山东省莱芜市2014年中考数学试卷及答案【word版】
莱芜区中考数学试卷及答案
一、选择题(每题3分,共30分)1. 若m、n是方程x^2 - 4x + 3 = 0的两个根,则m+n的值为()A. 1B. 3C. 4D. 5答案:B2. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,6)答案:A3. 若等比数列的首项为a,公比为q,则第n项为()A. aq^(n-1)B. aq^nC. aq^(n+1)D. aq^(n-2)答案:A4. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = x^5答案:B5. 已知正方体的体积为64立方厘米,则它的对角线长为()A. 8厘米B. 6厘米C. 4厘米D. 2厘米答案:A6. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠B=()A. 40°B. 50°C. 60°D. 70°答案:B7. 下列不等式中,正确的是()A. 2x > 4B. 3x < 6C. 4x ≤ 8D. 5x ≥ 10答案:C8. 若函数f(x) = 2x + 3在x=1时的切线斜率为k,则k的值为()A. 2B. 3C. 5D. 6答案:A9. 已知平行四边形ABCD中,AB=CD,AD=BC,则四边形ABCD是()A. 矩形B. 菱形C. 正方形D. 梯形答案:A10. 在△ABC中,若∠A=30°,∠B=45°,则△ABC的形状为()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形答案:B二、填空题(每题3分,共30分)11. 若等差数列的首项为2,公差为3,则第10项为______。
答案:2912. 函数y = 3x - 1在x=2时的函数值为______。
答案:513. 在直角坐标系中,点P(-3,2)到原点O的距离为______。
山东省莱芜2014-2015学年七年级上第二次月考数学试卷含解析
2014-2015学年山东省莱芜七年级(上)第二次月考数学试卷(五四学制)一、选择题(每小题3分,共计36分)1.下列图案中,是轴对称图形的是()A.B.C.D.2.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个 B.2个C.3个D.4个3.的算术平方根是()A.±4 B.4 C.±2 D.24.一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.C.D.5或5.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个7.如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55° B.50° C.45° D.40°8.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.10.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7 B.8 C.9 D.1011.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(每小题4分,共计20分)13.若点P(m+3,m+1)在x轴上,则点P的坐标为.14.如图,等腰三角形ABC的顶角为120°,腰长为10,则底边上的高AD= .15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.16.如图的方格图(每个小方格的边长为1)是某学校平面示意图,若建立适当的平面直角坐标系,花坛的位置可用坐标(3,0)表示,则校门的位置用坐标表示为.17.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.三、解答题(要写出必要的计算过程或推理步骤)18.计算:﹣|1﹣|+(﹣2)0.19.如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.20.有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)21.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.22.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.24.如图,在公路l的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理?25.如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?26.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.2014-2015学年山东省莱芜实验中学七年级(上)第二次月考数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共计36分)1.下列图案中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个B.2个C.3个D.4个考点:无理数.分析:根据无理数的定义(无理数就是无限不循环小数)判断即可.解答:解:无理数有﹣π,0.1010010001…,共2个,故选B.点评:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.的算术平方根是()A.±4 B.4 C.±2 D.2考点:算术平方根.分析:首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.解答:解:∵=4,∴4的算术平方根是2,∴的算术平方根是2;故选D.点评:此题主要考查了算术平方根的定义,解题的关键先计算出的值,再根据算术平方根的定义进行求解.4.一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.C.D.5或考点:勾股定理.专题:分类讨论.分析:本题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.解答:解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.点评:题主要考查学生对勾股定理的运用,注意分情况进行分析.5.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:关于x轴、y轴对称的点的坐标.分析:首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得对称点的坐标,再根据坐标符号判断所在象限即可.解答:解:点P(﹣2,3)关于x轴的对称点为(﹣2,﹣3),(﹣2,﹣3)在第三象限.故选:C.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化特点.6.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个考点:全等三角形的判定.分析:∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.解答:解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.7.如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55° B.50° C.45° D.40°考点:平行线的性质.分析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠BCD的度数,再根据角平分线的性质可得答案.解答:解:∵CD∥AB,∴∠ABC+∠DCB=180°(两直线平行,同旁内角互补),∵∠BCD=70°,∴∠ABC=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=55°,故选:A.点评:此题主要考查了平行线的性质以及角平分线定义,关键是掌握两直线平行,同旁内角互补.8.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)考点:点的坐标.分析:先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.解答:解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.点评:解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,及点的坐标的几何意义.9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.