(完整版)四年级奥数行程问题
完整版)四年级奥数行程问题
完整版)四年级奥数行程问题行程问题是指关于物体运动速度、时间和路程的应用题。
主要的数量关系是路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。
练一:1.甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
求东西两地相距多少千米?解:两车在距中点32千米处相遇,即两车行的路程相差64千米。
有了路程差和速度差,可以求出相遇时间为8小时。
其他计算就容易了。
2.小玲每分钟行100米,每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3.一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。
当摩托车行到两地中点处,与汽车相距75千米。
求甲乙两地相距多少千米?4.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。
练二:1.快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米。
慢车每小时行多少千米?解:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。
因此慢车的速度为21千米/小时。
2.兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?3.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练三:1.甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
小学四年级上册行程问题1奥数题
1、甲乙两地汽车同时从东西两地相向开出,甲车每小时行66千米,乙车每小时行58千米,两车在离中点36千米处相遇,求两东西两地相距多少千米?2、甲乙两车同时从两地相向出发,甲每车行58千米,乙每车行48千米,两车在离终点20千米处相遇,求两地间的路程是多少千米?3、快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米。
这时与慢车还相距7千米,慢车每小时行多少千米?4、甲乙两人同时从两地出发相向而行,距离是100千米,甲每小时走6千米,乙每小时走4千米。
甲带着一只狗每小时走10千米,这只狗同甲一道出发,碰到乙的时候,它又掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。
问这只狗一共走了多少千米?5、甲乙两队学生从相距18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时14千米的速度在两队间不停的往返联络。
甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?6、甲乙两人分别从东西两地同时出发,相向而行。
甲每小时行5千米,乙每小时行4千米。
甲带一只狗同时出发,狗以每小时8千米的速度向乙奔去,遇到乙后马上回头向甲奔去,遇到甲后又回头向乙奔去,如此往返,直到甲乙两人相距3千米时,狗才停止奔跑,这时狗共奔跑了16千米,问甲乙两地相距多少千米?人相遇?8、甲乙两车从相距270千米的两地同时相向而行,甲车每小时行50千米,乙车每小时行40千米,几小时后,两车相遇?9、甲乙两地相距450千米,A、B两车从两地同时出发,经过5小时后相遇,已知A车每小时比B车多行驶10千米,A、B两车的速度各是多少?10、甲乙两人分别从相距80千米的两地同时出发,相向而行。
甲每小时走6千米,乙每小时走5千米,3小时后,两人相距多少千米?时后,两人相距多少千米?12、甲乙两人同时从相距20千米的两地反向而行,甲每小时行13千米,乙每小时行7千米,几小时后两人相距100千米?13、一辆汽车由甲城开往乙城,行了3小时后,因车发生故障,修了半小时,然后每小时加速5千米,继续前行,经过6小时准时到达乙地。
(完整版)小学奥数行程问题经典整理
第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
(完整版)奥数四年级行程问题
(完整版)奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度?时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度?总时间。
【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
小学四年级奥数题及答案:行程问题
小学四年级奥数题及答案:行程问题
小学四年级奥数题及答案:行程问题
1.行程问题
甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?
解答:分析若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度,也可求出甲的速度.综合列式计算如下:解:乙的速度为:10÷5×4÷2=4(米/秒)
甲的速度为:10÷5+4=6(米/秒)
答:甲的速度为6米/秒,乙的速度为4米/秒.
2.行程问题
上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的`地方追上了他.然后爸爸立刻回家,到家后又立刻回头去追小明、再追上他的时候,离家恰好是8千米,问这时是几点几分?
