中考数学几何专项复习题-07倍半角模型知识精讲

合集下载

中考数学 几何专题——半角模型

中考数学 几何专题——半角模型

几何模型之半角模型一、旋转性质1.图形对应边相等(易得等腰,且等腰均相似)2.对应角相等3.对应点与旋转中心连线构成旋转角,旋转角处处相等二、半角模型半角模型(90°含45°)条件模型结论①等腰直角△ABC;②∠DAE=45°DE2=BD2+CE2①等腰直角△ABC;②∠DAE=45°DE2=BD2+CE2①正方形ABCD;②∠EAF=45°①EF=BE+DF;②△CEF的周长是正方形周长的一半;③点A到EF的距离等于正方形的边长.①正方形ABCD;②∠EAF=45°EF=DF-BE三、模型演练1.如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF 于点H.若EF=BF+DF.那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF=45°;④S△E A F=S△A B E+S△A D F;⑤△CEF的周长为2.其中正确结论的是.2.在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论①△AEF≌△AED;②∠AED=45°;③BE+DC=DE;④BE2+DC2=DE2,其中正确的是()A.②④B.①④C.②③D.①③3如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.4.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=25.若∠EOF=45°,则F点的坐标是.5.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)6.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D、E是BC边上的任意两点,且∠DAE=45°.(1)将△ABD绕点A逆时针旋转90°,得到△ACF,请在图(1)中画出△ACF.(2)在(1)中,连接EF,探究线段BD,EC和DE之间有怎样的数量关系?写出猜想,并说明理由.(3)如图2,M、N分别是正方形ABCD的边BC、CD上一点,且BM+DN=MN,试求∠MAN的大小.。

中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型

中考数学必会几何模型:半角模型半角模型是指存在两个角度是一半关系,并且这两个角共顶点的模型。

通过先旋转全等再轴对称全等,一般结论是证明线段和差关系。

常见的半角模型是90°含45°,120°含60°。

例如,已知正方形ABCD中,∠MAN=45°,它的两边分别交线段CB、DC于点M、N。

要求证:BM+DN=MN,以及作AH⊥XXX于点H,求证:AH=AB。

证明过程如下:1.延长ND到E,使DE=BM。

由四边形ABCD是正方形,得AD=AB。

在△ADE和△ABM中,有AD=AB,∠ADE=∠BAM,DE=BM,因此△ADE≌△ABM。

得AE=AM,∠XXX∠BAM。

由∠MAN=45°,得∠BAM+∠NAD=45°,因此∠MAN=∠EAN=45°。

在△AMN和△AEN中,有MA=EA,∠MAN=∠EAN,AN=AN,因此△AMN≌△AEN。

得MN=EN。

因此BM+DN=DE+DN=EN=MN。

2.由(1)得△AMN≌△XXX。

因此S△AMN=S△AEN,即AH×MN=AD×EN。

又因为MN=EN,得AH=AD。

因此AH=AB。

在等边△ABC的两边AB、AC上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC。

要探究当M、N分别在线段AB、AC上移动时,BM、NC、MN之间的数量关系。

1) 当DM=DN时,BM、NC、MN之间的数量关系是BM+NC=MN。

2) 猜想:当DM≠DN时,仍有BM+NC=MN。

证明如下:延长AC至E,使CE=BM,连接DE。

因为BD=CD,且∠BDC=120°,所以△BDC是等边三角形。

因此BD=DC=CE=BM,得△BDE是等边三角形,∠BED=60°。

因此△DEN和△DME是等腰三角形,得DN=EN,DM=EM。

倍半角模型知识精讲

倍半角模型知识精讲

倍半角模型知识精讲一、二倍角模型处理方法1. 作二倍角的平分线,构成等腰三角形.例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形.2. 延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形.例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形.例题:如图,在△ABC中,∠C=2∠A,AC=2BC,求证:∠B=90º.【解答】见解析【证法一】如图1,作∠C的平分线CE交AB于点E,过点E作ED⊥AC于点D.则∠ACE=∠A,AE=CE,∵AE=EC,ED⊥AC,∴CD=AC,又∵AC=2BC,∴CD=CB,∴△CDE≌△CBE,∴∠B=∠CDE=90º;【证法二】如图2,延长AC到点D,使得CD=CB,连接BD,取AC的中点E,连接BE. 由题意可得EC=CD=BC,∠DBE=90º,∵CD=CB,∠D=∠CBD,∴∠ACB=2∠D,∵∠ACB=2∠A,∠A=∠D,∴AB=BD,又∵AE=DC,∴△ABE≌△DBC,∴∠ABE=∠DBC,∴∠ABC=∠EBD=90º.【证法三】如图3,作∠C的平分线CD,延长CB到点E,使得CE=AC,∴AC=BC+BE. ∵AC=2BC,∴BC=BE,在△ACD与△ECD中,AC=EC,∠ACD=∠ECD,CD=CD,∴△ACD≌△ECD,∴∠A=∠E,又∵∠DCB=∠DCA=∠A,∴∠E=∠DCB,∴DC=DE,∴∠ABC=90º.二、倍半角综合1. 由“倍”造“半”已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可.如图,若,则()2. 由“半”造“倍”已知半角求倍角,将半角所在的直角三角形相应的直角边截取线段即可.如图,在Rt△ABC(∠A<45º)的直角边AC上取点D,当BD=AD时,则∠BDC=2∠A,设,则,在Rt△BCD中,由勾股定理可得,解得,故有.三、一些特殊的角度1. 由特殊角30º求tan15º的值如图,先构造一个含有30º角的直角三角形,设BC=1,,AB=2,再延长CA至D,使得AD=AB=2,连接BD,构造等腰△ABD,则∠D=∠BAC=15º,.2. 由特殊角45º求tan22.5º的值由图可得,.3. “345”三角形(1)如图1,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,若,则;(2)如图2,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,若,则;(3)如图3,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,若,则.。

九年级中考几何模型之半角模型详解

九年级中考几何模型之半角模型详解

中考几何模型之半角模型【模型由来】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。

如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。

【模型思想】通过旋转变化后构造全等三角形,实线边的转化。

【基本模型】类型一、90°中夹45°(正方形中的半角模型)条件:在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。

结论①:图1、2中,EF=BE+FD;证明:如图3中,将AF绕点A顺时针旋转90°,F点落在F’处,连接BF’,∴∠EAF’=90°-∠EAF=90°-45°=45°=∠EAF,且AE=AE,AF=AF’,∴△FAE≌△F’AE(SAS),∴EF=EF’,又∠D=∠ABF’=90°,∠ABE=90°,∴∠ABE+∠ABF’=90°+90°=180°,∴F’、B、E三点共线,∴EF’=BE+BF’=BE+DF。

结论②:图2中MN²=BM²+DN²;证明:如图4中,将AN绕点A顺时针旋转90°,N点落在N’处,连接AN’、BN’、MN’,∴∠N’AM=90°-∠EAF=90°-45°=45°=∠MAN,且AM=AM,AN=AN’,∴△MAN’≌△MAN(SAS),∴MN=MN’,又∠ADN=45°=∠ABN ’,∠ABD=45°,∴∠MBN ’=∠ABD+∠ABN ’=45°+45°=90°,∴在Rt △MBN ’中,MN ’²=BM ²+BN ’²,即MN ²=BM ²+BN ’²。

结论③:图1、2中EA 平分∠BEF ,FA 平分∠DFE 。

人教版中考数学压轴题解题模型几何图形之半角模型(含解析)

人教版中考数学压轴题解题模型几何图形之半角模型(含解析)

)))))))))1)正方形与矩形,菱形,平行四边形的关系如上图()正方形的性质:(2①正方形对边平行。

②正方形四边相等。

③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

)))))))))).))))))))).又易知:GM=BM22 -1)而 BM=BD-DM=2,-2=2(2 -1).∴AG=BM=2(10CD10PB?ABCDPA?PP,求正,并且例2 .如图,边的距离也等于为正方形点到内一点,ABCD方形的面积?DCEFPABEF?交.【解析】:过作于于1)xBF?(10?x?PF?xEF?10设.,,则2222BF?PFPB?由.1222)10?x??x(10可得:.46x?故.2256??S16.ABCD CDBCABCDMFEEF?AM,,例3. 如图,上的一点,、?分别为正方形的边垂足为、DF?AM?ABEF?BE,则有,为什么?,.只要能说明△AMEABE≌△DF=FM【解析】:要说明EF=BE+DF,只需说明BE=EM,即可,而连结AE、AF 即可.ADF≌△AMF△.、AF 理由:连结AE 公用,,⊥BCAM⊥EF,AE,由AB=AMAB ∴△ABE≌△AME..∴BE=ME AMF.≌△同理可得,△ADF .∴DF=MF∴EF=ME+MF=BE+DF.)))))))))).)))))))))∴∠ADF﹢∠BAE=45°∴∠GAB﹢∠BAE=45°即∠GAE=45° AEG(SAS)∴△AEF≌△DF﹢﹢BG=EB∴EF=EG=EBCDBCABCDFE使两、点边上取,正例5. 如图,在方形、的45??EAF GAB?AGAG?EF . 求证:于,,就图形直观来看,【解析】:欲证 AG=AB. 全等,但条件不够Rt△ABE与Rt△AGE应证?∠EAF=45°怎么用呢.显然∠1+∠2=45°,若把它们拼在一起,问题就解决了AHB.°至△A点旋转90△【证明】:把 AFD绕. 2=45°∵∠EAF=45°,∴∠1+∠. °∵∠2=∠3,∴∠1+∠3=45AE=AE. ,又由旋转所得 AH=AFAEH. ∴△AEF≌△BCABCDFE,中,点分别在边1,例6.(1) 如图在正方形,?90??AOF OCDBFAE.,交于点上,,CF?BE.求证:GABCDABFEH,,,分别在边如图(2) 2,在正方形中,点,?90?FOH?OGHBCCDEFDA4EF?. 上,,,,,交于点,GH. 的长求 2图CDBCGABCDDAFEHAB ,,,,,分别在矩形的边上,,1.已知点?90FOH??OGHEF4?EF.直接写出下列两题的答案:,交于点, ,)))))))))).)))))))))【解析】ABCD1,∵四边形为正方形,(1) 证明:如图BCDABCABBC =∠∴°,=,∠=90AEBEAB. +∠°∴∠=90AOFEOB,∠°=∵∠90= FBCAEBEABFBC∠∠=90°,∴∠,∠∴ =+1图 ABEBCFBECF = ,∴∴△.≌△MAMGHBCA //于作交,(2) 解:如图2,过点NBNFEAMHG和四边形均为平行四边形,则四边形/OAMBNBBNEFCDN过点交于点作,//,交与于GH=AMEF=BN,,∴M /AEF//BNFOH AMGHNO, ∠90°,=90//,°, ∴∵∠=′O BNABMBCN AM≌△,,, △=∴得故由(1) EFGH.∴=4=2 图n.(3) ① 8.② 4巩固训练【双基训练】cm53BGcmDEFGABCDA,1. 如图6,点?在线段上,四边形其边长分别为与和都是正方形,2cm CDE 的面积为________则.(6) (7),1所示图形.2.你可以依次剪6张正方形纸片,拼成如图7?如果你所拼得的图形中正方形①的面积为 ________且正方形⑥与正方形③的面积相等,?那么正方形⑤的面积为.CEBCABCDAFFABE、分别为边、、上的点.353.如图9,已知正方形的面积为平方厘米,GBEGF?BCEABF?的平方厘米,?那么四边形平方厘米,相交于,并且的面积为145的面积为)))))))))).)))))))))、4.如图,。