考点:剪纸问题.分析:根据题中所给剪纸方法,进行动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序进行操作,展开得到的图形如选项B中所示.故选B.点评:本题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7 B.8 C.9 D.10考点:翻折变换(折叠问题).专题:探究型.分析:先根据翻折变换的性质得出EF=AE=5,在Rt△BEF中利用勾股定理求出BE的长,再根据AB=AE+BE求出AB的长,再由矩形的性质即可得出结论.解答:解:∵△DEF由△DEA翻折而成,∴EF=AE=5,在Rt△BEF中,∵EF=5,BF=3,∴BE===4,∴AB=AE+BE=5+4=9,∵四边形ABCD是矩形,∴CD=AB=9.故选C.点评:本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.考点:勾股定理;点到直线的距离;三角形的面积.专题:计算题.分析:根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB 及BC的长代入求出CD的长,即为C到AB的距离.解答:解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A点评:此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64考点:等边三角形的性质;含30度角的直角三角形.专题:压轴题;规律型.分析:根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.解答:解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.二、填空题(每小题4分,共计20分)13.若点P(m+3,m+1)在x轴上,则点P的坐标为(2,0).考点:点的坐标.专题:计算题.分析:根据x轴上的点纵坐标等于0列出方程求解得到m的值,再进行计算即可得解.解答:解:∵点P(m+3,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故答案为:(2,0).点评:本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.14.如图,等腰三角形ABC的顶角为120°,腰长为10,则底边上的高AD= 5 .考点:等腰三角形的性质;解直角三角形.分析:先求出底角等于30°,再根据30°的直角三角形的性质求解.解答:解:如图.∵∠BAC=120°,AB=AC,∴∠B=(180°﹣120°)=30°.∴AD==5.(直角三角形中30°所对直角边等于斜边的一半)即底边上的高AD=5.点评:本题考查了等腰三角形的三线合一性质和含30°角的直角三角形的性质.15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49 cm2.考点:勾股定理.分析:根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.解答:解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.点评:熟练运用勾股定理进行面积的转换.16.如图的方格图(每个小方格的边长为1)是某学校平面示意图,若建立适当的平面直角坐标系,花坛的位置可用坐标(3,0)表示,则校门的位置用坐标表示为(1,﹣1).考点:坐标确定位置.专题:数形结合.分析:先根据花坛的坐标画出直角坐标系,然后写出校门的坐标.解答:解:如图,校门的位置用坐标表示为(1,﹣1).故答案为(1,﹣1).点评:本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标.17.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为 5 .考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.专题:分类讨论.分析:先根据非负数的性质列式求出a、b再分情况讨论求解即可.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.故答案为:5.点评:本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.三、解答题(要写出必要的计算过程或推理步骤)18.计算:﹣|1﹣|+(﹣2)0.考点:实数的运算;零指数幂.分析:分别根据0指数幂的运算法则、数的开方法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=1﹣+1+1=3﹣.点评:本题考查的是实数的运算,熟知0指数幂的运算法则、数的开方法则及绝对值的性质是解答此题的关键.19.如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.考点:全等三角形的判定与性质.专题:证明题.分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.解答:证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.点评:本题考查了全等三角形的判定与性质,同角的余角相等的性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.20.有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)考点:作图—应用与设计作图.分析:根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.解答:解:作图如下:C1,C2就是所求的位置.点评:此题考查了作图﹣应用与设计作图,本题的关键是:①对角平分线、线段垂直平分线作法的运用,②对题意的正确理解.21.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.考点:等腰三角形的性质;三角形内角和定理.专题:计算题.分析:首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD 是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.解答:解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.点评:本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数.22.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?考点:勾股定理的应用.专题:应用题;压轴题.分析:仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD 中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.解答:解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=,==36.所以需费用36×200=7200(元).点评:通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出A B的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△A DB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.24.如图,在公路l的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理?考点:轴对称-最短路线问题;作图—应用与设计作图.分析:作A点关于l的对称点A′,连接A′B,交直线l于M,此时AM+MB的和最小,M 所处的位置即为中转站应建的位置.解答:解:作A点关于l的对称点A′.连接A′B交l于点M,连接AM,此时AM+MB的和最小,M即为所求.点评:本题主要考查了轴对称﹣﹣最短路线问题,作出其中一点的对称点,并利用两点之间线段最短是解题的关键.25.如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?考点:平面展开-最短路径问题.分析:先将圆柱的侧面展开,再根据勾股定理求解即可.解答:解:如图所示,∵圆柱形玻璃容器,高16cm,底面周长为24cm,∴SD=12cm,∴AB==20.∴蚂蚁A处到达B处的最短距离为20cm.点评:本题考查的是平面展开﹣最短路径问题,将图形展开,利用勾股定理进行计算是解题的关键.26.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为20 cm.考点:平面展开-最短路径问题.专题:操作型.分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.解答:解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为:20.点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.。
