☆☆☆☆组合与组合数公式解读
组合数公式大全
组合数公式大全组合数是组合数学中的一个重要概念,它描述了从一个集合中选择出若干元素进行组合的情况,而不考虑元素的顺序。
组合数在数学中有着广泛的应用,涉及到概率论、统计学、排列组合等领域。
本文将为您全面介绍组合数的相关理论和公式。
**一、组合数的定义**组合数通常记作C(n, k),表示从n个不同元素中选取k个元素的不同组合数目。
组合数的主要特点是不考虑元素的顺序,也就是说,选择元素a、b和选择元素b、a被视为同一种组合。
组合数的计算涉及到阶乘的概念,具体公式如下:C(n, k) = n! / (k! * (n - k)!)n!表示n的阶乘,即n的所有自然数乘积。
**二、组合数的递推公式**除了直接使用组合数的定义进行计算,还可以利用递推公式来快速计算组合数。
组合数有以下递推公式:C(n, k) = C(n-1, k) + C(n-1, k-1)这个递推公式的意义在于,从n个元素中选取k个元素的组合数,可以分解成两种情况:一种是包含第n个元素的组合,另一种是不包含第n个元素的组合。
通过这种递推关系,可以快速计算出较大规模的组合数。
**三、组合数的性质**组合数有一些重要的性质,例如:1. 对称性:C(n, k) = C(n, n-k),也就是说,从n个元素中选取k个元素的组合数等于从n个元素中选取n-k个元素的组合数。
2. 组合数的加法原理:C(n, k) + C(n, k+1) = C(n+1, k+1),也就是说,从n个元素中选取k个元素的组合数加上选取k+1个元素的组合数,等于从n+1个元素中选取k+1个元素的组合数。
3. 组合数的乘法原理:C(m, k) * C(n, r) = C(m+n, k+r),也就是说,从m个元素中选取k个元素的组合数乘以从n个元素中选取r个元素的组合数,等于从m+n个元素中选取k+r个元素的组合数。
**四、高级组合数公式**除了基本的组合数公式外,还有一些高级的组合数公式,如:1. Lucas定理:对于任意非负整数n和m以及质数p,Lucas定理表示C(n, m)对p取模的结果等于C(n%p, m%p)与C(n/p, m/p)的乘积对p取模的结果。
组合数 公式
组合数公式组合数公式什么是组合数?组合数是数学中一个重要的概念,表示从一个元素集合中取出若干元素而不考虑元素的顺序的方式的总数。
组合数经常在概率论、统计学以及组合数学等领域中使用,并有许多相关的公式。
公式一:组合数的定义公式组合数的定义公式如下:C(n,k)=n!k!(n−k)!其中,n表示元素集合中的元素个数,k表示从中取出的元素个数,n!表示n的阶乘。
公式二:组合数的递推公式组合数的递推公式可以通过组合数的定义公式化简得到:C(n,k)=C(n−1,k−1)+C(n−1,k)这个公式表示从n个元素中选取k个元素的方式数等于从n−1个元素中选取k−1个元素的方式数加上从n−1个元素中选取k个元素的方式数。
公式三:组合数的性质公式组合数有以下两个性质公式:1.C(n,k)=C(n,n−k),即从n个元素中选取k个元素的方式数等于从n个元素中选取n−k个元素的方式数。
2.C(n,k)=C(n−1,k−1)+C(n−1,k),即组合数的递推公式。
例子解释假设有一箱子里有红球和蓝球,其中分别有5个红球和3个蓝球。
现在要从箱子中选取2个球,问有多少种不同的选取方式?根据组合数的定义公式,可以计算出结果:C(8,2)=8!2!(8−2)!=8!2!6!=8∗72∗1=28所以,从这个箱子中选取2个球的方式有28种。
再假设箱子里的球数稍有不同,有5个红球和4个蓝球。
现在要从箱子中选取3个球,问有多少种不同的选取方式?根据组合数的递推公式,可以将问题化简:C(9,3)=C(8,2)+C(8,3)=8!2!(8−2)!+8!3!(8−3)!=28+56=84所以,从这个箱子中选取3个球的方式有84种。
综上所述,组合数公式能够帮助我们计算从一个元素集合中选取若干元素的不同方式数。
无论是组合问题还是概率问题,组合数公式都具有重要的应用价值。
公式四:组合数的乘法公式组合数有一个重要的乘法公式:C(n,k)=C(n−1,k−1)∗n k这个公式可以通过组合数的定义公式推导得到。
组合与组合数公式
例5、6本不同的书,按下列要求各有多少种不同的分 法:
(1)分给甲、乙、丙三人,每人2本; (2)分为三份,每份2本; (3)分为三份,一份1本,一份2本,一份3本: (4)分给甲、乙、丙三人,一人1本,一人2 本,一人 3本。
a a a 推广:从
1,
2,
n1这n+1个不同的元素中,
取出m个元素的组合数
c,m 这些组合可以分成两类: n1
a a a a a a 一类含 ,一1类不含 。含1 的组1 合是从
2, 3,
n1
这n个不同元素中取出m-1个元素的组合数为 m1;不
a a a a c 含 1的组合是从
2,
C
x3 x2
1 10
Ax33
⑸ 计算:C50 C51 C52 C53 C54 C55
推广:
C
0 n
C
1 n
C
2 n
C n1 n
C
n n
2n
例3、12件产品中有3件次品,9件正品,从中抽取5 件,
(1) 5件产品中没有次品的取法有多少种? (2) 5件产品中有2件次品的取法有多少种?
