四年级行程问题

合集下载

四年级行程问题

四年级行程问题

行程问题相遇问题速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和速度和:两人或两车速度的和;相遇时间:两人或两车同时开出到相遇所用的时间。

追击问题速度差×时间=路程差路程差÷速度差=时间路程差÷时间=速度差例1、两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?例2、甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?甲乙两列火车同时从相距700千米的两地开出,甲车每小时行75千米,经过5小时相遇,乙车每小时行多少千米?例3、小强和小丽在环形跑道上进行长跑比赛,小强的速度是150米/分,小丽的速度是140米/分。

小强10分钟到达终点,此时小丽距离终点还有多少米?一艘轮船,从甲港驶往乙港,每小时行驶20千米,10小时到达。

回来时,每小时行驶25千米,几小时可以回到甲港?例4、一列客车4小时行驶224千米,一列货车4小时行驶256千米。

客车比货车每小时少行驶多少千米?小丽和小红从400米长的环形跑道起点同时相背而行,小丽的速度是75米/分,小红的速度是65米/分。

3分钟后两人相距多少米?例5、一条环形跑道400米,甲每分钟跑270米,乙每分钟跑250米,两人同时同地同向出发,经过多长时间甲第一次追上乙?一条环形跑道200米,A、B两人同时从起跑线起跑,A每分钟280米,B每分钟260米,问:A第一次追上B两人个跑了多少米?随堂练习:王明和妹妹两人从相距2000米的两地相向而行,王明每分钟行110米,妹妹每分钟行90米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后,立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。

四年级数学拓展行程问题

四年级数学拓展行程问题

四年级数学拓展行程问题
行程问题是小学四年级数学中的一个重要内容,以下是一些常见的行程问题及其解法:
1. 相遇问题:两个物体同时从两地相向而行,经过一段时间后在途中相遇,这类问题叫做相遇问题。

其基本数量关系为:速度和×相遇时间=路程。

2. 追及问题:两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度要慢些,在一定时间之内,后面的追上前面的物体,这类问题就叫做追及问题。

其基本数量关系为:速度差×追及时间=路程。

3. 火车过桥问题:火车过桥是指火车车头上桥直到火车车尾离桥的整个过程,即火车行驶的路程是桥长与火车长度之和。

4. 流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流
水行船问题。

其基本数量关系为:顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

5. 环形跑道问题:在环形跑道上,两个人同时同地背向而行,经过一段时间后两人会相遇,这就是环形跑道中的相遇问题;两个人同时同地同向而行,其中一人要追上另一人,这就是环形跑道中的追及问题。

这些是行程问题中常见的几种类型,希望对你有所帮助。

如果你有具体的问题,可以提供给我,我会尽力为你解答。

四年级上册基础行程问题

四年级上册基础行程问题

四年级上册基础行程问题基础行程问题在数学中,行程问题是一个基本的概念。

下面是一些例子和练题,帮助你理解和掌握行程问题。

公式导入:例1:XXX从家到学校共用30分钟,他每分钟走50米,他家与学校之间相距多少米?由此题得出行程公式:路程=时间×速度,即路程=30/60×50=25米。

例2:甲、乙两地之间的行程为200千米,一辆大卡车从甲地出发,每小时行50千米,几小时可到达乙地?由此题得出行程公式:时间=路程÷速度,即时间=200÷50=4小时。

例3:一辆小轿车从A地出发,开往相距240千米的B地,共用4小时,小轿车的速度是多少?由此得出行程公式:速度=路程÷时间,即速度=240÷4=60千米/小时。

一、填空题1、路程、速度、时间三者之间的乘法数量关系是:路程=速度×时间。

三者之间的乘法数量关系是:路程=速度×时间。

2、一辆汽车5小时行了375千米,这是一道求速度的题目。

计算方法是:速度=路程÷时间,即速度=375÷5=75千米/小时。

3、一辆汽车每小时行48千米,它的速度可记作:48千米/小时。

二、解决问题。

1、一辆汽车从甲地到乙地,每小时行驶30千米,6小时到达。

如果想5小时到达,每小时需要行驶多少千米?答案是:速度=路程÷时间,路程=速度×时间,所以路程=30×6=180千米。

如果想在5小时到达,那么每小时需要行驶36千米,因为路程=速度×时间,路程=36×5=180千米。

练:骑自行车每小时行驶14千米,骑自行车行驶9个小时的路程汽车只要3个小时。

汽车每小时行驶多少千米?答案是:设汽车的速度为x千米/小时,那么自行车行驶的路程为14×9=126千米,汽车行驶的路程为x×3=126千米,解方程得到x=42千米/小时。

练:XXX上山采药,上山时他每分钟走50米,18分钟到达山顶,下山时他沿原路返回,12分钟到达山下,XXX下山平均每分钟走多少米?答案是:小王上山的路程为18×50=900米,下山的路程也为900米,所以总路程为1800米。

四年级数学上册 思维拓展训练:行程问题

四年级数学上册 思维拓展训练:行程问题
如果同时行走,坐汽车的同学应该多走2000米,2000÷(700-200)=4(分).
也就是说同时行走,在汽车到达后,自行车还要性4分钟才能到达,那么距离为(10+4)×200=2800(米)
解:(60×4+80×3)÷(80-60)=24(分钟)
60×(24+4)=1680(千米)
答:小明的家到学校的路程是1680千米.
4、上午8时8分,小明骑自行车从家里出发,8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家.到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几时几分?
时间:9×2÷(48-42)=3小时
距离:(48+42)×3=270千米
6、快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,3小时后,快车已驶过中点25千米,这时与慢车还相距7千米,求慢车每小时行多少千米?
两地路程:(40×3-25)×2=190(千米)
慢车速度:(190-40×3-7)÷3=21(千米)
解答:解:爸爸的速度是小明的几倍:(4+8)÷4=3(倍)
爸爸走4千米所需的时间:8÷(3-1)=4(分钟)
爸爸的速度:4÷4=1(千米/分)
爸爸所用的时间:(4+4+8)÷1=16(分钟)
16+16=32(分钟)
答:这时是8时32分.
5、甲车和乙车同时从A,B两地相向而行.甲车每小时行48千米,乙车每小时行42千米,两车在离中点9千米处相遇,求AB两地的距离.
根据路程÷速度=时间可知,龟到达终点需要2000÷25此时兔子行了2000-400=1600米,
根据兔子的速度可知,兔子行了1600÷320=5分钟,