2014年山东省莱芜市中考数学试卷(含答案和解析)
2014年山东省莱芜市中考数学试卷、选择题(本题共 12小题,每小题选对得 3分,选错、不选或选出的答案超过一个均记零分,共36分)1. (3 分)(2014?莱芜) 下列四个实数中,是无理数的为()A .0 B . — 3C. .:■: D .:112. (3 分)(2014?莱芜)下面计算正确的是()A .3a — 2a=1 B . 3a 2+2a=5a 333 3C . (2ab ) 3=6a 3b 3D . - a 4?a 4 = — a 85. ( 3分)(2014?莱芜)对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表:年龄 13 14 15 16 17 18人数4 56 672则这些学生年龄的众数和中位数分别是( )A . 17, 15.5B . 17, 16C . 15, 15.5D .16, 166. ( 3 分)(2014?莱芜)若一个正 n 边形的每个内角为 156 °则这个正 n 边形的边数是() A . 13 B . 14C . 15D .167. ( 3分)(2014?莱芜)已知 A、 C 两地相距 40千米, B 、C 两地相距 50千米,甲乙两车分别从 A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶 12千米,则两车同时到达 C 地.设乙车的速度为 x 千米/小时,依题意列方程正确的是()A . 4050 B .40 50C. 40 50D.40 50X12 x _ 12 Ki+12 x3.( 3 分)(2014?莱芜) 2014年4月25日青岛世界园艺博览会成功开幕,预计将接待 万用科学记数法表示为( ) A . 15XI05B . 1.5XI06C . 1.5X 071500万人前来观赏,将 1500 8D . 0.15X 0如图是由 4个相同的小正方形搭成的一个几何体,则它的俯视图是(&( 3分)(2014?莱芜)如图,AB 为半圆的直径,且 则图中阴影部分的面积为()AB=4,半圆绕点B 顺时针旋转45°点A 旋转到A 的位置,4. (3 分)(2014?莱芜)A .11. ( 3分)(2014?莱芜)如图,在正五边形 ABCDE 中,连接 AC 、AD 、CE , CE 交AD 于点F ,连接BF ,下列说法不正确的是( )2 2 2C . AC 2+BF 2=4CD212. (3分)(2014?莱芜)已知二次函数 y=ax 2+bx+c 的图象如图所示.下列结论:2 2① abc > 0;② 2a - b v 0;③ 4a -2b+c v 0;④ (a+c ) < bA . nB . 2nC . IT2D . 4 n9. (3 分) (2014 ?莱芜)一个圆锥的侧面展开图是半径为 R 的半圆,则该圆锥的高是() A .R B . 1 C . V3RD . kf?10. (3分)(2014?莱芜)如图,在 △ ABC 中,D 、E 分别是 AB 、BC 上的点,且 4,贝U S A BDE : S A ACD =()DE // AC ,若 S A BDE : S A CDE =1 :C . 1: 20D . 1: 24A . △ CDF 的周长等于AD+CDB . FC 平分 / BFD2D . DE =EF?CEB . 1: 18二、填空题(本题包括5小题,每小题4分,共20分)13. ___________________________________________________ (4 分)(2014?莱芜)分解因式:a3- 4ab2= .14. _____________________________________________________________________________ (4 分)(2014?莱芜)计算:|3- 2血|+ (兀 - 2014 )呻(.寺)7= _______________________________________ .15. _____________________________________________________________________________________ (4分)(2014 ?莱芜)若关于x的方程x2+ (k- 2)x+k2=0的两根互为倒数,则k= __________________________ .16. ____________________________ (4分)(2014?莱芜)已知一次函数y=ax+b与反比例函数的图象相交于A (4, 2)、B (- 2, m)两点,则一次函数的表达式为.17. (4分)(2014?莱芜)如图在坐标系中放置一菱形OABC,已知/ ABC=60 ° OA=1 .先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°连续翻转2014次,点B的落点依次为B1, B2, B3,…,贝B2014的坐标为_三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)4 a ~5 1 n18. (6分)(2014?莱芜)先化简,再求值:(a+1 ---------- )亍(------- - ------ ),其中a=- 1.□_ 1 a ~ 1 /一只19. (8分)(2014?莱芜)在某市开展的读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1〜1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5〜1.5小时的多少人.20. (9分)(2014?莱芜)如图,一堤坝的坡角 / ABC=62 °坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角/ ADB=50 °则此时应将坝底向外拓宽多少米?(结果保留到0.01答下列问题:⑷二闔45过15米)(参考数据:sin62° 出88, cos62° M7, tan50° 核0)21. (9分)(2014?莱芜)如图,已知△ ABC是等腰三角形,顶角 / BAC= a(aV 60°, D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转a到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF .(1)求证:BE=CD ;(2)若AD丄BC,试判断四边形BDFE的形状,并给出证明.22. (10分)(2014?莱芜)某市为打造绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入面积不少于35000平方米,且河道治污费用不少于园林绿化费用的23. (10分)(2014?莱芜)如图1,在O O中,E是弧AB的中点,9接EC交AB于点F, EB=_ +3(1)D为AB延长线上一点,若DC=DF,证明:直线DC与O O相切;(2)求EF?EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.24. (12分)(2014?莱芜)如图,过A (1, 0)、B (3, 0)作x轴的垂线,分别交直线y=4 - x于C、D两点.抛物线y=ax +bx+c经过0、C、D三点.(1)求抛物线的表达式;)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M ,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若厶AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△ AOC与厶OBD重叠部分的面积记为S,试求S的最大值.2013 年200元,若要求2015年河道治污及园林绿化总4倍,那么园林绿化的费用应在什么范围内?C为O O上的一动点(C与E在AB异侧),连(r是O O的半径).2014年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)(2014?莱芜)下列四个实数中,是无理数的为()A . 0B. - 3 C . :: D . ■:IT考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要冋时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、0是整数,是有理数,选项错误;B、- 3是整数,是有理数,选项错误;C、「=2 .:是无理数正确;D、一是无限循环小数,是有理数,选项错误.