阵是一个主要工具,也是 一个主要的研究对象. 一个主要的研究对象 1850年由西尔维斯特(Sylvester)首先提出矩阵 年由西尔维斯特( 年由西尔维斯特 ) 的概念 矩阵的应用十分广泛:自然科学、工程技术、社 矩阵的应用十分广泛:自然科学、工程技术、 会科学等许多领域。如在观测、导航、 会科学等许多领域。如在观测、导航、机器人的 位移、化学分子结构的稳定性分析、密码通讯、 位移、化学分子结构的稳定性分析、密码通讯、 模糊识别,以及计算机层析X射线照相术等方面 射线照相术等方面, 模糊识别,以及计算机层析 射线照相术等方面, 都有广泛的应用 1858年卡莱(A. Cayley)建立了矩阵运算规则 年卡莱( 年卡莱 )
0 ⋮ ⋮ 0 ⋯ λn ⋮
y1 = λ1 x1 , y =λ x , 2 2 对角矩阵对应的线性变换为 2 ⋯⋯ yn = λn xn .
11
零矩阵:元素都是零的矩阵,记作 零矩阵:元素都是零的矩阵,记作0.
0 0 O= ⋮ 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ 0 ⋯ 0
从两个矩阵可以清楚看出这个厂的产品的信息. 说明 从两个矩阵可以清楚看出这个厂的产品的信息 7
四个城市间的单向航线如下图所示, 四个城市间的单向航线如下图所示, 例3 若令 1 条单向航线, 1, 从i市到 j市有1条单向航线, a ij = 0, 从i市到 j市没有单向航线 . 则这个图可以用矩阵表示为
相关文档
最新文档