例6、某省的福利彩票中,不考虑次序的7个数码组 成一注,7个数码中没有重复,每一个数码都选自 数码1,2,…,36,如果电视直播公开摇奖时只有 一个大奖,计算:
(1)公开摇奖时最多可以摇出多少不同的注;
(2)购买一注时的中奖率。
作业
P26
3,4,5,8
组合和组合数公式
组合和组合数公式组合是组合数学中的一个重要概念,用来计算从n个元素中选取r个元素的方式数。
组合数公式是用来计算组合数的公式。
本文将详细介绍组合和组合数公式,并说明其应用和性质。
1.组合的定义组合由n个元素中选取r个元素所组成的集合,称为从n个元素中选取r个元素的组合。
组合中的元素是无序的,即选取的元素的顺序对组合没有影响。
2.组合的表示方法组合通常用C(n,r)来表示,其中n是总的元素个数,r是选取的元素个数。
例如,从4个元素中选取2个元素的组合可以表示为C(4,2)。
组合数公式用于计算从n个元素中选取r个元素的方式数。
常用的组合数公式有以下几种:3.1乘法法则根据乘法法则,从n个元素中选取r个元素的方式数等于从n中选择1个元素的方式数乘以从n-1个元素中选取r-1个元素的方式数。
这一公式可以表示为:C(n,r)=C(n-1,r-1)*n/r3.2递推公式根据递推关系,可以通过前一项的组合数计算后一项的组合数。
递推公式可以表示为:C(n,r)=C(n-1,r-1)+C(n-1,r)3.3组合公式组合公式是计算组合数的一种常用方法。
组合公式可以表示为:C(n,r)=n!/(r!(n-r)!)其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*14.组合的性质组合具有以下几个重要的性质:4.1对称性组合数具有对称性,即C(n,r)=C(n,n-r)。
这是因为从n个元素中选取r个元素的方式数与从n个元素中选取n-r个元素的方式数是一样的。
4.2递推性组合数具有递推性,即可以通过递推公式计算组合数。
这使得计算大规模组合数变得更加高效。
4.3性质的递推公式组合数的性质也可以通过递推公式计算。
例如,根据乘法法则和递推公式可以推导出组合数的对称性。
5.组合数的应用组合数在组合数学、概率论和统计学等领域具有广泛的应用。
以下是几个常见的应用:5.1排列组合组合数可以用于计算排列组合的方式数。
排列是组合的一种特殊情况,它要求选取的元素有序。
组合与组合数公式
组合与组合数公式从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.组合数公式:从个不同元素中取出个元素的所有组合的个数,称之,用符号表示,如从6个元素中取出2个元素的组合数为.【评述】区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.求从个不同元素中取出个元素的排列数,可分为以下两步:第1步,先求出从这 个不同元素中取出 个元素的组合数为;第2步,求每一个组合中个元素的全排列数为.根据分步计数原理,得到公式1:公式2:组合数的两个性质(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .例1 在1,3,5,7,9中任取3个数字,在0,2,4。
6,8中任取两个数字,可组成多少个不同的五位偶数.分析:因为零不能作首位数,所以是特殊元素,因此可以根据选零不选零为分类标准。
解:第一类:五位数中不含数字零。
第一步:选出5个数字,共有种选法.第二步:排成偶数—先排末位数,有 种排法,再排其它四位数字,有种排法.∴(个)第二类:五位数中含有数字零.第一步:选出5个数字,共有种选法。
第二步:排顺序又可分为两小类;(1)末位排零,有种排列方法;(2)末位不排零.这时本位数有种选法,而因为零不能排在首位,所以首位有种排法,其余3个数字则有种排法.∴∴符合条件的偶数个数为(个)说明:本题也可以用间接法(即排除法)来解.请读者自行完成.例2有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其余5人既会划左舷也会划右舷。
现在要从这12名运动员中选出6人平均分在左、右舷划船参加比赛,有多少种不同的选法?分析:设集合A={只会划左舷的3个人},B={只会划右舷的4个人},C={既会划左舷又会划右舷的5个人}先分类,以集合A为基准,划左舷的3个人中,有以下几类情况:①A中有3人;②A中有2人;C中有1人;③A中有1人,C中有2人;④C中有3人。
组合数学解析
组合数学解析在数学领域中,组合数学是研究离散结构的一门学科,它主要关注于物体的集合以及它们之间的排列、组合和选择方式。
组合数学广泛应用于计算机科学、信息技术、统计学、天文学等多个领域,在许多实际问题的建模和解决中都起到了重要的作用。
一、组合数学的基本概念1. 排列与组合在组合数学中,排列和组合是两个基本的概念。
排列是指一组对象按照一定顺序进行排列的方式,而组合则是指从一组对象中选取一部分对象进行组合的方式。
排列和组合的计算公式为:排列公式:P(n,m) = n!/(n-m)!组合公式:C(n,m) = n!/[(n-m)! * m!]其中,n表示对象的总数,m表示要排列或组合的对象的数量,n!表示n的阶乘。
2. 二项式系数在组合数学中,二项式系数表示的是两个数的二项式展开系数,它也是组合数学中的重要概念。