行程问题,四年级奥数

行程问题,四年级奥数

行程问题(一)我们把研究路程、速度、时间这三者之间关系的问题,称为行程问题。

行程问题主要包括相遇问题、相背问题的追及问题。

例1.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?例2.南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇。

两人的速度各是什么?例3.两地相距900千米,甲、乙两列火车同时从两地出发相向而行。

甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。

从两车相遇算起,它们开到对方的出发点各需要多长时间?例4.甲每小时行8千米,乙每小时行6千米,两人于相隔32千米的两地同时相背而行,几小时后二人相隔144千米?例5.下午放学时,弟弟以每分40米的速度步行加家,5分后,哥哥以每分60米的速度也从学校步行回家。

哥哥出发后,经过几分可以追上弟弟?(假定从学校到家和路程足够远,哥哥追上弟弟时仍没有到家。

)例6.幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒跑6米,晶晶每秒跑4米。

问:冬冬第一次追上晶晶时两人各跑了多少米?第二次追上晶晶时两人各跑了多少圈?练习与思考1. 甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。

两港间的水路长多少千米?2. 甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?3. 东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。

甲乙两人的速度各是多少?4. 两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。

甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。

从相遇时算起,两车开到对方的出发点各需多少小时?5. 甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?6. 甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米 。

四年级奥数行程问题

四年级奥数行程问题

四年级奥数行程问题行程问题1、一辆汽车从甲地开往乙地,平均每小时行驶75千米,6小时到达乙地。

甲乙两地相距多少千米?2、甲乙两地相距420千米,一辆汽车从甲地到乙地需要7小时。

如果要求汽车提前1小时到达乙地,速度应提高多少千米/小时?3、小明家到小华家的距离有1160米。

一天,小明和小华同时从自家出发,到对方家去,小明每分钟走75米,小华每分钟走70米,几分钟后他俩会在途中相遇?4、小光早晨从家到学校一共用了15分钟,平均每分钟走60米。

中午放学时,小光跑不回家,只用了10分钟。

小光回家时平均每分钟跑多少米?5、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

问5分钟后,两人相距多少千米?16、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

经过几分钟后,两人相距1300米?7、一辆汽车和一辆客车同时从两地出发,相向而行。

汽车每小时行80千米,客车每小时比汽车少行5千米。

6小时候,两车在途中相遇。

两地相距多少千米?8、小红和小花在学校400米的环形跑道上,从同一起跑线出发,相背而行,4分钟后两人相遇,小红平均每分钟走45米,小花平均每分钟走多少米?9、一辆客车上午8时从甲站开出,每小时行50千米。

经过2小时后,一辆汽车从乙站开出,每小时行60千米,中午12时两车在途中相遇。

甲、乙两站相距多少千米?10、甲、乙两港之间的水路长180千米,一艘轮船从甲港开往乙港,顺水行驶,每小时行驶60千米,从乙港返回时,因为逆水行驶,每小时行驶30千米。

这艘轮船往返一次的平均速度是多少千米/小时?211、一辆客车上午8时从武汉出发,开往郑州,平均每小时行驶60千米。

3小时后,一辆汽车从武汉出发,开往郑州,平均每小时行驶100千米。

几小时后,汽车能追上客车?12、一只猎狗发现在它前方300米处有一只兔子。

兔子同时也发现了猎狗,猎狗以每分钟240米的速度去追赶兔子,兔子以每分钟180米的速度逃跑,请问猎狗要追上兔子需要几分钟?13、学校组织学生去天台山游玩,租两辆车从学校出发,大客车每小时行驶60千米,上午7:00出发,面包车晚出发1小时,每小时行驶80千米,结果两车同时到达天台山。

四年级行程问题分类

四年级行程问题分类

四年级行程问题分类1)两车相遇需要多长时间?2)两车相遇时,公共汽车和小轿车分别走了多少千米?1.比较强强和旗鱼的速度,强强每秒跑10米,旗鱼每小时游120千米。

将旗鱼的速度转换成米每秒,即120千米/小时÷3600秒/小时=0.0333米/秒。

可以看出,旗鱼的速度更快。

2.XXX每分钟跑2500÷12=208.33米,慢跑米需要÷208.33÷60=19.05分钟。

如果每天都以这个速度跑10分钟,一个月就跑了2500×10×30=米。

3.汽车应该每小时行驶240÷6=40千米。

故障后,汽车需要在剩下的3小时内行驶240÷2=120千米,所以每小时应该行驶120÷3=40千米。

4.甲乙两架飞机相距4小时后,甲飞行距离为300×4=1200千米,乙飞行距离为340×4=1360千米,两架飞机相距1360-1200=160千米。

甲提高速度后,需要在2小时内追上乙,所以甲每小时应该飞行160÷2=80千米。

5.XXX一家原计划行驶的时间为240÷45=5.33小时,实际上行驶的时间为240÷30=8小时,晚了8-5.33=2.67小时。

6.从下午1点到晚上7点一共6个小时,如果想在下午2点出发,就只有5个小时,所以每小时需要多行2÷5=0.4千米。

那么AB两地之间的距离为6÷(1+0.4)=4.29千米。

7.XXX步行的速度为1000÷25=40米/分钟,公共汽车的速度为40×6=240米/分钟。

因为XXX晚出发10分钟,所以他步行的时间为25+10=35分钟。

XXX步行的路程为40×(35-25)=400米。

8.设甲乙两地相距x千米,则甲乙两人的速度分别为x/7和(x-6)/5.因为两人在中点相遇,所以x/7+(x-6)/5=(x-3)/2,解得x=105千米。

四年级行程问题100道

四年级行程问题100道

四年级行程问题100道及答案(1)甲、乙两列火车从相距942千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发。