故选:C .点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:n 2 n等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2. (3分)(2014?莱芜)下面计算正确的是()A . 3a- 2a=1B . 3a2+2a=5a3C. (2ab)3=6a3b3 D . - a4?a4 = - a8考点:幕的乘方与积的乘方;合并冋类项;冋底数幕的乘法.分析:分别进行合并冋类项、积的乘方和幕的乘方等运算,然后选择正确答案.解答:解:A、3a- 2a=a,原式计算错误,故本选项错误;B、3a2和2a不是同类项,不能合并,故本选项错误;C、(2ab)3=8a3b3,原式计算错误,故本选项错误;D、- a4?a4= - a8,计算正确,故本选项正确.故选D .点评:本题考查了合并冋类项、积的乘方和幕的乘方等知识,掌握运算法则是解答本题的关键.3. (3分)(2014?莱芜)2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为()A . 15XI05B . 1.5XI06C . 1.5X107D . 0.15X10*考点:科学记数法一表示较大的数.分析:科学记数法的表示形式为a X0n的形式,其中1书|v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:将1500万用科学记数法表示为:1.5 X07.故选:C .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a X0n的形式,其中1弓a|v 10, n为整数,表示时关键要正确确定a的值以及n的值.4. (3分)(2014?莱芜)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是(C .D .考点: 分析: 解答: 点评: 简单组合体的三视图. 根据俯视图是从上面看到的图形判定即可. 解:从上面可看到从左往右有三个正方形, 故选A . 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5. ( 3分)(2014?莱芜)对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表: 年龄 13 14 15 16 人数 4566 则这些学生年龄的众数和中位数分别是( A . 17, 15.5 B . 17, 16 17 182 C . 15, 15.5 D . 16, 16 考点: 分析: 解答: 点评: 众数;中位数. 出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确 定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 解:17出现的次数最多,17是众数. 第15和第16个数分别是15、16,所以中位数为16.5 .故选A . 本题考查了众数及中位数的知识,掌握各部分的概念是解题关键. 6. (3分)(2014?莱芜)若一个正n 边形的每个内角为156°则这个正n 边形的边数是( A . 13 B . 14 C . 15 ) D . 16 考点: 分析:解答: 点评: 多边形内角与外角. 由一个正多边形的每个内角都为 156°可求得其外角的度数,继而可求得此多边形的边数,则可求得答案. 解:•••一个正多边形的每个内角都为 156° •••这个正多边形的每个外角都为: 180°- 156°=24°, •••这个多边形的边数为:360°^24°=15, 故选C .此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键. 7. ( 3分)(2014?莱芜)已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从 A 、B 两地同时出 发到C 地.若乙车每小时比甲车多行驶 12千米,则两车同时到达 C 地.设乙车的速度为 x 千米/小时,依题意列方 程正确的是( )A. 40 50 ~=K- 12 x-12 C .__ ! IT =X +12r+12_考点: 分析:解答: 由实际问题抽象出分式方程. 设乙车的速度为x 千米/小时,则甲车的速度为( 50千米,列出方程. 解:设乙车的速度为 x 千米/小时,则甲车的速度为(x - 12)千米/小时, X - 12)千米/小时,根据用相同的时间甲走 40千米,乙走由题意得,_1二’川•x x - 12故选B •点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系, 列出方程.&( 3分)(2014?莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°点A旋转到A的位置, 则图中阴影部分的面积为()A . nB . 2 nC .兀D . 4 n考点:扇形面积的计算;旋转的性质.分析:根据题意可得出阴影部分的面积等于扇形ABA 的面积加上半圆面积再减去半圆面积,即为扇形面积即可.解答:解:T S阴影=S扇形ABA '+S半圆—S半圆45X 7T X 42=S扇形ABA ==2 n,故选B .点评:本题考查了扇形面积的计算以及旋转的性质,是基础知识,难度不大.9. (3分)(2014?莱芜)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A . RB . 1C . D. ■:2K考点:圆锥的计算.分析:根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长,然后表示出圆锥的高即可.解答:解:圆锥的底面周长是:K R;设圆锥的底面半径是r,则2 n= K R .解得:r= R.[2由勾股定理得到圆锥的高为故选D.点评:本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.10. (3 分)(2014?莱芜)如图,在△ ABC 中,D、E 分别是AB、BC 上的点,且DE // AC ,若S^BDE:S^CDE=1 : 4,贝U S A BDE : S^ACD=()D. 1: 24考点:相似三角形的判定与性质.分析:设厶BDE的面积为a,表示出△ CDE的面积为4a,根据等高的三角形的面积的比等于底边的比求出翌,然CE后求出△ DBE和厶ABC相似,根据相似三角形面积的比等于相似比的平方求出△ ABC的面积,然后表示出厶ACD的面积,再求出比值即可.解答:解:T S^BDE : S A CDE=1 : 4,•••设厶BDE的面积为玄,则厶CDE的面积为4a, ••• △ BDE和厶CDE的点D到BC的距离相等,1 =1::4L-=11 -si•/ DE // AC,••• △ DBE ABC,•S A DBE : S A ABC=1 : 25,•-S A ACD =25a — a _4a=20a,•- S A BDE : S A ACD=a:20a=1: 20.故选C.点评:本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方用△ BDE的面积表示出△ ABC的面积是解题的关键.11. (3分)(2014?莱芜)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A . △ CDF的周长等于AD+CDB . FC平分/ BFDC . AC2+BF2=4CD2D . DE2=EF?CE考点:正多边形和圆.分析:首先由正五边形的性质可得AB=BC=CD=DE=AE ,BA // CE,AD // BC,AC // DE,AC=AD=CE,根据有一组邻边相等的平行四边形是菱形即可证得四边形ABCF为菱形,得CF=AF,即厶CDF的周长等于AD+CD,由菱形的性质和勾股定理得出AC2+BF2=4CD2,可证明△ CDEDFE,即可得出DE2=EF?CE .解答:解:•••五边形ABCDE是正五边形,• AB=BC=CD=DE=AE ,BA // CE,AD // BC,AC // DE,AC=AD=CE,•四边形ABCF是菱形,••• CF=AF ,••• △ CDF 的周长等于CF+DF+CD ,即厶CDF的周长等于AD+CD ,故A说法正确;B. 1: 18由勾股定理得OB2+OC2=BC2,2 2 2 2 2 2 2• AC +BF = (20C) + (2OB ) =40C +40B =4BC ,• AC2+BF2=4CD2.故C说法正确;由正五边形的性质得,△ ADE也△ CDE ,•/ DCE= / EDF ,•△ CDEDFE ,•二—…I =1,2•DE2=EF?CE,故C说法正确;点评:本题考查了正五边形的性质,全等三角形的判定,综合考察的知识点较多,难度中等,解答本题注意已经证明的结论,可以直接拿来使用.12. (3分)(2014?莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:2 2①abc> 0;②2a- b v 0;③4a-2b+c v0;④(a+c) < b其中正确的个数有考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线开口方向得a< 0,由抛物线对称轴在y轴的左侧得a、b同号,即b< 0,由抛物线与y轴的交点在x轴上方得c> 0,所以abc> 0;根据抛物线对称轴的位置得到- 1 <- — < 0,则根据不等式性质即可得2a到2a- b<0;由于x= - 2时,对应的函数值小于0,则4a- 2b+c< 0;同样当x= - 1时,a- b+c>0, x=1 时,a+b+c< 0,则(a- b+c)(a+b+c)< 0,利用平方差公式展开得到(a+c)2- b2< 0,即(a+c)2< b2.解答:解:•••抛物线开口向下,••• av 0,•/抛物线的对称轴在y轴的左侧,•- x= ——v 0,• b v 0,•••抛物线与y轴的交点在x轴上方,• c> 0,• abc>0,所以①正确;•/ - i v-丄v0,2a• 2a- b v 0,所以②正确;•••当x= - 2 时,y v 0,• 4a- 2b+c v 0,所以③ 正确;•••当x= - 1 时,y> 0,• a- b+c>0,■/ 当x=1 时,y v 0,• a+b+c v 0,•(a- b+c) (a+b+c) v 0,即(a+c- b) (a+c+b)v 0,•(a+c) 2- b2v 0,所以④正确.故选D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c (a用)的图象为抛物线,当a> 0,抛物线开口向上;对称轴为直线x=-上;抛物线与y轴的交点坐标为(0, c);当b2- 4ac>0,抛物线与x轴有2a两个交点;当b2- 4ac=0,抛物线与x轴有一个交点;当b2- 4ac v 0,抛物线与x轴没有交点.二、填空题(本题包括5小题,每小题4分,共20分)3 213. (4 分)(2014?莱芜)分解因式:a - 4ab = a (a+2b) (a- 2b) .考点:提公因式法与公式法的综合运用.分析:观察原式a3-4ab2,找到公因式a,提出公因式后发现a2- 4b2符合平方差公式的形式,再利用平方差公式继续分解因式.解答:解:a3- 4ab2=a (a2- 4b2)=a (a+2b) (a- 2b).故答案为:a (a+2b) (a- 2b).点评:本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.14. (4 分) (2014?莱芜)计算:|3-2亦|+ (兀一2014 ) 7=一^怎_.考点:实数的运算;零指数幕;负整数指数幕.分析:本题涉及零指数幕、绝对值、负指数幕等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:2=2 :■- 3+1+2 =2 :;. 故答案为2 :点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是掌握零指数幕、 绝对值、负指数幕等考点的运算.15. (4分)(2014?莱芜)若关于x 的方程x 2+ (k - 2) x+k 2=0的两根互为倒数,则 k= - 1 • 考点:根与系数的关系.分析:分析:根据已知和根与系数的关系X 1x 2=—得出k 2=1,求出k 的值,再根据原方程有两个实数根,求出符所以一次函数解析式为 y=x - 2. 故答案为y=x - 2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.解答: k 的值.解:I X 1x 2=k 2,两根互为倒数, ••• k =1, 解得k=1或-1;•••方程有两个实数根, △> 0, •当k=1时,△< 0,舍去, 故k 的值为-1.点评:本题考查了根与系数的关系,根据 X 1, X 2是关于x 的一元二次方程ax 2+bx+c=0 (a 老,a , b , 两个实数根,则 X 1+x 2= - —, x 1x 2=^进行求解.c 为常数)的16. (4分)(2014?莱芜)已知一次函数 y=ax+b 与反比例函数的图象相交于 A (4, 2)、B (- 2, 一次函数的表达式为 y=x - 2 .考点:反比例函数与一次函数的交点问题. 专题:计算题.分析:先把A 点坐标代入尸上中求出k ,得到反比例函数解析式为 y 昌,再利用反比例函数解析式确定 然后利用待定系数法求一次函数解析式.解答:解:把A (4, 2)代入 尸上得k=4X2=8 ,I所以反比例函数解析式为沪丄,把 B (- 2, m )代入 y=—得-2m=8,解得 m= - 4, m )两点,则 B 定坐标,解得把 A (4, 2)、B (- 2,17. (4分)(2014?莱芜)如图在坐标系中放置一菱形OABC,已知/ ABC=60 ° OA=1 .先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°连续翻转2014次,点B的落点依次为B i,B2,B3,…,则B2014的坐标为(1342,考点:规律型:点的坐标;等边三角形的判定与性质;菱形的性质.专题:规律型.分析:连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转 6 次,图形向右平移4.由于2014=335 >6+4,因此点B4向右平移1340 (即335总)即可到达点B2014,根据点B4的坐标就可求出点B2014的坐标.解答:解:连接AC,如图所示.•/四边形OABC是菱形,••• OA=AB=BC=OC .•/ / ABC=90 °•△ ABC是等边三角形.• AC=AB .• AC=OA .•/ OA=1 ,• AC=1 .画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.•/ 2014=335 >6+4,•点B4向右平移1340 (即335 >)到点B2014.•/ B4的坐标为(2, 0),• B2014 的坐标为(2+1340 , 0),点评:本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现每翻转6次,图形向右平移4”是解决本题的关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)4 已一5 1 □18. (6分)(2014?莱芜)先化简,再求值:(a+1 --------- )亡(---------- 一------- ),其中a=- 1.□ _1 a ~ 1 J 一乂考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用冋分母分式的减法法则计算,冋时利用除法法则变形,约分得到最简结果,将a 的值代入计算即可求出值.解答:解:原式=-1; I ・-) --4十 ■ 」、|a _ 1 a (a _ 1)_ (且一 2 )(且-1) a - 1 ? a-2=a (a - 2),当 a= - 1 时,原式=-1 x (- 3) =3.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19. ( 8分)(2014?莱芜)在某市开展的 读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问 题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解(1) 本次抽样调查的样本容量是多少? (2) 请将条形统计图补充完整. (3) 在扇形统计图中,计算出日人均阅读时间在 1〜1.5小时对应的圆心角度数. (4) 根据本次抽样调查,试估计该市 12000名初二学生中日人均阅读时间在0.5〜1.5小时的多少人.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据第一组的人数是 30,占20%,即可求得总数,即样本容量;(2)禾U 用总数减去另外两段的人数,即可求得 0.5〜1小时的人数,从而作出直方图;(3) 利用360。
2014山东济南中考数学解析