二项式系数的计算公式为:C(n,m) = n!/[(n-m)! * m!]二项式系数在组合数学中起到了非常重要的作用,它们具有许多重要的性质和应用。
二、组合数学的应用领域1. 组合数学在计算机科学中的应用在计算机科学中,组合数学是一门非常重要的学科。
组合数学的许多概念和方法被广泛应用于算法设计、图论、密码学、数据压缩等领域。
例如,在算法设计中,对于排列和组合的问题,组合数学可以提供有效的算法和优化策略。
在密码学中,组合数学的概念被用于设计和分析密码算法的安全性。
2. 组合数学在信息技术中的应用在信息技术领域中,组合数学也扮演着重要的角色。
例如,编码理论中的纠错码和压缩码的设计就依赖于组合数学的概念和方法。
另外,在网络优化、通信网络设计等问题中,组合数学的知识也能够提供宝贵的解决思路。
3. 组合数学在统计学中的应用在统计学中,组合数学可以用于描述和统计样本空间以及事件的可能性。
组合数学中的概率论和统计学概念有紧密的联系,例如样本空间的总数、事件的发生概率等都可以通过组合数学的方法进行计算和分析。
此外,组合数学还在实验设计、随机模型等方面发挥着重要作用。
组合数的相关公式
组合数的相关公式组合数是组合数学中的一个重要概念,也称为二项式系数。
它在组合学、概率论和数论等多个领域都有广泛的应用。
本文将全面介绍组合数的相关公式,以帮助读者更好地理解和应用这一概念。
1. 组合数的定义组合数是指从n个不同元素中选取r个元素的方式数,用C(n,r)或者表示。
其中n表示元素的个数,r表示选取的元素个数。
组合数的计算结果是一个非负整数。
2. 组合数的计算公式2.1. 基本公式组合数可以通过以下基本公式来计算:C(n,r) = n! / (r!(n-r)!)其中,"!"表示阶乘运算,即将一个正整数n与小于等于它的所有正整数相乘。
例如,5! = 5 × 4 × 3 × 2 × 1。
2.2. 递推公式组合数也可以通过递推公式来计算:C(n,r) = C(n-1,r-1) + C(n-1,r)递推公式的意思是,从n个元素中选取r个元素,可以分为两种情况:选取第n个元素和不选取第n个元素。
如果选取第n个元素,那么就需要从剩下的n-1个元素中选取r-1个元素;如果不选取第n 个元素,那么就需要从剩下的n-1个元素中选取r个元素。
将这两种情况的结果相加,就可以得到总的组合数。
递推公式的优点是可以利用已知的组合数计算出其他组合数,从而减少重复计算的次数。
3. 组合数的性质组合数具有一些有趣的性质,对于计算和理解组合数的应用非常有用。
3.1. 对称性组合数具有对称性,即C(n,r) = C(n,n-r)。
这是因为从n个元素中选取r个元素,等价于从n个元素中选取n-r个元素。
例如,从{1,2,3,4}中选取2个元素的方式数与从{1,2,3,4}中选取3个元素的方式数是相同的。
3.2. 组合数的加法如果有两个集合A和B,且A和B的元素个数分别为n和m,那么从A和B的元素中选取r个元素的方式数为C(n+m,r)。
这是因为可以将A和B的元素合并成一个集合,然后从合并后的集合中选取r个元素。
关于组合数的公式
关于组合数的公式组合数是数学中一个非常有趣且实用的概念。
咱们先来说说组合数到底是啥。
比如说,你有一堆不同颜色的球,红的、蓝的、绿的,然后你想从里面挑出几个来,不考虑顺序,这时候就得用到组合数啦。
组合数的公式就像是一把神奇的钥匙,能帮咱们算出到底有多少种不同的挑法。
组合数的公式是:C(n, k) = n! / [k!(n - k)!] 。
这里面的“!”表示阶乘,比如说 5! 就是 5×4×3×2×1 。
我记得有一次,学校组织活动,要从班上的 10 个同学里选出 3 个去参加比赛。
这时候就得用组合数来算算有多少种选法。
咱们用组合数公式来算一下,C(10, 3) = 10! / [3!(10 - 3)!] = 10×9×8 / (3×2×1) = 120 ,哇,居然有 120 种不同的选法呢!那咱们再深入讲讲这个公式。
为啥会是这样的形式呢?其实它背后的原理挺巧妙的。
比如说,从 n 个不同的元素里选 k 个,第一步咱们有 n 种选择,第二步就剩下 n - 1 种选择,一直到第 k 步,就有 n - k +1 种选择。
但是呢,因为组合不考虑顺序,所以咱们这样选出来的结果会有重复。
比如说选出来的是 A、B、C 这三个元素,和先选 B 再选 A 最后选 C ,本质上是一样的。
所以就得除以 k! 来消除这种重复。
咱们再来看个实际例子。
假设超市里有 8 种不同的水果,你想买 4 种,用组合数公式就能算出一共有 C(8, 4) = 70 种不同的买法。
在解题的时候,使用组合数公式可得仔细啦。
要把 n 和 k 的值搞清楚,千万别弄错。
比如说有一道题,要从 15 本书里选 5 本组成一套,那就是 C(15, 5) ,可别弄成 C(5, 15) 啦,这可就完全不对咯。
组合数的公式在很多领域都有应用呢。
像概率统计里,算事件发生的可能性;在排列组合的问题中,帮助咱们快速准确地得出答案。
(优选)组合与组合数公式
方法归纳 区分排列与组合的办法是首先弄清楚事件是什么,区分的标 志是有无顺序,而区分有无顺序的方法是:把问题的一个选 择结果写出来,然后交换这个结果中任意两个元素的位置, 看是否会产生新的变化,若有新变化,即说明有顺序,是排 列问题;若无新变化,即说明无顺序,是组合问题.