2022年中考数学几何模型之半角模型与倍角模型(讲+练)(解析版)

2022年中考数学几何模型之半角模型与倍角模型(讲+练)(解析版)

专题04 半角模型与倍角模型模型一、正方形中含半角模型如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF 于点G,则:EF=BE+DF,AG=AD.例.如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF的长为4.【答案】4【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=5,CB=4,∴BE=3,∴AE=1,设AF=x,则DF=4﹣x,GF=1+(4﹣x)=5﹣x,∴EF==,∴(5﹣x)2=1+x2,∴x=,即AF=,∴DF=4﹣=,∴CF===4,故答案为:4.【变式训练1】已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∵四边形ABCD 是正方形,∵AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,∵45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又∵BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∵四边形ABCD 是正方形,∵AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,∵GAB GAD DAN GAD ∠+∠=∠+∠,∵90GAN BAD ∠=∠=︒,又45MAN ∠=︒,45GAM GAN MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又∵BM BG GM -=,BG DN =,∵BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∵四边形ABCD 是正方形,∵AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,∵MAB BAG GAD BAG ∠+∠=∠+∠,∵90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,∵6CN =,8MC =,∵1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-,∵DC BC =,∵48x x +=-,解得:2x =,∵6AB BC CD CN ====,∵//AB CD ,∵BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,132CP BP BC ∴===, ∵CP 的长为3.【变式训练2】如图,在四边形ABCD 中,AB =AD ,BC =CD ,∠ABC =∠ADC =90°,∠MAN =∠BAD .(1)如图1,将∠MAN 绕着A 点旋转,它的两边分别交边BC 、CD 于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN 绕着A 点旋转,它的两边分别交边BC 、CD 的延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN 绕着A 点旋转,它的两边分别交边BC 、CD 的反向延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明.【答案】见解析 【详解】解:(1)证明:延长MB 到G ,使BG =DN ,连接AG .∵∵ABG =∵ABC =∵ADC =90°,AB =AD ,∵∵ABG ∵∵ADN .∵AG =AN ,BG =DN ,∵1=∵4.∵∵1+∵2=∵4+∵2=∵MAN =∵BAD .∵∵GAM =∵MAN .又AM=AM,∵∵AMG∵∵AMN.∵MG=MN.∵MG=BM+BG.∵MN=BM+DN.(2)MN=BM﹣DN.证明:在BM上截取BG,使BG=DN,连接AG.∵∵ABC=∵ADC=90°,AD=AB,∵∵ADN∵∵ABG,∵AN=AG,∵NAD=∵GAB,∵∵MAN=∵NAD+∵BAM=∵DAB,∵∵MAG=∵BAD,∵∵MAN=∵MAG,∵∵MAN∵∵MAG,∵MN=MG,∵MN=BM﹣DN.(3)MN=DN﹣BM.模型二、等腰直角三角形角含半角模型如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.例.如图,已知∵ABC中,∵BAC=90°,AB=AC,D,E是B C边上的点,将∵ABD绕点A旋转,得到∵AC D′,当∵DAE=45°时,求证:DE=D′E;在(1)的条件下,猜想:BD2,DE2,CE2有怎样的数量关系?请写出,并说明理由.【答案】见解析【详解】解析:因为∵ABD绕点A旋转,得到△ACD′∵AD=AD′,∵DAD’=∵BAC=90°∵∵DAE=45°,∵∵EAD’=∵DAD’-∵DAE=45°∵在∵AED和∵AED′中,AE=AE,∵EAD=∵AED’,AD=AD’∵∵AED∵∵AED’,∵DE=D’E由(1)得∵AED∵∵AED’,ED=ED’在∵ABC中,AB=AC,∵BAC=90°,∵∵B=∵ACB=45°∵∵ABD绕点A旋转,得到∵ACD’,∵BD=CD’,∵B=∵ACD’=45°∵∵BCD’=∵ACB+∵ACD’=45°+45°=90°【变式训练1】在等腰Rt△ABC中,CA=CB,∠ACB=90º,O为AB的中点,∠EOF=45º,交CA于F,交BC的延长线于E.(1)求证:EF=CE+AF;(2)如图2,当E在BC上,F在CA的反向延长线上时,探究线段AF、CE、EF之间的数量关系,并证明.【答案】(1)见解析;(2)AF-EF=CE.【解析】(1)连接CO,过点O作OG⊥OF交BE于点G,如图所示:由题意可得△AOF≌△COG,∴OF=OG,∴△EOF≌△EOG,∴EF=EG,∴EF=EG=EC+CG=EC+AF;(2)AF-EF=CE.【变式训练2】如图所示,等腰直角∵ABC 中,∵ACB =90°,E 、F 为AB 上两点(E 左F 右),且∵ECF =45°,求证:222AE BF EF +=.【答案】见解析【详解】解:222AE BF EF +=,理由如下:如图,将∵BCF 绕点C 旋转得∵ACF ′,使∵BCF 的BC 与AC 边重合,即∵ACF ′∵∵BCF ,∵在∵ABC 中,∵ACB =90°,AC =BC ,∵∵CAF ′=∵B =45°,∵∵EAF ′=90°,∵∵ECF =45°,∵∵ACE +∵BCF =45°,∵∵ACF ′=∵BCF ,∵∵ECF ′=45°,在∵ECF 和∵ECF ′中45CE CE ECF ECF CF CF =⎧⎪∠=∠='︒⎨='⎪⎩∵∵ECF ∵∵ECF ′(SAS ),∵EF =EF ′,在Rt ∵AEF ′中,222AE F A F E ''+=,∵222AE BF EF +=.【变式训练3】如图,∵ABC 是边长为3的等边三角形,∵BDC 是等腰三角形,∵BDC =120º,以D 为顶点作一个60º的角,使其两边分别交AB 于M ,交AC 于N ,连接MN ,则∵AMN 的周长是多少?【答案】6【详解】∵∵BDC 是等腰三角形,且∵BDC =120º,∵∵BCD =∵DBC =30º,∵∵ABC 是边长为3的等边三角形,∵∵ABC =∵BAC =∵BCA =60º,∵DBA =∵DCA =90º,如图,延长AB 至点F ,使BF =CN.连接DF,在∵BDF与∵CND中,∵∵BDF=∵CDN,DF=DN,∵∵MDN=60º,∵∵BDM+∵CDN=60º,∵∵BDM+∵BDF=60º,在∵DMN与∵DMF中,∵MN=MF,∵∵AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.模型三、二倍角模型(1)作二倍角的平分线,构成等腰三角形.(2)延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形.例.已知及的值(利用倍半角模型解题).,.【解析】由图1,由图2可得.【变式训练1】如图,在正方形ABCD中,E为AD边上的中点,过点A作AF⊥BE交CD边于点F,M是AD边上一点,且BM=DM+CD.(1)求证:点F是CD边上的中点;(2)求证:∠MBC=2∠ABE.【答案】(1)见解析;(2)见解析【解析】(1)∵四边形ABCD是正方形,∴AD=DC=AB=BC,∠C=∠D=∠BAD=90º,AB∥CD,∵AF⊥BE,∴∠AOE=90º,∴∠EAF+∠AEB=90º,∠EAF+∠BAF=90º,∴∠AEB=∠BAF,∵AB∥CD,∴∠BAF=∠AFD,∴∠AEB=∠AFD,∵∠BAD=∠D,AB=AD,∴△BAE≌△ADF,∴AE=DF,∵点E是边AD的中点,∴点F是CD边上的中点;(2)延长AD至点G,使得MG=MB,连接FG、FB,如图所示:∵BM=DM+CD,∴DG=DC=BC,∵∠GDF=∠C=90º,DF=CF,∴△FDG≌△FCB,∴∠DFG=∠CFB,∴点B、F、G共线,∵点E为AD边上的中点,点F是CD边上的中点,AD=CD,∴AE=CF,∵AB=BC,∠C=∠BAD=90º,AE=CF,∴△ABE≌△CBF,∴∠ABE=∠CBF,∵AG∥BC,∴∠AGB=∠CBF=∠ABE,∴∠MBC=∠AMB=2∠AGB=2∠GBC=2∠ABE,∴∠MBC=2∠ABE.【变式训练2】如图,在△ABC中,∠BAC=90º,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连接CE,求线段CE的长.【解析】如图,连接BE交AD于点O,作AH⊥BC于点H.在Rt△ABC中,∵AC=4,AB=3,∴BC=5,∵CD=DB,∴AD=DC=DB=,,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,,∴BE=2OB=,在Rt△BCE.课后训练1.如图,在△ABC中,∠ACB=90º,D是AB边上的一点,M是CD的中点,若∠AMD=∠BMD.求证:∠CDA=2∠ACD.【答案】见解析【解析】证明:过点A作AG∥DC交BM延长线于点H交BC的延长线于点G,连接HC,如图所示:由题意可得∠BMD=∠AHB,∠AMD=∠HAM,∠HAC=∠ACD,即,∵CM=DM,∴HG=AH,即点H是AG的中点,∵AC⊥BC,∴,∴∠HCA=∠HAC=∠ACD,∴∠HCM=∠HCA+∠ACD=∠ACD+∠ACD=2∠ACD,∵∠HAM=∠AMD,∠AMD=∠BMD,∠BMD=∠AHB,∠BMD=∠HMC,∴HM=AM,∵MD=MC,∠AMD=∠HMC,AM=HM,∴△AMD≌△HMC,∴∠ADM=∠HCM=2∠ACD.2.在△ABC中,∠C=90º,AC=8,AB=10,点P在AC上,AP=2BP与AB、AC.的半径为1【解析】过点O作OD⊥AB于点D,OE⊥AC于点E,延长CA至点F,使得AF=AB=10,连接OA、BF,如图所示:由题意可得OD=OE,AO平分∠EAO,∠F=BAC,∴tan∠EAO=tan∠F=,设的半径为,由BC=PC=6,∴△PBC为等腰直角三角形,∴EP=OE=,EA=+2,,解得1.3.如图,在四边形ABCD中,AB=AD,∠B+∠D=180º,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,求证:EF=BE+FD.【答案】见解析【解析】如图,将△ADF顺时针旋转得到△ABG,使得AD与AB重合.∵旋转,∴△ADF≌△ABG,∴∠FAG=∠BAD,AF=AG,DF=GB,∵∠EAF=∠BAD,∴∠EAF=∠EAG,又∵AE=AE,∴△EAG≌△EAF,∴GE=EF,∵GE=GB+BE=DF+BE,∴EF=BE+FD.4.已知,在正方形ABCD中,∠MAN=45º,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN、和MN之间有怎样的数量关系?猜想一下,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【解答】(1)猜想:BM+DN=MN;(2)猜想:DN-BM=MN【解析】(1)猜想:BM+DN=MN.证明:如图,将△AND绕点A顺时针旋转90º,得到△ABE,则E、B、M共线,∴∠EAM=90º-∠NAM=90º-45º=45º,∵∠NAM=45º,在△AEM与△ANM中,∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)猜想:DN-BM=MN.证明:在线段DN上截取DQ=BM,如图所示.在△ADQ与△ABM中,,∴∠DAQ=∠BAM,∴∠QAN=∠MAN,在△AMN与△AQN中,∴MN=QN,∴DN-BM=MN.5.如图,在平面直角坐标系中,且.(1)求证:△ABC是等边三角形;(2)如图2,A、B两点在轴上、轴上的位置不变,在线段AB上有两动点M、N,满足∠MON=45º,试猜想线段BM、AN、MN之间的数量关系,并证明你的结论.【解答】(1)见解析;(2)【解析】(1),且,∴,,∴OA =OB =OC =4,∵∠AOB =∠BOC =90º,∴∠BCA =∠CBO =∠OBA =∠BAC =45º,∴BA =BC 且∠CBA =90º,即△ABC 是等腰直角三角形;(2)猜想:.∵OA =OB =4,∴∠AOB =90º,如图,将△BOM 绕点O 顺时针旋转90º得到△AOD , ∴AD =BM ,DO =MO ,∠OAD =∠OBM =45º,且∠DOM =∠AOB =90º,∴∠AOD =∠BOM , ∵∠MON =45º,∠AOB =90º,∴∠BOM +∠AON =45º,∴∠AOD +∠AON =45º,即∠DON =∠MON =45º,∴△DON ≌△MON ,∴DN =MN ,∵∠OAD =∠OBM =∠BAO =45º,即∠NAD =90º,.6.已知正方形ABCD ,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交CB 、DC 于点M 、N ,AH MN ⊥于点H .(1)如图①,当BM DN =时,可以通过证明≌ADN ABM ,得到AH 与AB 的数量关系,这个数量关系是___________;(2)如图②,当BM DN ≠时,(1)中发现的AH 与AB 的数量关系还成立吗?说明理由;(3)如图③,已知AMN 中,45MAN ∠=︒,AH MN ⊥于点H ,3MH =,7=NH ,求AH 的长.【答案】(1)AB AH =;(2)AB AH =成立,理由见解析;(3)AH =【详解】解:(1)∵正方形ABCD ,∵AB =AD ,∵B =∵D =∵BAD =90°,在Rt ∵ABM 和Rt ∵ADN 中,AB AD B D BM DN ⎧⎪∠∠⎨⎪⎩===,∵Rt ∵ABM ∵Rt ∵ADN (SAS ),∵∵BAM =∵DAN ,AM =AN , ∵∵MAN =45°,∵∵BAM +∵DAN =45°,∵∵BAM =∵DAN =22.5°,∵∵MAN =45°,AM =AN ,AH ∵MN ,∵∵MAH =∵NAH =22.5°,∵∵BAM =∵MAH ,在Rt ∵ABM 和Rt ∵AHM 中,BAM MAH B AHM AM AM ∠∠⎧⎪∠∠⎨⎪⎩===,∵Rt ∵ABM ∵Rt ∵AHM (AAS ),∵AB =AH ,故答案为:AB =AH ;(2)AB =AH 成立,理由如下:延长CB 至E ,使BE =DN ,如图:∵四边形ABCD 是正方形,∵AB =AD ,∵D =∵ABE =90°,在Rt ∵AEB 和Rt ∵AND 中,AB AD ABE D BE DN ⎧⎪∠∠⎨⎪⎩=== ∵Rt ∵AEB ∵Rt ∵AND (SAS ),∵AE =AN ,∵EAB =∵NAD ,∵∵DAN +∵BAM =45°,∵∵EAB +∵BAM =45°,∵∵EAM =45°,∵∵EAM =∵NAM =45°,在∵AEM 和∵ANM 中,AE AN EAM MAN AM AM ⎧⎪∠∠⎨⎪⎩===,∵∵AEM ∵∵ANM (SAS ),∵AB ,AH 是∵AEM 和∵ANM 对应边上的高,∵AB =AH .(3)分别沿AM ,AN 翻折∵AMH 和∵ANH ,得到∵ABM 和∵AND ,分别延长BM 和DN 交于点C ,如图:∵沿AM ,AN 翻折∵AMH 和∵ANH ,得到∵ABM 和∵AND ,∵AB =AH =AD ,∵BAD =2∵MAN =90°,∵B =∵AHM =90°=∵AHN =∵D , ∵四边形ABCD 是正方形,∵AH =AB =BC =CD =AD .由折叠可得BM =MH =3,NH =DN =7,设AH =AB =BC =CD =x ,在Rt ∵MCN 中,由勾股定理,得MN 2=MC 2+NC 2,∵()()()2227+3=37x x -+-,解得5x =5x =,∵AH =。

