江苏省苏州市2020届高三上学期期初调研考试数学试题 含解析答案

合集下载

江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学(word版含答案)

江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学(word版含答案)

江苏省苏州市2020~2021学年第一学期高三期初调研试卷数学试题2020.9一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.集合A ={}2230x x x --≤,B ={}1x x >,A B =A .(1,3)B .(1,3]C .[﹣1,+∞)D .(1,+∞)2.复数z 满足(1+i)z =2+3i ,则z 在复平面表示的点所在的象限为A .第一象限B .第二象限C .第三象限D .第四象限3.421(2)x x -的展开式中x 的系数为 A .﹣32 B .32 C .﹣8 D .84.已知随机变量ξ服从正态分布N(1,2σ),若P(ξ<4)=0.9,则P(﹣2<ξ<1)为A .0.2B .0.3C .0.4D .0.65.在△ABC 中,AB AC 2AD +=,AE 2DE 0+=,若EB AB AC x y =+,则A .y =2xB .y =﹣2xC .x =2yD .x =﹣2y6.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵,记鲑鱼的游速为v (单位:m /s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3Q log 100成正比,当v =1m /s 时,鲑的耗氧量的单位数为900.当v =2m /s 时,其耗氧量的单位数为A .1800B .2700C .7290D .81007.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,则下列四个命题不正确的是A .直线BC 与平面ABC 1D 1所成的角等于4πB .点C 到面ABC 1D 1的距离为2C .两条异面直线D 1C 和BC 1所成的角为4πD .三棱柱AA 1D 1—BB 1C 18.设a >0,b >0,且2a +b =1,则12a a a b ++ A .有最小值为4 B .有最小值为221+C .有最小值为143D .无最小值 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.A ,B 是不在平面α内的任意两点,则A .在α内存在直线与直线AB 异面 B .在α内存在直线与直线AB 相交C .存在过直线AB 的平面与α垂直D .在α内存在直线与直线AB 平行10.水车在古代是进行灌溉引水的工具,亦称“水转简车”,是一种以水流作动力,取水灌田的工具.据史料记载,水车发明于隋而盛于唐,距今已有1000多年的历史,是人类的一项古老的发明,也是人类利用自然和改造自然的象征,如图是一个半径为R 的水车,一个水斗从点A(3,33-)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t 秒后,水斗旋转到P 点,设点P 的坐标为(x ,y ),其纵坐标满足()R y f t == sin()t ωϕ+(t ≥0,ω>0,2πϕ<),则下列叙述正确的是 A .3πϕ=-B .当t ∈(0,60]时,函数()y f t =单调递增C .当t ∈(0,60]时,()f t 的最大值为33D .当t =100时,PA 6=11.把方程1x x y y +=表示的曲线作为函数()y f x =的图象,则下列结论正确的有A .()y f x =的图象不经过第三象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为1D .函数()()g x f x x =+不存在零点12.数列{}n a 为等比数列A .{}1n n a a ++为等比数列B .{}1n n a a +为等比数列C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项和三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知tan 2α=,则cos(2)2πα+= .14.已知正方体棱长为2,以正方体的一个顶点为球心,以为半径作球面,则该球面被正方体表面所截得的所有的弧长和为 .15.直线40kx y ++=将圆C :2220x y y +-=分割成两段圆弧之比为3:1,则k = .16.已知各项均为正数的等比数列{}n a ,若4321228a a a a +--=,则872a a +的最小值为 .四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S .现在以下三个条件:①(2c +b)cosA +acosB =0;②sin 2B +sin 2C ﹣sin 2A +sinBsinC =0;③a 2﹣b 2﹣c 2S .请从以上三个条件中选择一个填到下面问题中的横线上,并求解.已知向量m =(4sin x ,,n =(cos x ,sin 2x ),函数()23f x m n =⋅-,在△ABC。

2020学年第一学期高三调研考试数学试题参考答案

2020学年第一学期高三调研考试数学试题参考答案

16. 13
16.
解:由题意知 ∠F1AF2 = 90
,
cos
∠F1BF2
=

3 5
,所以
cos
∠ABF1
=
3 5
,即
AB BF1
= 3, 5
易得 AB : AF1 : BF1 = 3 : 4 : 5 .设 AB = 3 , AF1 = 4 BF1 = 5 , BF2 = x .
由双曲线的定义得: 3 + x − 4 = 5 − x ,解得: x = 3 ,所以 | F1F2 |= 42 + 62 = 4 13 ⇒ c = 13 ,因为 2a = 5 − x = 2 ⇒ a = 1,所以离心率 e = 13 .
因为 AB 为圆 O1 的直径,所以 ∠ACB = 90 ,
中, , 在 Rt∆ABC ∠ABC = 60 AC = 3 ,
所以 BC = AC = 1 , tan 60
中, 所以在 Rt∆FBC FC = BC tan 45 = 1………………………7 分
(方法一)因为 BC ⊥ AC , BC ⊥ FC , AC ∩ FC = C , 所以 BC ⊥ 平面 FAC , 又 FA ⊂ 平面 FAC , 所以 BC ⊥ FA .
=
2
.
所以, an = a1qn−1 = 2 × 2n−1 = 2n .
………………………………4 分 ………………………………5 分
(2)解法一:因为 bn
=
an
log 2
1 2
n
=

n ⋅ 2n
………………………………6 分
所以, −Tn = 1× 2 + 2 × 22 + 3× 23 +⋯ + n × 2n ……①

苏州市2019-2020学年第一学期高三期中调研试卷数学试题含附加题配答案

苏州市2019-2020学年第一学期高三期中调研试卷数学试题含附加题配答案


Ḁሴࠫሿ㓴ᴹ⭢ǃ҉ǃщй਽ሴ᡻ˈᐢ⸕⭢ࠫѝⴞḷⲴᾲ⦷ᱟ ˈ⭢ǃщҼӪ䜭⋑ᴹ



ࠫѝⴞḷⲴᾲ⦷ᱟ ˈ҉ǃщҼӪ䜭ࠫѝⴞḷⲴᾲ⦷ᱟ ˊ⭢҉щᱟ੖ࠫѝⴞḷ⴨ӂ⤜・ˊ


˄˅≲҉ǃщҼӪ਴㠚ࠫѝⴞḷⲴᾲ⦷˗
˄˅䇮҉ǃщҼӪѝࠫѝⴞḷⲴӪᮠѪ ;ˈ≲ ; Ⲵ࠶ᐳࡇ઼ᮠᆖᵏᵋˊ
ˊδᵢ从┗࠼ ࠼ε
(2)由(1)知 a 5,b 3, c 7 ,所以 cos B a2 c2 b2 13 ,................................. 10 分
2ac
14
因为 B 为 ABC 的内角,所以 sin B 1 cos2 B 3 3 ,................................................12 分 14
OJ [
ˊ࠭ᮠ \
[ ⲴᇊѹฏѪ Ÿ ˊ
ˊㅹ∄ᮠࡇ ^DQ` ѝˈ D D ˈ 6Q ᱟ ^DQ` Ⲵࡽ Q 亩઼ˈࡉ 6
Ÿˊ
ˊᐢ⸕ WDQD

VLQ D FRVD VLQ D
Ⲵ٬Ѫ
Ÿ
ˊ
ˊ³ [ ! ´ᱟ³ [ ! ´Ⲵ Ÿ ᶑԦˊ˄൘³‫࠶ݵ‬нᗵ㾱ǃᗵ㾱н‫࠶ݵ‬ǃ‫ݵ‬㾱ǃᰒн‫࠶ݵ‬৸н
Ⲵ⢩ᖱ٬
O

ᡰሩᓄⲴањ⢩ᖱੁ䟿Ѫ
ª º «¬ »¼
ˊ
˄˅≲⸙䱥 0 ˗ ˄˅䇮ᴢ㓯 & ൘ਈᦒ⸙䱥 0 ֌⭘лᗇࡠⲴᴢ㓯 &
Ⲵᯩ〻Ѫ \ [ ˈ≲ᴢ㓯 & Ⲵᯩ〻ˊ
%ˊδᵢ从┗࠼ ࠼ε ᐢ⸕ᴢ㓯 & Ⲵᶱ඀ḷᯩ〻Ѫ U FRVD VLQD ˄ D Ѫ৲ᮠ˅ˈⴤ㓯 O Ⲵ৲ᮠᯩ〻Ѫ

江苏省2020届高三数学上学期第一次调研抽测试题(含解析)

江苏省2020届高三数学上学期第一次调研抽测试题(含解析)

高三数学上学期第一次调研抽测试题(含解析)注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(共14题)、解答题(共6题),满分为160分,考试时间 为120分钟。

考试结束后,请将答题卡交回。

2. 答题前,请您务必将自己的姓名、考试证号等用书写黑色字迹的0.5毫米签字笔填写 在答题卡上。

3. 作答试题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位 置作答一律无效。

如有作图需要,可用2B 铅笔作答,并请加黑、加粗,描写清楚。

参考公式:锥体的体积公式1=3V Sh 锥体, 其中为锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答題卡相应位置 1.己知集合A ={﹣1,1,2},B ={1,2,4},则A I B = . 答案:{1,2} 考点:集合的运算解析:∵A ={﹣1,1,2},B ={1,2,4} ∴A I B ={1,2}2.设i 为虚数单位,则复数3(1i)+的实部为 . 答案:﹣2 考点:复数解析:∵323(1i)13i 3i i 22i +=+++=-+ ∴复数3(1i)+的实部为﹣2.3.某校共有学生2 400人,其中高三年级600人.为了解各年级学生的兴趣爱好情况,用分层抽样的方法从全校学生中抽取容量为100的样本,则高三年级应抽取的学生人数为 . 答案:25考点:统计,抽样调查 解析:600÷2400×100=25 4.若从甲、乙、丙、丁 4位同学中选出3名代表参加学校会议,则甲被选中的概率为 . 答案:34考点:古典概型解析:从甲、乙、丙、丁 4位同学中选出3名代表共有4种情况,其中甲被选中有3种情况,则甲被选中的概率为34. 5.在如图所示的算法流程图中,若输出的y 的值为﹣2,则输入的x 的值为 .答案:14考点:算法初步解析:当x >1时,22y x =-,输出的y 的值为﹣2,解得x =0,不符题意,舍;当x ≤1时,2log y x =,输出的y 的值为﹣2,解得x =14,符合题意,所以输入的x 的值为14. 6.已知双曲线2221(0)x y a a-=>的焦距为4,则a 的值为 .5考点:双曲线解析:∵焦距为4, ∴c =2,∴2125a =+7.不等式23122x x --<的解集为 . 答案:(﹣1,2) 考点:指数函数 解析:∵23122x x --<∴231x x --<- 解得﹣1<x <2∴原不等式的解集为(﹣1,2)8.在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点E 是棱BB 1的中点,则三棱锥D 1—DEC 1的体积为. 答案:43考点:棱锥的体积解析:1111D DEC E DD C 114V V 222323==⨯⨯⨯⨯=——. 9.已知等比数列{}n a 的前n 项和为n S .若21a =,3680a a +=,则5S 的值为 . 答案:316考点:等比数列 解析:∵3680a a += ∴38q =-,即2q =- ∴211122a a q ===-- ∴551[1(2)]3121(2)6S ---==--. 10.将函数()sin()4f x x π=+的图象向右平移ϕ个单位,得到函数()y g x =的图象.则“34πϕ=”是“函数()g x 为偶函数”的 条件.(从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中选填一个) 答案:充分不必要 考点:常用的逻辑用语 解析:因为“34πϕ=”⇒“函数()g x 为偶函数”;“函数()g x 为偶函数”“34πϕ=” 所以“34πϕ=”是“函数()g x 为偶函数”的充分不必要条件. 11.已知函数()()xf x ax b e =+,若曲线()y f x =在点(0,(0)f )处的切线方程为310x y -+=,则(1)f 的值为 .答案:3e考点:导数的几何意义,函数的切线解析:因为()()x f x ax b e =+,则()(1)xf x ax a e '=++由曲线()y f x =在点(0,(0)f )处的切线方程为310x y -+=,得切点坐标为(0,1)∴b =1,a =2,即()(21)xf x x e =+,所以(1)f 的值为3e . 12.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为 .答案:9考点:基本不等式解析:2481648411()()55942xy x y x y x yxy xy y x y x+++=+=+++=++≥+=,当且仅当x =2,y =1取“=”.13.已知()f x 是定义在R 上且周期为3的周期函数,当x ∈(0,3]时,()11f x x =--.若函数y ()log (01)a f x x a a =->≠且在(0,+∞)上有3个互不相同的零点,则实数a 的取值范围是. 答案:(4,7)U (19,16] 考点:函数与方程解析:根据数形结合的思想,可得1log 41log 71a a a >⎧⎪<⎨⎪>⎩或01log 61log 91a aa <<⎧⎪≥-⎨⎪<-⎩,解得4<a <7或19<a ≤16.14.在平面直角坐标系xOy 中,P(2,2),Q(0,﹣4)为两个定点,动点M 在直线x =﹣1上,动点N 满足NO 2+NQ 2=16,则PM PN +u u u r u u u r的最小值为 .答案:3考点:圆的方程解析:由NO 2+NQ 2=16,得点N 在圆22(2)4x y ++=上,设MN 中点为T(x ,y ),M(﹣1,m ),N(0x ,0y )则00212x x y y m =+⎧⎨=-⎩,代入圆N 得:2212()()122m x y -++-=,即点T 在以(12-,22m -)为圆心,1为半径的圆上所以PT 的最小值为32,PM PN +u u ur u u u r 的最小值为3.二、解答题:本大题共6小题,共90分.请在答題卡指定区域内作答.解答时应写出文字 说明、证明过程或演算步骤. 15. (本小题满分14分)如图,在四棱锥中,四边形是平行四边形,相交于点,OP OC =,为PC 的中点,. (1) 求证:平面; (2) 求证:平面16. (本小题满分14分)在ABC V 中,角,,A B C 的对边分别为,,a b c .已知向量(sin(),1)6a A π=+-,向量(1,cos )b A =,且12a b ⋅=. (1)求角的大小;(2)若4,5b c ==,求sin2B 的值.17. (本小题满分14分)设数列{}n a 的各项均为正数,{}n a 的前n 项和21(2),8n n S a n N *=+∈ (1)求数列{}n a 的通项公式;(2)设等比数列{}n b 的首项为2,公比为(0)q q >,前n 项和为n T .若存在正整数m ,使得33m S S T =⋅,求q 的值.18.(本小题满分16分)如图,某沿海地区计划铺设一条电缆联通,A B两地,A地位于东西方向的直线MN上的陆地处,B 地位于海上一个灯塔处,在A 地用测角器测得4BAN π∠=,在A 地正西方向4km 的点C 处,用测角器测得tan 3BCN ∠=. 拟定铺设方案如下:在岸MN 上选一点P ,先沿线段AP 在地下铺设,再沿线段PB 在水下铺设.预算地下、水下的 电缆铺设费用分别为2万元/km 和4万元/km,设BPN θ∠=,,42ππθ⎛⎫∈ ⎪⎝⎭,铺设电缆的总费用为()f θ万元.(1)求函数()f θ的解析式;(2)试问点P 选在何处时,铺设的总费用最少,并说明理由.19. (本小题满分16分)在平面直角坐标系xOy 中,己知椭圆2222:1(0)43x y C t t t-=>的左、右顶点为,A B ,右焦点为F .过点A 且斜率为的直线交椭圆于另一点.(1)求椭圆的离心率;(2)若12k =,求22PA PB 的值; (3)设直线:2l x t =,延长AP 交直线l 于点Q ,线段BQ 的中点为E ,求证:点关于直线的对称点在直线PF 上。