解答:从爸爸第一次追上小明到第二次追上这一段时间内,小明走的路程是8-4=4(千米),而爸爸行了4+8=12(千米),因此,摩托车与自行车的速度比是12∶4=3∶1.小明全程骑车行8千米,爸爸来回总共行4+12=16(千米),还因晚出发而少用8分钟,从上面算出的速度比得知,小明骑车行8千米,爸爸如同时出发应该骑24千米.现在少用8分钟,少骑24-16=8(千米),因此推算出摩托车的速度是每分钟1千米.爸爸总共骑了16千米,需16分钟,8+16=24(分钟),这时是8点32分.。
(完整版)小学奥数行程问题汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
小学奥数经典多人行程问题【三篇】
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是⽆忧考为⼤家整理的《⼩学奥数经典多⼈⾏程问题【三篇】》供您查阅。
【第⼀篇】 1.甲⼄丙三个⼩分队都从A地到B地进⾏野外训练,上午6时,甲⼄两个⼩队⼀起从A地出发,甲队每⼩时⾛5千⽶,⼄队每⼩时⾛4千⽶,丙队上午8时才从A地出发,傍晚6时,甲丙两队同时到达B地,那么丙队追上⼄队的时间是上午()时. 分析:从上午6时到下午6时共经过12⼩时,则A、B两地的距离为5×12=60千⽶,丙上午8时出发,则全程⽐甲少⽤8时-6时=2⼩时,所以丙的速度为每⼩时60÷(12-2)=6千⽶.由于丙出发时,⼄已⾏了4×2=8千⽶,两⼈的速度差为每⼩时6-4=2千⽶,则丙追上⼄需要8÷2=4⼩时,所以丙追上⼄的时间是8时+4⼩时=12时. 解答:解:6时+6时=12时,8时-6时=2时; 5×12÷(12-2) =60÷10, =6(千⽶); 2×4÷(6-4) =8÷2, =4(⼩时). 8时+4⼩时=12时. 即丙在上午12时追上⼄. 故答案为:12.【第⼆篇】 ⾏程问题是⼩学奥数中变化最多的⼀个专题,不论在奥数竞赛中还是在“⼩升初”的升学考试中,都拥有⾮常重要的地位。
⾏程问题中包括:⽕车过桥、流⽔⾏船、沿途数车、猎狗追兔、环形⾏程、多⼈⾏程,等等。
每⼀类问题都有⾃⼰的特点,解决⽅法也有所不同,但是,⾏程问题⽆论怎么变化,都离不开“三个量,三个关系”: 这三个量是:路程(s)、速度(v)、时间(t) 三个关系:1. 简单⾏程:路程 = 速度 × 时间 2. 相遇问题:路程和 = 速度和 × 时间 3. 追击问题:路程差 = 速度差 × 时间 牢牢把握住这三个量以及它们之间的三种关系,就会发现解决⾏程问题还是有很多⽅法可循的。
四年级奥数行程问题
知识框架(一)行程问题基本公式:路程=速度⨯时间;总路程=平均速度⨯总时间速度=路程÷时间;时间=路程÷速度(二)相遇问题(相向而行):速度和⨯相遇时间=相遇距离(三)追及问题(同向而行):速度差⨯追及时间=追及距离(四)列车进入隧道是指从车头进入隧道开始算起到车尾离开隧道为止;因此,这个过程中列车所走的路程等于隧道的长度加上车的长度。
(五)两车相遇,错车而过是指从两列列车的车头相遇开始算起到两列列车的车尾分开为止;这个过程实际上是以两列列车相遇点为起点的相背运动问题,这两列列车在这段时间所走的路程之和等于这两个列车的车长之和。
(六)错车时间=两列列车车长之和÷两车的速度之和。
典型例题一、相遇问题1、一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。
已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。
求列车与货车从相遇到离开所用的时间。
2、有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。
现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇后6分钟后,甲又与丙相遇。
那么,东、西两村之间的距离是多少米?二、立即返回问题3、甲、乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,第二辆汽车每小时行38千米,第一辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?4、某解放车队伍长450米,以每秒1.5米的速度行进。
一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?三、提前出发问题5、学生甲和乙同事从家里出发,相向而行,学生甲每分钟走52米,学生乙每分钟走70米,两人在途中A处相遇,若甲提前4分钟出发,且速度不变,学生乙改为每分钟走90米,两人仍在A处相遇,问学生甲乙两家相距多远?四、二次相遇问题6、东、西两城相距75千米。
小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西,每小时骑行15千米。
小学奥数四年级行程问题
小学奥数四年级行程问题1、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?【解析】设路程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
2、3、两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。
如果不计转向的时间,那么在这段时间内两人共相遇多少次?有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n -1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。
4、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远?要求距离,速度已知,所以关键是求出相遇时间。
从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)5、有一个人去徒步旅行,去时每走40分钟就休息5分钟,到达目的地时共花去3小时11分。
四年级奥数行程问题及解析