1.从5个不同元素a,b,c,d,e中取出2个,列出所有 组合.
3.组合数的性质 性质 1:Cmn =____C_nn_-_m______. 性质 2:Cmn+1=__C_mn_+__C_mn_-__1 ___.
1.判断下列各题.(对的打“√”,错的打“×”) (1)从 a1,a2,a3 三个不同元素任取两个元素组成一个组合 所有组合的个数为 C23.( √ ) (2)从 1,3,5,7 中任取两个数相除可以得 C24个商.( × ) (3)C35=5×4×3=60.( × ) (4)C22 001134=C12 014=2 014.( √ )
ห้องสมุดไป่ตู้
方法归纳 在利用组合数公式进行计算、化简时,要灵活运用组合数 的性质,一般地,计算 Cmn 时,若 m 比较大,可利用性质 1,不计算 Cmn 而改为计算 Cnn-m,在计算组合数之和时,常 利用性质 2.
2.计算. (1)C410-C37·A33; (2)C34+C35+C36+…+C310; (3)Cr1+0 1+C1170-r.
组合概念的理解
判断下列问题是组合问题还是排列问题. (1)设集合 A={a,b,c,d,e},则集合 A 的子集中含有 3 个 元素的有多少个? (2)某铁路线上有 5 个车站,则这条线上共需准备多少种车 票?多少种票价? (3)3 人去干 5 种不同的工作,每人干一种,有多少种分工方 法?
[解] (1)因为本问题与元素顺序无关,故是组合问题. (2)因为甲站到乙站的车票与乙站到甲站的车票是不同的, 故是排列问题,但票价与顺序无关,甲站到乙站与乙站到 甲站是同一种票价,故是组合问题. (3)因为分工方法是从 5 种不同的工作中选出 3 种,按一定 顺序分给 3 个人去干,故是排列问题.
《组合与组合数公式》课件
3
详细解答
我们将逐步解答例题并给出详细的推导过程和计算方法。
组合公式的拓展
排列组合
排列组合是组合数学的一个重要 拓展,它涉及考虑元素的顺序的 排列方式。
分而治之
组合数学可以与分治算法结合, 解决具有组合性质的问题。
组合优化
组合数学在网络优化和组合优化 问题中发挥着重要作用。
总结与收尾
பைடு நூலகம்
1 重要性
组合与组合数公式对现实 世界和数学领域具有重要 意义。
《组合与组合数公式》 PPT课件
在这个PPT课件中,我们将深入探讨组合与组合数公式的概念、应用和推导过 程。让我们一起探索这个有趣而有用的数学领域!
什么是组合
组合的基本概念
组合是从一组元素中选择特定数 量的元素,不考虑顺序的排列。
组合的应用
组合数学在化学、信息论、概率 统计等领域有着广泛的应用。
组合的例题讲解
让我们通过一些有趣的情境和实 际问题来深入了解组合的运用。
组合公式的推导
阶乘公式
阶乘是组合数公式推导的基础,它表示从1到n的所有正整数的乘积。
组合数公式的推导
通过数学归纳法和排列组合的原理,我们可以推导出组合数公式。
二项式定理
二项式定理描述了如何将一个二项式(两个项的和或差的表达式)扩展为幂次多项式。
组合公式的应用
概率与统计
组合数公式在概率和统计中用于计算事件的可能性和样本空间的大小。
计算组合数
我们可以使用组合数公式快速计算出给定条件下的组合数量。
密码学
组合数学在密码学中被用于设计和分析密码系统的安全性。
组合公式的例题讲解
1
问题提出
我们将通过一个实际问题引入本节的例题讲解。
组合数的计算公式
组合数的计算公式组合数是一类有趣的数字,可以帮助我们解决许多有关组合的问题。
它也有着广泛的应用,是重要的数学工具。
组合数的计算公式作为一种重要的算法,可以帮助我们计算组合数。
首先,我们来看看组合数的定义。
组合数表示从一组候选项中选出n个元素的组合数,其中每个元素有k个可用的选择,并且顺序无关。
它可以表示为:C(n,k)=n!/(k! * (n-k!))。
其次,我们来讨论组合数计算公式的运用。
组合数的计算公式可以用来计算从一组候选项中选取特定数量的组合的个数。
它可以帮助我们解决问题,比如:有多少种从一组N个数字中选出K个数字的方式?此外,组合数计算公式也可以用来解决组合问题。
它可以帮助我们计算从一组N个数中选出K个数字的组合,并且可以用来解决关于特定组合事项的问题,比如:从一篮子苹果中,怎样可以选出3个,不改变它们原有的排列方式?组合数的计算公式也有着广泛的应用。
它可以用来计算不同形式的组合,比如两者的组合,三者的组合,四者的组合或更多。
它可以用来计算复杂的组合情况,如多组权重的组合,或组合问题的复杂重叠情况。
此外,它也可以用于计算组合期权价值,以及组合投资组合的收益率。
最后,组合数计算公式有着多种变体。
可以采用不同的方法来计算不同形式的组合,这些方法包括:加法原理、乘法原理、排列组合原理、哥德巴赫原理等。
除此之外,还可以采用数学归纳法来证明组合的计算公式的有效性。
总之,组合数计算公式是一种重要的算法,可以用来计算组合、解决组合问题,也有着广泛的应用。
它有着多种变体,可以采用不同的方式来计算组合,也可以用数学归纳法来证明其有效性。
综上所述,组合数计算公式具有实际上的价值,可以帮助我们解决复杂组合问题,从而实现更有效的计算结果。
组合数的性质解读
一般地,从a1, a2 , , an1这n 1个不同的元素中取
出m个元素的组合数是Cnm1, 这些组合可分成两类:一类含有a1,一类不含有a1,
含有a1的组合是从a2 , a3 , , an1这n个元素中取出 m 1个元素与a1组成的,共有Cnm1个;
不含a1的组合是从a2 , a3 , , an1这n个元素中取出
56
②从口袋里取出3个球,使其中含有一个黑球,
有多少种取法?C
2 7
21
③从口袋里取出3个球,使其中不含黑球,有
多少种取法?C
3 7
35
从引例中可以发现一个结论:C3 C 2 C3
8
7
7
对上面的发现(等式)作怎样解释?