中考数学几何专题——半角模型(几何压轴)

中考数学几何专题——半角模型(几何压轴)

半角模型1、角含半角模型条件:(1)正方形ABCD (2)结论:(1)EF=DF+BE(2)D CEF周长为正方形ABCD周长的一半也可以这样:条件:(1)正方形ABCD (2)EF=DF+BE结论:条件:(1)正方形ABCD (2)结论:(1)EF=DF-BE条件:(1)结论:D AHE为等腰直角三角形证明:连接AC\ÐDAH=ÐCAE\D ADH相似于D ACE\DAAH=ACAE\D AHE相似于D ADC条件:(1)等腰直角D ABC(2)结论:BD2+CE2=DE2若ÐDAE旋转到D ABC外部时结论:BD2+CE2=DE2经典例题1.如图,正方形ABCD中,E、F分别在BC、DC上,且∠EAF=45°.求证:BE+DF=EF.2.如图,在正方形ABCD中,E和F分别是BC和CD上的点,AG⊥EF,∠EAF=45°,求证:AG=AD.3、已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)4、如图①△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N,连接MN.(1)探究BM、MN、NC之间的关系,并说明理由.(2)若△ABC的边长为2,求△AMN的周长.(3)若点M、N分别是AB、CA延长线上的点,其它条件不变,在图②中画出图形,并说出BM、MN、NC之间的关系.5.(2014秋•安阳校级期中)在△ABC中,∠BAC=90°,AB=AC,点D和点E均在边BC 上,且∠DAE=45°,试猜想BD.DE.EC应满足的数量关系,并写出推理过程.6.在△ABC中,∠BAC=90°,AB=AC,D、E在直线BC上,∠DAE=45°,(1)写出图中的相似三角形;(2)求证:BE•CD=2S△ABC,并探究BD、DE、CE之间的数量关系,给以证明.7.已知在△ABC中,AB=AC,点D、E在边BC上,将△ABD绕着点A旋转,得到△ACD′,接连D′E交AC于点O.(1)如图1,当△BAC=120°,△DAE=60°时,求证:DE=D′E;(2)如图2,当△DAE=45°,△BAC=90°,BD=DE时,在不舔加任何辅助线的情况下,请直接写出图2中的所有的全等三角形.8.(2014秋•通山县期中)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D、E是BC 边上的任意两点,且∠DAE=45°.(1)将△ABD绕点A逆时针旋转90°,得到△ACF,请在图(1)中画出△ACF.(2)在(1)中,连接EF,探究线段BD,EC和DE之间有怎样的数量关系?写出猜想,并说明理由.(3)如图2,M、N分别是正方形ABCD的边BC、CD上一点,且BM+DN=MN,试求△MAN 的大小.9.△ABC的边BC在直线l上,点D,E是直线l上的两点,且BA=BD,CA=CE(1)如图1,若AB=AC,△BAC=90°,求△CAE的度数;(2)如图2,若△BAC=90°,求△CAE的度数;(3)如图3,设△BAC=α,△DAE=β,请直接写出α与β的关系式.10.(2011秋•朝阳区期末)已知,在△ABC中,∠BAC=90°,AB=AC,BC=,点D、E在BC边上(均不与点B、C重合,点D始终在点E左侧),且∠DAE=45°.(1)请在图△中找出两对相似但不全等的三角形,写在横线上,;(2)设BE=m,CD=n,求m与n的函数关系式,并写出自变量n的取值范围;(3)如图△,当BE=CD时,求DE的长;(4)求证:无论BE与CD是否相等,都有DE2=BD2+CE2.11.(2014•平谷区一模)(1)如图1,点E、F分别是正方形ABCD的边BC、CD上的点,∠EAF=45°,连接EF,则EF、BE、FD之间的数量关系是:EF=BE+FD.连结BD,交AE、AF于点M、N,且MN、BM、DN满足MN2=BM2+DN2,请证明这个等量关系;(2)在△ABC中,AB=AC,点D、E分别为BC边上的两点.△如图2,当△BAC=60°,△DAE=30°时,BD、DE、EC应满足的等量关系是;△如图3,当△BAC=α,(0°<α<90°),△DAE=时,BD、DE、EC应满足的等量关系是.[参考:sin2α+cos2α=1]12.(2015•海宁市模拟)(1)探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.△如图1,若△B、△ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;△如图2,若△B、△D都不是直角,则当△B与△D满足数量关系时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,△BAC=90°,AB=AC=2,点D、E均在边BC上,且△DAE=45°.若BD=1,求DE的长.13.(2015•滑县一模)(1)问题发现如图1,点E、F分别在正方形ABCD的边BC、CD上,△EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,△BAD=90°,点E、F分别在边BC、CD上,△EAF=45°,若△B,△D都不是直角,则当△B与△D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,△BAC=90°,AB=AC,点D、E均在边BC上,且△DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程.14.(2014•山西校级模拟)已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连结D′E.(1)如图1,当△BAC=120°,△DAE=60°时,求证:DE=D′E;(2)如图2,当DE=D′E时,△DAE与△BAC有怎样的数量关系?请写出,并说明理由.(3)如图3,在(2)的结论下,当△BAC=90°,BD与DE满足怎样的数量关系时,△D′EC 是等腰直角三角形?(直接写出结论,不必说明理由)。