四年级奥数行程问题及解析
四年级奥数行程问题及解析
1、在一只野兔跑出90米后,猎狗去追。
野兔跑8步的路程,猎狗只需要跑3步。
猎狗跑3步的时间,野兔能跑4步。
问,猎狗至少跑出多远,才能追上野兔。
2、小红从甲地往乙地走,小花同时从乙地向甲地走,当各自到达终点后,又迅速返回,行走路程中,各自速度不变,两人第一次相遇时在距甲地40米处,第二次相遇在距乙地15米处,问,甲.乙两地相距多少米。
解析:
本题需要根据已知条件找出兔和狗之间的'速度关系。
野兔跑4步的时间,猎狗跑3步,猎狗的3步,相当于野兔跑8步的路程,它们的速度比为1:2V狗=8/3×3/4V兔=2V兔(V狗-V兔)×T=90=>V狗×T=180,野兔跑出90米后,猎狗去追,猎狗至少跑出180米才能追上野兔。
解析:
第一次相遇,两人共行了1个全程,小东行了40米,第一次相遇,两人共行了3个全程,小东行了40×3=120米,同时小东行的还是1个全程多15米,甲乙两地的距离是40×3-15=105米。
四年级奥数行程问题及答案【三篇】
四年级奥数行程问题及答案【三篇】
【第一篇】
甲、乙两个港口之间的水路长300千米,一只船从甲港到乙港,顺水5小时到达,从乙港返回甲港,逆水6小时到达。
求船在静水中的速度和水流速度?
解答:由题意可知,船在顺水中的速度是300÷5=60千米/小时,在逆水中的速度是300÷6=50千米/小时,所以静水速度是(60+50)÷2=55千米/小时,水流速度是
(60-50)÷2=5千米/小时。
【第二篇】
某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?
【分析】顺水速度是15+3=18千米/小时,从甲地到乙地的路程是18×8=144千米,从乙地返回甲地时是逆水,逆水速度是15-3=12千米/小时,行驶时间为144÷12=12
小时。
【第三篇】
A、B两港相距360千米,甲轮船往返两港需35小时,逆流航行比顺流航行多花了5
小时。
乙轮船在静水中的速度是每小时12千米,乙轮船往返两港要多少小时?
解答:首先要求出水流速度,由题意可知,甲轮船逆流航行需要(35+5)÷2=20小时,顺流航行需要 20-5=15小时,由此可以求出水流速度为每小时[360÷15-
360÷20]÷2=3千米,从而进一步可以求出乙船的顺流速度是每小时 12+3=15千米,逆水速度为每小时12-3=9千米,最后求出乙轮船往返两港需要的时间是360÷15+360÷9=64
小时。
四年级行程问题100道
四年级行程问题100道及答案(1)甲、乙两列火车从相距942千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发。
甲车行几小时后与乙车相遇?(2)甲、乙两地相距24千米,当当骑车以6千米/时的速度从甲地到乙地,到达后立即以12千米/时的速度返回甲地,求当当全程的平均速度。
(3)两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。
两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长(4)一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?(5)当当参加划船比赛,他提前准备了两个方案。
第一个方案是在比赛中分别以8米/秒和10米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以8米/秒和10米/秒的速度各划行比赛时间的一半。
你知道哪个方案更好吗?(6)小王和小李两人开车分别从甲、乙两地同时出发相向而行,已知小王每小时行驶40千米,两人4小时后相遇。
相遇后两人继续行驶,又过了2小时,小王就到达了乙地。
问:小李从乙地一共需要几小时可以到达甲地?(7)牛牛每小时行12千米,当当每小时行15千米,他俩同时同起点同向出发,5小时后他们之间的距离是多少千米?(8)甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟?(9)甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50千米,乙车每小时行40千米。
途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地。
A、B两地间的路程是多少?(10)小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时。
四年级奥数专题-行程问题
四年级奥数专题-行程问题四年级奥数专题-行程问题行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
因此,两人20÷(6+4)=2小时后相遇。
练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。
根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。
(完整版)四年级数学行程问题
行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120 千米,请问:谁的速度更快?2、墨墨练习慢跑,12 分钟跑了3000 千,按照这个速度慢跑25000 米需要多少分钟?如果他每天都以这个速度跑10 分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了 1 小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45 千米,实际上由于高速公路堵车,汽车每小时只行驶30 千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午 1 点出发,晚上7 点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25 分钟后准时到校。