C
3 8
C
2 7
C73
我们可以这样解释:从口袋内的 8个球中所取出的3个球,可以分为 两类:一类含有1个黑球,一类不含 有黑球.因此根据分类计数原理, 上述等式成立.
n(n 1)(n 2) m!
(n m 1)
Cnm
n! m!(n
m)!
我们规定:Cn0 1.
C C 定理 1:
m
nm
n
n
概念讲解 组合数公式
排列与组合是有区别的,但它们又有联 系.一般地,求从 n 个不同元素中取出m 个元素的排列数,
可以分为以下2步:
第1步,先求出从这 n 个不同元素中取出 m个元素
8
9
8
C C C C C 2 3 ( 3 2) 2 3 56
8
8
8
8
8
例.计算:
C
3 7
C74
C85
C
6 9
解:原式= (C73 C74 ) C85 C96 C84 C85 C96 (C84 C85 ) C96 C95 C96 C160 C140
组合的计算公式原理和方法
组合的计算公式原理和方法组合是数学中一个重要的概念,它涉及到从给定的元素集合中选择若干个元素,而不考虑元素的顺序。
在实际生活中,组合的概念被广泛应用于排列组合、概率统计、计算机算法等领域。
本文将从组合的计算公式原理和方法进行详细介绍。
一、组合的定义。
在数学中,组合是指从n个不同元素中取出m(m≤n)个元素的所有不同的选择方式的个数。
一般用C(n,m)表示,即从n个元素中取出m个元素的组合数。
组合数的计算公式为:C(n,m) = n! / (m! (n-m)!)。
其中,n!表示n的阶乘,即n(n-1)(n-2)...1。
m!表示m的阶乘,即m(m-1)(m-2)...1。
n-m表示n与m的差值。
二、组合的计算方法。
1. 递推法。
组合数的计算可以采用递推法,即从已知的组合数推导出新的组合数。
递推法的思路是利用组合数的性质,通过已知的组合数计算出新的组合数。
具体实现方法是利用组合数的性质C(n,m) = C(n-1,m-1) + C(n-1,m)来计算新的组合数。
2. 数学公式法。
组合数的计算也可以采用数学公式法,即直接使用组合数的计算公式进行计算。
这种方法适用于小规模的组合数计算,可以通过计算阶乘和求解差值来得到组合数的值。
3. 动态规划法。
在计算机算法中,组合数的计算可以采用动态规划法。
动态规划法的思路是将大问题分解成小问题,通过保存已计算的结果来避免重复计算,从而提高计算效率。
具体实现方法是使用一个二维数组来保存已计算的组合数值,通过填表的方式逐步计算出所有的组合数值。
三、组合的应用。
1. 排列组合。
在排列组合问题中,组合数的计算是一个重要的环节。
排列组合问题涉及到从给定的元素集合中选择若干个元素,而不考虑元素的顺序。
组合数的计算可以帮助解决排列组合问题,从而得到所有可能的选择方式。
2. 概率统计。
在概率统计中,组合数的计算也是一个重要的内容。
概率统计问题涉及到从给定的元素集合中选择若干个元素,计算出发生某种事件的概率。
组合与组合数公式(二)
组合数的定义公式为:C(n, m) = n! / (m!(n-m)!)