中考数学常见几何模型专题02 全等模型-半角模型(解析版)

中考数学常见几何模型专题02 全等模型-半角模型(解析版)

专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论. 1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).【答案】370【分析】延长,AB DC 交于点E ,根据已知条件求得90E ∠=︒,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,30A ∴∠=︒,90E ∠=︒,100DC DM ==DCM ∴是等边三角形,60DCM ∴∠=︒,90BCM ∴∠=︒,在Rt BCE 中,100BC =,18030ECB BCD ∠=︒-∠=︒,1502EB BC ==,EC ==100DE DC EC ∴=+=+Rt ADE △中,2200AD DE ==+150AE ==,∴200100100AM AD DM =-=+=+()AN AB BN AE EB BN =-=--())15050501=--150=,100150250AM AN ∴+=+=+Rt CMB △中,BM =)50501EN EB BN EC =+=+==ECN ∴是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB ∴∠=∠-∠=∠-∠-∠=︒=∠由阅读材料可得))100501501MN DM BN =+=+=,∴路线M N →的长比路线M A N →→的长少)250501200370+=+≈m .答案:370. 【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∠四边形ABCD 是正方形,∠AB =AD ,∠B =∠ADC =90°.把∠ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '. E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系. ADE ,证明∠AEF EAF ='E AF ∠先利用圆内接四边形的性质证明为等腰直角三角形,等量代换即得结论.AD 重合,点ADE=180°知,BAD,∠∠BAF=∠EAF=∠,∠EF=E F'∠ABE绕点【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明) ②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =求AF 的长.180ADF ADG ∴∠+∠=︒,F ∴,D ,G 三点共线,45EAF ∠=︒,45BAE FAD ∴∠+∠=︒,45DAG FAD ∴∠+∠=︒,EAF FAG ∴∠=∠,AF AF =,()EAF GAF SAS ∴∆≅∆,EF FG DF DG ∴==+,EF DF BE ∴=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE ∆绕点A 顺时针旋转90︒至ADM ∆,EAB MAD ∴∠=∠,AE AM =,90EAM =︒∠,BE DM =,45FAM EAF ∴∠=︒=∠,AF AF =,()EAF MAF SAS ∴∆≅∆,EF FM DF DM DF BE ∴==-=-;②如图3,将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,AN AF ∴=,90NAF ∠=︒,45EAF ∠=︒,45NAE ∴∠=︒,NAE FAE ∴∠=∠,AE AE =,()AFE ANE SAS ∴∆≅∆,EF EN ∴=,BE BN NE DF EF ∴=+=+.正方形Rt EFC中,2CF CE+解得:2x=.2DF∴=,226AF AD DF=+=【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时,CEF的周长等于.(4)如图4,正方形ABCD中,AMN的顶点M、N分别在BC、CD边上,AH∠MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.又AH=AN,AB=AD,∠∠ABH∠∠ADN(SAS),∠DN=BH,∠ABH=∠ADN,∠∠B=60°,且∠EAF=60°.∠∠BAD=120°,∠∠DAF+∠BAE=∠EAF=60°,∠∠BAG+∠BAE=∠EAF,即∠MAH=∠MAN,而AH=AN,AM=AM,∠∠AMH∠∠AMN(SAS),∠MN=MH,∠AMN=∠AMH,∠菱形ABCD,∠B=60°,∠∠ABD=∠ADB=30°,∠∠HBD=∠ABH+∠ABD=60°,∠∠DAF=15°,∠EAF=60°,∠∠ADM中,∠DAM=∠AMD=75°,∠∠AMN=∠AMH=75°,∠∠HMB=180°-∠AMN-∠AMH=30°,∠∠BHM=90°,∠BH2+MH2=BM2,∠DN2+MN2=BM2.【点睛】本题是四边形综合题,主要考查了旋转的性质、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题关键是学会用旋转法添加辅助线,构造全等三角形解决问题,学会利用探究的结论解决新的问题,属于中考压轴题.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE∠∠ADG,再证明△AEF∠∠AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.证得ABE ADG ≌,得出证得AEF AGF ≌,之间的数量关系;(2)同(1)②即可得出,证得ABD ACM ≌,同(证得AEF AGF ≌,在Rt ECM 中,由勾股定理可解得90BAD B D =∠=∠=︒,ABCD 是矩形,又∠AB AD ,∠矩形CD 至点G ,使得DG=BE 90ADG ADF =∠=︒,∠∠,∠ABE ADG ≌,DG ,BAE DAG ∠=∠BAD ∠,∠BAE DAF ∠+∠∠AEF AGF ≌,∠EF DG EF =∠BE FD +在ABC 中,B ACB ∠=∠∠ABD ACM ≌,同(1)②的证明方法得DE ME =, 2BD =,22+BC AB AC ==DE ME =x -,Rt ECM 中,2EM ,2(2)(32+【点睛】本题考查了特殊的平行四边形的判定、全等三角形的性质和判定及勾股定理的应用,熟练应用相关定理和性质是解决本题的关键.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B 、D ∠都不是直角,则当B 与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在∠ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.AB AD =∠ADC =∠B =90°∠则DAG ∠∠F AG =∠F AD理由:AB AD==∠BAE DAG∠=︒,BAD90∠+∠=ADC B在∠AFE和∠AFG∴=EF FG()3将∠ACE∠=BAC又∠∠F AB=∠则在∠ADF∠∠ADF∠∠∠∠C+∠ABD4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时,(如图1),易证BM+DN=MN.(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想. 【答案】(1)BM DN MN +=,理由见解析;(2)DN BMMN -=,理由见解析【分析】(1)把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,然后证明得到AEM ANM ∆∆≌,从而证得ME MN =,可得结论;(2)首先证明ADQ ABM ∆∆≌,得DQ BM =,再证明AMN AQN ∆∆≌,得MN QN =,可得结论; (1)解:BM DN MN +=.理由如下:如图2,把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,90ABE ADN ∴∠=∠=︒,AE AN =,BE DN =,180ABE ABC ∴∠+∠=︒,∴点E ,点B ,点C 三点共线,90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM ∆与ANM ∆中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ANM ∴∆∆≌(SAS ),ME MN ∴=, ME BE BM DN BM =+=+,DN BM MN ∴+=;(2)解:DN BM MN -=.理由如下:在线段DN 上截取DQ BM =,在ADQ ∆与ABM ∆中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ABM ∴∆∆≌(SAS ),DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN ∆和AQN ∆中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN AQN ∴∆∆≌(SAS ),MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.【答案】(1)见解析(2)见解析(3)DN BM MN -=,见解析【分析】(1)把ADN △绕点A 顺时针旋转90︒,得到ABE △,证得B 、E 、M 三点共线,即可得到AEM △∠ANM ,从而证得ME MN =;(2)证明方法与(1)类似;(3)在线段DN 上截取DQ BM =,判断出ADQ △∠ABM ,同(2)的方法,即可得出结论.(1)证明:如图1,∠把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=,BM DN =,2MN BM ∴=.(2)证明:如图2,把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=. (3)解:DN BM MN -= 理由如下:如图3,在线段DN 上截取DQ BM =,连接AQ ,在ADQ △与ABM中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ∴∠()ABM SAS ,DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN 和AQN △中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN ∴∠()AQN SAS ,MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.【答案】(1)EF =BE +DF ,理由见解析;(2)EF =BE +DF ,理由见解析;(3)85海里【分析】(1)延长CD 至点G ,使DG =BE ,连接AG ,可证得∠ABE ∠∠ADG ,可得到AE =AG ,∠BAE =∠DAG ,再由100BAD ∠=︒,50EAF ∠=︒,可证得∠AEF ∠∠AGF ,从而得到EF =FG ,即可求解;(2)延长CD 至点H ,使DH =BE ,连接AH ,可证得∠ABE ∠∠ADH ,可得到AE =AH ,∠BAE =∠DAH ,再由2BAD EAF ∠∠=,可证得∠AEF ∠∠AHF ,从而得到EF =FH ,即可求解;(3)连接CD ,延长AC 、BD 交于点M ,根据题意可得∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,再由(2)【迁移推广】得:CD =AC +BD ,即可求解.【详解】解:(1)EF =BE +DF ,理由如下:如图,延长CD 至点G ,使DG =BE ,连接AG ,∠90ABC ADC∠=∠=︒,∠∠ADG=∠ABC=90°,∠AB=AD,∠∠ABE∠∠ADG,∠AE=AG,∠BAE=∠DAG,∠100BAD∠=︒,50EAF∠=︒,∠∠BAE+∠DAF=50°,∠∠F AG=∠EAF=50°,∠AF=AF,∠∠AEF∠∠AGF,∠EF=FG,∠FG=DG+DF,∠EF=DG+DF=BE+DF;(2)EF=BE+DF,理由如下:如图,延长CD至点H,使DH=BE,连接AH,∠180ABC ADC∠+∠=︒,∠ADC+∠ADH=180°,∠∠ADH=∠ABC,∠AB=AD,∠∠ABE∠∠ADH,∠AE=AH,∠BAE=∠DAH,∠2BAD EAF∠∠=∠∠EAF=∠BAE+∠DAF=∠DAF+∠DAH,∠∠EAF=∠HAF,∠AF=AF,∠∠AEF∠∠AHF,∠EF=FH,∠FH=DH+DF,∠EF=DH+DF=BE+DF;(3)如图,连接CD,延长AC、BD交于点M,根据题意得:∠AOB=20°+90°+40°=150°,∠OBD=60°+50°=110°,∠COD=75°,∠OAM=90°-20°=70°,OA=OB,∠∠AOB=2∠COD,∠OAM+∠OBM=70°+110°=180°,∠OA=OB,∠由(2)【迁移推广】得:CD=AC+BD,∠AC=80×0.5=40,BD=90×0.5=45,∠CD=40+45=85海里.即此时两舰艇之间的距离85海里.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt∠ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将∠ABD 绕点A 按逆时针方向旋转90º,得到∠ACF ,联结EF (如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE =45°,可证△F AE ∠△DAE ,得FE =DE .解△FCE ,可求得FE (即DE )的长.(1)请回答:在图2中,∠FCE 的度数是 ,DE 的长为 .参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD .猜想线段BE ,EF ,FD 之间的数量关系并说明理由. )根据旋转的性质,可得ADB AFC ≌,勾股定理解按逆时针方向旋转,使AB 与AD 重合,FG =DG +FD =BE +按逆时针方向旋转90º,得到∠ACF ∠ADB AFC ≌ACF ∴∠,90AB AC BAC ∠==45ACF ABD ∴∠=∠=在Rt FCE 中,BD 2EF CF ∴=+(2)猜想:EF =BE 如图,将∠ABE8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN=,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,再根据45MAN ∠=︒,90BAD ∠=︒,可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,由此可得90GAN BAD ∠=∠=︒,再根据45MAN ∠=︒可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN -=;(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,∠45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,∠GAB GAD DAN GAD ∠+∠=∠+∠,∠90GAN BAD ∠=∠=︒,又45MAN ∠=︒,45GAM GAN MAN MAN∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM BG GM -=,BG DN =,∠BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∠四边形ABCD 是正方形,∠AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,∠MAB BAG GAD BAG ∠+∠=∠+∠,∠90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,∠6CN =,8MC =,∠1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-, ∠DC BC =,∠48x x +=-,解得:2x =,∠6AB BC CD CN ====,∠//AB CD ,∠BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM∠EF于点M,请直接写出AM和AB的数量关系;∠BAD,(3)如图2,将Rt∠ABC沿斜边AC翻折得到Rt∠ADC,E,F分别是BC,CD边上的点,∠EAF=12连接EF,过点A作AM∠EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在∠ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP (0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD∠CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【答案】(1)作图见解析.(2)结论:AD+BE=DE.证明见解析.【分析】(1)根据要求作出图形即可.(2)结论:AD+BE=DE.延长DA至F,使DF=DE,连接CF.利用全等三角形的性质解决问题即可.(1)解:如图所示:(2)结论:AD+BE=DE.理由:延长DA至F,使DF=DE,连接CF.∠AD∠CP,DF=DE,∠CE=CF,∠∠DCF=∠DCE=45°,∠∠ACB=90°,∠∠ACD+∠ECB=45°,∠∠DCA+∠ACF=∠DCF=45°,∠∠FCA=∠ECB,在∠ACF和∠BCE中,CA CB ACF BCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ACF ∠∠BCE (SAS ),∠AF =BE ,∠AD +BE =DE .【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