甲车行几小时后与乙车相遇?(2)甲、乙两地相距24千米,当当骑车以6千米/时的速度从甲地到乙地,到达后立即以12千米/时的速度返回甲地,求当当全程的平均速度。

(3)两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。

两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长(4)一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?(5)当当参加划船比赛,他提前准备了两个方案。

第一个方案是在比赛中分别以8米/秒和10米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以8米/秒和10米/秒的速度各划行比赛时间的一半。

你知道哪个方案更好吗?(6)小王和小李两人开车分别从甲、乙两地同时出发相向而行,已知小王每小时行驶40千米,两人4小时后相遇。

相遇后两人继续行驶,又过了2小时,小王就到达了乙地。

问:小李从乙地一共需要几小时可以到达甲地?(7)牛牛每小时行12千米,当当每小时行15千米,他俩同时同起点同向出发,5小时后他们之间的距离是多少千米?(8)甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟?(9)甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50千米,乙车每小时行40千米。

途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地。

A、B两地间的路程是多少?(10)小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时。

行程问题7大经典题型四年级

行程问题7大经典题型四年级

行程问题7大经典题型四年级
行程问题是数学题中常见的一个题型,主要考察学生在时间、距离、速度等方面的计算能力。

以下是四年级常见的7大经典行程问题题型:
1. 单程问题:小明骑自行车从家到学校的距离是5公里,速度是10公里/小时,问他需要多长时间才能到学校?
2. 往返问题:小红骑自行车从家到公园的距离是8公里,速度是12公里/小时,然后原路返回,问她总共用了多长时间?
3. 多人同时出发问题:小明和小红同时从A地出发,小明骑自行车速度是15公里/小时,小红步行速度是5公里/小时,他们同时到达B地,问B地离A地有多远?
4. 多人相遇问题:小华从A地出发,小明从B地出发,他们同时向对方出发,小华速度是10公里/小时,小明速度是15公里/小时,他们多久能相遇?
5. 超速问题:小王乘坐火车从A地到B地,全程200公里,平均速度是80公里/小时,但在旅途中超速行驶,超速部分之速度是100公里/小时,问他超速了多少时间?
6. 高速公路问题:小李驾车从A地到B地,全程300公里,他在高速公路上以100公里/小时的速度行驶,而在市区行驶的速度是40公里/小时,问他全程需要多长时间?
7. 追及问题:小明从A地以15公里/小时的速度出发,小红从B地以10公里/小时的速度出发,小明比小红晚出发1小时,问小明追上小红需要多长时间?
以上是四年级常见的7大经典行程问题题型。

通过解决这些问题,学生能够提高他们的数学计算能力和逻辑思维能力,同时也锻炼了他们在实际生活中解决问题的能力。

小学数学四年级奥数题(相遇问题)行程问题小升初必考题型例题+练习

小学数学四年级奥数题(相遇问题)行程问题小升初必考题型例题+练习

例1、两列火车从两个车站同时相向出发,甲每小时行48千米,乙每小时行78千米,经过3小时两车相遇。

两个车站之间的铁路长多少千米?总路程=速度和×相遇时间甲乙1小时共走(48+78)千米。

甲乙3小时共同走了一个全程(48+78)×3=378(千米)答:两个车站之间的铁路长378千米。

练习1、华华和兰兰同时从甲、乙两地出发,相对走来,华华每分钟走60米,兰兰每分钟走50米,经过3分钟两人相遇,甲乙两地相距多少米?2、一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

4小时两车相遇。

甲、乙两个城市的路程是多少千米?例2、两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

两车多少小时后相遇?相遇时间等于什么呢?相遇时间=路程和÷速度和255÷(45+40)=3(小时)答:两车3小时后相遇。

练习1、甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两地相距900米,甲、乙二人同时从两地相向而行,甲每分钟走80米,乙每分钟走100米,两人从出发到相遇共经过多少分钟?例3、甲乙两地相距288千米,一辆汽车和开一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇,已知汽车的速度是48千米/时,求拖拉机的速度?有路程和及相遇时间可以求出速度和速度和=路程和÷相遇时间288÷4=72(千米/时)72-48=24(千米/时)答:拖拉机速度是每小时4千米。

练习1、甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?2、两人骑马同时从相距165千米的两地相对跑来,5小时相遇。

第一匹马每小时跑15千米,第二匹马每小时跑多少千米?例4、甲乙两车分别从A、B两地同时出发相向而行,甲行完全程需要10小时,乙行完全程需要15小时,两个人出发后多长时间相遇?求相遇时间,要先算出速度!甲速度:300÷10=30(千米/时)乙速度:300÷15=20(千米/时)300÷(30+20)=6(小时)答:两人出发后小时相遇。

(完整版)四年级数学行程问题

(完整版)四年级数学行程问题

行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120千米,请问:谁的速度更快?2、墨墨练习慢跑,12分钟跑了3000千,按照这个速度慢跑25000米需要多少分钟?如果他每天都以这个速度跑10分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45千米,实际上由于高速公路堵车,汽车每小时只行驶30千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午1点出发,晚上7点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。