2014年山东省济南市中考试题数 学(满分120分,考试时间120分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014山东济南,1,3分)4的算术平方根是A. 2B. -2C. ±2D. 16【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】A【考点解剖】本题考查了如何求一个数的算术平方根,解题的关键是准确的掌握算术平方根的概念.【解题思路】根据算术平方根的概念求解即可;【解答过程】解:∵22=4,故选择A .【关键词】算术平方根2. (2014山东济南,2,3分)如图,点O 在直线AB 上,若∠1=40°,则∠2的度数是A. 50°B. 60°C. 140°D. 150°【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:A OB 12 2题图【答案】C【考点解剖】本题考查了平角的概念,解题的关键是准确掌握平角的定义.【解题思路】根据平角的定义,用180度减去∠1的度数即可得∠2的度数.【解答过程】解:180°-∠1=180°-40°=140°.故选C.【关键词】补角的定义.3. (2014山东济南,3,3分)下列运算中,结果是a 5的是A. a 2·a 3B. a 10÷a 2C. (a 2)3D. (-a )5【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】A【考点解剖】本题考查了幂的运算,解题的关键是准确幂的相关运算法则.【解题思路】先判断各个选项适用于那个幂的运算法则.【解答过程】A :a 2·a 3=235a a +=;B :a 10÷a 2=1028a a -=;C :(a 2)3=236a a ⨯=;D :(-a )5=555(1)a a -⋅=-;故选A.【关键词】幂的乘方;积的乘方;4. (2014山东济南,4,3分)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的的发射总质量约3700千克,3700用科学记数法表示为A. 3.7×102B. 3.7×103C. 37×102D. 0.37×104【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】B【考点解剖】本题考查用科学记数法表示一个数,掌握将一个数表示成科学记数法的规律是关键.【解题思路】用科学记数法表示一个数时一般要分为两个步骤:第一步确定乘号前面的数,第二步确定10的指数.3【关键词】科学记数法.5. (2014山东济南,5,3分)下列图案中既是轴对称图形又是中心对称图形的是【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】D【考点解剖】本题考查了轴对称图形和中心对称图形的识别,解题的关键是准确掌握轴对称图形和中心对称图形的定义.【解题思路】先判断哪些图形是轴对称图形,再判断哪些图形是中心对称图形即可作出正确判断.【解答过程】A 是轴对称图形;B 是中心对称图形;C 既不是轴对称图形也不是中心对称图形;D 既是轴对称图形也是中心对称图形.故选D【关键词】轴对称图形;中心对称图形.6. (2014山东济南,6,3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是A. 主视图的面积为5B. 左视图的面积为3C. 俯视图的面积为3D. 三种视图的面积都是4【答案】【试题解析】【难度】难、中、易【知识点标签】1级:6题图3级:【答案】B【考点解剖】本题考查了三视图的识别和简单图形面积的计算,解题的关键是可以先正确画出该几何体的三种视图.【解题思路】先判断该几何体的主视图、左视图和俯视图有几个小正方形组成.【解答过程】该几何体的主视图由4个小正方形组成,左视图由3个小正方形组成,俯视图由4个小正方形组成,故选B.【关键词】三视图;面积.7. (2014山东济南,7,3分)化简211m m m m --÷的结果是 A. m B. 1m C. m -1 D. 11m - 【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】A【考点解剖】本题考查了分式的除法,解题关键是正确掌握分式的除法法则.【解题思路】根据分式除法法则先把除法转化为乘法,211m m m m --÷=211m m m m -⨯-. 【解答过程】211m m m m --÷=211m m m m m -⨯=-,故选A. 【关键词】分式的除法.8. (2014山东济南,8,3分)下列命题中,真命题是A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:【考点解剖】本题考查了矩形、平行四边形、菱形、等腰梯形的判定,解题关键是准确掌握相关判定定理.【解题思路】根据相关的判定定理逐一进行判断即可.【解答过程】A :两对角线相等的平行四边形才是矩形;C :两对角线互相垂直的平行四边形四边形才是菱形:D :两对角线相等的梯形才是等腰梯形。
【精校】2014年山东省莱芜市中考真题数学
2014年山东省莱芜市中考真题数学一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)下列四个实数中,是无理数的为( )A.0B.-3C.D.解析:A、0是整数,是有理数,选项错误;B、-3是整数,是有理数,选项错误;C、=2是无理数正确;D、是无限循环小数,是有理数,选项错误.答案:C.2.(3分)下面计算正确的是( )A. 3a-2a=1B. 3a2+2a=5a3C. (2ab)3=6a3b3D. -a4·a4=-a8解析:A、3a-2a=a,原式计算错误,故本选项错误;B、3a2和2a不是同类项,不能合并,故本选项错误;C、(2ab)3=8a3b3,原式计算错误,故本选项错误;D、-a4·a4=-a8,计算正确,故本选项正确.答案:D.3.(3分)2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为( )A. 15×105B. 1.5×106C. 1.5×107D. 0.15×108解析:将1500万用科学记数法表示为:1.5×107.答案:C.4.(3分)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是( )A.B.C.D.解析:从上面可看到从左往右有三个正方形,答案:A.5.(3分)对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表:则这些学生年龄的众数和中位数分别是( )A. 17,15.5B. 17,16C. 15,15.5D. 16,16解析:17出现的次数最多,17是众数.第15和第16个数分别是15、16,所以中位数为16.5.答案:A.6.(3分)若一个正n边形的每个内角为156°,则这个正n边形的边数是( )A. 13B. 14C. 15D. 16解析:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°-156°=24°,∴这个多边形的边数为:360°÷24°=15,答案:C.7.(3分)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.解析:由题意得,=.答案:B.8.(3分)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为( )A. πB. 2πC.D. 4π解析:∵S阴影=S扇形ABA′+S半圆-S半圆=S扇形ABA′==2π,答案:B.9.(3分)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是( )A. RB.C.D.解析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=R. 由勾股定理得到圆锥的高为=,答案:D.10.(3分)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=( )A. 1:16B.1:18C. 1:20D. 1:24解析:∵S△BDE:S△CDE=1:4,∴设△BDE的面积为a,则△CDE的面积为4a,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE:S△ABC=1:25,∴S△ACD=25a-a-4a=20a,∴S△BDE:S△ACD=a:20a=1:20.答案:C.11.(3分)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是( )A. △CDF的周长等于AD+CDB. FC平分∠BFDC. AC2+BF2=4CD2D. DE2=EF·CE解析:∵五边形ABCDE是正五边形,∴AB=BC=CD=DE=AE,BA∥CE,AD∥BC,AC∥DE,AC=AD=CE,∴四边形ABCF是菱形,∴CF=AF,∴△CDF的周长等于CF+DF+CD,即△CDF的周长等于AD+CD,故A说法正确;∵四边形ABCF是菱形,∴AC⊥BF,设AC与BF交于点O,由勾股定理得OB2+OC2=BC2,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,∴AC2+BF2=4CD2.故C说法正确;由正五边形的性质得,△ADE≌△CDE,∴∠DCE=∠EDF,∴△CDE∽△DFE,∴=,∴DE2=EF·CE,故C说法正确;答案:B.12.