【模型导学】细解倍角含半角模型,举例说明其应用

【模型导学】细解倍角含半角模型,举例说明其应用

【模型导学】细解倍角含半角模型,举例说明其应用“倍角含半角模型”(也称半角模型),是中考中最常见的题型之一。

因为其内容丰富,变换灵活,所以具有一定的难度。

虽然网络上对于“倍角含半角模型”的文章比较多,但仅仅是对某一具体的模型挖掘的比较透彻——尤其是对“90°含45°模型”挖掘的比较透彻,但对于“倍角含半角模型”的一般情况研究的不多,且对于“倍角含半角模型”和“对角互补模型”之间的关系研究不多。

方法是利器,思想是灵魂。

本文尝试运用“从特殊到一般的思想”和“从一般到特殊思想”来研究下“倍角含半角模型”。

重点研究“倍角含半角模型”的由来及应对策略,以期建立通法通解,并揭示“倍角含半角模型”与“对角互补模型”的关系。

关于“90°含45°半角模型”及“对角互补模型”的相关内容,请大家自己百度,不是本文重点讲述内容。

基本模型一:等腰三角形顶角之半角例1、如图1,已知正△ABC中,BD=CE=2,∠DAE=30°,求DE;解析:如图2,∵△ABC为正三角形,且BD=CE=2,易想到三线合一,作BC边上的高AF,则FB=FD。

设FD=FE=x,则FB=FC=x+2,AB=AC=2x+4,AF=√3(x+2).如果能够建立关于x的方程,即可求解。

显然,此时还不能构造方程——思路受阻!观察到题目中∠DAE=30°还没有用到,显然,∠BAD=∠DAF=∠FAE=∠EAC=15°。

如图3,作DM⊥AB于M,则易证△MAD≌△FAD,则DM=DF。

因为BD=2,∠B=60°,则易知BM=1,则DM=DF=FE=√3,则DE=2√3。

例2、如图4,已知正△ABC中,BD=1,CE=3,∠DAE=30°,求DE;解析:这道题目,由于BD≠EC,大家可以尝试一下,仿照例1的方法好像已经行不同了。

那么我们必须寻找别的思路。

如图5,把△ABD以AD所在直线为对称轴折叠到△ADM的位置,连接ME。

备战中考数学二轮专题归纳提升真题几何模型—半角模型(解析版)

备战中考数学二轮专题归纳提升真题几何模型—半角模型(解析版)

专题12 几何模型(2)—半角模型【模型介绍】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。

如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。

【解题关键】旋转目标三角形法和翻折目标三角形法【典型例题】【题型一:等边直角三角形中的半角模型】【模型】如图,△BDC为等腰三角形且∠BDC=120°,M和N分别是AB和AC上的两个点,且∠MDN=60°,△ABC为等边三角形。

【结论】结论①:MN=BM+CN;证明:如下图1,延长AB到H点,并使得BH=CN,连接DH,∵△BCD为等腰三角形,且∠BDC=120°,∴∠DBC=∠DCB=30°,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∴∠ABD=∠ABC+∠DBC=60°+30°=90°=∠ACD,即∠HBD=∠NCD=90°,在△HBD和△NC D中:{ᵃᵃ=ᵃᵄ∠ᵃᵃᵃ=∠ᵄᵃᵃ=90∘ᵃᵃ=ᵃᵃ∴△HBD≌△NCD(SAS),∴DH=DN,∠HDB=∠CDN,又∠BDC=120°,∠MDN=60°,∴∠BDM+∠CDN=60°,即∠BDM+∠HDB=60°,∴∠HDM=∠NDM=60°,在△HDM和△NDM中:{ᵃᵃ=ᵃᵄ∠ᵃᵃᵄ=∠ᵄᵃᵄ=60∘ᵄᵃ=ᵄᵃ∴△HDM≌△NDM(SAS),∴MN=MH=MB+BH=MB+CN。