7、小欣家离学校1000米,平时他步行25分钟后准时到校。

有一天他晚出发10分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的6倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发,6小时后相遇在中点,如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第4题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350千米,A车在早上8点从甲地出发,以每小时40千米的速度开往乙地。

小学四年级应用题一行程问题

小学四年级应用题一行程问题

应用题一:行程问题知识点:1、在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。

也叫行程问题。

2、行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度×时间速度=距离÷时间时间=距离÷速度3、按运动方向,行程问题可以分成三类:〔1〕相向运动问题〔相遇问题〕〔2〕同向运动问题〔追与问题〕〔3〕背向运动问题〔相离问题〕1、相向运动问题:〔1〕相向运动问题〔相遇问题〕,是指地点不同、方向相对所形成的一种行程问题。

两个运动物体由于相向运动而相遇。

〔2〕解答相遇问题的关键,是求出两个运动物体的速度之和。

基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间例1、两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。

已知客车每小时行80千米,货车每小时行多少千米?例2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。

甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。

求从出发到相遇经过几小时?2、同向运动问题〔追与问题〕〔1〕两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追与。

解答追与问题的关键,是求出两个运动物体的速度之差。

〔2〕基本公式有:追与距离=速度差×追与时间追与时间=追与距离÷速度差速度差=追与距离÷追与时间例1、甲乙两人在相距12千米的AB两地同时出发,同向而行。

甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。

几小时后乙能追上甲?例2、一个通讯员骑摩托车追赶前面部队乘的汽车。

汽车每小时行48千米,摩托车每小时行60千米。

通讯员出发后2小时追上汽车。

通讯员出发的时候和部队乘的汽车相距多少千米?注意:要求距离差,需要知道速度差和追与时间。

四年级行程问题

四年级行程问题

四年级行程问题1、XXX步行10分钟,走了10×65=650米。

XXX追上XXX时,他走了1300米,用时1300÷65=20分钟。

所以XXX 每分钟行65÷3=21.67米。

2、XXX走了4×55=220米,XXX走了4×45=180米。

所以两人相距500-220-180=100米。

3、快车和慢车相向而行,所以他们的速度之和是480÷6=80千米/时。

快车比慢车快的速度是100-80=20千米/时。

所以两车的速度分别是50千米/时和30千米/时。

4、面包车在3小时内行了300千米,小轿车在1小时内赶上了面包车,所以小轿车行了150千米。

所以两车相距的距离是150+300=450千米。

5、第一次相遇时,甲和乙走了AC和BC两段路,所以AC+BC=1400.第二次相遇时,甲和乙走了CD和DA两段路,所以CD+DA=1400.由于XXX,所以AC=BD=700米。

6、两车在中点相遇,所以东西两地相距的距离是32×2=64千米。

7、两车相遇后,货车比客车多行的距离是35+51=86千米/时。

所以两车相遇时,货车比客车多行的时间是96÷86=1.116小时。

所以甲、乙两地相距的距离是(35+51)×1.116=98千米。

8、设A、B两地间的路长为x米,则甲、乙相遇时,丙走了5×24=120米。

甲、丙相遇时,乙走了5×20=100米。

所以x=120+100=220米。

9、汽车和摩托车相距的距离是50×4+65×4=460千米。

所以两车相遇时,汽车和摩托车相距的距离是460÷2=230千米。

所以两车相遇后,汽车行了230千米,摩托车行了460-230=230千米。

所以两车相遇后的时间是230÷50=4.6小时。

10、部队行驶的路程是4×9=36千米。

四年级数学上册《行程问题》公式讲解汇总,收藏预习

四年级数学上册《行程问题》公式讲解汇总,收藏预习

四年级数学上册《行程问题》公式讲解汇总经典公式路程例:小明从家到学校需要30分钟,小明步行的速度为8米/分钟,问小明家到学校为多远?解:30×8=240 米答:小明家到学校为240米。

常见单位:路程:米(m),千米(km)速度:米/秒(m/s),米/分钟(m/min),千米/时(km/h)时间:秒(s),分钟(min),小时(h)相遇问题两个运动的物体同时由两地出发相向而行,在途中相遇。

(1)直线总路程=甲速×时间+乙速×时间=(甲速+乙速)×时间=速度和×时间S总=(V甲+V乙)×t=V和×t例:甲乙两人分别从相距20千米的两地同时相向而行,甲每小时走6千米,乙每小时走4千米,两人几小时后相遇?答案:20÷(6+4)=2(小时)(2)环形跑道(背向、反向)甲、乙从同一起点反向出发最终相遇,甲、乙走的路程为一个圆周。

S总=S甲+S乙=V甲t+V乙tS总=(V甲+V乙)t →S总=V和×t→ 总路程(圆周长)=速度和×时间例:甲、乙两人在操场练习跑步,已知操场为环形,甲乙同时出发,背向而行。

甲的速度为2m/s,乙的速度为3m/s,在5分钟时两人相遇,求操场为多少米?答案:5分钟=300秒(2+3)×300=1500(米)追及问题两个物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的物体速度更快,在一定时间内追上前方。

(1)直线S追=V乙t-V甲t=V差×t追击路程=速度差×时间例:甲、乙两人分别从相距24千米的两地同时向东而行,甲在后,乙在前。

甲每小时行13千米,乙每小时行5千米,几小时后甲可以追上乙?答案:24÷(13-5)= 3(小时)(2)环形跑道(同向)V甲>V乙S追=V甲t-V乙t=(V甲-V乙)×t路程差=速度差×时间追上一次为一个圆周,追上n次,路程差即为n个圆周长。