2020届江苏省苏州中学高三上学期期初数学试题(解析版)

2020届江苏省苏州中学高三上学期期初数学试题(解析版)

2020届江苏省苏州高三上学期期初数学试题一、填空题1.已知R 为实数集,集合{}1,0,1A =-,集合{}0B x x =≤,则R A B = ð______.【答案】{}1【解析】利用补集的定义求出集合B R ð,然后利用交集的定义求出集合R A B ð.【详解】{}0B x x =≤ ,{}0R B x x ∴=>ð,因此,{}1R A B = ð.故答案为:{}1.【点睛】本题考查列举法、描述法的定义,以及交集、补集的运算,考查计算能力,属于基础题.2.若复数122,2z i z a i =+=-(i 为虚数单位),且12z z 为实数,则实数a =______________.【答案】4【解析】根据复数的乘法运算法则,求出12z z ,由虚部为零,即可求解.【详解】1212,22,(42)2z i i z a i z a a z =+=-=++-,12z z 为实数,4a =.故答案为:4.【点睛】本题考查复数的代数运算以及复数的分类,属于基础题.3.已知函数1()1xf x a e =+-为奇函数,则实数a =___________.【答案】12【解析】根据奇函数的必要条件有(1)(1)f f -=-,求出a ,再加以验证()f x 是否为奇函数.【详解】函数1()1xf x a e =+-为奇函数,(1)(1)f f ∴-=-,11+111a a e e=----,解得,12a =,此时111()212(1)x x x e f x e e +=+=--,11()()2(1)2(1)x xx xe ef x f x e e --++-===---,所以()f x 为奇函数.故答案为:12.【点睛】本题考查函数奇偶性求参数,注意必要条件的应用减少计算量,但要验证,属于基础题.4.抛物线214y x =的准线方程是___________________.【答案】1y =-【解析】将214y x =化成抛物线的标准方程24x y =,利用抛物线的性质求解即可.【详解】由214y x =得:24x y =,所以24p =,即:12p =所以抛物线214y x =的准线方程为:12py =-=-.【点睛】本题主要考查了抛物线的简单性质,属于基础题.5.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.【答案】12⎛⎫+∞ ⎪⎝⎭【解析】分离参数法表达出a 的表达式,对函数配方,根据x 的范围,从而确定a 的范围.【详解】∵满足1<x <4的一切x 值,都有f (x )=ax 2﹣2x+2>0恒成立,可知a≠0∴a >()221x x -=2[14﹣(1x ﹣12)2],满足1<x <4的一切x 值恒成立,∵14<1x <1,∴2[14﹣(1x ﹣12)2]∈(0,12],实数a 的取值范围为:12⎛⎫+∞ ⎪⎝⎭,.故答案为:12⎛⎫+∞ ⎪⎝⎭,.【点睛】本题考查了不等式恒成立,二次函数的性质,函数的单调性,涉及了变量分离求最值得方法,属于中档题.6.已知函数()()()sin 20f x x ϕϕπ=+≤<关于直线6x π=-对称,则()0f =______.【答案】12【解析】根据对称轴方程,2x k k Z ππ=+∈,得到ϕ的表示,根据条件中的ϕ的范围结合k 的取值即可求出ϕ的值,最后可计算()0f 的值.【详解】因为正弦函数的对称轴为,2x k k Z ππ=+∈,所以2,62k k Z ππϕπ⎛⎫⨯-+=+∈ ⎪⎝⎭,所以5,6k k Z πϕπ=+∈,又因为[)0,ϕπ∈,所以56πϕ=,此时0k =,所以()5sin 26f x x π⎛⎫=+ ⎪⎝⎭,所以()510sin 62f π==.故答案为12.【点睛】已知正弦(或余弦)型函数的对称轴,求解函数中参数的方法:(1)根据对称轴方程,再利用给定的参数范围去求解参数值;(2)根据对称轴对应的是函数的最值,并利用参数范围求解参数值.7.若曲线(1)x y ax e =+在(0,1)处的切线斜率为-1,则a =___________.【答案】2-【解析】求出y ',并由0|1x y ='=-,建立a 的方程,即可求解.,((1)1)x x y y ax e ax a e '=+=++,011,2x y a a ='=+=-∴=-.故答案为:-2.【点睛】本题考查导数的几何意义,属于基础题.8.已知等比数列{}n a 的前n 项和为n S ,若264,,S S S 成等差数列,则246a a a +的值为__________.【答案】2.【解析】分析:利用264,,S S S 成等差数列求出1q =-,由()222144462112a q a a q a a q q+++===可得结果.详解:设{}n a 的首项1a ,公比为q ,1q =时,264,,S S S 成等差数列,不合题意;1q ≠时,264,,S S S 成等差数列,()()()6241112111111a q a q a q qq q---∴=+---,解得1q =-,()222144462112a q a a q a a q q+++∴===,故答案为2.点睛:本题主要考查等比数列的基本性质、等比数列的求和公式,意在考查函数与方程思想、计算能力以及综合运用所学知识解决问题的能力,属于中档题.9.若双曲线22219x y b-=满足9b ≥,则该双曲线离心率的取值范围是_______________.【答案】)+∞【解析】根据双曲线离心率公式,得3e =,由已知b的范围,即可求解.双曲线22219x y b -=离心率为93e =,9,3b e ≥∴≥= 故答案为:)+∞【点睛】本题考查双曲线的性质,属于基础题.10.已知△ABC 的三边上高的长度分别为2,3,4,则△ABC 最大内角的余弦值等于________.【答案】1124-【解析】不妨设ABC ∆的三边a ,b ,c 上对应的高的长度分别为2,3,4,由三角形的面积公式可得234a b c ==,设234a b c x ===,可得2x a =,3x b =,4xc =,可得A 为三角形的最大角,由余弦定理即可计算得解.【详解】解:由题意,不妨设ABC ∆的三边a ,b ,c 上对应的高的长度分别为2,3,4,由三角形的面积公式可得:111234222a b c ⨯⨯=⨯⨯=⨯⨯,解得:234a b c ==,设234a b c x ===,则2x a =,3x b =,4xc =,可得a 为三角形最大边,A 为三角形的最大角,由余弦定理可得:222222()()()11342cos 224234x x xb c a A x x bc +-+-===-⨯⨯.故答案为:1124-.【点睛】本题主要考查了三角形的面积公式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.11.已知函数2()6f x x =-,若0a b >>,且()()f a f b =,则2a b 的最大值是______________.【答案】16【解析】根据已知求出22,a b 关系,以及b 的范围,将2a b 转化求关于b 的关系式,即【详解】22()(),|6||6|,0f a f b a b a b =∴-=->> ,22260,066b b a b -<<<-=-+,222312,12a b a b b b ∴=-∴=-+,设3()12,0f x x x x =-+<<2()3123(2)(2)f x x x x '=-+=-+-,当(0,2),()0,()x f x f x '∈>单调递增,当()0,()x f x f x '∈<单调递减,2x ∴=时,()f x 取得极大值16,也是最大值,2a b ∴的最大值是16.故答案为:16.【点睛】本题以二次函数为背景,考查利用导数研究函数的单调性和最值,属于中档题.12.若直线y =x +m 与曲线x 则实数m 的取值范围是______.【答案】{m |-1<m ≤1或m }【解析】由x 2+y 2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,由此能求出实数m 的取值范围.【详解】由x=x 2+y 2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,﹣1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得m=﹣,当直线y=x+m 经过点(0,1)时,m=1.当直线y=x+m 经过点(0,﹣1)时,m=﹣1,所以此时﹣1<m≤1.综上满足只有一个公共点的实数m 的取值范围是:﹣1<m≤1或m=.故答案为:{m |-1<m ≤1或m }.【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.13.如图,已知AC 与BD 交于点E ,//AB CD ,AC =,26AB CD ==,则当tan 3A =时,BE CD ⋅=_____________.【答案】12【解析】根据已知条件可得2AE EC ==,以,AB AE 为基底,将BE用基底表示,根据向量的数量积公式,即可求解.【详解】21tan 3,0,sin 3cos ,cos 210A A A A A π=∴<<==,6cos /,,210/AB C A B CD D A ∴===,2,2AE ABAE EC EC DC∴==∴==,2111()||222BE CD AE AB AB AE AB AB ⎛⎫⋅=--=-⋅+ ⎪⎝⎭21166122102=-⨯⨯+⨯=.故答案为:12.【点睛】本题考查向量的线性关系、向量基本定理、向量的数量积,考查计算求解能力,属于中档题.14.已知圆C 的方程为:(x -3)2+(y -2)2=r 2(r >0),若直线3x +y =3上存在一点P ,在圆C 上总存在不同的两点M ,N ,使得点M 是线段PN 的中点,则圆C 的半径r 的取值范围是________.【答案】[,)15+∞.【解析】通过已知条件,求出点P 的轨迹方程,而点P 又在直线3x +y =3上,问题转化为直线与圆有公共点,即可求出r 的取值范围.【详解】如图,连结PC ,依次交圆于E ,F 两点,连结MF ,EN,因为∠PNE 和∠PFM 都是弧 ME的圆周角,由圆周角定理可得∠PNE =∠PFM ,又∠NPE =∠FPM ,所以△PNE ∽△PFM ,所以PN PE PFPM=,即PE PF PN PM ⋅=⋅,而,PE PC r PF PC r =-=+,所以有22PC r PM PN -=⋅,因为M 是线段PN 的中点,所以2222PC r MN -=,又因为M ,N 是圆上的任意两点,则有0<MN ≤2r ,即0<22PC r -≤8r 2.设动点P (x ,y ),圆心C 坐标为(3,2),则有0<(x -3)2+(y -2)2-r 2≤8r 2,即r 2<(x -3)2+(y -2)2≤9r 2,在一个圆环内,又因为P 在直线3x +y =3上,所以直线3x +y =3与圆环有公共点,即直线与圆(x -3)2+(y -2)2=9r 2有公共点,则有3d r =≤,解得15r ≥,所以圆C 的半径r的取值范围是[,)15+∞.故答案为:[,)15+∞【点睛】此题考查通过中点关系,求出动点轨迹,转化成求直线与圆的位置关系.二、解答题15.已知集合{}2|3100A x x x =--≤,(1)若集合{21,1}B m m =---+,且A B A ⋃=,求实数m 的取值范围;(2)若集合{|211}B x m x m =--≤≤-+,且A B A ⋃=,求实数m 的取值范围.【答案】(1)132m -≤≤(2)1,2m ⎛⎤∈-∞⎥⎝⎦【解析】(1)由已知可得B A ⊆,B 的两个元素在集合A 中,建立关于m 的不等式关系,即可求解;(2)由已知可得B A ⊆,对B 是否为空集分类讨论,若B 是空集,满足条件,若B 不是空集,由集合的关系确定集合B 端点位置,建立关于m 的不等式关系,即可求出结论.【详解】解:{}2|3100[2,5]A x x x =--≤=-(1)A B A B A ⋃=⇒⊆,所以2215215m m -≤--≤⎧⎨-≤-+≤⎩,即13243m m ⎧-≤≤⎪⎨⎪-≤≤⎩,解得132m -≤≤,实数m 的取值范围132m -≤≤;(2)A B A B A ⋃=⇒⊆,①若B =∅,则211,2m m m -->-+∴<-,②若B =∅,则2m ≥-,又B A ⊆,则221215m m m ≥-⎧⎪--≥-⎨⎪-+≤⎩,解得122m -≤≤,综上实数m 的取值范围1,2⎛⎤-∞ ⎥⎝⎦.【点睛】本题考查集合间的关系,要注意空集不要遗漏,属于基础题.16.已知43cos 7α=,0,2πα⎛⎫∈ ⎪⎝⎭.(1)求()sin4απ+的值;(2)若()11cos 14αβ+=,0,2πβ⎛⎫∈ ⎪⎝⎭,求β的值.【答案】(1)14;(2)6πβ=.【解析】分析:(1)根据同角三角函数可得sin α,再根据正弦的两角和公式,即可求得sin()4πα+的值.(2)根据同角三角函数可得sin()αβ+,另sin sin()βαβα=+-,再根据正弦的两角差公式,即可求得sin β,然后求出β值.详解:解:(1)由cos 7α=,0,2πα⎛⎫∈ ⎪⎝⎭,得17sin α===,所以sin cos cos sin 444sin πππααα⎛⎫+=+⎪⎝⎭24321462272714=⨯+⨯=.(2)因为,0,2παβ⎛⎫∈ ⎪⎝⎭,所以()0,αβπ+∈,又()11cos 14αβ+=,则()sin 14αβ+===,所以()sin sin βαβα=+-()()sin cos cos sin αβααβα=+-+11111471472=⨯-⨯=,因为0,2πβ⎛⎫∈ ⎪⎝⎭,所以6πβ=.点睛:本题考查两角和与差的三角函数,同角三角函数的基本关系式的应用,考查角的变化技巧以及特殊角的三角函数值。