证明完毕!结论②:如上图1中:△AMN的周长=2倍等边△ABC的边长;或者说成:3倍△AMN的周长=2倍等边三角形的周长。

证明:由结论①知:MN=MB+CN,ᵃᵮᵃᵄᵄ=ᵃᵄ+ᵃᵄ+ᵄᵄ=ᵃᵄ+ᵃᵄ+(ᵄᵃ+ᵃᵄ)=(ᵃᵄ+ᵄᵃ)+(ᵃᵄ+ᵄᵃ)=ᵃᵃ+ᵃᵃ=2ᵃᵃ【例】如图,△ᵃᵃᵃ是边长为2的等边三角形,△ᵃᵃᵃ是顶角为120°的等腰三角形,以点ᵃ为顶点作∠ᵄᵃᵄ=60°,点ᵄ、ᵄ分别在ᵃᵃ、ᵃᵃ上.(1)如图①,当ᵄᵄ//ᵃᵃ时,则△ᵃᵄᵄ的周长为______;(2)如图②,求证:ᵃᵄ+ᵄᵃ=ᵄᵄ.【答案】(1)4;(2)证明见解析【解析】解:(1)∵△ᵃᵃᵃ是等边三角形,ᵄᵄ//ᵃᵃ,∴∠AMN =∠ABC =60°,∠ANM =∠ACB =60°∴△ᵃᵄᵄ是等边三角形,∴ᵃᵄ=ᵃᵄ,则ᵃᵄ=ᵄᵃ,∵△ᵃᵃᵃ是顶角∠ᵃᵃᵃ=120°的等腰三角形,∴∠ᵃᵃᵃ=∠ᵃᵃᵃ=30°,∴∠DBM =∠DCN =90°在△ᵃᵃᵄ和△ᵃᵃᵄ中,{ᵃᵄ=ᵃᵄ,∠ᵄᵃᵃ=∠ᵃᵃᵄ,ᵃᵃ=ᵃᵃ,∴△BDM ≌△CDN (SAS )∴ᵃᵄ=ᵃᵄ,∠BDM =∠CDN ,∵∠ᵄᵃᵄ=60°,∴△ᵃᵄᵄ是等边三角形,∠BDM =∠CDN =30°,∴NC =BM =12DM =12ᵄᵄ ∴MN =MB +NC ,∴△ᵃᵄᵄ的周长=AB +AC =4.(2)如图,延长ᵃᵃ至点ᵃ,使得ᵃᵃ=ᵃᵄ,连接ᵃᵃ,∵△ᵃᵃᵃ是等边三角形,△ᵃᵃᵃ是顶角∠ᵃᵃᵃ=120°的等腰三角形,∴∠ᵃᵃᵃ=∠ᵃᵃᵃ=60°,∠ᵃᵃᵃ=∠ᵃᵃᵃ=30°,∴∠ᵃᵃᵃ=∠ᵃᵃᵃ=90°,∴∠ᵃᵃᵃ=90°,在△ᵃᵃᵄ和△ᵃᵃᵃ中,{ᵃᵃ=ᵃᵃ,∠ᵄᵃᵃ=∠ᵃᵃᵃ,ᵃᵄ=ᵃᵃ,∴△BDM ≌△CDE (SAS ),∴MD =ED ,∠MDB =∠EDC∴∠MDE=120°-∠MDB+∠EDC=120°,∵∠ᵄᵃᵄ=60°,∴∠ᵃᵃᵄ=60°,在△ᵄᵃᵄ和△ᵃᵃᵄ中,{ᵄᵃ=ᵃᵃ,∠ᵄᵃᵄ=∠ᵄᵃᵃ=60°,ᵃᵄ=ᵃᵄ,∴△NDM≌△NDE(SAS),∴ᵄᵄ=ᵄᵃ,又∵NE=NC+CE=NC+BM,∴BM+NC=MN.【练1】如图,△ᵃᵃᵃ是边长为3的等边三角形,△ᵃᵃᵃ是等腰三角形,且∠ᵃᵃᵃ=120°,以ᵃ为顶点作一个60°角,使其两边分别交ᵃᵃ于点ᵄ,交ᵃᵃ于点ᵄ,连接ᵄᵄ,求△ᵃᵄᵄ的周长.【答案】△ᵃᵄᵄ的周长为6.【解析】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CN D中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.【练2】在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=D C.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系=;是 ;此时ᵄᵃ(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.【答案】(1)BM+NC=MN,2;3(2)结论仍然成立,详见解析;(3)NC ﹣BM =MN ,详见解析【解析】(1)如图1,BM 、NC 、MN 之间的数量关系 BM +NC =MN .此时 ᵄᵃ=23. 理由:∵DM =DN ,∠MDN =60°,∴△MDN 是等边三角形,∵△ABC 是等边三角形,∴∠A =60°,∵BD =CD ,∠BDC =120°,∴∠DBC =∠DCB =30°,∴∠MBD =∠NCD =90°,∵DM =DN ,BD =CD ,∴Rt △BDM ≌Rt △CDN ,∴∠BDM =∠CDN =30°,BM =CN ,∴DM =2BM ,DN =2CN ,∴MN =2BM =2CN =BM +CN ;∴AM =AN ,∴△AMN 是等边三角形,∵AB =AM +BM ,∴AM :AB =2:3,∴ᵄᵃ=23; (2)猜想:结论仍然成立.证明:在NC 的延长线上截取CM 1=BM ,连接DM 1.∵∠MBD =∠M 1CD =90°,BD =CD ,∴△DBM ≌△DCM 1,∴DM =DM 1,∠MBD =∠M 1CD ,M 1C =BM ,∵∠MDN =60°,∠BDC =120°,∴∠M 1DN =∠MDN =60°,∴△MDN ≌△M 1DN ,∴MN =M 1N =M 1C +NC =BM +NC ,∴△AMN 的周长为:AM +MN +AN =AM +BM +CN +AN =AB +AC ,∴ᵄᵃ=23;(3)证明:在CN 上截取CM 1=BM ,连接DM 1.∵∠MBD =∠M 1CD =90°,BD =CD ,∴△DBM ≌△DCM 1,∴DM =DM 1,∠MBD =∠M 1CD ,M 1C =BM ,∵∠MDN =60°,∠BDC =120°,∴∠M 1DN =∠MDN =60°,∴△MDN ≌△M 1DN ,∴MN =M 1N .∴NC ﹣BM =MN .【题型二:等腰直角三角形中的半角模型】【模型】:如图,在△AB C 中,AB =AC ,∠BAC =90°,点D ,E 在BC 上,且∠DAE =45°作法1:将△ABD 旋转90°作法2:分别翻折△ABD,△ACE【结论】BD 2+CE 2=DE 2(证明与正方形中的半角模型类似)【例】如图,等腰直角三角形AB C 中,∠BAC = 90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM = 1,CN =3,求MN 的长.【答案】√10【解析】解:如图,过点C 作CE ⊥BC ,垂足为点C ,截取CE ,使CE =BM .连接AE 、EN .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°.∵CE ⊥BC ,∴∠ACE =∠B =45°.在△ABM 和△ACE 中{ᵃᵃ=ᵃᵃ∠ᵃ=∠ᵃᵃᵃᵃᵄ=ᵃᵃ,∴△ABM ≌△ACE (SAS ).∴AM =AE ,∠BAM =∠CAE .∵∠BAC =90°,∠MAN =45°,∴∠BAM +∠CAN =45°.于是,由∠BAM =∠CAE ,得∠MAN =∠EAN =45°.在△MAN 和△EAN 中{ᵃᵄ=ᵃᵃ∠ᵄᵃᵄ=∠ᵃᵃᵄᵃᵄ=ᵃᵄ,∴△MAN ≌△EAN (SAS ).∴MN =EN .在Rt △EN C 中,由勾股定理,得EN 2=EC 2+NC 2.∴MN 2=BM 2+NC 2.∵BM =1,CN =3,∴MN 2=12+32,∴MN =√10.【练1】如图,在四边形ABC D 中,AB =AD ,BC =CD ,∠ABC =∠ADC =90°,∠MAN =∠BA D .(1)如图1,将∠MAN 绕着A 点旋转,它的两边分别交边BC 、CD 于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN 绕着A 点旋转,它的两边分别交边BC 、CD 的延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN 绕着A 点旋转,它的两边分别交边BC 、CD 的反向延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明.【答案】证明见解析【解答】解:(1)证明:如图,延长MB 到G ,使BG =DN ,连接AG.∵∠ABG=∠ABC=∠ADC=90°,AB=AD,∴△ABG≌△ADN.∴AG=AN,BG=DN,∠1=∠4.∠BA D.∴∠1+∠2=∠4+∠2=∠MAN=12∴∠GAM=∠MAN.又AM=AM,∴△AMG≌△AMN.∴MG=MN.∵MG=BM+BG.∴MN=BM+DN.(2)MN=BM﹣DN.证明:如图,在BM上截取BG,使BG=DN,连接AG.∵∠ABC=∠ADC=90°,AD=AB,∴△ADN≌△ABG,∴AN=AG,∠NAD=∠GAB,∠DAB,∴∠MAN=∠NAD+∠BAM=12∠BAD,∴∠MAG=12∴∠MAN=∠MAG,∴△MAN≌△MAG,∴MN=MG,∴MN=BM﹣DN.(3)MN=DN﹣BM.【练2】已知:如图(1)在Rt△AB C中,∠BAC=90°,AB=AC,点D、E分别为线段BC 上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形AB C中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立,详见解析;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【解析】解:(1)DE2=BD2+EC2;证明:如图,将△ADB沿直线AD对折,得△AFD,连FE,∴△AFD≌△ABD,∴AF=AB,FD=DB,∠F AD=∠BAD,∠AFD=∠ABD,∵∠BAC=90°,∠DAE=45°∴∠BAD+∠CAE=45°,∠F AD+∠F AE=45°,∴∠CAE=∠F AE又AE=AE,AF=AB=AC∴△AFE≌△ACE,∴∠DFE=∠AFD+∠AFE=45°+45°=90°,∴DE2=FD2+EF2∴DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠F AD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠F AE=∠F AD+∠DAE=∠F AD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠F AE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DC A.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【题型三:正方形中的半角模型】【模型】在正方形ABC D中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。

半角模型(初三数学最全最详细半角模型)

半角模型(初三数学最全最详细半角模型)

几何模型07——半角模型一、正方形中夹半角模型(45°)例1.如图,已知正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°.求证:(1)EF=BE+DF;变式1.如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=MF(2)若AE=2,求FC的长.变式2.在四边形ABCD中,AD∥BC(BC>AD),∠A=∠B=90°,AB=BC=20,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.变式3.已知,正方形ABCD,M在CB延长线上,N在DC延长线上,∠MAN=45°.求证:MN=DN﹣BM.变式4.在平面直角坐标系中,已知A(x,y),点A作AB⊥y轴,垂足为B.若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt △BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM =a,MF=b,AF=c,试证明:=.例2.如图所示,过正方形ABCD的顶点A在正方形ABCD的内部作∠EAF=45°,E、F分别在BC、CD上,连接EF,作AH⊥EF于点H求证:AH=AB.变式1.已知△AMN中,∠MAN=45°,AH⊥MN于点H,且MH=3,NH=7,求AH的长.变式2.已知:如图,在正方形ABCD中,M在CB延长线上,N在DC延长线上,∠MAN=45°,AH⊥MN,垂足为H,求证:AH=AB.二、等腰直角三角形中的夹半角模型(45°)例3.已知Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上,且∠DCE=45°,证明:DE2=BE2+AD2;.变式1.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.变式2.如图,在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.∠BAC=90°,∠EAF=135°,证明:EF2=EC2+BF2三、其他半角模型例4.在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC,DM≠DN,证明:MN=BM+NC.变式1.如图,在△ABC中,AB=AC,点E,F是边BC所在直线上与点B,C不重合的两点.∠BAC=60°,∠EAF=30°,已知BE=3,CF=5,求线段EF的长度;例5.如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;变式1.如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;变式2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD.证明:EF=BE﹣FD,变式3.已知,如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD上的点,且BE+FD=EF.求证:∠EAF=∠BAD.变式4.已知△ABC中,AB=AC,∠BAC=120°.点M在BC上,点N在BC 的上方,且∠MBN=∠MAN=60°,求证:MC=BN+MN;。

数学中考复习——半角模型

数学中考复习——半角模型

中考复习专题之半角模型
——奏响思维“直通车”之歌
学习目标:
1.在解题过程中提炼解题策略、经验、方法、技巧。

2.在学习过程中树立模型意识,充分关注模型、提炼模型、运用模型、深化模型、实际应用。

3.通过导师引领,小组合作,提高学习效率。

学习过程:
一、提炼模型
正方形ABCD,E、F分别为BC、CD上的点,∠EAF=45°,求证:①EF=BE+DF ②∠AEF=∠AEB,∠AFD=∠AFE; ③△ECF的周长为正方形边长的2倍;④点A到EF的距离等于正方形边长。

解题策略:
二、运用模型
⑤若点E、F分别在CB、DC的延长线上,∠EAF=45°,那么线段EF、
DF、BE之间有怎样的数量关系?
三、深化模型
⑥连接BD交AE于点M,交AF于点N,那么线段DN,MN,BM之间有怎样的数量关系?
变形训练:如图,在Rt△ABD中,AB=AD,M、N是斜边BD上两点,
且∠MAN=45°,你能直接写出BM、MN、DN之间的数量关系吗?
四、中考链接°
此问题的方法是,延长FD到点G,使DG=BE,连结AG,先证明
△ABE≌△ADG,再证明△AEF≌△AGF.可得出结论,他的结论是。