完整版)四年级行程问题练习题

完整版)四年级行程问题练习题

完整版)四年级行程问题练习题1、XXX从家到学校共走了800米,用了10分钟。

同样的速度,从家到新华书店有320米,要走几分钟?2、甲乙两地相距960千米。

一辆汽车从甲地到乙地,前5小时行了300千米。

按照这个速度,到乙地还需要几个小时?3、司机XXX从厦门出发到福州送货。

前3小时的速度是60千米/小时,后2小时的速度是50千米/小时。

XXX一共行驶了多少千米?4、一辆旅游车以50千米/小时的速度在平原行驶了3小时,又以30千米/小时的速度行驶了2小时。

这段路程有多少千米?5、熊猫骑自行车去给大象送信,速度是200米/秒,熊猫家距离大象家3400米,熊猫6点45分从家出发,7点钟能把信送到吗?6、XXX骑摩托车从甲地到乙地,每小时行驶45千米,需要6小时到达。

如果想提前1小时到达,每小时需要行驶多少千米?7、一辆汽车从甲地出发到300千米外的乙地去。

在开始的120千米内平均速度为每小时40千米,为了使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?8、A、B两城相距240千米,一辆汽车计划用6小时从A 城开到B城。

汽车行驶了一半路程,因故障在中途停留了1小时。

如果按原计划到达B城,汽车在后半段路程时速度应加快多少?9、甲、乙两辆汽车同时从两城相对开出,甲车每小时行55千米,乙车每小时行45千米,经过3小时相遇。

两城之间相距多少千米?10、一列客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米,2小时相遇。

两车站相距多少千米?11、甲、乙二人分别从相距110千米的两地相对而行。

5小时后相遇,甲每小时行12千米,问乙每小时行多少千米?12、甲乙两列客车同时由相距680千米的两地相对出发。

甲客车每小时行42千米,经过8小时后相遇。

问乙列客车每小时行多少千米?13、两列货车从相距450千米的两个城市相向开出,甲货车每小时行38千米,乙货车每小时行40千米,同时行驶4小时后,还相差多少千米没有相遇?14、汽车以60千米/小时的速度从甲地到乙地,用了4小时。