苏州市2019~2020学年第一学期高三期初调研试卷高三数学答案

苏州市2019~2020学年第一学期高三期初调研试卷高三数学答案

所以当 x 0 时, F '( x) 0 , F ( x) 单调递增;当 x 0 时, F '( x) 0 , F ( x) 单调递减;
所以 F ( x) = F (0) = 0 ,由最小值定义得 F ( x)≥ F ( x) = 0 ,即 ex ≥ x +1, ……12 分
min
min
Tn
= T4k −1
=
S2k −1
+
M2k
=
(2k
− 1)2
+
2k 5(8k +
5)
=
(n
−1)2 4
+
n +1 10(2n +
7)
.
综上所述:

n
=
2k
时, Tn
=
n2 4
+
n 10(2nຫໍສະໝຸດ + 5);
当n
=
4k
− 3 时, Tn
=
(n +1)2 4
+
n− 10(2n
1 +
3)


n
=
4k
−1时, Tn
2019~2020 学年第一学期高三期初调研试卷
数学(I 卷)参考答案
2019.9
一、填空题:
1.{1,3,9} 2.1
9.
1 2
10. 4
二、解答题.
3.4
4.
5 6
5. 2
11.1

8 5
12. [4,16]
6. 5 7. 4 8.-5
13.1≤
a

2

2020-2021学年江苏省苏州中学高三(上)调研数学试卷(10月份)

2020-2021学年江苏省苏州中学高三(上)调研数学试卷(10月份)