组合数的性质
组合数的性质一
C(n, m) = C(n, n-m),即从n个不同 元素中取出m个元素和取出n-m个元 素的组合数相等。
k)。
递推关系法
定义
递推关系法是通过组合数之间的递推关 系,逐步推导出所需的组合数值。
VS
举例
例如,已知C(n,k) = C(n-1,k-1) + C(n1,k),可以根据这个递推关系逐步计算出 C(n,k)的值。
PART 03
组合数公式的应用
REPORTING
WENKU DESIGN
在概率论中的应用
在统计学中的应用
样本组合统计
在统计学中,样本组合是一种常见的 统计方法,而组合数公式可以用于计
算样本组合的概率和期望值。
因子分解
在统计学中,因子分解是一种重要的 数据分析方法,而组合数公式可以用
于因子分解的计算。
多元分布计算
在多元统计分析中,组合数公式可以 用于计算多元分布的概率和期望值。
在计算机科学中的应用
PART 04
组合数公式的扩展
REPORTING
WENKU DESIGN
超几何分布
定义
超几何分布是描述从有限总体中抽取n个样本,其中k个 是成功样本的概率分布。
01
公式
$P(X=k) = frac{{C_{M}^{k} cdot C_{N-M}^{n-k}}}{{C_{N}^{n}}}$,其中 M是成功样本的数量,N是总体样本的 数量,n是抽取的样本数量。
论文资料:组合、组合数的概念及组合数公式及应用
组合、组合数的概念及组合数公式及应用一、重点、难点:1、主要内容为组合的意义、组合数及组合数公事、性质,组合的简单应用。
2、重点是组合的意义、组合数公式及性质和它们的简单应用。
3、难点是排列与组合的区别及组合数公式、性质的简单应用。
二、学法指导:1、组合:从n 个不同元素中,任取)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
2、排列与组合的区别关键在于:排列与顺序有关,组合与元素的顺序无关。
即当取出元素后,如果改变一下顺序,就得到一种新的取法,就是排列问题;如改变顺序,所得结果还是原来的取法就是组合问题。
组合的最大特点是每一个组合仅与选取的元素有关,而与这些元素的排列的位置无关。
3、要分清“组合”和“组合数”是两个不同的概念,组合是从n 个不同元素中,任取)(n m m ≤个元素并成一组,是一个具体的事件,而组合数是符合条件的所有组合的个数,是一个数。
4、在写从n 个不同元素中,任取)(n m m ≤个元素的组合时,也要按一定的规律顺序写,以免重复或遗漏。
5、组合数的公式有两个:)!(!!!)1()1(m n m n C m m n n n P P C m n m m m n m n-=+--==和 。
《注》:一般在计算具体的组合数时,常用前一个公式;在对含有字母的组合数恒等变形或证明等式时,常用后一个公式。
6、组合数有两个重要性质:(1)11)2(;-+-+==m n m n m n m n n m n C C C C C 。
《注》:第一个性质常用与当2n m >时组合数的计算,这样可以使计算简便些,第二个性质常用与恒等变形和证明等式。
三、例题讲解:例题1、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?解:3名医生分配到3所学校有633=P 种分法。
6名护士被分配到3所学校每校2名护士有90222426=C C C 种分法。
(学习指导) 组合与组合数公式Word版含解析
1.2.2组合第1课时组合与组合数公式学习目标核心素养1.理解组合与组合数的概念.(重点)2.会推导组合数公式,并会应用公式求值.(重点)3.理解组合数的两个性质,并会求值、化简和证明.(难点、易混点) 1.通过学习组合与组合数的概念,体现了数学抽象的素养.2.借助组合数公式及组合数的性质进行运算,培养数学运算的素养.一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.思考1:怎样理解组合,它与排列有何区别?[提示](1)组合要求n个元素是不同的,被取的m个元素也是不同的,即从n 个不同的元素中进行m次不放回地取出.(2)取出的m个元素不讲究顺序,也就是说元素没有位置的要求,无序性是组合的特点.(3)辨别一个问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关,若交换某一问题中某两个元素的位置对结果产生影响,则是排列问题,否则就是组合问题.2.组合数的概念从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.思考2:如何理解组合与组合数这两个概念?[提示]同“排列”与“排列数”是两个不同的概念一样,“组合”与“组合数”也是两个不同的概念,“组合”是指“从n 个不同元素中取m (m ≤n )个元素合成一组”,它不是一个数,而是具体的一件事;“组合数”是指“从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数”,它是一个数.例如,从3个不同元素a ,b ,c 中每次取出两个元素的组合为ab ,ac ,bc ,其中每一种都叫一个组合,这些组合共有3个,则组合数为3.3.组合数公式及其性质(1)公式:C m n =A m n A m m =n !m !(n -m )!. (2)性质:C m n =C n -m n ,C m n +C m -1n =C m n +1.(3)规定:C 0n =1.1.下面几个问题中属于组合问题的是( )①由1,2,3,4构成的双元素集合;②5个队进行单循环足球比赛的分组情况;③由1,2,3构成两位数的方法;④由1,2,3组成无重复数字的两位数的方法.A .①③B .②④C .①②D .①②④C [①②取出元素与顺序无关,③④取出元素与顺序有关.]2.若C 2n =28,则n =( )A .9B .8C .7D .6 B [C 2n =n ×(n -1)2=28,解得n =8.] 3.甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价的种数是________. 3[甲、乙、丙三地之间的距离不等,故票价不同,同距离两地票价相同,故该问题为组合问题,不同票价的种数为C 23=3×22=3.]4.C 26=________,C 1718=________.15 18[C 26=6×52=15,C 1718=C 118=18.]写出问题的组合【例1】 已知A ,B ,C ,D ,E 五个元素,写出每次取出3个元素的所有组合.[解]法一:可按AB →AC →AD →BC →BD →CD 顺序写出,即所以所有组合为ABC ,ABD ,ABE ,ACD ,ACE ,ADE ,BCD ,BCE ,BDE ,CDE .