小学四年级行程问题练习及答案

小学四年级行程问题练习及答案

相遇问题1、AB两地相距360千米,客车与货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇相遇地点距B地多远分析:由题意可知:客车先行1小时,货车才开出,先求出剩下的路程,再根据路程÷速度和=相遇时间,求出相遇时间再加上1小时即可,然后用总路程减去客车4小时行驶的路程问题即可得到解决.解答:解:相遇时间:360-60÷60+40+1,=300÷100+1,=3+1,=4小时,360-60×4,=360-240,=120千米,答:客车开出后4小时与货车相遇,相遇地点距B地120千米.2、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少解答:分析甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB 全程.AB间的距离是64×3-48=144千米3、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒…连续的奇数,就调头爬行.那么,它们相遇时已爬行的时间是多少秒分析:这道题难在蚂蚁爬行的方向不断地发生变化,那么如果这两只蚂蚁都不调头爬行,相遇时它们已经爬行了多长时间呢非常简单,由于半圆周长为:1.26÷2=0.63米=63厘米,所以可列式为:1.26÷2÷5.5+3.5=7秒;我们发现蚂蚁爬行方向的变化是有规律可循的,它们每爬行1秒、3秒、5秒、…连续的奇数就调头爬行.每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上又向前爬行了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于一共向前爬行了1+2+2+2=7秒,正好相遇.4、两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A 城44千米处相遇;两城市相距千米A.200B.150C.120D.100选择D;解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为104+96÷2=100千米;知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇;一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍;5、甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A 地42千米处相遇;请问A、B两地相距多少千米A.120B.100C.90D.80选择A;解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120; 6、两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇;两城市相距千米A.200B.150C.120D.100选择D;解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为104+96÷2=100千米;7、8、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少解答:分析甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.AB间的距离是64×3-48=144千米9、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米10、解答:丙遇到乙后此时与甲相距50+70×2=240米,也是甲乙的路程差,所以240÷60-50=24分,即乙丙相遇用了24分钟,A、B相距70+60×24=3120米.10、甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米分析:甲队每小时行5千米,乙对每小时行4千米,两地相距18千米,根据路程÷速度和=相遇时间可知,两人相遇时共行了18÷4+5=2小时,在这两小时中,这名骑自行车的学生始终在运动,所以两队相遇时,骑自行车的学生共行:15×2=30千米.解答:解:18÷4+5×15=18÷9×15,=30千米.答:两队相遇时,骑自行车的学生共行30千米.点评:明确两队相遇时,骑自行车的学生始终在运动,然后根据时间×速度=所行路程求出骑自行车的学生行的路程是完成本题的关键.11、12、甲乙二人分别从A、B两地同时出发,并在两地间往返行走;第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米答案:1第一次二人在距离B点400米处相遇.说明第一次相遇时乙行400米.2甲、乙从出发到第二次相遇共行3个全程;从第一次相遇后时到第二次相遇他们共行2个全程;在这2个全程中甲行400+100=500米;说明甲在每个全程中行500/2=250米;3因此在第一次相遇时一个全程250+400=650米答:两地相距650米;火车过桥火车过桥问题是行程问题的一种,也有路程、速度与时间之间的数量关系,同时还涉及车长、桥长等问题;基本数量关系是火车速度×时间=车长+桥长例题解析例1一列火车长150米,每秒钟行19米;全车通过长800米的大桥,需要多少时间分析列车过桥,就是从车头上桥到车尾离桥止;车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速;解:800+150÷19=50秒答:全车通过长800米的大桥,需要50秒;边学边练一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒例2一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒;这条隧道长多少米分析先求出车长与隧道长的和,然后求出隧道长;火车从车头进洞到车尾离洞,共走车长+隧道长;这段路程是以每秒8米的速度行了40秒;解:1火车40秒所行路程:8×40=320米2隧道长度:320-200=120米答:这条隧道长120米;边学边练一支队伍1200米长,以每分钟80米的速度行进;队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令;问联络员每分钟行多少米例3一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过分析本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间;依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和;解:1火车与小华的速度和:15+2=17米/秒2相距距离就是一个火车车长:119米3经过时间:119÷17=7秒答:经过7秒钟后火车从小华身边通过;一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是每秒多少米例4一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟;求这列火车的速度是每秒多少米车长多少米分析与解火车40秒行驶的路程=桥长+车长;火车30秒行驶的路程=山洞长+车长;比较上面两种情况,由于车长与车速都不变,所以可以得出火车40-30=10秒能行驶530-380=150米,由此可以求出火车的速度,车长也好求了;解:1火车速度:530-380÷40-30=150÷10=15米/秒2火车长度:15×40-530=70米答:这列火车的速度是每秒15米,车长70米;边学边练一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少例5某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米分析一列客车从身后开来,在身旁通过的时间是15秒钟,实际上就是指车尾用15秒钟追上了原来与某人105米的差距即车长,因为车长是105米,追及时间为15秒,由此可以求出车与人速度差,进而求再求人的速度;解:1车与人的速度差:105÷15=7米/秒=25.2千米/小时2步行人的速度:28.8-25.2=3.6千米/小时答:步行人每小时行3.6千米;1.少先队员346人排成两路纵队去参观画展.队伍行进的速度是23米/分,前面两人都相距1米.现在队伍要通过一座长702米的桥,整个队伍从上桥到离桥共需要几分钟解答:解:队伍长:1×346÷2-1,=1×173-1,=172米;过桥的时间:702+172÷23,=874÷23,=38分钟.答:整个队伍从上桥到离桥共需要38分钟.考点:列车过桥问题;植树问题.1、一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;轨道是笔直的声速是每秒钟340米,求火车的速度得数保留整数2、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米3、一人以每分钟60米的速度沿铁路边步行,一列长144米的客车对面而来,从他身边通过用了8秒钟,求列车的速度.4、一条单线铁路上有A,B,C,D,E5个车站,它们之间的路程如图所示单位:千米.两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟火车过桥答案1、火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了1360÷340=4秒.可见火车行1360米用了57+4=61秒,将距离除以时间可求出火车的速度;1360÷57+1360÷340=1360÷61≈22米2、火车=28.8×1000÷3600=8米/秒,人步行15秒的距离=车行15秒的距离-车身长;8×15-105÷15=1米/秒,1×60×60=3600米/小时=3.6千米/小时;答:人步行每小时3.6千米.3、人8秒走的距离=车身长-车8秒走的距离;144-60÷60×8÷8=17米/秒答:列车速度是每秒17米;4、两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短;从图中可知,AE的距离是:225+25+15+230=495千米,两车相遇所用的时间是:495÷60+50=4.5小时,相遇处距A站的距离是:60×4.5=270千米,而A,D两站的距离为:225+25+15=265千米由于270千米>265千米,因此从A 站开出的火车应安排在D站相遇,才能使停车等待的时间最短.因为相遇处离D站距离为270-265=5千米,那么,先到达D站的火车至少需要等待也就是11分钟,此题还有别的解法,同学们自己去想一想;一人每分钟60米的速度沿铁路步行,一列长144米的客车对面而来,从他身边通过用了8秒,求列车的速度解答:可以看成一个相遇问题,总路程就是车身长度,所以火车与人的速度之和是144÷8=18米,而人的速度是每分钟60米,也就是每秒钟1米,所以火车的速度是每秒钟18-1=17米.两列火车,一列长120米,每秒钟行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟解答:如图:从车头相遇到车尾离开,两列火车一共走的路程就是两辆火车的车身长度之和,即120+160=280米,所以从车头相遇到车尾离开所用时间为280÷20+15=8秒.某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度;解答:分析此题是火车的追及问题;火车越过人时,车比人多行驶的路程是车长90米,追及时间是10秒,所以速度差是90÷10=9米/秒,因此车速是2+9=11米/秒;填空题1.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要_______时间.2.