2020-2021学年江苏省苏州中学高三(上)调研数学试卷(10月份)试题数:22.满分:1501.(单选题.5分)已知集合A={x|x2-x-2≤0}.B={x|y= √x} .则A∪B=()A.{x|-1≤x≤2}B.{x|0≤x≤2}C.{x|x≥-1}D.{x|x≥0}2.(单选题.5分)已知sin(α−π4)=35. α∈(0,π2) .则cosα=()A. √210B. 3√210C. √22D. 7√2103.(单选题.5分)若b<a<0.则下列不等式:① |a|>|b|;② a+b<ab;③ a2b<2a−b中.正确的不等式的有()A.0个B.1个C.2个D.3个4.(单选题.5分)函数f(x)=ax2+bx(a>0.b>0)在点(1.f(1))处的切线斜率为2.则8a+bab的最小值是()A.10B.9C.8D. 3√25.(单选题.5分)Logistic模型是常用数学模型之一.可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)= K1+e−0.23(t−53).其中K为最大确诊病例数.当I(t*)=0.95K时.标志着已初步遏制疫情.则t*约为()(ln19≈3)A.60B.63C.66D.696.(单选题.5分)已知函数f(x)={xlnx,x>0xe x,x≤0则函数y=f(1-x)的图象大致是()A.B.C.D.7.(单选题.5分)若定义在R上的奇函数f(x)满足对任意的x∈R.都有f(x+2)=-f(x)成立.且f(1)=8.则f(2019).f(2020).f(2021)的大小关系是()A.f(2019)<f(2020)<f(2021)B.f(2019)>f(2020)>f(2021)C.f(2020)>f(2019)>f(2021)D.f(2020)<f(2021)<f(2019)8.(单选题.5分)地面上有两座相距120m的塔.在矮塔塔底望高塔塔顶的仰角为α.在高塔塔底望矮塔塔顶的仰角为α2.且在两塔底连线的中点O处望两塔塔顶的仰角互为余角.则两塔的高度分别为()A.50m.100mB.40m.90mC.40m.50mD.30m.40m9.(多选题.5分)等腰直角三角形直角边长为1.现将该三角形绕其某一边旋转一周.则所形成的几何体的表面积可以为( ) A. √2π B. (1+√2)π C. 2√2π D. (2+√2π)10.(多选题.5分)关于x 的不等式(ax-1)(x+2a-1)>0的解集中恰有3个整数.则a 的值可以为( ) A.2 B.1 C.-1 D. −1211.(多选题.5分)声音是由物体振动产生的声波.其中包含着正弦函数.纯音的数学模型是函数y=Asinωt .我们听到的声音是由纯音合成的.称之为复合音.若一个复合音的数学模型是函数 f (x )=sinx +12sin2x .则下列结论正确的是( ) A.2π是f (x )的一个周期 B.f (x )在[0.2π]上有3个零点 C.f (x )的最大值为3√34D.f (x )在 [0,π2] 上是增函数12.(多选题.5分)对于具有相同定义域D 的函数f (x )和g (x ).若存在函数h (x )=kx+b (k.b 为常数)对任给的正数m.存在相应的x 0∈D 使得当x∈D 且x >x 0时.总有 {0<f (x )−ℎ(x )<m 0<ℎ(x )−g (x )<m.则称直线l :y=kx+b 为曲线y=f (x )和y=g (x )的“分渐近线”.下列定义域均为D={x|x >1}的四组函数中.曲线y=f (x )和y=g (x )存在“分渐近线”的是( ) A.f (x )=x 2.g (x )= √x B.f (x )=10-x +2.g (x )= 2x−3xC.f (x )=x 2+1x .g (x )= xlnx+1lnxD.f(x)= 2x2x+1.g(x)=2(x-1-e-x)13.(填空题.5分)若二次函数f(x)=-x2+2ax+4a+1有一个零点小于-1.一个零点大于3.则实数a的取值范围是___ .14.(填空题.5分)在整数集Z中.被5除所得余数为k的所有整数组成一个“类”.记为[k].即[k]={5n+k|n∈Z}.k=0.1.2.3.4.给出如下四个结论:① 2014∈[4];② -3∈[3];③ Z=[0]∪[1]∪[2]∪[3]∪[4];④ 整数a.b属于同一“类”的充要条件是“a-b∈[0]”.其中.正确的结论是___ .15.(填空题.5分)已知sinθ+cosθ= 713.θ∈(0.π).则tanθ=___ .16.(填空题.5分)已知A、B、C是平面上任意三点.BC=a.CA=b.AB=c.则y=ca+b +bc的最小值是___ .17.(问答题.10分)已知集合A={x|y=log2(-4x2+15x-9).x∈R}.B={x||x-m|≥1.x∈R}.(1)求集合A;(2)若p:x∈A.q:x∈B.且p是q的充分不必要条件.求实数m的取值范围.18.(问答题.12分)已知函数f(x)=Asin(ωx+φ)(A>0.ω>0.0<φ<π2)的部分图象如图所示.其中点P(1.2)为函数图象的一个最高点.Q(4.0)为函数图象与x轴的一个交点.O为坐标原点.(Ⅰ)求函数f(x)的解析式;(Ⅱ)将函数y=f(x)的图象向右平移2个单位得到y=g(x)的图象.求函数h(x)=f(x)•g(x)图象的对称中心.19.(问答题.12分)如图.在三棱柱ABC-A1B1C1中.△ABC和△AA1C均是边长为2的等边三角形.点O为AC中点.平面AA1C1C⊥平面ABC.(1)证明:A1O⊥平面ABC;(2)求直线AB与平面A1BC1所成角的正弦值.20.(问答题.12分)已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1.解方程f(x)=1;(2)若函数f(x)在R上单调递增.求实数a的取值范围;(3)若a<1且不等式f(x)≥2x-3对一切实数x∈R恒成立.求a的取值范围.21.(问答题.12分)在平面直角坐标系xOy中.已知椭圆x2a2 + y2b2=1(a>b>0)的左、右顶点分别为A、B.焦距为2.直线l与椭圆交于C.D两点(均异于椭圆的左、右顶点).当直线l过椭圆的右焦点F且垂直于x轴时.四边形ACBD的面积为6.(1)求椭圆的标准方程;(2)设直线AC.BD的斜率分别为k1.k2.① k2=3k1.求证:直线l过定点;② 若直线l过椭圆的右焦点F.试判断k1k2是否为定值.并说明理由.22.(问答题.12分)设函数f(x)=ln(x+1)+a(x2-x).其中a∈R. (Ⅰ)讨论函数f(x)极值点的个数.并说明理由;(Ⅱ)若∀x>0.f(x)≥0成立.求a的取值范围.2020-2021学年江苏省苏州中学高三(上)调研数学试卷(10月份)参考答案与试题解析试题数:22.满分:1501.(单选题.5分)已知集合A={x|x2-x-2≤0}.B={x|y= √x} .则A∪B=()A.{x|-1≤x≤2}B.{x|0≤x≤2}C.{x|x≥-1}D.{x|x≥0}【正确答案】:C【解析】:推导出集合A.B.由此能求出A∪B.【解答】:解:∵集合A={x|x2-x-2≤0}={x|-1≤x≤2}.B={x|y= √x}={x|x≥0}.∴A∪B={x|x≥-1}.故选:C.【点评】:本题考查并集的求法.考查并集定义等基础知识.考查运算求解能力.是基础题.2.(单选题.5分)已知sin(α−π4)=35. α∈(0,π2) .则cosα=()A. √210B. 3√210C. √22D. 7√210【正确答案】:A【解析】:由已知利用同角三角函数基本关系式可求cos(α- π4)的值.进而根据α=(α- π4)+π4.利用两角和的余弦函数公式即可计算得解.【解答】:解:因为sin(α−π4)=35. α∈(0,π2) .所以α- π4∈(- π4.- π4).可得cos(α- π4)= √1−sin2(α−π4) = 45.则cosα=cos[(α- π4)+ π4]=cos(α- π4)cos π4-sin(α- π4)sin π4= 45× √22- 35×√22= √210.故选:A.【点评】:本题主要考查了同角三角函数基本关系式.两角和的余弦函数公式在三角函数化简求值中的应用.考查了计算能力和转化思想.属于基础题.3.(单选题.5分)若b<a<0.则下列不等式:① |a|>|b|;② a+b<ab;③ a2b<2a−b中.正确的不等式的有()A.0个B.1个C.2个D.3个【正确答案】:C【解析】:利用不等式的性质逐一判断.即可得结论.【解答】:解:若b<a<0.则|b|>|a|.故① 错误;若b<a<0.则a+b<0.ab>0.∴a+b<ab.故② 正确;a2 b -(2a-b)= a2−2ab+b2b= (a−b)2b.由(a-b)2>0.b<0.∴ (a−b)2b <0.即a2b<2a−b .故③ 正确.故正确的不等式有2个.故选:C.【点评】:本题主要考查不等式的基本性质.及作差法比较大小的应用.属于基础题.4.(单选题.5分)函数f(x)=ax2+bx(a>0.b>0)在点(1.f(1))处的切线斜率为2.则8a+bab的最小值是()A.10B.9C.8D. 3√2【正确答案】:B【解析】:求出原函数的导函数.由f′(1)=2a+b=2.得a+b2=1 .把8a+bab变形为8b+1a后整体乘以1.展开后利用基本不等式求最小值.【解答】:解:由f(x)=ax2+bx.得f′(x)=2ax+b.又f(x)=ax2+bx(a>0.b>0)在点(1.f(1))处的切线斜率为2. 所以f′(1)=2a+b=2.即a+b2=1.则8a+bab = 8b+1a=(a+b2)(8b+1a)=8ab+b2a+5≥2√8ab•b2a+5=9.当且仅当{2a+b=28ab=b2a.即{a=13b=43时“=”成立.所以8a+bab的最小值是9.故选:B.【点评】:本题考查了导数的运算.考查了利用基本不等式求最值.考查了学生灵活变换和处理问题的能力.是中档题.5.(单选题.5分)Logistic模型是常用数学模型之一.可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)= K1+e−0.23(t−53).其中K为最大确诊病例数.当I(t*)=0.95K时.标志着已初步遏制疫情.则t*约为()(ln19≈3)A.60B.63C.66D.69【正确答案】:C【解析】:根据所给材料的公式列出方程K1+e−0.23(t∗−53)=0.95K.解出t即可.【解答】:解:由已知可得K1+e−0.23(t∗−53) =0.95K.解得e-0.23(t*-53)= 119.两边取对数有-0.23(t*-53)=-ln19.解得t*≈66.故选:C.【点评】:本题考查函数模型的实际应用.考查学生计算能力.属于中档题6.(单选题.5分)已知函数f(x)={xlnx,x>0xe x,x≤0则函数y=f(1-x)的图象大致是()A.B.C.D.【正确答案】:B【解析】:利用导数分析出f(x)的单调性.进而得到f(x)图象示意图.再根据f(1-x)图象与f(x)图象的关系即可进行判断【解答】:解:当x>0时.f(x)=xlnx.则令f′(x)=lnx+1=0.解得x= 1e.所以当0<x<1e 时.f(x)单调递减.x>1e时.f(x)单调递增.当x≤0时.f(x)= xe x .则令f′(x)= 1−xe x≥0.所以当x≤0时.f(x)单调递增.作出函数f(x)的图象如图:又因为f(1-x)的图象时将f(x)图象先关于y轴对称.再向右移动一个单位得到的.故根据f(x)图象可值f(1-x)图象为故选:B.【点评】:本题考查函数图象的变换.涉及导数判断函数单调性.数形结合思想.属于中档题.7.(单选题.5分)若定义在R上的奇函数f(x)满足对任意的x∈R.都有f(x+2)=-f(x)成立.且f(1)=8.则f(2019).f(2020).f(2021)的大小关系是()A.f(2019)<f(2020)<f(2021)B.f(2019)>f(2020)>f(2021)C.f(2020)>f(2019)>f(2021)D.f(2020)<f(2021)<f(2019)【正确答案】:A【解析】:根据题意.分析可得f(x+4)=-f(x+2)=f(x).即函数f(x)是周期为4的周期函数.由此结合函数的奇偶性可得f(2019)、f(2020)和f(2021)的值.即可得答案.【解答】:解:根据题意.函数f(x)满足对任意的x∈R.都有f(x+2)=-f(x)成立.则有f(x+4)=-f(x+2)=f(x).即函数f(x)是周期为4的周期函数.f(2020)=f(0+4×505)=f(0)=0.f(2021)=f(1+4×505)=f(1)=8.f(2019)=f(-1+4×505)=f(-1)=-f(1)=-8.故有f(2019)<f(2020)<f(2021).故选:A.【点评】:本题考查函数的奇偶性与周期性的综合应用.注意分析函数的周期.属于基础题. 8.(单选题.5分)地面上有两座相距120m 的塔.在矮塔塔底望高塔塔顶的仰角为α.在高塔塔底望矮塔塔顶的仰角为 α2.且在两塔底连线的中点O 处望两塔塔顶的仰角互为余角.则两塔的高度分别为( ) A.50m.100m B.40m.90m C.40m.50m D.30m.40m 【正确答案】:B【解析】:由题意如图所示.分别在两个三角形中求出AB.CD 用α的表示的代数式.再由在两塔底连线的中点O 处望两塔塔顶的仰角互为余角.可得OA⊥OC .可得tan∠AOB•tan∠COD=1.