(3分)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2其中正确的个数有( )A. 1B. 2C. 3D. 4解析:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的左侧,∴x=-<0,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵-1<-<0,∴2a-b<0,所以②正确;∵当x=-2时,y<0,∴4a-2b+c<0,所以③正确;∵当x=-1时,y>0,∴a-b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a-b+c)(a+b+c)<0,即(a+c-b)(a+c+b)<0,∴(a+c)2-b2<0,所以④正确.答案:D.二、填空题(本题包括5小题,每小题4分,共20分)13.(4分)分解因式:a3-4ab2= .解析:a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).答案:a(a+2b)(a-2b).14.(4分)计算:= .解析:原式=2-3+1+=2-3+1+=2-3+1+2=2.答案:2.15.(4分)若关于x的方程x2+(k-2)x+k2=0的两根互为倒数,则k= .解析:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或-1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,答案:-1.16.(4分)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(-2,m)两点,则一次函数的表达式为.解析:把A(4,2)代入得k=4×2=8,所以反比例函数解析式为y=,把B(-2,m)代入y=得-2m=8,解得m=-4,把A(4,2)、B(-2,-4)代入y=ax+b得,解得,所以一次函数解析式为y=x-2.[来源:学,科,网Z,X,X,K]答案:y=x-2.17.(4分)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.解析:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=90°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2014=335×6+4,∴点B4向右平移1340(即335×4)到点B2014.∵B4的坐标为(2,0),∴B2014的坐标为(2+1340,0),∴B2014的坐标为(1342,0).三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)18.(6分)先化简,再求值:,其中a=-1.解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.答案:原式=÷=·=a(a-2),当a=-1时,原式=-1×(-3)=3.19.(8分)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.解析:(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.答案:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150-30-45=75.;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=6000(人).20.(9分)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)解析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DC-BE即可求解.答案:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB·sin62°=25×0.88=22米,BE=A·cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DC-BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.21.(9分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.解析:(1)根据旋转可得∠BAE=∠CAD,从而SAS证明△ACD≌△ABE,得出答案BE=CD;(2)由AD⊥BC,SAS可得△ACD≌△ABE≌△ABD,得出BE=BD=CD,∠EBF=∠DBF,再由EF∥BC,∠DBF=∠EFB,从而得出∠EBF=∠EFB,则EB=EF,证明得出四边形BDFE为菱形.答案:(1)∵△ABC是等腰三角形,顶角∠BAC=α(α<60°),线段AD绕点A顺时针旋转α到AE,∴AB=AC,∴∠BAE=∠CAD,在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴BE=CD;(2)∵AD⊥BC,∴BD=CD,∴BE=BD=CD,∠BAD=∠CAD,∴∠BAE=∠BAD,在△ABD和△ABE中,,∴△ABD≌△ABE(SAS),∴∠EBF=∠DBF,∵EF∥BC,∴∠DBF=∠EFB,∴∠EBF=∠EFB,∴EB=EF,∴BD=BE=EF=FD,∴四边形BDFE为菱形.22.(10分)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?解析:(1)设平均每年投资增长的百分率是x.根据2013年投资1000万元,得出2014年投资1000(1+x)万元,2015年投资1000(1+x)2万元,而2015年投资1210万元.据此列方程求解;(2)设2015年河道治污面积为a平方米,园林绿化面积为平方米,根据2015年河道治污及园林绿化总面积不少于35000平方米及河道治污费用不少于园林绿化费用的4倍列出不等式组,解不等式组即可.答案:(1)设平均每年投资增长的百分率是x.由题意得1000(1+x)2=1210,解得x1=0.1,x2=-2.1(不合题意舍去).答:平均每年投资增长的百分率为10%;(2)设2015年河道治污面积为a平方米,园林绿化面积为平方米,由题意,得,由①得a≤25500,由②得a≥24200,∴24200≤a≤25500,∴968万≤400a≤1020万,∴190万≤1210万-400a≤242万,答:园林绿化的费用应在190万~242万的范围内.23.(10分)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF·EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.解析:(1)连结OC、OE,OE交AB于H,如图1,由E是弧AB的中点,根据垂径定理的推论得到OE⊥AB,则∠HEF+∠HFE=90°,由对顶相等得∠HFE=∠CFD,则∠HEF+∠CFD=90°,再由DC=DF得∠CFD=∠DCF,加上∠OCE=∠O EC,所以∠OCE+∠DCE=∠HEF+∠CFD=90°,于是根据切线的判定定理得直线DC与⊙O相切;(2)由弧AE=弧BE,根据圆周角定理得到∠ABE=∠BCE,加上∠FEB=∠BEC,于是可判断△EBF∽△ECB,利用相似比得到EF·EC=BE2=(r)2=r2;(3)如图2,连结OA,由弧AE=弧BE得AE=BE=r,设OH=x,则HE=r-x,根据勾股定理,在Rt△OAH中有AH2+x2=r2;在Rt△EAH中由AH2+(r-x)2=(r)2,利用等式的性质得x2-(r-x)2=r2-(r)2,即得x=r,则HE=r-r=r,在Rt△OAH中,根据勾股定理计算出AH=,由OE⊥AB得AH=BH,而F是AB的四等分点,所以HF=AH=,于是在Rt△EFH中可计算出EF=r,然后利用(2)中的结论可计算出EC.答案:(1)连结OC、OE,OE交AB于H,如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)连结BC,∵E是弧AB的中点,∴弧AE=弧BE,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴EF:BE=BE:EC,∴EF·EC=BE2=(r)2=r2;(3)如图2,连结OA,∵弧AE=弧BE,∴AE=BE=r,设OH=x,则HE=r-x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r-x)2=(r)2,∴x2-(r-x)2=r2-(r)2,即得x=r,∴HE=r-r=r,在Rt△OAH中,AH===,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===r,∵EF·EC=r2,∴r·EC=r2,∴EC=r.24.