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒,客车长105米,每小时速度为28.8千米,求步行人每小时走______千米3.一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是______米/秒.4.马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过_____秒后,甲、乙两人相遇.5.一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车头上桥到车尾离桥要_____分钟.6.一支队伍1200米长,以每分钟80米的速度行进.队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令.问联络员每分钟行_____米.7.一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟.求这列火车的速度是______米/秒,全长是_____米.8.已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是_____秒.9.一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是_______米.10.铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行______千米.答案1.火车过隧道,就是从车头进隧道到车尾离开隧道止.如图所示,火车通过隧道时所行的总距离为:隧道长+车长.200+200÷10=40秒答:从车头进入隧道到车尾离开共需40秒.2.根据题意,火车和人在同向前进,这是一个火车追人的"追及问题".由图示可知:人步行15秒钟走的距离=车15秒钟走的距离-车身长.所以,步行人速度×15=28.8×1000÷60×60×15-105步行人速度=28.8×1000÷60×60-105÷5=1米/秒=3.6千米/小时答:步行人每小时行3.6千米.3.客车与人是相向行程问题,可以把人看作是有速度而无长度的火车,利用火车相遇问题:两车身长÷两车速之和=时间,可知,两车速之和=两车身长÷时间=144+0÷8=18.人的速度=60米/分=1米/秒.车的速度=18-1=17米/秒.答:客车速度是每秒17米.4.1先把车速换算成每秒钟行多少米18×1000÷3600=5米.2求甲的速度.汽车与甲同向而行,是追及问题.甲行6秒钟的距离=车行6秒钟的距离-车身长.所以,甲速×6=5×6-15,甲速=5×6-15÷6=2.5米/每秒.3求乙的速度.汽车与乙相向而行,是相向行程问题.乙行2秒的距离=车身长-车行2秒钟的距离.乙速×2=15-5×2,乙速=15-5×2÷2=2.5米/每秒.4汽车从离开甲到离开乙之间的时间是多少0.5×60+2=32秒.5汽车离开乙时,甲、乙两人之间的距离是多少5-2.5×0.5×60+2=80米.6甲、乙两人相遇时间是多少80÷2.5+2.5=16秒.答:再过16秒钟以后,甲、乙两人相遇.5.从车头上桥到车尾离桥要4分钟.6.队伍6分钟向前进80×6=480米,队伍长1200米,6分钟前进了480米,所以联络员6分钟走的路程是:1200-480=720米720÷6=120米/分答:联络员每分钟行120米.7.火车的速度是每秒15米,车长70米.8.1034÷20-18=517秒9.火车速度是:1200÷60=20米/秒火车全长是:20×15=300米10.40×51-1÷2×60÷1000=60千米/小时解答题1.一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;轨道是笔直的声速是每秒钟340米,求火车的速度得数保留整数2.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米3.一人以每分钟60米的速度沿铁路边步行,一列长144米的客车对面而来,从他身边通过用了8秒钟,求列车的速度.4.一条单线铁路上有A,B,C,D,E5个车站,它们之间的路程如图所示单位:千米.两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟答案1.火车拉汽笛时离这个人1360米.因为声速每秒种340米,所以这个人听见汽笛声时,经过了1360÷340=4秒.可见火车行1360米用了57+4=61秒,将距离除以时间可求出火车的速度.1360÷57+1360÷340=1360÷61≈22米2.火车=28.8×1000÷3600=8米/秒人步行15秒的距离=车行15秒的距离-车身长.8×15-105÷15=1米/秒1×60×60=3600米/小时=3.6千米/小时答:人步行每小时3.6千米.3.人8秒走的距离=车身长-车8秒走的距离144-60÷60×8÷8=17米/秒答:列车速度是每秒17米.4.两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.从图中可知,AE的距离是:225+25+15+230=495千米两车相遇所用的时间是:495÷60+50=4.5小时相遇处距A站的距离是:60×4.5=270千米而A,D两站的距离为:225+25+15=265千米由于270千米>265千米,因此从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.因为相遇处离D站距离为270-265=5千米,那么,先到达D站的火车至少需要等待:小时小时=11分钟此题还有别的解法,同学们自己去想一想.1.某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,该列车与另一列长320米,速度为每小时行64.8千米的火车错车时需要秒;解:火车过桥问题公式:车长+桥长/火车车速=火车过桥时间速度为每小时行64.8千米的火车,每秒的速度为18米/秒,某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,则该火车车速为:250-210/25-23=20米/秒路程差除以时间差等于火车车速.该火车车长为:2025-250=250米或2023-210=250米所以该列车与另一列长320米,速度为每小时行64.8千米的火车错车时需要的时间为320+250/18+20=15秒2.一列火车长160m,匀速行驶,首先用26s的时间通过甲隧道即从车头进入口到车尾离开口为止,行驶了100km后又用16s的时间通过乙隧道,到达了某车站,总行程100.352km;求甲、乙隧道的长解:设甲隧道的长度为xm那么乙隧道的长度是100.352-100单位是千米1000-x=352-x那么x+160/26=352-x+160/16解出x=256那么乙隧道的长度是352-256=96火车过桥问题的基本公式火车的长度+桥的长度/时间=速度3.甲、乙两人分别沿铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米/小时,这列火车有多长分析:从题意得知,甲与火车是一个相遇问题,两者行驶路程的和是火车的长.乙与火车是一个追及问题,两者行驶路程的差是火车的长,因此,先设这列火车的速度为χ米/秒,两人的步行速度3.6千米/小时=1米/秒,所以根据甲与火车相遇计算火车的长为15χ+1×15米,根据乙与火车追及计算火车的长为17χ-1×17米,两种运算结果火车的长不变,列得方程为15χ+1×15=17χ-1×17解得:χ=16故火车的长为17×16-1×17=255米流水行船1.大沙河上、下游相距120千米,每天定时有甲、乙两艘船速相同的客轮从上、下游同时出发,面对面行驶.假定这两艘客轮的船速都是每小时25千米,水速是每小时5千米,则两艘客轮在出发后几小时相遇解答:解:120÷25-5+25+5,=120÷50,=2.4小时.答:两艘客轮在出发后2.4小时相遇.甲、乙两个港口之间的水路长300千米,一只船从甲港到乙港,顺水5小时到达,从乙港返回甲港,逆水6小时到达;求船在静水中的速度和水流速度解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是60+50÷2=55千米/小时,水流速度是60-50÷2=5千米/小时;四年级奥数流水行船行程问题:流水中相遇和追及在流水中的相遇和追及,水速不影响相遇和追及时间例5A、B两码头间河流长90千米,甲乙两船分别从A、B码头,同时启航,如果相向而行,3小时相遇,如果同向而行,9小时,甲追上乙,求两船在静水中的速度分析V甲顺=V甲船+V水V乙顺=V乙船+V水V乙逆=V乙船-V水相遇速度和=V甲顺+V乙逆=V甲船+V水+V乙船-V水=V甲船+V乙船速度和=路程和÷相遇时间=90÷3=30Km/h追及速度差=V甲顺-V乙顺=V甲船+V水-V乙船+V水=V甲船+V水-V乙船-V水=V甲船-V乙船速度差=路程差÷追及时间=90÷9=10Km/hV甲船+V乙船=30V甲船-V乙船=10得到V甲船=20Km/hV乙船=10Km/h答:甲船的速度为20千米每小时,乙船的速度为10千米每小时;追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间行路方面的相遇问题,基本特征是两个运动的物体同时或不同时由两地出发相向而行,在途中相遇;基本关系如下:相遇时间=总路程÷甲速+乙速总路程=甲速+乙速×相遇时间甲、乙速度的和-已知速度=另一个速度相遇问题的题材可以是行路方面的,也可以是共同工作方面的;由于已知条件的不同,有些题目是求相遇需要的时间,有些题目是求两地之间的路程,还有些题目是求另一速度的;相应地,共同工作的问题,有的求完成任务需要的时间,有的求工作总量,还有的求另一个工作效率的;追及问题主要研究同向追及问题;同向追及问题的特征是两131个运动物体同时不同地或同地不同时出发作同向运动;在后面的,行进速度要快些,在前面的,行进速度要慢些,在一定时间之内,后面的追上前面的物体;在日常生活中,落在后面的想追赶前面的情况,是经常遇到的;基本关系如下:追及所需时间=前后相隔路程÷快速-慢速有关同向追及问题,在行路方面有这种情况,相应地,在生产上也有这种情况;例1:甲、乙两地相距710千米,货车和客车同时从两地相对开出,已知客车每小时行55千米,6小时后两车仍然相距20千米;求货车的速度分析:货车和客车同时从两地相对开出,6小时后两车仍然相距20千米,从710千米中减去20千米,就是两车6小时所行的路;又已知客车每小时行55千米,货车的速度即可求得;计算:710-20÷6-55=690÷6-55=115-55=60千米答:货车时速为60千米;例2:铁道工程队计划挖通全长200米的山洞,甲队从山的一侧平均每天掘进1.2米,乙队从山的另一侧平均每天掘进1.3米,两队同时开挖,需要多少天挖通这个山洞计算:200÷1.2+1.3=200÷2.5=80天答:需要80天挖通这个山洞;例3:甲、乙两个学生从学校到少年活动中心去,甲每分钟走60米,乙每分钟走50米;乙走了4分钟后,甲才开始走;甲要走多少分钟才能追上乙分析:“乙走了4分钟后,甲才开始走”,说明甲动身的时候,乙已经距学校50×4=200米了;甲每分钟比乙多走60-50=10米;这样,即可求出甲追上乙所需时间;计算:50×4÷60-50=200÷10=20分钟答:甲要走20分钟才能追上乙;练习题1、A、B两地相距900千米,甲走完两地需15天,乙走完两地需12天,如果甲先走2天,乙再去追甲,问要走多少千米才能追上2、小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明;小强骑自行车的速度是多少3、甲乙两人分别从相距420千米的两地乘车出发,相向而行,5小时后相遇;如果甲乙两人乘原来的车分别从两地同时同向出发,慢车在前,快车在后,15小时后甲乙两人相遇,求快慢车的速度分别是多少4、甲轮船以每小时16千米的速度由一码头出发,经过3小时,乙轮船也由同一码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级行程问题巩固加强卷
一、基础巩固题
1、玲玲从学校出发步行去电影院看电影,每分钟行65米。