进而可得AB.CD 的关系.求出AB.CD 的值【解答】:解:设AB.CD 分别为两个塔.BD=120m.O 为BD 的中点. 由题意如图所示:可得AB=BD•tan α2 =120•tan α2 . CD=BD•tanα=120•tanα=120 •2tanα21−tan 2α2.因为在两塔底连线的中点O 处望两塔塔顶的仰角互为余角.可得OA⊥OC . tan∠AOB•tan∠COD=1. 即 AB 12BD•CD 12BD=1.所以 AB•CD12×120×12×120=1.即AB•CD=602. 而AB•CD=120•tan α2 •120 •2tan α21−tan 2α2. 所以1=8tan 2α21−tan 2α2.tan α2 >0.解得tan α2 = 13 .所以AB=120×tan α2 =40. CD=120×2tanα21−tan 2α2=90.故选:B .【点评】:本题考查正切的二倍角公式的应用及互相垂直的直线的应用.属于中档题.9.(多选题.5分)等腰直角三角形直角边长为1.现将该三角形绕其某一边旋转一周.则所形成的几何体的表面积可以为()A. √2πB. (1+√2)πC. 2√2πD. (2+√2π)【正确答案】:AB【解析】:分两个情况绕的边为直角边和斜边讨论.当绕的边是直角边是.所形成的几何体的表面积为底面面积加侧面面积.当绕斜边时扇形面积既是所形成的几何体的表面积.而扇形面积等于12×c底面周长×l母线长.进而求出所形成的几何体的表面积.【解答】:解:若绕一条直角边旋转一周时.则圆锥的底面半径为1.高为1.所以母线长l= √2 .这时表面积为12•2π•1•l+π•12=(1+ √2)π;若绕斜边一周时旋转体为两个底对底的圆锥组合在一起.且由题意底面半径为√22.一个圆锥的母线长为1.所以表面积S=2 •12 2 π•√22•1= √2π .综上所述该几何体的表面积为√2π .(1+ √2)π.故选:AB.【点评】:考查旋转体的表面积.属于中档题.10.(多选题.5分)关于x的不等式(ax-1)(x+2a-1)>0的解集中恰有3个整数.则a的值可以为()A.2B.1C.-1D. −12【正确答案】:CD【解析】:利用已知条件判断a的符号.求出不等式对应方程的根.然后列出不等式求解即可.【解答】:解:关于x的不等式(ax-1)(x+2a-1)>0的解集中恰有3个整数.所以a<0.因为a≥0时.不等式的解集中的整数有无数多个.不等式(ax-1)(x+2a-1)>0.对应的方程为:(ax-1)(x+2a-1)=0.方程的根为:1a和1-2a;由题意知. 1a<0.则1-2a≤3.解得a≥-1;当a=-1时.不等式的解集是(-1.3).解集中含有3个整数:0.1.2;满足题意.当a=- 12时.不等式的解集是(-2.2).解集中含有3个整数:-1.0.1;满足题意.当a∈(-1.- 12)时.不等式的解集是(1a.1-2a).解集中含有4个整数:-1.0.1.2;不满足题意.当a∈(- 12 .0)时.不等式的解集是(1a.1-2a).解集中含有整数个数多于4个.不满足题意.综上知.a的值可以是-1和12.故选:CD.【点评】:本题主要考查了一元二次不等式的解法与应用问题.也考查了分类讨论思想.是中档题.11.(多选题.5分)声音是由物体振动产生的声波.其中包含着正弦函数.纯音的数学模型是函数y=Asinωt.我们听到的声音是由纯音合成的.称之为复合音.若一个复合音的数学模型是函数f(x)=sinx+12sin2x .则下列结论正确的是()A.2π是f(x)的一个周期B.f(x)在[0.2π]上有3个零点C.f(x)的最大值为3√34D.f(x)在[0,π2]上是增函数【正确答案】:ABC【解析】:求出函数y=sinx与y= 12sin2x的周期.取最小公倍数求原函数的周期判断A;求出函数的零点个数判断B;利用导数求最值判断C;举例说明D错误.【解答】:解:∵y=sinx的周期为2π.y= 12sin2x的周期为π.∴ f(x)=sinx+12sin2x的周期为2π.故A正确;由 f (x )=sinx +12sin2x =0.得sinx+sinxcosx=0.得sinx=0或cosx=-1. ∵x∈[0.2π].∴x=0.x=π.x=2π.则f (x )在[0.2π]上有3个零点.故B 正确; 函数 f (x )=sinx +12sin2x 的最大值在[0. π2 ]上取得.由f′(x )=cosx+cos2x=2cos 2x+cosx-1=0.可得cosx= 12.当x∈(0. π3)时.cosx 单调递减.原函数单调递增.当x∈( π3 . π2 )时.cosx 单调递减.原函数单调递减.则当x= π3 时.原函数求得最大值为sin π3 +12sin 2π3 = 3√34.故C 正确;∵f ( π4 )=sin π4 + 12sin π2 = √2+12 >1.f ( π2 )=sin π2+ 12sinπ =1.∴f (x )在 [0,π2] 上不是增函数.故D 错误. 故选:ABC .【点评】:本题考查命题的真假判断与应用.考查三角函数的图象与性质.训练了利用导数求最值.属难题.12.(多选题.5分)对于具有相同定义域D 的函数f (x )和g (x ).若存在函数h (x )=kx+b (k.b 为常数)对任给的正数m.存在相应的x 0∈D 使得当x∈D 且x >x 0时.总有 {0<f (x )−ℎ(x )<m 0<ℎ(x )−g (x )<m.则称直线l :y=kx+b 为曲线y=f (x )和y=g (x )的“分渐近线”.下列定义域均为D={x|x >1}的四组函数中.曲线y=f (x )和y=g (x )存在“分渐近线”的是( ) A.f (x )=x 2.g (x )= √x B.f (x )=10-x +2.g (x )= 2x−3xC.f (x )=x 2+1x .g (x )= xlnx+1lnxD.f (x )= 2x 2x+1.g (x )=2(x-1-e -x )【正确答案】:BD【解析】:本题从大学数列极限定义的角度出发.仿造构造了分渐近线函数.目的是考查学生分析问题、解决问题的能力.考生需要抓住本质:存在分渐近线的充要条件是x→∞时.f (x )-g (x )→0进行作答.是一道好题.思维灵活.要透过现象看本质.【解答】:解:f (x )和g (x )存在分渐近线的充要条件是x→∞时.f (x )-g (x )→0. f (x )=x 2.g (x )= √x .当x >1时便不符合.所以A 不存在;对于B.f (x )=10-x +2.g (x )= 2x−3x肯定存在分渐近线.因为当时.f (x )-g (x )→0; 对于C.f (x )= x 2+1x .g (x )= xlnx+1lnx . f (x )−g (x )=1x −1lnx .设λ(x )=x-lnx. λn (x )=1x 2 >0.且lnx <x.所以当x→∞时x-lnx 越来愈大.从而f (x )-g (x )会越来越小.不会趋近于0. 所以不存在分渐近线; 对于D.f (x )= 2x 2x+1 .g (x )=2(x-1-e -x ).当x→+∞时. f (x )−g (x )=−21+1x+2+2e x →0 .故选:BD .【点评】:本题较难.涉及到部分大学内容.属于拓展类题目13.(填空题.5分)若二次函数f (x )=-x 2+2ax+4a+1有一个零点小于-1.一个零点大于3.则实数a 的取值范围是___ . 【正确答案】:[1] (45,+∞)【解析】:利用二次函数根的分布问题即可求解.【解答】:解:根据二次函数根的分布思想.要满足题意只需: {f (−1)>0f (3)>0 .即 {−1−2a +4a +1>0−9+6a +4a +1>0 .解得 {a >0a >45 .即a >45 .故答案为:( 45,+∞ ).【点评】:本题考查了二次函数根的分布问题.考查了学生对二次函数图象的掌握熟练度.属于基础题.14.(填空题.5分)在整数集Z 中.被5除所得余数为k 的所有整数组成一个“类”.记为[k].即[k]={5n+k|n∈Z}.k=0.1.2.3.4.给出如下四个结论:① 2014∈[4]; ② -3∈[3]; ③ Z=[0]∪[1]∪[2]∪[3]∪[4]; ④ 整数a.b 属于同一“类”的充要条件是“a -b∈[0]”. 其中.正确的结论是___ . 【正确答案】:[1] ① ③ ④【解析】:根据“类”的定义.逐一进行判断即可;对于 ① .看2014除以5的余数即可;对于 ② .将-3表示成5×(-1)+2即可判断;对于 ③ .被5除所得余数有且只有五类;对于 ④ .根据定义分析即可.【解答】:解: ① ∵2014÷5=402…4.∴2014∈[4].故 ① 正确; ② ∵-3=5×(-1)+2.∴-3∉[3].故 ② 错误;③ 因为整数集中的数被5除的数可以且只可以分成五类.故Z=[0]∪[1]∪[2]∪[3]∪[4].故 ③ 正确;④ ∵整数a.b 属于同一“类”.∴整数a.b 被5除的余数相同.从而a-b 被5除的余数为0. 反之也成立.故“整数a.b 属于同一“类”的充要条件是“a -b∈[0]”.故 ④ 正确. 故答案为: ① ③ ④【点评】:本题考查命题的真假性判断.读懂题目中的新定义是关键.属于中档题. 15.(填空题.5分)已知sinθ+cosθ= 713 .θ∈(0.π).则tanθ=___ . 【正确答案】:[1]- 125【解析】:利用同角三角函数的基本关系求得2sinθcosθ=- 120169 .可得θ为钝角.tanθ<0;再根据2sinθcosθ= 2tanθtan 2θ+1 =- 120169 .求得tanθ的值.【解答】:解:∵sinθ+cosθ= 713 .∴1+2sinθcosθ= 49169 .∴2sinθcosθ=- 120169 <0. 结合θ∈(0.π).可得θ为钝角.∴tanθ<0. 再根据2sinθcosθ= 2sinθcosθsin 2θ+cos 2θ = 2tanθtan 2θ+1 =- 120169 .∴tanθ=- 125.故答案为:- 125.【点评】:本题主要考查同角三角函数的基本关系、二倍角公式的应用.属于基础题. 16.(填空题.5分)已知A 、B 、C 是平面上任意三点.BC=a.CA=b.AB=c.则 y =ca+b +bc 的最小值是___ .【正确答案】:[1] √2−12【解析】:先将函数变形.并化简.再利用基本不等式.即可求得结论.【解答】:解:依题意.得b+c≥a .于是 y =ca+b +bc = ca+b +b+c c−1= ca+b +b+c+b+c2c −1≥ ca+b +a+b+c2c−1 = ca+b+a+b2c−12≥ √2−12其中.等号当且仅当b+c=a且ca+b =a+b2c.即a= 1+√22c .b= −1+√22c时成立.所以.所求最小值为√2−12故答案为:√2−12【点评】:本题考查基本不等式的运用.解题的关键是化简函数.并利用基本不等式求最值.属于中档题.17.(问答题.10分)已知集合A={x|y=log2(-4x2+15x-9).x∈R}.B={x||x-m|≥1.x∈R}.(1)求集合A;(2)若p:x∈A.q:x∈B.且p是q的充分不必要条件.求实数m的取值范围.【正确答案】:【解析】:(1)根据条件可知集合A即求y=log2(−4x2+15x−9) .故可表示出A=(34,3) .(2)由题得B=[m+1.+∞)∪(-∞.m-1].根据p是q的充分不必要条件可知A是B的真子集.根据集合包含关系即可求出m取值范围.【解答】:解:(1)集合A即为函数y=log2(−4x2+15x−9)定义域.即需-4x2+15x-9>0.即(x-3)(4x-3)<0.解得A=(34,3);(2)由|x-m|≥1⇔x-m≥1或x-m≤-1.即x≥m+1或x≤m-1.则B=[m+1.+∞)∪(-∞.m-1].因为p是q的充分不必要条件.所以A是B的真子集.则m+1≤34或3≤m−1 .解得m≤−14或m≥4 .所以实数m的取值范围是(−∞,−14]∪[4,+∞).【点评】:本题考查命题及其关系.涉及函数求定义域.集合的包含关系等知识点.属于中档题.18.(问答题.12分)已知函数f(x)=Asin(ωx+φ)(A>0.ω>0.0<φ<π2)的部分图象如图所示.其中点P(1.2)为函数图象的一个最高点.Q(4.0)为函数图象与x轴的一个交点.O为坐标原点.(Ⅰ)求函数f(x)的解析式;(Ⅱ)将函数y=f(x)的图象向右平移2个单位得到y=g(x)的图象.求函数h(x)=f(x)•g(x)图象的对称中心.【正确答案】:【解析】:(Ⅰ)由题意得振幅A.周期T.利用周期公式可求ω.将点P(1.2)代入解析式.结合范围0<φ<π2.可求φ.即可得解函数解析式.(Ⅱ)利用三角函数的图象变换可得g(x)=2sin π6x.利用三角函数恒等变换可求h(x)=1+2sin(π3 x- π6).由π3x−π6=kπ .即可得解对称中心.【解答】:(本题满分为12分)解:(Ⅰ)由题意得振幅A=2.周期T=4×(4-1)=12.又2πω =12.则ω= π6…(2分)将点P(1.2)代入f(x)=2sin(π6x+φ).得sin(π6x+φ)=1.∵0<φ<π2.∴φ= π3.…(4分)故f(x)=2sin(π6 x+ π3)…(5分)(Ⅱ)由题意可得g(x)=2sin[ π6(x-2)+ π3]=2sin π6x…(7分)∴h(x)=f(x)•g(x)=4sin(π6 x+ π3)•sin π6x=2sin2π6x+2 √3 sin π6x•cos π6x=1-cos π3x+√3 sin π3x=1+2sin(π3 x- π6)…(10分)由π3x−π6=kπ .