有一天他晚出发10 分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的 6 倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发, 6 小时后相遇在中点,如果甲延迟 1 小时出发,乙每小时少走 4 千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800 米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60 米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第 4 题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350 千米,A车在早上8 点从甲地出发,以每小时40 千米的速度开往乙地。
四年级奥数之行程问题
四年级奥数之行程问题内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)行程问题知识要点:1、相遇问题(或背向问题)AB两地的距离=甲走的距离+乙走的距离 = 甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.2、追击问题:甲乙的距离=甲走的距离-乙走的距离 = 甲的速度×时间-乙的速度×时间= (甲的速度-乙的速度)×追击的时间相遇问题例1.甲乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?例 3. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
例5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?例6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
同步练习:1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地。
求该车的平均速度。
2.A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?3.甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。
行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。
练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。
有了路程差和速度差就可以求出相遇时间了为8小时。
其他计算就容易了。
2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。
当摩托车行到两地中点处,与汽车相距75千米。
甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。
练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。
慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。
因此慢车的速度为21千米/小时。
2、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东西两村相距多少千米?思路:先找到路程差,就可以求出相遇时间为5小时,则甲的速度就是15÷(5-4)=15(千米/小时)。
两村相距是15×4=60(千米)2、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地3.2千米处相遇。
A、B两地之间相距多少千米?3、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红。
小红每分钟走多少米?4、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。
上午11时到达B地后立即返回,在距离B地24千米处相遇。
求A、B两地相距多少千米?练习四:1、甲乙两队学生从相距18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?思路:要求两队相遇时,骑自行车的同学共行多少千米?就要求他的速度和时间。
速度是已知的,时间就是两队的相遇时间。
只要先求出相遇时间就可以了。
2、两支队伍从相距55千米的两地相向而行。
通信员骑马以每小时16千米的速度在两支队伍之间不断往返联络。
已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通信员共行了多少千米?3、甲乙两人同时从两地出发,相向而行,距离是100千米。
甲每小时行6千米,乙每小时行4千米,甲带着一条狗,狗每小时行10千米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝着甲这边跑,碰到甲的时候,它又掉头朝着乙这边跑。
直到两人相遇时,这只狗一共跑了多少千米?4、两队同学同时从相距30千米的甲乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信。
如果鸽子从同学们出发到相遇共飞行了30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度。
练习五:1、甲乙两车早上8时分别从A、B两地同时出发,到10时两车相距112.5千米。
两车继续行使到下午1时,两车相距还是112.5千米。
A、B两地之间相距多少千米?思路:从10时两车相距112.5千米。
两车继续行使到下午1时,两车相距还是112.5千米,说明在3小时内两车行驶225千米,则两车的速度和是75千米。
甲乙两车早上8时分别从A、B两地同时出发,到10时两车相距112.5千米。
2小时内两车就行驶150千米,因此两地相距262.5千米。