10分钟后,李老师从学校骑自行车去追玲玲,结果在距学校1300米的地方追上玲玲。

那么李老师每分钟行米。

2、小华和李成家相距500米,两人同时从家中出发在同一条路上行走。

小华每分钟走55米,李成每分钟走45米。

4分钟后两人相距米。

3、甲乙两城间的铁路长480千米,快车从甲城,慢车从乙城同时相向开出,6小时相遇。

如果两车分别在两城同时同方向出发,慢车在前,快车在后,24小时快车可以追上慢车。

那么两车的速度各是。

4、面包车以每小时100千米的速度从甲城开出,3小时后,小轿车以每小时行150千米的速度从甲城开出,沿着同一行驶路线追赶面包车,小时后追上。

5、AB两地相距1400米,甲从A地,乙从B地同时出发,相向而行。

甲每分钟行60米,乙每分钟行80米,第一次在C处相遇,AC之间路长。

相遇后继续前进,分别到达A、B两地后立即返回,第二次相遇于D处,C、D之间的距离是。

6、甲、乙两车同时从东西两地相向开出。

甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇。

问东西两地相距千米。

7、客、货两车同时从甲、乙两地相对开出,客车每小时行35千米,货车每小时行51千米。

两车相遇后继续以原速度前进。

到达乙、甲两地后立即返回,第二次相遇时,货车比客车多行96千米。

则甲、乙两地相距千米。

8、甲、乙、丙三人行走的速度分别为每分钟20米、24米和30米。

甲、乙在A地,丙在B地同时相向而行,丙遇乙后5分钟和甲相遇,则A、B两地间的路长米。

9、一辆汽车和一辆摩托车同时从同一地点出发,汽车每小时行50千米,摩托车每小时行65千米。

4小时后两车相距千米。

10、解放军某部队从营地出发,以每小时行9千米的速度向目的地前进。

4小时后部队有急事,派通讯员骑摩托车以每小时行21千米的速度前去联络,小时后,通讯员能赶上队伍。

二、加强题
1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地。

求该车的平均速度。

2、A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?
3、甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米。

两人在离中点3千米的地方相遇。

A、B两地相距多远?
4、龟兔赛跑,全程2000米。

龟每分钟爬25米,兔每分钟跑320米,兔自以为速度快,在途中睡了一觉,结果龟到了终点时,兔子离终点还有400米。

兔子在途中睡了多少分钟?
5、甲乙两车相距90千米,两车同向而行,甲车每小时行65千米,乙车每小时行50千米,经过多少小时甲车能追上乙车?
6、某学校组织学生看电影,第一批的学生骑自行车先走,他们的速度是200/分,10分钟后,其余同学乘汽车前往电影院,汽车的速度是600/分,结果所有的同学同时到达。

求学校和电影院的距离。

相关文档
最新文档