得:x=3k+12(k∈Z).∴y=h(x)图象的对称中心为:(3k+1,1)(k∈Z)…(12分)2【点评】:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式.函数y=Asin(ωx+φ)的图象变换.三角函数恒等变换的应用.正弦函数的图象和性质的应用.考查了转化思想.属于中档题.19.(问答题.12分)如图.在三棱柱ABC-A1B1C1中.△ABC和△AA1C均是边长为2的等边三角形.点O为AC中点.平面AA1C1C⊥平面ABC.(1)证明:A1O⊥平面ABC;(2)求直线AB与平面A1BC1所成角的正弦值.【正确答案】:【解析】:(1)证明A1O⊥AC.通过平面AA1C1C⊥平面ABC.推出A1O⊥平面ABC.(2)如图.以O为原点.OB.OC.OA1为x.y.z轴.建立空间直角坐标系.求出相关点的坐标.求出平面A1BC1的法向量为n⃗=(x,y,z) .设直线AB与平面A1BC1所成角为α.利用空间向量的数量积求解即可.【解答】:(1)证明:∵AA1=A1C.且O为AC的中点.∴A1O⊥AC.又∵平面AA1C1C⊥平面ABC.且交线为AC.又A1O⊂平面AA1C1C.∴A1O⊥平面ABC;(2)解:如图.以O为原点.OB.OC.OA1为x.y.z轴.建立空间直角坐标系.由已知可得O (0.0.0)A (0.-1.0) ,B(√3,0,0) ,A 1(0,0,√3) C 1(0,2,√3) . A 1B ⃗⃗⃗⃗⃗⃗⃗ =(√3,0,−√3) . AB ⃗⃗⃗⃗⃗ =(√3,1,0) ,A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,0) 平面A 1BC 1的法向量为 n ⃗ =(x ,y ,z) . 则有 {2y =0√3x −√3z =0.所以 n ⃗ 的一组解为 n ⃗ =(1,0,1) . 设直线AB 与平面A 1BC 1所成角为α. 则sinα= |cos <AB ⃗⃗⃗⃗⃗ ,n ⃗ >|又∵ cos <AB ⃗⃗⃗⃗⃗ ,n ⃗ > = AB ⃗⃗⃗⃗⃗ •n⃗ |AB ⃗⃗⃗⃗⃗ ||n ⃗ |= √32√2 = √64 . 所以直线AB 与平面A 1BC 1所成角的正弦值: √64 .【点评】:本题考查直线与平面所成角的求法.平面与平面垂直的判断定理的应用.考查空间想象能力以及计算能力.20.(问答题.12分)已知函数f (x )=x 2+(x-1)|x-a|. (1)若a=-1.解方程f (x )=1;(2)若函数f (x )在R 上单调递增.求实数a 的取值范围;(3)若a <1且不等式f (x )≥2x -3对一切实数x∈R 恒成立.求a 的取值范围.【正确答案】:【解析】:(1)取a=-1把函数分段.然后分段求解方程f (x )=1; (2)分x≥a 和x <a 对函数分段.然后由f (x )在R 上单调递增得到不等式组 {a+14≤aa +1>0.求解不等式组得到实数a 的取值范围;(3)写出分段函数g (x ).不等式f (x )≥2x -3对一切实数x∈R 恒成立.等价于不等式g (x )≥0对一切实数x∈R 恒成立.然后求出函数在不同区间段内的最小值.求解不等式得答案.【解答】:解:(1)当a=-1时.f (x )=x 2+(x-1)|x+1|. 故有 f (x )={2x 2−1, x ≥−11, x <−1.当x≥-1时.由f (x )=1.有2x 2-1=1.解得x=1或x=-1. 当x <-1时.f (x )=1恒成立. ∴方程的解集为{x|x≤-1或x=1}; (2) f (x )={2x 2−(a +1)x +a , x ≥a (a +1)x −a ,x <a.若f (x )在R上单调递增.则有 {a+14≤aa +1>0.解得 a ≥13 .∴当 a ≥13时.f (x )在R 上单调递增; (3)设g (x )=f (x )-(2x-3).则 g (x )={2x 2−(a +3)x +a +3,x ≥a(a −1)x −a +3, x <a.不等式f (x )≥2x -3对一切实数x∈R 恒成立.等价于不等式g (x )≥0对一切实数x∈R 恒成立. ∵a <1.∴当x∈(-∞.a )时.g (x )单调递减.其值域为(a 2-2a+3.+∞). 由于a 2-2a+3=(a-1)2+2≥2. ∴g (x )≥0成立.当x∈[a .+∞)时.由a <1.知 a <a+34.g (x )在x=a+34处取得最小值. 令 g (a+34)=a +3−(a+3)28≥0 .解得-3≤a≤5.又a <1. ∴-3≤a <1. 综上.a∈[-3.1).【点评】:不同考查了函数恒成立问题.考查了二次函数的性质.体现了数学转化思想方法.考查了不等式的解法.是压轴题.21.(问答题.12分)在平面直角坐标系xOy 中.已知椭圆 x 2a 2 + y 2b 2 =1(a >b >0)的左、右顶点分别为A 、B.焦距为2.直线l 与椭圆交于C.D 两点(均异于椭圆的左、右顶点).当直线l 过椭圆的右焦点F 且垂直于x 轴时.四边形ACBD 的面积为6. (1)求椭圆的标准方程;(2)设直线AC.BD 的斜率分别为k 1.k 2. ① k 2=3k 1.求证:直线l 过定点;② 若直线l 过椭圆的右焦点F.试判断 k1k 2是否为定值.并说明理由.【正确答案】:【解析】:(1)由题意焦距为2.设点C (1.y 0).代入椭圆 x 2a2 + y 2b2 =1(a >b >0).解得 y 0=±b 2a .从而四边形ACBD 的面积6=2 S △ABC =2a •b 2a=2b 2.由此能求出椭圆的标准方程. (2) ① 由题意AC :y=k 1(x+2).联立直线与椭圆的方程 x 24+y 23=1 .得(3+4k 12)x 2+16k 12-12=0.推导出C (- 8k 12−63+4k 12 . 12k 13+4k 12 ).D ( 8k 22−63+4k 22 .- 12k 23+4k 22).由此猜想:直线l 过定点P(1.0).从而能证明P.C.D 三点共线.直线l 过定点P (1.0). ② 由题意设C (x 1.y 1).D (x 2.y 2).直线l :x=my+1.代入椭圆标准方程: x 24+y 23=1.得(3m 2+4)y 2+6my-9=0.推导出y 1+y 2=- 6m 3m 2+4 .y 1y 2=- 93m 2+4 .由此推导出 k 1k 2= y 1x 1+2y 2x 2−2= y 1(x 2−2)y 2(x 1+2) = y 1(my 2−1)y 2(my 1+3) = my 1y 2−y 1my 1y 2+3y 2 = 13(定值).【解答】:解:(1)由题意焦距为2.可设点C (1.y 0).代入椭圆 x 2a 2 + y 2b 2 =1(a >b >0).得 1a 2+y 02b 2=1.解得 y 0=±b 2a .∴四边形ACBD 的面积6=2 S △ABC =2a •b 2a=2b 2. ∴b 2=3.a 2=4.∴椭圆的标准方程为 x 24+y 23=1.证明:(2) ① 由题意AC :y=k 1(x+2). 联立直线与椭圆的方程 x 24+y 23=1 .得(3+4 k 12 )x 2+16k 12-12=0.∴-2x 1= 16k 12−123+4k 12 .解得x 1= 6−8k 123+4k 12 .从而y 1=k 1(x 1+1)= 12k13+4k 12 .∴C (- 8k 12−63+4k 12 . 12k 13+4k 12 ).同理可得D ( 8k 22−63+4k 22 .- 12k23+4k 22 ).猜想:直线l 过定点P (1.0).下证之: ∵k 2=3k 1.∴k PC -k PD =12k 13+4k 12−8k 12−63+4k 12−1 -−12k 23+4k 228k 22−63+4k 22−1= 4k11−4k 12+12k 24k22−9= 4k 11−4k 12 + 36k 136k 12−9 = 4k 11−4k 12 - 4k 11−4k 12 =0. ∴P .C.D 三点共线.∴直线l 过定点P (1.0). 解: ② k1k 2为定值.理由如下:由题意设C (x 1.y 1).D (x 2.y 2).直线l :x=my+1. 代入椭圆标准方程: x 24+y 23=1.得(3m 2+4)y 2+6my-9=0. ∴y 1.2=−6m±√36m 2+36(3m 2+4)2(3m 2+4). ∴y 1+y 2=- 6m3m 2+4 .y 1y 2=- 93m 2+4 .∴ k 1k 2= y 1x 1+2y 2x 2−2 = y 1(x 2−2)y 2(x 1+2) = y 1(my 2−1)y 2(my 1+3) = my 1y 2−y 1my 1y 2+3y 2 = −9m 3m 2+4−(−6m3m 2+4−y 2)−9m3m 2+4+3y 2 =−3m3m 2+4+y 2−9m3m 2+4+3y 2= −3m3m 2+4+y 2−9m3m 2+4+3y 2 = 13 (定值).【点评】:本题考查椭圆标准方程的求法.考查直线过定点的证明.考查两直线的斜率的比值是否为定值的判断与求法.考查椭圆、直线方程、韦达定理等基础知识.考查运算求解能力.考查化归与转化思想.是中档题.22.(问答题.12分)设函数f (x )=ln (x+1)+a (x 2-x ).其中a∈R . (Ⅰ)讨论函数f (x )极值点的个数.并说明理由; (Ⅱ)若∀x >0.f (x )≥0成立.求a 的取值范围.【正确答案】:【解析】:(I)函数f(x)=ln(x+1)+a(x2-x).其中a∈R.x∈(-1.+∞).f′(x)=1x+1+2ax−a = 2ax2+ax−a+1x+1.令g(x)=2ax2+ax-a+1.对a与△分类讨论可得:(1)当a=0时.此时f′(x)>0.即可得出函数的单调性与极值的情况.(2)当a>0时.△=a(9a-8).① 当0<a≤89时.△≤0. ② 当a >89时.△>0.即可得出函数的单调性与极值的情况.(3)当a<0时.△>0.即可得出函数的单调性与极值的情况.(II)由(I)可知:(1)当0≤a ≤89时.可得函数f(x)在(0.+∞)上单调性.即可判断出.(2)当89<a≤1时.由g(0)≥0.可得x2≤0.函数f(x)在(0.+∞)上单调性.即可判断出.(3)当1<a时.由g(0)<0.可得x2>0.利用x∈(0.x2)时函数f(x)单调性.即可判断出;(4)当a<0时.设h(x)=x-ln(x+1).x∈(0.+∞).研究其单调性.即可判断出【解答】:解:(I)函数f(x)=ln(x+1)+a(x2-x).其中a∈R.x∈(-1.+∞).f′(x)=1x+1+2ax−a = 2ax2+ax−a+1x+1.令g(x)=2ax2+ax-a+1.(1)当a=0时.g(x)=1.此时f′(x)>0.函数f(x)在(-1.+∞)上单调递增.无极值点.(2)当a>0时.△=a2-8a(1-a)=a(9a-8).① 当0<a≤89时.△≤0.g(x)≥0.f′(x)≥0.函数f(x)在(-1.+∞)上单调递增.无极值点.② 当a >89时.△>0.设方程2ax2+ax-a+1=0的两个实数根分别为x1.x2.x1<x2.∵x1+x2= −12.∴ x1<−14 . x2>−14.由g(-1)>0.可得-1<x1<−14.∴当x∈(-1.x1)时.g(x)>0.f′(x)>0.函数f(x)单调递增;当x∈(x1.x2)时.g(x)<0.f′(x)<0.函数f(x)单调递减;当x∈(x2.+∞)时.g(x)>0.f′(x)>0.函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时.△>0.由g(-1)=1>0.可得x1<-1<x2.∴当x∈(-1.x2)时.g(x)>0.f′(x)>0.函数f(x)单调递增;当x∈(x2.+∞)时.g(x)<0.f′(x)<0.函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时.函数f(x)有一个极值点;时.函数f(x)无极值点;当0≤a ≤89时.函数f(x)有两个极值点.当a >89(II)由(I)可知:时.函数f(x)在(0.+∞)上单调递增.(1)当0≤a ≤89∵f(0)=0.∴x∈(0.+∞)时.f(x)>0.符合题意.<a≤1时.由g(0)≥0.可得x2≤0.函数f(x)在(0.+∞)上单调递增.(2)当89又f(0)=0.∴x∈(0.+∞)时.f(x)>0.符合题意.(3)当1<a时.由g(0)<0.可得x2>0.∴x∈(0.x2)时.函数f(x)单调递减.又f(0)=0.∴x∈(0.x2)时.f(x)<0.不符合题意.舍去;>0.(4)当a<0时.设h(x)=x-ln(x+1).x∈(0.+∞).h′(x)= xx+1∴h(x)在(0.+∞)上单调递增.因此x∈(0.+∞)时.h(x)>h(0)=0.即ln(x+1)<x.可得:f(x)<x+a(x2-x)=ax2+(1-a)x.时.当x>1−1aax2+(1-a)x<0.此时f(x)<0.不合题意.舍去.综上所述.a的取值范围为[0.1].【点评】:本题考查了导数的运算法则、利用导数研究函数的单调性极值.考查了分析问题与解决问题的能力.考查了分类讨论思想方法、推理能力与计算能力.属于难题.。