探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的。

2022年中考数学几何模型提升专题07 正方形基本型—半角模型

2022年中考数学几何模型提升专题07 正方形基本型—半角模型

专题07正方形基本型——半角模型【模型解读】知一推四:如图,ABCD 为正方形,E,F 分别是BC,DC 边上的点,母题:如图,ABCD 为正方形,E,F 分别是BC,DC 边上的点,∠EAF=45°,AG ⊥EF (2)DN ²+BM ²=MN ²(3)∠MGN=90°AA E 平分∠BEF BE +DF =EF∠EAF =45°作AH ⊥EF ,AH=AB AF 平分∠DFE⑤④③②①①DE+BF=EF ②BG 2+HD 2=GH 2③△AGD ∽△HGA ∽△HAB :2子母型,1共享型 ④S ABCD =BH·DG⑤AH=HF ,AH ⊥HF ;AG=GE ,AG ⊥GE ⑥△AGH ∽△AEF (用全等导角) ⑦22==FC HD EF GH(4)证:①²•AM MN MD =;②²•AN NM NB =(5)证:△AMN 与△AFE 相似,并求出相似比(6)若BE=2,DF=3,①求AG ,②求MN 的值(7)①证明:AN=EN,②证明:AM ⊥MFFFF(8)证明BN•DM=S ABCD(9)证明NDEC(10)求BMFCFFFF【模型实例】1.如图,正方形ABCD 边长为6,E 是BC 的中点,连接AE ,以AE 为边在正方形内部作45EAF ∠=︒,边AF 交CD 于F ,连接EF .则下列说法正确的有( ) ①30EAB ∠=︒;②BE DF EF +=;③tan 3AFE ∠=;④6CEF S ∆=.A .①②③B .②④C .①④D .②③④2.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE AF =,AC 与EF 相交于点G .下列结论:①AC 垂直平分EF ;②BE DF EF +=;③当15DAF ∠=︒时,AEF ∆为等边三角形;④当60EAF ∠=︒时,AEB AEF ∠=∠.其中正确的结论是( )A .①③B .②④C .①③④D .②③④3.如图,正方形ABCD 中,点E 、F 分别是BC 、CD 上的动点(不与点B ,C ,D 重合),且45EAF ∠=︒,AE 、AF 与对角线BD 分别相交于点G 、H ,连接EH 、EF ,则下列结论:①ABH GAH ∆∆∽;②ABG HEG ∆∆∽;③AE =;④EH AF ⊥;⑤EF BE DF =+ 其中正确的有( )A .2B .3C .4D .54.如图,正方形ABCD 的对角线相交于点O ,点M ,N 分别是边BC ,CD 上的动点(不与点B ,C ,D 重合),AM ,AN 分别交BD 于E ,F 两点,且45MAN ∠=︒,则下列结论:①MN BM DN =+;②AEF BEM ∆∆∽;③AF AM =;④FMC ∆是等腰三角形.其中正确的是 .(填写正确序号)5.如图,点M 、N 分别是正方形ABCD 的边BC 、CD 上的两个动点,在运动过程中保持45MAN ∠=︒,AM 、AN 分别与对角线BD 交于点E 、F ,连接EN 、FM 相交于点O ,以下结论:①MN BM DN =+;②222BE DF EF +=;③2BC BF DE =⋅;④OM =,一定成立的是( )A .①②③B .①②④C .②③④D .①②③④6.如图,正方形ABCD 的对角线相交于点O ,点M ,N 分别是边BC ,CD 上的动点(不与点B ,C ,D 重合),AM ,AN 分别交BD 于E ,F 两点,且45MAN ∠=︒,则下列结论:①MN BM DN =+;②AEF BEM ∆∆∽;③2AF AM =;④FMC ∆是等腰三角形.其中正确的有( )A .1个B .2个C .3个D .4个专题04正方形基本型【模型解读】①DE+BF=EF②BG2+HD2=GH2③△AGD∽△HGA∽△HAB:2子母型,1共享型④S ABCD=BH·DG⑤AH=HF,AH⊥HF;AG=GE,AG⊥GE⑥△AGH∽△AEF(用全等导角)⑦22==FCHDEFGH知一推四:如图,ABCD 为正方形,E,F 分别是BC,DC 边上的点,BADFA E 平分∠BEF BE +DF =EF∠EAF =45°作AH ⊥EF ,AH=AB AF 平分∠DFE⑤④③②①母题:如图,ABCD 为正方形,E,F 分别是BC,DC 边上的点,∠EAF=45°,AG ⊥EF (2)DN ²+BM ²=MN ²【简证】旋转△AND ,可得'BN DN =且∠N’BM=90°,由勾股定理可知222''N M N B BM =+易证△绿≌△蓝,可知'N MMN =,从而得证ADADADFF(3)∠MGN=90°【简证】两组全等可得2个45°,从而得证(4)证:①²•AM MN MD =;②²•AN NM NB =FFFF【①简证】子母型相似【②简证】子母型相似(5)证:△AMN 与△AFE 相似,并求出相似比【简证】导角得相似,对应边上的高之比等于相似比FFFF(6)若BE=2,DF=3,①求AG ,②求MN 的值【① 简证】如图,设EC x =,则有22²154x x x +-=⇒=(),∴AG=AB=6【②简证】MN AH AMN AFE MN EF AG⇒==⇒==△∽△F x-13F相似比:AH AG AH AB ∠1=∠2=∠3(7)①证明:AN=EN,②证明:AM ⊥MF【① 简证】两次相似:△AMN ∽△BME ⇒△BMA ∽△EMN ;或者四点共圆【② 简证】同上3FFFF(8)证明BN •DM=S ABCD【简证】∠1=45°+∠2=∠BAN ⇒△BAN ∽△DMA ⇒BN •DM=AB •AD(9)证明ND EC(10)求BMFC【(9)简证】旋转相似FFFFF∣【(10)简证】旋转相似∣【模型实例】1.如图,正方形ABCD 边长为6,E 是BC 的中点,连接AE ,以AE 为边在正方形内部作45EAF ∠=︒,边AF 交CD 于F ,连接EF .则下列说法正确的有( )①30EAB ∠=︒;②BE DF EF +=;③tan 3AFE ∠=;④6CEF S ∆=.A .①②③B .②④C .①④D .②③④【解答】解:延长CB 到G ,使BG DF =,连接AG .如图所示: 四边形ABCD 是正方形,AB AD ∴=,90ABE D ∠=∠=︒,90ABG D ∴∠=︒=∠,在ABG ∆和ADF ∆中,FFFFAB AD ABG D BG DF =⎧⎪∠=∠⎨⎪=⎩, ()ABG ADF SAS ∴∆≅∆, AG AF ∴=,12∠=∠,又45EAF ∠=︒,90DAB ∠=︒, 2345∴∠+∠=︒, 1345∴∠+∠=︒, 45GAE EAF ∴∠=∠=︒.在AEG ∆和AEF ∆中, AG AF GAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩, ()AEG AEF SAS ∴∆≅∆, GE EF ∴=,GE BG BE =+,DF BG =,EF DF BE ∴=+,故②正确,3BE EC ==,6AB =, 1tan 32BE AB ∴∠==, 330∴∠≠︒,故①错误,设DF x =,则3EF x =+,在Rt EFC ∆中,222EF CF EC =+,222(3)3(6)x x ∴+=+-, 2x ∴=, 2DF BG ∴==,tan tan 3ABAFE G BG∴∠===,故③正确, 1134622CEF S CE CF ∆∴=⋅⋅=⨯⨯=,故④正确. 故选:D .2.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE AF=,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE DF EF∆为+=;③当15DAF∠=︒时,AEF等边三角形;④当60∠=∠.其中正确的结论是()∠=︒时,AEB AEFEAFA.①③B.②④C.①③④D.②③④【解答】解:四边形ABCD是正方形,∠=∠=︒,ACD ACB∠=∠=︒,45AB AD BC CD∴===,90B D=,AE AFAB AD=,∴∆≅∆,Rt ABE Rt ADF(HL)∴=,BE DF∴=,CE CF又45∠=∠=︒,ACD ACBAC∴垂直平分EF,故①正确;BCD∠=︒,AC垂直平分EF,=,90CE CF∴=,EG GF当AE平分BAC+=,故②错误;=,即BE DF EF∠时,BE EG∆≅∆,Rt ABE Rt ADF∴∠=∠=︒,DAF BAE15∴∠=︒,60EAF又AE AF=,∴∆是等边三角形,故③正确;AEF=,60AE AF∠=︒,EAF∴∆是等边三角形,AEFAEF∴∠=︒,60∠=︒,∠=︒,30CAEBAC45∴∠=︒,15BAE75AEB AEF ∴∠=︒≠∠,故④错误;故选:A .3.如图,正方形ABCD 中,点E 、F 分别是BC 、CD 上的动点(不与点B ,C ,D 重合),且45EAF ∠=︒,AE 、AF 与对角线BD 分别相交于点G 、H ,连接EH 、EF ,则下列结论:①ABH GAH ∆∆∽;②ABG HEG ∆∆∽;③AE =;④EH AF ⊥;⑤EF BE DF =+ 其中正确的有( )A .2B .3C .4D .5【解答】解:在正方形ABCD 中, 45ABG ∴∠=︒,45AGH ABG BAG BAG ∴∠=∠+∠=︒+∠,45EAF ∠=︒, 45BAH BAG ∴∠=∠+︒, BAH AGH ∴∠=∠, AHG BHA ∠=∠,ABH GAH ∴∆∆∽,故①正确; 45EAF DBC ∠=∠=︒,A ∴,B ,E ,H 四点共圆,ABG GEH ∴∠=∠,BAG EHG ∠=∠, ABG HEG ∴∆∆∽;故②正确; 45AEH EAH ∠=∠=︒,AEH ∴∆是等腰直角三角形,90AHE ∴∠=︒,AE ,EH AF ∴⊥;故③④正确;将ADF ∆绕点A 顺时针旋转90︒得到ABM ∆,此时AB 与AD 重合,由旋转可得AB AD =,BM DF =,12∠=∠,90ABM D ∠=∠=︒,AM AF =,9090180ABM ABE ∴∠+∠=︒+︒=︒,因此,点M ,B ,E 在同一条直线上. 45EAF ∠=︒,23904545BAD EAE ∴∠+∠=∠-∠=︒-︒=︒.12∠=∠,1345∴∠+∠=︒.即MAE FAE ∠=∠.在AME ∆与AFE ∆中AM AF MAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,AME AFE ∴∆≅∆. ME EF ∴=,故EF BE DF =+,故⑤正确, 故选:D .4.如图,正方形ABCD 的对角线相交于点O ,点M ,N 分别是边BC ,CD 上的动点(不与点B ,C ,D 重合),AM ,AN 分别交BD 于E ,F 两点,且45MAN ∠=︒,则下列结论:①MN BM DN =+;②AEF BEM ∆∆∽;③AF AM ;④FMC ∆是等腰三角形.其中正确的是 ①②③④ .(填写正确序号)【解答】解:将ABM ∆绕点A 逆时针旋转90︒至ADM ∆',45M AN DAN MAB ∠'=∠+∠=︒,AM AM '=,BM DM =',45M AN MAN ∠'=∠=︒,AN AN =, AMN ∴∆≅△()AM N SAS '', MN NM ∴=',M N M D DN BM DN ∴'='+=+, MN BM DN ∴=+;故①正确; 135FDM ∠'=︒,45M AN ∠'=︒, 180M AFD ∴∠'+∠=︒, 180AFE AFD ∠+∠=︒,AFE M ∴∠=∠', AMB M ∠=∠', AMB AFE ∴∠=∠,45EAF EBM ∠=∠=︒,AEF BEM ∴∆∆∽,故②正确;∴AE EF BE EM =,即AE BEEF EM=, AEB MEF ∠=∠, AEB FEM ∴∆∆∽,45EMF ABE ∴∠=∠=︒,AFM ∴∆是等腰直角三角形,∴AF AM =;故③正确; 在ADF ∆与CDF ∆中, 45AD DC ADF CDF DF DF =⎧⎪∠=∠=︒⎨⎪=⎩, ()ADF CDF SAS ∴∆≅∆, AF CF ∴=,AF MF =,FM FC ∴=,FMC ∴∆是等腰三角形,故④正确;故答案为:①②③④.5.如图,点M 、N 分别是正方形ABCD 的边BC 、CD 上的两个动点,在运动过程中保持45MAN ∠=︒,AM 、AN 分别与对角线BD 交于点E 、F ,连接EN 、FM 相交于点O ,以下结论:①MN BM DN =+;②222BE DF EF +=;③2BC BF DE =⋅;④OM =,一定成立的是( )A .①②③B .①②④C .②③④D .①②③④【解答】解:将ABM ∆绕点A 逆时针旋转90︒,得到ADM ∆',将ADF ∆绕点A 顺时针旋转90︒,得到ABD '∆,AM AM '∴=,BM DM '=,BAM DAM '∠=∠,90MAM '∠=︒,90ABM ADM '∠=∠=︒, 180ADM ADC '∴∠+∠=︒,∴点M '在直线CD 上,45MAN ∠=︒,45DAN MAB DAN DAM M AN ''∴∠+∠=︒=∠+∠=∠, 45M AN MAN ∴∠'=∠=︒,又AN AN =,AM AM '=,AMN ∴∆≅△()AM N SAS ', MN NM ∴=',M N M D DN BM DN ∴'='+=+, MN BM DN ∴=+;故①正确;将ADF ∆绕点A 顺时针旋转90︒,得到ABD '∆,AF AD '∴=,DF D B '=,45ADF ABD '∠=∠=︒,DAF BAD '∠=∠,90D BE '∴∠=︒, 45MAN ∠=︒,45BAE DAF BAD BAE D AE ''∴∠+∠=︒=∠+∠=∠,45D AE EAF '∴∠=∠=︒,又AE AE =,AF AD '=,()AEF AED SAS '∴∆≅∆,EF D E '∴=,222D E BE D B ''=+,222BE DF EF ∴+=;故②正确;45BAF BAE EAF BAE ∠=∠+∠=∠+︒,45AEF BAE ABE BAE ∠=∠+∠=︒+∠, BAF AEF ∴∠=∠,又45ABF ADE ∠=∠=︒,DAE BFA ∴∆∆∽, ∴DE AD AB BF=, 又AB AD BC ==, 2BC DE DF ∴=⋅,故③正确;45FBM FAM ∠=∠=︒,∴点A ,点B ,点M ,点F 四点共圆,90ABM AFM ∴∠=∠=︒,45AMF ABF ∠=∠=︒,BAM BFM ∠=∠, 同理可求90AEN ∠=︒,DAN DEN ∠=∠,45EOM EMO ∴∠=︒=∠,EO EM ∴=,MO ∴=,BAM DAN ∠≠∠,BFM DEN ∴∠≠∠,EO FO ∴≠,OM ∴≠,故④错误,故选:A .6.如图,正方形ABCD 的对角线相交于点O ,点M ,N 分别是边BC ,CD 上的动点(不与点B ,C ,D 重合),AM ,AN 分别交BD 于E ,F 两点,且45MAN ∠=︒,则下列结论:①MN BM DN =+;②AEF BEM ∆∆∽;③AF AM ;④FMC ∆是等腰三角形.其中正确的有( )A .1个B .2个C .3个D .4个【解答】解:将ABM ∆绕点A 逆时针旋转90︒至ADM ∆',45M AN DAN MAB ∠'=∠+∠=︒,AM AM '=,BM DM =',45M AN MAN ∠'=∠=︒,AN AN =,AMN ∴∆≅△()AM N SAS '',MN NM ∴=',M N M D DN BM DN ∴'='+=+,MN BM DN ∴=+;故①正确;135FDM ∠'=︒,45M AN ∠'=︒,180M AFD ∴∠'+∠=︒,180AFE AFD ∠+∠=︒,AFE M ∴∠=∠',AMB M ∠=∠',AMB AFE ∴∠=∠,45EAF EBM ∠=∠=︒,AEF BEM ∴∆∆∽,故②正确; ∴AE EFBE EM =,即AEBEEF EM =,AEB MEF ∠=∠,AEB FEM ∴∆∆∽,45EMF ABE ∴∠=∠=︒,AFM ∴∆是等腰直角三角形,∴AF AM =;故③正确;在ADF ∆与CDF ∆中,45AD CDADF CDF DF DF=⎧⎪∠=∠=︒⎨⎪=⎩,()ADF CDF SAS ∴∆≅∆,AF CF ∴=,=,AF MF∴=,FM FC∴∆是等腰三角形,故④正确;FMC故选:D.。