法二:画出树形图,如图所示.由此可以写出所有的组合:ABC ,ABD ,ABE ,ACD ,ACE ,ADE ,BCD ,BCE ,BDE ,CDE .1.此类列举所有从n 个不同元素中选出m 个元素的组合,可借助本例所示的“顺序后移法”(如法一)或“树形图法”(如法二),直观地写出组合做到不重复不遗漏.2.由于组合与顺序无关.故利用“顺序后移法”时箭头向后逐步推进,且写出的一个组合不可交换位置.如写出ab 后,不必再交换位置为ba ,因为它们是同一组合.画“树形图”时,应注意顶层及下枝的排列思路,防止重复或遗漏.[跟进训练]1.已知a ,b ,c ,d 这四个元素,写出每次取出2个元素的所有组合.[解] 可按a →b →c →d 顺序写出,即所以所有组合为ab ,ac ,ad ,bc ,bd ,cd .组合数公式的应用4103733(2)计算C 5-n n +C 9-n n +1.[思路点拨]解答此类问题要恰当选择组合数公式,并注意使用组合数公式的隐含条件.[解] (1)原式=10×9×8×74×3×2×1-7×6×53×2×1·(3×2×1)=210-210=0.(2)由⎩⎪⎨⎪⎧ n ≥5-n ,n +1≥9-n ,9-n ≥0,5-n ≥0,n ∈N *,得n =4或5.当n =4时,原式=C 14+C 55=5,当n =5时,原式=C 05+C 46=16.1.在具体选择公式时,要根据原题的特点,一般地,公式C m n =A m n A m m 常用于n 为具体数的数目,偏向于组合数的计算,公式C m n =n !(n -m )!m !常用于n 为字母的题目,偏向于解不等式或证明恒等式. 2.解题时,一定不要忘记组合数的意义.[跟进训练]2.求值:C 17-n 2n +C 3n 13+n .[解] 由组合数的公式的性质,可得⎩⎪⎨⎪⎧ 2n ≥17-n ,13+n ≥3n ,2n ∈N *,17-n ∈N ,13+n ∈N *,3n ∈N ,解得n =6.所以,原式=C 1112+C 1819=C 112+C 119=12+19=31.简单的组合问题(1)现要从中选2名去参加会议有多少种不同的选法?(2)选出2名男教师或2名女教师参加会议,有多少种不同的选法?(3)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?[思路点拨]判断是否为组合问题――→若是是否需要分类或分步求解―→套用公式求解[解](1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C210=10×92×1=45种.(2)可把问题分两类情况:第1类,选出的2名是男教师有C26种方法;第2类,选出的2名是女教师有C24种方法.根据分类加法计数原理,共有C26+C24=15+6=21种不同选法.(3)从6名男教师中选2名的选法有C26种,从4名女教师中选2名的选法有C24种,根据分步乘法计数原理,共有不同的选法C26×C24=6×52×1×4×32×1=90种.本例其他条件不变,问题变为从中选2名教师参加会议,至少有1名男教师的选法是多少?最多有1名男教师的选法又是多少?[解]至少有1名男教师可分两类:1男1女有C16C14种,2男0女有C26种.由分类加法计数原理知有C16C14+C26=39种.最多有1名男教师包括两类:1男1女有C16C14种,0男2女有C24种.由分类加法计数原理知有C16C14+C24=30种.1.解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.2.要注意两个基本原理的运用,即分类与分步的灵活运用.提醒:在分类和分步时,一定注意有无重复或遗漏.[跟进训练]3.(1)集合{0,1,2,3}含有3个元素的子集的个数是()A.4B.5C.7D.8(2)五个点中任何三点都不共线,则这五个点可以连成________条线段;如果是有向线段,共有________条.(1)A(2)1020[(1)由于集合中的元素是没有顺序的,一个含有3个元素的子集就是一个从{0,1,2,3}中取出3个元素的组合,这是一个组合问题,组合数是C34=4.(2)从五个点中任取两个点恰好连成一条线段,这两个点没有顺序,所以是组合问题,连成的线段共有C25=10(条).再考虑有向线段的问题,这时两个点的先后排列次序不同则对应不同的有向线段,所以是排列问题,排列数是A25=20.所以有向线段共有20条.]排列与组合的相同点与不同点(1)两个组合相同的充要条件是其中的元素完全相同.()(2)从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.()(3)从甲、乙、丙3名同学中选出2名去参加某两个乡镇的社会调查,有多少种不同的选法是组合问题.( )(4)从甲、乙、丙3名同学中选出2名,有3种不同的选法.( )(5)现有4枚2015年抗战胜利70周年纪念币送给10人中的4人留念,有多少种送法是排列问题.( )[答案](1)√ (2)√ (3)× (4)√ (5)×2.下列计算结果为21的是( )A .A 24+C 26B .C 37C .A 27D .C 27D [C 27=7×62×1=21.] 3.6个朋友聚会,每两人握手1次,一共握手________次.15[每两人握手1次,无顺序之分,是组合问题,故一共握手C 26=15次.]4.(1)求C 38-n 3n +C 3n 21+n 的值;(2)证明:C m n =n n -m C m n -1. [解] (1)由组合数的定义知,⎩⎪⎨⎪⎧ 0≤38-n ≤3n ,0≤3n ≤21+n ,即⎩⎪⎨⎪⎧ 192≤n ≤38,0≤n ≤212.∴192≤n ≤212,∵n ∈N *,∴n =10.∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=C 230+C 131=30×292×1+31=466. (2)证明:nn -m C m n -1=n n -m ·(n -1)!m !(n -1-m )!=n !m !(n -m )!=C m n .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合
abc abd acd bcd
排列
abc bac cab acb bca cba
abd bad dab adb bda dba
acd cad dac adc cda dca
(2)平面内有 10 个点,以其中每 2 个点为端 点的有向线段共有多少条?
解:(1) (2)
C
2 10
45
A
2 10
90
例8.在 100 件产品中,有 98 件合格品,2 件 次品.从这 100 件产品中任意抽出 3 件 .