江苏省苏州市2020-2021学年第一学期高三期初调研试卷数学附解析

江苏省苏州市2020-2021学年第一学期高三期初调研试卷数学附解析

C.两条异面直线 D1C 和 BC1 所成的角为
4
3 D.三棱柱 AA1D1—BB1C1 外接球半径为 2
答案:C 解析:连接 CB1,交 BC1 于点 O,在正方体中易得 CB1⊥平面 ABC1D1,则∠CBC1 即为直线
BC 与平面 ABC1D1 所成的角,等于 ,故 A 正确;
4
2 CO 即为点 C 到面 ABC1D1 的距离,等于 2 ,故 B 正确;
如图,已知椭圆
x2 a2
y2 b2
1(a>b>0)的长轴两个端点分别为 A,B,P( x0 , y0 )( y0 >0)
是椭圆上的动点,以 AB 为一边在 x 轴下方作矩形 ABCD,使 AD=kb(k>0),PD 交 AB 于 E, PC 交 AB 于 F.
5
(1)若 k=1,△PCD 的最大面积为 12,离心率为 ,求椭圆方程;


四、解答题(本大题共 6 小题,共计 70 分.请在答题卡指定区域内作答.解答时应写出文
字说明、证明过程或演算步骤)
17.(本小题满分 10 分)
在△ABC 中,角 A,B,C 的对边分别为 a,b,c,△ABC 的面积为 S.现在以下三个 条件:①(2c+b)cosA+acosB=0;②sin2B+sin2C﹣sin2A+sinBsinC=0;③a2﹣b2﹣c2=
整数)②现随机抽取了该省 800 名高一学生的此次生物学科的原始分,若这些学生的原始分
相互独立,记 为被抽到的原始分不低于 71 分的学生人数,求 P( =k)取得最大值时 k 的
值.
附:若 ~N(0,1),则 P( ≤0.8)≈0.788,P( ≤1.04)≈0.85.
4
21.(本小题满分 12 分)

江苏省苏州市2020届高三上学期期中调研数学试题 含解析答案

江苏省苏州市2020届高三上学期期中调研数学试题 含解析答案

江苏省苏州市2020届第一学期高三期中调研试卷数学试题一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={﹣2,﹣1,0,1,2},B ={}0x x >,则A I B = . 答案:{1,2}考点:集合的交集运算解析:∵集合A ={﹣2,﹣1,0,1,2},B ={}0x x >, ∴A I B ={1,2}. 2.已知复数z 满足i 2iz=+(i 为虚数单位),则复数z 的实部为 . 答案:﹣1 考点:复数 解析:∵i 2iz=+ ∴2i(2i)2i i 12i z =+=+=-+,则复数z 的实部为﹣1.3.已知向量a r =(x ,2),b r =(2,﹣1),且a r ⊥b r,则实数x 的值是 .答案:1考点:平面向量数量积坐标运算解析:∵a r =(x ,2),b r=(2,﹣1), ∴a r ·b r=2x ﹣2 ∵a r ⊥b r∴a r ·b r=2x ﹣2=0,解得x =1.4.函数y =的定义域为 . 答案:(1,2)考点:函数的定义域 解析:由题意得:1020x x ->⎧⎨->⎩,解得1<x <2,即原函数定义域为(1,2).5.等比数列{}n a 中,11a =,48a =,n S 是{}n a 的前n 项和,则5S = .答案:31考点:等比数列前n 项和 解析:由题意,341881a q a ===,解得q =2, ∴55213121S -==-. 6.已知tan 2α=,则sin cos 2sin ααα+的值为 .答案:25考点:同角三角函数关系式解析:sin sin tan 22cos cos 2sin cos 2sin 12tan 1225cos αααααααααα====++++⨯. 7.“2x >”是“1x >”的 条件.(在“充分不必要、必要不充分、充要、既不充分又不必要”选一填写.) 答案:充分不必要考点:充分条件、必要条件、充要条件的判断解析:因为“2x >”一定能推出“1x >”,但“1x >”不能推出“2x >”, 故“2x >”是“1x >”的充分不必要条件. 8.已知函数sin 2y x =的图象上每个点向左平移ϕ(π02ϕ<<)个单位长度得到函数y =πsin(2)6x +的图象,则ϕ的值为 .答案:12π 考点:三角函数的图像与性质解析:函数sin 2y x =的图象上每个点向左平移ϕ(π02ϕ<<)个单位 则得sin 2()y x ϕ=+,即sin 2()y x ϕ=+=πsin(2)6x +求得12πϕ=.9.设函数,0()21,0x e x f x x x ⎧≥=⎨+<⎩,则不等式2(2)()f x f x +>的解集为 .答案:(﹣1,2) 考点:函数的单调性解析:根据题意可得函数()f x 是R 上的单调递增函数,又2(2)()f x f x +> 22x x +>,220x x --<,解得﹣1<x <2,∴原不等式解集为(﹣1,2).10.已知函数()ln mf x x x=-的极小值大于0,则实数m 的取值范围为 . 答案:(-∞,1e-) 考点:利用导数研究函数极值解析:∵函数()ln m f x x x=-, ∴221()m x mf x x x x +'=+=,当m ≥0时,()f x '>0,()f x 在(0,+∞)单调递增;当m <0时,当x =﹣m 时,()f x 有极小值()ln()10f m m -=-+>, 解得:1m e<-. 11.已知各项都为正数的等差数列{}n a 中,53a =,则37a a 的最大值为 . 答案:9考点:等差数列的性质,基本不等式解析:∵各项都为正数的等差数列{}n a 中,53a =, ∴37526a a a +==∴23737()92a a a a +≤=,当且仅当37a a ==3时取“=”. 12.已知菱形ABCD 的棱长为3,E 为棱CD 上一点且满足CE 2ED =u u u r u u u r ,若AE EB 6⋅=-u u u r u u u r,则cosC = . 答案:13考点:平面向量数量积解析:∵AE EB 6⋅=-u u u r u u u r,∴(AD DE)(CB CE)6+⋅-=-u u u r u u u r u u u r u u u r12(CB CD)(CB CD)633--⋅-=-u u u r u u u r u u u r u u u r,2221CB CD CB CD 693-++⋅=-u u u r u u u r u u u r u u u r,∵菱形ABCD 的棱长为3,求得CB CD ⋅u u u r u u u r =3,∴CB CD 31cos C 93CB CD ⋅===u u u r u u u r u u u r u u u r .13.若方程π3cos(2)65x -=在(0,π)的解为1x ,2x ,则12cos()x x -= . 答案:35-考点:三角函数的图像与性质,诱导公式 解析:根据题意,令函数()cos(2)6f x x π=-,当3()5f x =时,在(0,π)上有两个零点1x ,2x ,一方面13cos(2)65x π-=,另一方面可得两个零点1x ,2x 关于直线12x π=对称,则2176x x π=-,则1211177cos()cos[()]cos(2)66x x x x x ππ-=--=- 113cos(2)cos(2)665x x πππ=--=--=-.14.已知函数23()3f x x x =-,1()ln x g x ea x -=--,若对于任意1x ∈(0,3),总是存在两个不同的2x ,3x ∈(0,3),使得123()()()f x g x g x ==,则实数a 的取值范围为 . 答案:[1,2ln34e --) 考点:函数与不等式解析:根据23111()3f x x x =-,1x ∈(0,3),求得1()f x 的值域为(0,4], 1()ln x g x ea x -=--,11()x g x ex-'=-,可以判断()g x '在(0,3)上单调递增 又(1)0g '=,故当0<x <1时,()g x '<0,()g x 在(0,1)单调递减 当1<x <3时,()g x '>0,()g x 在(0,1)单调递增 计算得(1)1g a =-,2(3)ln 3g e a =--,要使任意1x ∈(0,3),总是存在两个不同的2x ,3x ∈(0,3),使得123()()()f x g x g x ==,则210ln 34a e a -≤⎧⎨-->⎩,求得1≤a <2ln34e --.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,C =120°,c =7,a ﹣b =2. (1)求a ,b 的值;(2)求sin(A +C)的值.16.(本题满分14分)已知向量a r =(cos x ,3cos x ),b r=(cos x ,sin x ).(1)若a r ∥b r ,x ∈[0,2π],求x 的值;(2)若()f x a b =⋅r r ,x ∈[0,2π],求()f x 的最大值及相应x 的值.17.(本题满分14分)已知等比数列{}n a 满足22a =,且2a ,31a +,4a 成等差数列. (1)求数列{}n a 的通项公式;(2)设21n n b a n =-+,求数列{}n b 的前n 项和为n T .18.(本题满分16分)如下图所示,某窑洞窗口形状上部是圆弧CD,下部是一个矩形ABCD,圆弧CD所在圆的圆心为O.经测量AB=4米,BC=3米,∠COD=120°,现根据需要把此窑洞窗口形状改造为矩形EFGH,其中E,F在边AB上,G,H在圆弧CD上.设∠OGF=θ,矩形EFGH的面积为S.(1)求矩形EFGH的面积S关于变量θ的函数关系式;(2)求cosθ为何值时,矩形EFGH的面积S最大?19.(本题满分16分)已知函数()f x x x=-. (1)求()f x 的图像在1x =处的切线方程;(2)求函数()()F x f x x =-的极大值;(3)若()ln af x x ≤对x ∈(0,1]恒成立,求实数a 的取值范围.20.(本题满分16分)已知数列{}n a 满足11(1)n n n a na a +-=-,n *∈N .(1)证明:数列{}n a 为等差数列;(2)设数列{}n a 的前n 项和为n S ,若211a a -=,且对任意的正整数n ,都有1113S <2311143n S S S +++⋅⋅⋅+<,求整数1a 的值; (3)设数列{}n b 满足310n n b a =+,若2115a a -=,且存在正整数s ,t ,使得s ta b +是整数,求1a 的最小值.附加题(共40分)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .(本题满分10分)已知二阶矩阵13a M b ⎡⎤=⎢⎥⎣⎦的特征值1λ=-所对应的一个特征向量为13-⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)设曲线C 在变换矩阵M 作用下得到的曲线C '的方程为2y x =,求曲线C 的方程.B .(本题满分10分)已知曲线C 的极坐标方程为2cos 23ραα=+(α为参数),直线l 的参数方程为1cos sin x t y t ββ=+⎧⎨=⎩(t 为参数,π02β<<),若曲线C 被直线l 13求β的值.C .(本题满分10分)设正数,,a b c 满足1a b c ++=,求证:32a b c b c c a a b ++≥+++.22.(本题满分10分)某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是34,甲、丙二人都没有击中目标的概率是112,乙、丙二人都击中目标的概率是14.甲乙丙是否击中目标相互独立. (1)求乙、丙二人各自击中目标的概率;(2)设乙、丙二人中击中目标的人数为X ,求X 的分布列和数学期望.23.(本题满分10分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,AB AC a ==,1AA b =,点E ,F 分别在棱1BB ,1CC 上,且113BE BB =,1113C F CC =.设b a λ=. (1)当3λ=时,求异面直线AE 与1A F 所成角的大小;(2)当平面AEF ⊥平面1A EF 时,求λ的值.。