专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(原卷版)

专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(原卷版)

倍半角模型巩固练习(基础)
1.已知及的值(利用倍半角模型解题).
2.在△ABC中,∠C=90º,AC=8,AB=10,点P在AC上,AP=2,的圆心在线段BP上,
与AB、AC.
3. 如图,菱形ABCD的边长AB=20,面积为320,∠BAD<90º与边AB、AD都相切,AO=10,
求的半径.
4.如图,以△ABC的边AB交边BC于点E,过点E AC于点D,且ED⊥
AC.若线段AB、DE的延长线交于点F,∠C=75º,CD=BF的长.
5. 如图,P A、PB A、B两点,CD E,交P A、PB于C、D的半径为,△
PCD的周长等于的值.
6.如图,在△ABC中,∠BAC=90º,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连接CE,求线段CE的长.
7.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,
∠AOB,则∠COD是∠AOB的内半角.那么这两条射线所成的角叫做这个角的内半角.如图1,若∠COD=1
2
(1)如图1,已知∠AOB=70°,∠AOC=25°,∠COD是∠AOB的内半角,则∠BOD=;(2)如图2,已知∠AOB=60°,将∠AOB绕点O按顺时针方向旋转一个角度α(0<α<60°)至∠COD,当旋转的角度α为何值时,∠COB是∠AOD的内半角.
(3)已知∠AOB=30°,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倍半角模型知识精讲
一、二倍角模型处理方法
1.作二倍角的平分线,构成等腰三角形.
例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形.
2.延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形.
例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形.
例题:如图,在△ABC中,∠C=2∠A,AC=2BC,求证:∠B=90º.
【解答】见解析
【证法一】如图1,作∠C的平分线CE交AB于点E,过点E作ED⊥AC于点D.
则∠ACE=∠A,AE=CE,
∵AE=EC,ED⊥AC,∴CD=AC,
又∵AC=2BC,∴CD=CB,∴△CDE≌△CBE,∴∠B=∠CDE=90º;
【证法二】如图2,延长AC到点D,使得CD=CB,连接BD,取AC的中点E,连接BE.
由题意可得EC=CD=BC,∠DBE=90º,
∵CD=CB,∠D=∠CBD,∴∠ACB=2∠D,
∵∠ACB=2∠A,∠A=∠D,∴AB=BD,
又∵AE=DC,∴△ABE≌△DBC,∴∠ABE=∠DBC,∴∠ABC=∠EBD=90º.
【证法三】如图3,作∠C的平分线CD,延长CB到点E,使得CE=AC,∴AC=BC+BE.
∵AC=2BC,∴BC=BE,在△ACD与△ECD中,AC=EC,∠ACD=∠ECD,CD=CD,
∴△ACD≌△ECD,∴∠A=∠E,
又∵∠DCB=∠DCA=∠A,∴∠E=∠DCB,∴DC=DE,∴∠ABC=90º.
二、倍半角综合
1.由“倍”造“半”
已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可.
如图,若()
2.由“半”造“倍”
已知半角求倍角,将半角所在的直角三角形相应的直角边截取线段即可.
如图,在Rt△ABC(∠A<45º)的直角边AC上取点D,当BD=AD时,则∠BDC=2∠A,设,
则,在Rt△BCD中,由勾股定理可得,解得,故有
.
三、一些特殊的角度
1.由特殊角30º求tan15º的值
如图,先构造一个含有30º角的直角三角形,设BC=1,,AB=2,再延长CA至D,使得
AD=AB=2,连接BD,构造等腰△ABD,则∠D=∠BAC=15º,.
2.由特殊角45º求tan22.5º的值
由图可得,.
3.“345”三角形
(1)如图1,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,若,则

(2)如图2,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,若,则

(3)如图3,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,若,则
.。

相关文档
最新文档