(1)有多少种不同的抽法?
(2)抽出的 3 件中恰好有 1 件是次品的抽法有 多少种?
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选;
组合数的两个性质
定理1:
Cmn
Cnm n
.
证明:
C
m n
m(! nn!m)!,
Cnm n
(n
n! m)![n (n
A C A m m m
n
n
m
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2) m!
(n m 1)
Cnm
n! m!(n
m)!
C 例1计算:⑴
4 7
⑵ C170
C A (3) 已知 3 2 ,求 n .
n
n
例2求证:
C
m n
m 1 n. m
C
m1 n
例6. 一位教练的足球队共有 17 名初级学员, 他们中以前没有一人参加过比赛.按照足球
排列与元素的顺序有关,而组合则与元素的顺序无关
组合是选择的结果,排列 是选择后再排序的结果.
想一想:ab与ba是相同的排列还是相同的组合? 为什么? 两个相同的排列有什么特点?两个相同的组合
呢?
什么是两个相同的排列?
什么是两个相同的组合?
相同排列:元素相同且顺序相同. 相同组合:元素相同
判断下列问题是组合问题还是排列问题?
个元素合成一组,叫做从n个不同元素中取出
m个元素的一个组合.
排列定义: 一般地说,从n个不同元素中,取出m (m≤n)
个元素,按照一定的顺序排成一列,叫做从 n 个不 同元素中取出 m 个元素的一个排列.
思考: 排列与组合的概念,它们有什么共同点、不同点?
共同点:都要“从n个不同元素中任取m个元素” 不同点:对于所取出的元素,排列要“按照一定的顺序 排成一列”,而组合却是“不管怎样的顺序合成一组”.
共需握手多少次?
组合问题
(5)从4个风景点中选出2个安排游览,有多少种不同的方法? 组合问题
(6)从4个风景点中选出2个,并确定这2个风景点的游览 顺序,有多少种不同的方法? 排列问题
如:从 a , b , c三个不同的元素中取出两个元素的
所有组合分别是: ab , ac , bc (3个)
如:已知4个元素a , b , c , d ,写出每次取出两个
比赛规则,比赛时一个足球队的上场队员是 11人.问:
(l)这位教练从这 17 名学员中可以形成多少种 学员上场方案?
(2)如果在选出11名上场队员时,还要确定其中
的守门员,那么教练员有多少种方式做这件 事情?
解:(1)
C
11 17
12376
(2)
C 1171C
1 11
136136
例7.(1)平面内有10 个点,以其中每2 个点 为端点的线段共有多少条?
(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的 子集有多少个? 组合问题
(2)某铁路线上有5个车站,则这条铁路线上共需准备 多少种车票? 排列问题 有多少种不同的火车票价? 组合问题
(3)10名同学分成人数相同的数学和英语两个学习小组, 共有多少种分法? 组合问题
(4)10人聚会,见面后每两人之间要握手相互问候,
元素的所有组合.
a
b
c
bcd
cd
d
ab , ac , ad , bc , bd , cd 6个
练习: 中国、美国、古巴、俄罗斯四国女排邀
请赛,通过单循环决出冠亚军.
(1)列出所有各场比赛的双方;
(2)列出所有冠亚军的可能情况。
(1) 中国—美国 美国—古巴
中国—古巴 美国—俄罗斯
中国—俄罗斯 古巴—俄罗斯
(3)抽出的 3 件中至少有 1 件是次品的抽法有 多少种?
解: (1)
C
3 100
161700
(2)
C
C1 2
2 98
9506
(3)
法一:C
C1 2
2 98
C22C918
9604
法二:
C
3 100
C938
9604
说明:“至少”“至多”的问题,通常用分类法或间接法求解。
变式:按下列条件,从12人中选出5人,有多少种不同选法?
c
a
b c
d d
abc , abd , acd , bcd .
b cd
写出从 a , b , c , d 四个元素中任取三个元素的所有排列.
cdbd bc cdadacbd ad ab bcacab
bcd acd abd abc
a
b
c
d
所有的排列为:
abc bac cab dab abd bad cad dac
m)]!
n! m!(n m)!
bcd cbd dbc bdc cdb dcb
A 求 求34可P34可分分两两步步考考虑虑::
C 第一步, 3 ( 4)个; 4
A 第二步, 3 ( 6)个; 3
A C A 根据分步计数原理, 3 4
3
4
3 3.
A 从而 3 C A 4
3
C434 3
P3 4
P3 3
3
从 n 个不同元中取出m个元素的排列数
(2) 冠 军
中
中
中
美
美
美
古
古
古俄
俄
俄
亚 军
美
古
俄
中
古
俄
中
美
俄中
美
古
组合数: 从n个不同元素中取出m(m≤n)个元素的所有组 合的个数,叫做从n个不同元素中取出m个元素的
组合数,用符号 Cnm表示
如: C32 3
思考:如何计算:
C42 6
C
3 4
写出从a,b,c,d 四个元素中任取三个元素的所有组合。
组合与组合数公式
问题一:从甲、乙、丙3名同学中选出2名去参
加某天的一项活动,其中1名同学参加上午的
活动,1名同学参加下午的活动,有多少种不
同的选法?
A32 6
有顺序
问题二:从甲、乙、丙3名同学中选出2名去参 加一项活动,有多少种不同的选法?
甲、乙;甲、丙;乙、丙
无顺序
组合定义: 一般地,从n个不同元素中取出m(m≤n)