江苏省苏州市2020届高三数学上学期调研测试试题 理(含解析)

江苏省苏州市2020届高三数学上学期调研测试试题 理(含解析)

江苏省苏州市2020届高三数学上学期调研测试试题理(含解析)注意事项考生在答题前请认真阅读本注意事项及各题答题要求.1.本试卷共4页,包含填空题(第1题第14题)、解答题(第15题第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:球的表面积公式S=4πr2,其中r为球的半径.一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.........1.已知i为虚数单位,复数的模为_____.【答案】【解析】,故答案为.2.已知集合,,且,则正整数______.【答案】2【解析】,,且,,故答案为.3.在平面直角坐标系xOy中,抛物线的焦点坐标为_________.【答案】【解析】抛物线方程为,抛物线方程为的焦点坐标为,故答案为.4.苏州轨道交通1号线每5分钟一班,其中,列车在车站停留0.5分钟,假设乘客到达站台的时刻是随机的,则该乘客到达站台立即能乘上车的概率为______.【答案】【解析】每分钟一班列车,其中列车在车站停留分钟,根据几何概型概率公式可得,该乘客到达站台立即能乘上车的概率为,故答案为.5.已知,,则正实数______.【答案】【解析】,则,得,故答案为.6.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.右边的流程图是秦九韶算法的一个实例.若输入n,x的值分别为3,3,则输出v的值为_________.【答案】48【解析】输入,第一次循环,;第二次循环,;第三次循环,,结束循环,输出,故答案为.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7.已知变量x,y满足则的最大值为______.【答案】-9【解析】画出表示的可行域,如图,平移直线,当直线经过点时,直线截距最小,最大,最大值为,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.已知等比数列的前n项和为,且,,则的值为____.【答案】【解析】设等比数列的公比为,则,即,得,,解得,故答案为.9.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为______.(容器壁的厚度忽略不计,结果保留π)【答案】【解析】该球形容器最小时,正四棱柱与球内接,此时球直径等于正四棱柱的对角线,即,球形容器的表面积为,故答案为.10.如图,两座建筑物AB,CD的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角,则这两座建筑物AB和CD的底部之间的距离____m.【答案】18【解析】试题分析:过作于,设,显然此时,记;将放入中.利用建立关于的关系;将放入中,利用建立关于的关系.最后根据的关系,解出其中的.如图,过作于,设∵,记,则,在中,, ∴,在中,, ∴,∴,解得:或(舍去).所以建筑物和底部之间的距离为.考点:直角三角形中,正切表示边;正切和角公式.11.在平面直角坐标系中,已知过点的圆和直线相切,且圆心在直线上,则圆的标准方程为__________.【答案】【解析】【分析】根据题意,设圆C的圆心为(m,n),半径为r,结合题意可得,解得m、n、r的值,代入圆的标准方程即可得答案.【详解】根据题意,设圆C的圆心为(m,n),半径为r,则圆C的标准方程为(x﹣m)2+(y﹣n)2=r2,则有,解可得:m=1,n=﹣2,r,则圆C的方程为:(x﹣1)2+(y+2)2=2,故答案为:(x﹣1)2+(y+2)2=2【点睛】本题考查圆的标准方程的计算,关键是求出圆的圆心以及半径,属于基础题.12.已知正实数 a,b,c满足,,则的取值范围是_____.【答案】【解析】【详解】由=1,可得,由,得,或,,,,故答案为.13.如图,△ABC为等腰三角形,,,以A为圆心,1为半径的圆分别交AB,AC与点E,F,点P是劣弧上的一点,则的取值范围是______.【答案】【解析】以为原点,以的垂线平行线为轴,建立直角坐标系,由,,可得,可设,,,,故答案为.【方法点睛】本题主要考查平面向量的数量积以及向量的坐标表示、利用三角函数的有界性求范围,属于难题. 求范围问题往往先将所求问题转化为函数问题,然后根据: ① 配方法(适合二次函数);② 换元法(代数换元与三角换元);③ 不等式法(注意基本不等式的使用条件“一正、二定、三相等”);④ 三角函数法(注意恒等变形);⑤ 图像法(根据图象的最高和最低点求解);⑥ 函数单调性法求解(根据其单调性求凼数的取值范围即可),本题主要应用方法④解答的.14.已知直线y=a分别与直线,曲线交于点A,B,则线段AB长度的最小值为______.【答案】【解析】,设与平行的的切线的点为,则切线斜率为,切线方程为,则与,被直线与切线截得的线段长,就是被直线和曲线截得线段的最小值,因为取任何值时,被两平行线截得的线段长相等,所以令,可得,线段的最小值,故答案为.【方法点晴】本题主要考查利用导数求曲线切线方程以及最值问题以及数学的转化与划归思想,属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中. 本题中,将被直线和曲线截得线段的最小值转化为,被直线和曲线截得线段的最小值,是解题的关键.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知函数.(1)求函数的最小值,并写出取得最小值时自变量x的取值集合;(2)若,求函数的单调增区间.【答案】(1)取得最小值0,(2)单调增区间是和.【解析】试题分析:(1)根据二倍角的正弦公式、二倍角的余弦公式以及辅助角公式化简,再根据余弦函数的性质可得当,即时,取得最小值;(2)令,解得,结合,分别令,可得函数在的单调增区间是和.试题解析:(1).当,即时,取得最小值0.此时,取得最小值时自变量x的取值集合为.(2)因为,令,解得,又,令,,令,,所以函数在的单调增区间是和.【方法点睛】本题主要考查二倍角的正弦公式、二倍角的余弦公式以及辅助角公式、三角函数的图像与性质,属于中档题.的函数的单调区间的求法:(1) 代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间.16.如图,在正方体中,已知E,F,G,H分别是A1D1,B1C1,D1D,C1C的中点.(1)求证:EF∥平面ABHG;(2)求证:平面ABHG⊥平面CFED.【答案】(1)见解析(2)见解析【解析】试题分析:(1)由是的中点,可得,从而可得,根据线面平行的判定定理可得结论;(2)根据线面垂直的性质可得,根据相似三角形的性质可得,从而根据线面垂直的判定定理可得平面,进而根据面面垂直的判定定理可得结论.试题解析:(1)因为E,F是A1D1,B1C1的中点,所以,在正方体中,A1B1∥AB,所以.又平面ABHG,AB平面ABHG,所以EF∥平面ABHG,.(2)在正方体ABCD−A1B1C1D1中,CD 平面BB1C1C,又平面,所以.①设,△BCH≌△,所以,因为∠HBC+∠PHC=90,所以+∠PHC=90.所以,即.②由①②,又,DC,CF平面CFED,所以平面CFED.又平面ABHG,所以平面ABHG⊥平面CFED.【方法点晴】本题主要考查线面平行的判定定理、面面垂直的判定定理,属于中档题 . 证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行;②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.17.如图,B,C分别是海岸线上的两个城市,两城市间由笔直的海滨公路相连,B,C之间的距离为100km,海岛A在城市B的正东方50处.从海岛A到城市C,先乘船按北偏西θ角(,其中锐角的正切值为)航行到海岸公路P处登陆,再换乘汽车到城市C.已知船速为25km/h,车速为75km/h.(1)试建立由A经P到C所用时间与的函数解析式;(2)试确定登陆点P的位置,使所用时间最少,并说明理由.【答案】(1),定义域为(2)17.68【解析】试题分析:(1)由轮船航行的方位角为,可得,,由直角三角形的性质及三角函数的定义可得,,所以,则由经到所用时间与的函数关系为,可得函数的定义域为,其中锐角的正切值为;(2)利用导数研究函数的单调性,可得在上递减,在上递增,(),所以可得时函数取得最小值,此时≈17.68.试题解析:(1)由题意,轮船航行的方位角为θ,所以,,则,..由A到P所用的时间为,由P到C所用的时间为,所以由A经P到C所用时间与θ的函数关系为.函数的定义域为,其中锐角的正切值为.(2)由(1),,,,令,解得,设θ0,使θ0减函数极小值增函数所以,当时函数f(θ)取得最小值,此时BP=≈17.68,答:在BC上选择距离B为17.68 处为登陆点,所用时间最少.18.在平面直角坐标系xOy中,椭圆的离心率为,椭圆上动点到一个焦点的距离的最小值为.(1)求椭圆C的标准方程;(2)已知过点的动直线l与椭圆C交于A,B两点,试判断以AB为直径的圆是否恒过定点,并说明理由.【答案】(1)(2)存在以AB为直径的圆恒过定点T,且定点T的坐标为.【解析】试题分析:(1)根据椭圆的离心率为,椭圆上动点到一个焦点的距离的最小值为,结合,列出关于、、的方程组,求出、、即可得结果;(2)设过点的直线的方程为与椭圆交于,则整理得,根据韦达定理及平面向量数量积公式可将表示为的函数,消去可得,从而可得,存在以为直径的圆恒过定点,且定点的坐标为.试题解析:(1)由题意,故,又椭圆上动点到一个焦点的距离的最小值为,所以,解得,,所以,所以椭圆C的标准方程为.(2)当直线l的斜率为0时,令,则,此时以AB为直径的圆的方程为.当直线l的斜率不存在时,以AB为直径的圆的方程为,联立解得,即两圆过点.猜想以AB为直径的圆恒过定点.对一般情况证明如下:设过点的直线l的方程为与椭圆C交于,则整理得,所以.因为,所以.所以存在以AB为直径的圆恒过定点T,且定点T的坐标为.【方法点晴】本题主要考查待定系数法求椭圆标准方程、直线与椭圆的位置关系以及曲线过定点问题,属于难题.解决曲线过定点问题一般有两种方法:① 探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.② 从特殊情况入手,先探求定点,再证明与变量无关.19.已知各项是正数的数列的前n项和为.(1)若(n N*,n≥2),且.①求数列的通项公式;②若对任意恒成立,求实数的取值范围;(2)数列是公比为q(q>0, q1)的等比数列,且{a n}的前n项积.为.若存在正整数k,对任意n N*,使得为定值,求首项的值.【答案】(1)①②(2)【解析】试题分析:(1)①当时,由可得两式相减得,即,,数列为等差数列,可得,②由①知,,所以,可得对一切恒成立,记,,判断数列的单调性,求出最大项,从而可得结果;(2)设(),,两边取常用对数,.令,则数列是以为首项,为公差的等差数列,若为定值,令,化为.对恒成立,问题等价于,从而可得结果.试题解析:(1)①当时,由则两式相减得,即,当时,,即,解得或(舍),所以,即数列为等差数列,且首项,所以数列的通项公式为.②由①知,,所以,由题意可得对一切恒成立,记,则,,所以,,当时,,当时,,且,,,所以当时,取得最大值,所以实数的取值范围为.(2)由题意,设(),,两边取常用对数,.令,则数列是以为首项,为公差的等差数列,若为定值,令,则,即对恒成立,因为,问题等价于将代入,解得.因为,所以,所以,又故.20.已知函数(1)当时,求函数的单调区间;(2)若方程在区间(0,+)上有实数解,求实数a的取值范围;(3)若存在实数,且,使得,求证:.【答案】(1)函数的单调减区间为和,单调增区间为.(2)(3)见解析【解析】试题分析:(1)时,,分段求出导函数,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)设,则,所以在区间上有解,等价于在区间上有解,设,对利用导数研究函数的单调性,结合函数图象及零点存在定理,即可得到符合题意的的取值范围即可;(3)先排除的情况,到,利用导数研究函数的单调性,分别求出最大值与最小值,问题转化为解得,所以.试题解析:(1)当时,当时,,则,令,解得或(舍),所以时,,所以函数在区间上为减函数.当时,,,令,解得,当时,,当时,,所以函数在区间上为减函数,在区间上为增函数,且.综上,函数的单调减区间为和,单调增区间为.(2)设,则,所以,由题意,在区间上有解,等价于在区间上有解.记,则,令,因为,所以,故解得,当时,,当时,,所以函数在区间上单调递减,在区间上单调递增,故函数在处取得最小值.要使方程在区间上有解,当且仅当,综上,满足题意的实数a的取值范围为.(3)由题意,,当时,,此时函数在上单调递增,由,可得,与条件矛盾,所以.令,解得,当时,,当时,,所以函数在上单调递减,在上单调递增.若存在,,则介于m,n之间,不妨设,因为在上单调递减,在上单调递增,且,所以当时,,由,,可得,故,又在上单调递减,且,所以.所以,同理.即解得,所以.三.【选做题】本题包括四大题,请选定其中两题....,若多做,则......,并在相应的答题区........域内作答按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.21.如图,,与圆O分别切于点B,C,点P为圆O上异于点B,C的任意一点,于点D,于点E,于点F.求证:.【答案】见解析.【解析】试题分析:连根据同弧上的圆周角与弦切角相等,可得. 再由,,可得,从而得.同理,,又,,因此,故,从而可得,即.试题解析:连PB,PC,因为分别为同弧BP上的圆周角和弦切角,所以. 因为,,所以△PDB∽△PFC,故.同理,,又,,所以△PFB∽△PEC,故.所以,即.22.选修4-2:矩阵与变换已知,,求.【答案】【解析】试题分析:矩阵的特征多项式为,令,解得,解得属于λ1的一个特征向量为,属于λ2的一个特征向量为.令,即,所以解得,从而可得结果.试题解析:矩阵的特征多项式为,令,解得,解得属于λ1的一个特征向量为,属于λ2的一个特征向量为.令,即,所以解得.所以.23.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,若直线l与曲线C相交于A,B两点,求△AOB的面积.【答案】12.【解析】试题分析:(1)先根据极坐标与直角坐标的互化公式得到的直角坐标方程,利用代入法将直线的参数方程转化为普通方程,利用点到直线距离公式求得三角形的高,将直线的参数方程代入曲线的直角坐标方程,根据韦达定理及直线参数方程的几何意义可求得,从而根据三角形面积公式可得结果.试题解析:由曲线C的极坐标方程是,得ρ2sin2θ=2ρcosθ.所以曲线C的直角坐标方程是y2=2x.由直线l的参数方程 (t为参数),得,所以直线l的普通方程为.将直线l的参数方程代入曲线C的普通方程y2=2x,得,设A,B两点对应的参数分别为t1,t2,所以,因为原点到直线的距离,所以△AOB的面积是.24.选修4-5:不等式选讲已知a,b,c∈R,,若对一切实数a,b,c恒成立,求实数x的取值范围.【答案】【解析】试题分析:(1)根据柯西不等式可得,对一切实数a,b,c恒成立,等价于,对分三种情况讨论,分别求解不等式组,然后求并集即可得结果.试题解析:因为a,b,c∈R,,由柯西不等式得,因为对一切实数a,b,c恒成立,所以.当时,,即;当时,不成立;当时,,即;综上,实数x的取值范围为.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且AB BP2,AD=AE=1,AE⊥AB,且AE∥BP.(1)求平面PCD与平面ABPE所成的二面角的余弦值;(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.【答案】(1)(2)当点N与点D重合时,直线BN与平面PCD所成角α的正弦值等于。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省苏州市2020届第一学期高三期初调研考试数学试卷第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.已知集合A ={1,3},B ={3,9},则A U B = . 答案:{1,3,9} 考点:集合的运算解析:∵A ={1,3},B ={3,9}, ∴A U B ={1,3,9} 2.如果复数23bii-+(b ∈R)的实部与虚部互为相反数,则b 等于 . 答案:1 考点:复数 解析:263231010bi b b i i --+=-+,由实部与虚部互为相反数得:6321010b b -+=,解得b =1. 3.下表是某同学五次数学附加题测试的得分情况,则这五次测试得分的方差为 .次数 1 2 3 4 5 得分3330272931答案:考点:平均数与方差解析:∵3330272931305x ++++==∴2222221[(3330)(3030)(2730)(2930)(3130)]45S =-+-+-+-+-=.4.已知4瓶饮料中有且仅有2瓶是果汁类饮料,从这4瓶饮料中随机取2瓶,则所取2瓶中至少有一瓶是果汁类饮料的概率为 . 答案:56考点:古典概型解析:4瓶饮料中随机取2瓶共有6种取法,所取2瓶中至少有一瓶是果汁类饮料共有5种取法,所以求得概率为56. 5.根据如图所示的伪代码,当输入的a ,b 分别为2,3时,最后输出的b 的值为 .答案:2考点:算法语言,伪代码解析:求得a=5,b=2,所以最后输出的b的值为2.6.在平面直角坐标系xOy中,已知双曲线22221 x ya b-=(a>0,b>0)的两条渐近线方程为y=±2x,则该双曲线的离心率为.答案:5考点:双曲线的性质解析:由渐近线方程可得2ba=,所以b2=4a2,即c2﹣a2=4a2,所以225ca=,e=5(负值已舍去).7.如图,在直三棱柱ABC—A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC =5,M是AA1的中点,则三棱锥A1—MBC1的体积为.答案:4考点:棱锥的体积解析:根据A1C1=4,A1B1=AB=3,B1C1=BC=5,可得∠C1A1B1=90°,又∠C1A1A=90°,可得C1A1⊥平面ABB1A1,所以111111234432A MBC C MBAV V==⨯⨯⨯⨯=——.8.已知等差数列{}n a的前n项和为n S,若1530S=,71a=,则10S的值为.答案:﹣5考点:等差数列前n项和解析:由1530S=可得82a=,又71a=,可得6a=,51a=-,所以110105610()5()52a aS a a+==+=-.9.若()y f x=是定义在R上的偶函数,当x∈[0,+∞)时,sin[0, 1)()(1)[1,)x xf xf x x∈⎧=⎨-∈+∞⎩,,,则(5)6fπ--=.答案:12考点:函数的奇偶性、周期性 解析:1(5)(5)()sin 66662f f f ππππ--=+===. 10.已知在△ABC 中,AC =1,BC =3,若O 是该三角形内的一点,满足(OA OB)(CA +⋅-u u u r u u u r u u u r CB)u u u r=0,则CO AB ⋅u u u r u u u r= .答案:4考点:平面向量的数量积解析:设AB 的中点为D ,由(OA OB)(CA +⋅-u u u r u u u r u u u r CB)u u u r =0,得DO AB 0⋅=u u u r u u u r所以1CO AB (CD DO)AB CD AB (CA CB)(CA CB)2⋅=+⋅=⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r221(CA CB )42=-=u u ur u u u r . 11.已知sin 222cos2αα-=,则2sin sin 2αα+= .答案:1或85考点:同角三角函数关系式,倍角公式 解析:∵sin 222cos2αα-= ∴2sin 222(2cos 1)αα-=- 化简得cos (sin 2cos )0ααα-= 所以cos 0α=或tan 2α= 当cos 0α=,求得2sinsin 2αα+=1当tan 2α=,222222sin 2sin cos tan 2tan 8sin sin 2sin cos tan 15αααααααααα+++===++.12.已知点A 、B 是圆O :224x y +=上任意两点,且满足AB =P 是圆C :(x +4)2+(y +3)2=4上任意一点,则PA PB +u u u r u u u r的取值范围是 .答案:[4,16] 考点:圆的方程解析:取AB 中点C ,可得OC =1,所以动点C 在以O 为圆心,1为半径的圆上PA PB 2PC 2PC +==u u u r u u u r u u u r u u u r,而PC max =5+1+2=8,PC min =5﹣1﹣2=2, PA PB +u u u r u u u r 的最大值为16,最小值为4,取值范围为4≤PA PB +u u u r u u u r≤16.13.设实数a ≥1,若不等式2x x a a -+≥,对任意的实数x ∈[1,3]恒成立,则满足条件的实数a 的取值范围是 . 答案:[1,2]U [72,+∞) 考点:函数性质综合解析:①当1≤a ≤2时,显然符合题意 ②当a >2时,2x x a a -+≥,2a x a x--≥ ∴2a x a x--≥或2a x a x --≤-化简得221x a x +≤+或221x a x -≥-恒成立求得221x y x +=+在[1,3]的最小值为32,即a ≤32与a >2矛盾,舍求得221x y x -=-在[1,3]的最大值为72,即a ≥72符合题意综上所述,a 的取值范围为1≤a ≤2或a ≥72. 14.在△ABC 中,若tan A tan Atan B tan C+=3,则sinA 的最大值为 .考点:基本不等式,正余弦定理解析:222222222222tan A tan A sin A cos B sin A cos C 22tan B tan C sin Bcos A sin cos A 22a c b a b c a aac ab b c a b c a C b cbc bc+-+-+=+=++-+- =222223a b c a=+- 所以2223()5a b c =+ cosA =222222()2522555b c b c a b c bc bc c b ++-==+≥当且仅当b =c 时取“=”所以A 是锐角,且cosA 的最小值为25,此时sinA有最大值为5.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)如图,在直三棱柱ABC —A 1B 1C 1中,AB =BC ,点P 是棱AC 的中点. (1)求证:AB 1∥平面PBC 1;(2)求证:平面PBC 1⊥平面AA 1C 1C .16.(本小题满分14分) 已知函数7()sin()sin()412f x x x ππ=+++. (1)求函数()y f x =的最小正周期和单调递增区间;(2)当x ∈[0,π]时,试求函数()y f x =的最大值,并写出取得最大值时自变量x 的值.17.(本小题满分14分)已知椭圆C:22221x ya b+=(a>b>0)的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.(1)求椭圆C的方程;(2)若直线y=kx交椭圆C于A、B两点,在直线l:x+y﹣3=0上存在点P,使得△PAB为等边三角形,求实数k的值.18.(本小题满分16分)某地举行水上运动会,如图,岸边有A,B两点,∠BAC=30°.小船从A点以v千米/小时的速度沿AC方向匀速直线行驶,同一时刻运动员出发,经过t小时与小船相遇.(水流速度忽略不计)(1)若v=4,AB=2 km,运动员从B处出发游泳匀速直线追赶,为保证在1小时内(含1小时)能与小船相遇,试求运动员游泳速度的最小值;(2)若运动员先从A处沿射线AB方向在岸边跑步匀速行进m(0<m<t)小时后,再游泳匀速直线追赶小船,已知运动员在岸边跑步的速度为4千米/小时,在水中游泳的速度为2千米小时,试求小船在能与运动员相遇的条件下v的最大值.19.(本小题满分16分)已知函数()xf x e =,()lng x x =.(1)设2()()h x g x x =-,求函数()h x 的单调增区间;(2)设01x >,求证:存在唯一的0x ,使得函数()y g x =的图像在点A(0x ,0()g x )处的切线l 与函数()y f x =的图像也相切;(3)求证:对任意给定的正数a ,总存在正数x ,使得不等式()11f x a x--<成立.20.(本小题满分16分)等差数列{}n a 的前n 项和为n S ,数列{}n b 满足:1155b a ==,529a b ==,当n ≥3时,1n S +>n b ,且n S ,1n n S b +-,2n S -成等比数列,n N *∈.(1)求数列{}n a ,{}n b 的通项公式; (2)求证:数列{}n b 中的项都在数列{}n a 中; (3)将数列{}n a 、11n n b b +⎧⎫⎨⎬⎩⎭的项按照:当n 为奇数时,n a 放在前面;当n 为偶数时,11n n b b +放在前面进行“交叉排列”,得到一个新的数列:1a ,121b b ,231b b ,2a ,3a ,341b b ,451b b ,…这个新数列的前n 和为n T ,试求n T 的表达式.第II 卷(附加题,共40分)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换设变换T 是按逆时针旋转2π的旋转变换,对应的变换矩阵是M . (1)求点P(1,1)在T 作用下的点P ′的坐标;(2)求曲线C :y =x 2在变换T 的作用下所得到的曲线C′的方程.B.选修4—4:坐标系与参数方程己知直线的参数方程为11x ty t=+⎧⎨=-⎩(t为参数),圆C的参数方程为cossinx ay aθθ=⎧⎨=⎩(a>0,θ为参数),点P是圆C上的任意点,若点P到直线的距离的最大值为21+,求实数a的值.解:由直线的参数方程为11x ty t=+⎧⎨=-⎩(t为参数)可得2y x=-+由圆C的参数方程为cossinx ay aθθ=⎧⎨=⎩可得圆的标准方程为222x y a+=求得圆心O到直线的距离为2,所以a+2=21+,求得a的值为1.C.选修4—5:不等式选讲已知x、y、z均为正数,求证:111x y zyz zx xy x y z ++≥++.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……,每次摸取1个球,取出的球不放回,直到其中有人取到白球时终止.用随机变量X 表示取球终止时取球的总次数.(1)求袋中原有白球的个数;(2)求随机变量X 的概率分布及数学期望E(X).23.(本小题满分10分)设集合M ={﹣1,0,1},集合A n ={}123(,,,,),1,2,,n i x x x x x M i n ∈=L L ,集合A n 中满足条件“1≤12n x x x +++L ≤m ”的元素个数记为n m S .(1)求22S 和42S 的值;(2)当m <n 时,求证:11322n n m n m S ++<+-.。

相关文档
最新文档