2、甲乙两车同时从A、B两地相向而行,3小时后,两车还相距120千米,又行了3小时,两车又相距120千米。
A、B两地相距多少千米?3、快慢两车早上6时同时从甲乙两地相向而行,中午12时两车还相距50千米,继续行驶到14时,两车又相距170千米。
甲乙两地相距多少千米?4、甲乙两车分别从A、B两地同时相向而行,8小时后相遇,相遇后两车继续行驶,3小时后两车又相距360千米。
求A、B两地之间的距离。
1、小明爬山,山坡长300米,上山用10分钟,下山用5分钟,他的平均速度是多少?2、从家到学校,如果步行每分钟走80米,15分钟可到学校,若想10分钟到学校,每分钟走多少米?3、AB两地相距24其阿米,甲、乙两人从两地分别出发,相向而行,甲每分钟走100米,乙每分钟走150米,问:两人相遇时,乙比甲多走了多少千米?4、甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。
两人同时出发,同向而行,几秒后乙能追上甲?5、甲乙两人相距40千米,甲先出发1.5小时乙再出发,甲在后乙在前,二人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,甲出发几小时后追上乙?6、甲乙两人在一条长400 米的环形跑道上跑步,甲的速度是每分钟跑360米,乙的速度是每分钟跑240米。
两人同时同地同向跑,几秒后两人第一次相遇?练习六:1、中巴车每小时行60千米,小轿车每小时行84千米,两车同时从相距60千米的两地同方向开出,且中巴车在前,求几小时后小轿车追上中巴车?思路:直接使用追击问题的计算公式即可:路程÷速度差=追击时间2、兄弟二人从100米的跑道的起点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米,哥哥在后,每分钟跑140米。
几分钟后哥哥追上弟弟?3、甲骑自行车从A地到B地,每小时行16千米,1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。
A、B两地相距多少千米?4、甲乙两人以每分钟60米的速度同时、同地、同向步行出发。
走15分钟后甲返回原地取东西,而乙继续前进,甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙。
甲骑车多少分钟才能追上乙?练习七:1、一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
问:汽车是在离甲地多远处修车的?思路:途中修车用了2小时,汽车就少行了90千米,修车后为了按时到达,每小时多行了30千米,说明修车后汽车行了3小时,即修车后汽车行了225千米。
因此汽车是在离甲地135千米处修车的。
2、小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到达,有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米,求小王是在离工厂多远处遇到熟人的?3、一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。
这辆车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。
为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。
加油站离乙地多少千米?4、汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地,汽车出发后1小时原路返回甲地取东西,然后立即从甲地出发,为了能在原来的时间内到达乙地,汽车必须以每小时多少千米的速度从甲地驶向乙地?练习八:1、甲骑车、乙跑步,二人同时从一点出发沿着长4千米的环形公路同方向进行晨练,出发后10分钟,甲便从乙身后追上了乙,已知两人的速度和是每分钟行700米,求甲乙二人的速度各是多少?思路:根据甲骑车、乙跑步,二人同时从一点出发沿着长4千米的环形公路同方向进行晨练,出发后10分钟,甲便从乙身后追上了乙,可以计算两人的速度差是400米。
以后的计算就简单了。
2、爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步,爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问至少经过几分钟爸爸从小明身后追上小明?3、在300米长的环形跑道上,甲乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米。
两人起跑后的第一次相遇点在起点前多少米?思路:先计算相遇时间,再计算某一人跑的路程,用路程除以300米,看有多少圈,除取整圈数,小数部分乘以300米即可。
4、环湖一周共400米,甲乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙,若二人同时从同一地点反方向而行,只要2分钟就相遇。
求甲乙的速度。
练习九:1、甲乙丙三人都从A地到B地,早晨6时,甲乙二人一起从A地出发,甲每小时走5千米,乙每小时走4千米。
丙上午8时才从A地出发,傍晚6时,甲和丙同时到达B地。
问丙什么时候追上乙?思路:甲比丙先行2小时,就先行了10千米,10小时后同时到达,说明丙每小时比甲多行1千米,则丙的速度是每小时行6千米,乙也比并先行2小时,则先行8千米,因此并只须4小时可追上乙。
也就是在中午12时就追上了乙。
2、客车、货车和小轿车都从A地出发到B地,货车每小时行50千米,客车每小时行60千米,2小时后,小轿车才从A地出发,12小时后,小轿车追上了客车,问小轿车在出发后几小时追上了货车?3、甲乙丙三人都从A地到B地,甲乙两人一起从A地出发,甲每小时走6千米,乙每小时走4千米。
4小时后丙骑自行车从A地出发,用了2小时就追上了乙,再用几小时就能追上甲?4、甲乙丙三人行走的速度分别是60米、80米和100米,甲乙两人在B地同时同地同向出发,丙从A地同时同地同向出发去追赶甲乙,丙追上甲后又过了10分钟才追上乙。
求A、B两地之间的距离。
11。