(12分)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4-x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC 与△OBD重叠部分的面积记为S,试求S的最大值.解析:(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.设点M的横坐标为x,则求出MN=|x2-4x|;解方程|x2-4x|=3,求出x的值,即点M 横坐标的值;(3)设水平方向的平移距离为t(0≤t<2),利用平移性质求出S的表达式:S=-(t-1)2+;当t=1时,s有最大值为.答案:(1)由题意,可得C(1,3),D(3,1).∵抛物线过原点,∴设抛物线的解析式为:y=ax2+bx.∴,解得,∴抛物线的表达式为:y=-x2+x.(2)存在.设直线OD解析式为y=kx,将D(3,1)代入求得k=,∴直线OD解析式为y=x.设点M的横坐标为x,则M(x,x),N(x,-x2+x),∴MN=|y M-y N|=|x-(-x2+x)|=|x2-4x|.由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3. ∴|x2-4x|=3.若x2-4x=3,整理得:4x2-12x-9=0,解得:x=或x=;若x2-4x=-3,整理得:4x2-12x+9=0,解得:x=.∴存在满足条件的点M,点M的横坐标为:或或.(3)∵C(1,3),D(3,1)∴易得直线OC的解析式为y=3x,直线OD的解析式为y=x.如图所示,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.设水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t),Q(1+t,+t),C′(1+t,3-t).设直线O′C′的解析式为y=3x+b,将C′(1+t,3-t)代入得:b=-4t,∴直线O′C′的解析式为y=3x-4t.∴E(t,0).联立y=3x-4t与y=x,解得x=t,∴P(t,t).过点P作PG⊥x轴于点G,则PG=t.∴S=S△OFQ-S△OEP=OF·FQ-OE·PG=(1+t)(+t)-·t·t=-(t-1)2+当t=1时,S有最大值为.∴S的最大值为.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
莱芜2014-2015学年八年级上期中数学试卷(五四学制)含解析
2014-2015 学年山东省莱芜实验中学八年级(上)期中数学试卷(五四学制)一、选择题(每题 3 分,共 36 分)1.下列各式由左边到右边的变形中,属于分解因式的是()A. a( x+y) =ax+ay B. x2﹣ 4x+4=x( x﹣ 4) +4C. 10x 2﹣ 5x=5x ( 2x﹣ 1)D. x2﹣16+6x=(x+4)( x﹣ 4) +6x2.要使分式有意义,则x 的取值范围是()A. x≠ 1 B. x> 1 C . x< 1 D . x≠﹣ 13.已知一组数据 12, 5, 9,5, 14,下列说法不正确的是()A.中位数是 9B.众数是 5 C.极差是 9 D.平均数是 84.下列多项式中,能用公式法进行因式分解的是()A. x2﹣2xy+4y2B.C. D . x2+4xy ﹣4y25.方程﹣3=有增根,则增根是()A. x=6 B. x=5 C. x=3D. x=16.为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的 7 名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为 1.6m.根据各班选出的学生,测量其身高,计算得到的数据如下表所示,学校应选择()A.九( 1)班B.九( 2)班C.九( 3)班D.九( 4)班班级学生平均身高(单位:m)标准差九( 1)班 1.570.3九( 2)班 1.570.7九( 3)班 1.60.3九( 4)班 1.60.77.分解因式 a3﹣ a 的结果是()A. a( a2﹣ 1)B. a( a﹣ 1)2C. a( a+1)( a﹣ 1)D.( a2+a)(a﹣ 1)8.若分式的值为0,则x的值为()A.± 2 B. 2C.﹣ 2D.09. A、 B 两地相距120km,一辆汽车以每小时的速度返回,则这辆汽车往返一次的平均速度是(A. 50B. 60C. 40D. 4860km的速度由 A 地到) km/h.B 地,又以每小时40km10.如图,长与宽分别为为()a、b 的长方形,它的周长为14,面积为10,则a3 b+2a2b2+ab3的值A. 2560 B . 490 C. 70D. 4911.某班七个合作学习小组人数如下:4、5、5、x、 6、 7、 8,已知这组数据的平均数是 6 ,则这组数据的中位数是()A.5B. 5.5 C.6D. 712.某市为解决部分市民冬季集中取暖问题需铺设一条长3000 米的管道,为尽量减少施工对交通造成的影响,实施施工时“⋯”,设实际每天铺设管道x 米,则可得方程,根据此情景,题中用“⋯”表示的缺失的条件应补为()A.每天比原计划多铺设10 米,结果延期15 天才完成B.每天比原计划少铺设10 米,结果延期15 天才完成C.每天比原计划多铺设10 米,结果提前15 天才完成D.每天比原计划少铺设10 米,结果提前15 天才完成二、填空题(每小题 4 分,共20 分)13.化简14.已知关于15.如图,在的结果是.x 的方程的解是负数,则n 的取值范围为3× 3 的正方形网格中标出了∠ 1 和∠ 2.则∠ 1+∠ 2=..16.已知(2x﹣ 21)( 3x﹣ 7)﹣(3x﹣7)( x﹣13)可分解因式为(3x+a)( x+b),其中a、b 均为整数,则a+3b=.17.跳远运动员李刚对训练效果进行测试, 6 次跳远的成绩如下:7.6 ,7.8 ,7.7 ,7.8 , 8.0 ,7.9 (单位: m).这六次成绩的平均数为7.8 ,方差为,如果李刚再跳两次,成绩分别为7.6 , 8.0 ,则李刚这次跳远成绩的方差(填“变大”、“不变”或“变小” ).三、解答题(共64 分)18.分解因式2(1) mx ﹣ 8mx+16m(2) 9( m+n)2﹣( m﹣ n)2.19.解下列分式方程(1)+=1(2)=﹣2.20.( 1)化简:﹣x+1(2)先化简(﹣)÷,再选取一个即使原式有意义,又是你喜欢的数代入求值.21.如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移 5 个单位长度,并画出平移后的图形.(2)写出 A、 B、 C三点平移后的对应点A′、 B′、 C′的坐标.22.甲、乙两人在相同条件下各射靶10 次,每次射靶的成绩情况如图所示:(1)请填写下表:平均数方差中位数命中9环以上(包括9 环)次数甲7乙 5.4(2)请你就下列两个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和命中9 环(包括9 环)以上次数相结合看(分析谁的潜能更大).23.某文化用品商店用 1 000 元购进一批“晨光”套尺,很快销售一空;商店又用 1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100 套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套 4 元的价格将这两批套尺全部售出,可以盈利多少元?1 所示,用若干块这样的硬纸片拼成一个新的24.( 1)有若干块长方形和正方形硬纸片如图长方形,如图 2.①用两种不同的方法,计算图 2 中长方形的面积;.②由此,你可以得出的一个等式为:(2)有若干块长方形和正方形硬纸片如图 3 所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出 2a2+5ab+2b2因式分解的结果,画出你的拼图.2014-2015 学年山东省莱芜实验中学八年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每题 3 分,共 36 分)1.下列各式由左边到右边的变形中,属于分解因式的是()A. a( x+y) =ax+ay B. x2﹣ 4x+4=x( x﹣ 4) +4C. 10x 2﹣ 5x=5x ( 2x﹣ 1)D. x2﹣16+6x=(x+4)( x﹣ 4) +6x考点:因式分解的意义.分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解答:解:A、是多项式乘法,故选项错误;22B、右边不是积的形式, x ﹣ 4x+4=( x﹣ 2),故选项错误;C、提公因式法,故选项正确;D、右边不是积的形式,故选项错误.故选: C.点评:此题考查了因式分解的意义;这类问题的关键在于能否正确应用分解因式的定义来判断.2.要使分式有意义,则x 的取值范围是()A. x≠ 1 B. x> 1 C . x< 1 D . x≠﹣ 1考点:分式有意义的条件.分析:根据分式有意义的条件是分母不等于零,可得出x 的取值范围.解答:解:∵分式有意义,∴x﹣ 1≠ 0,解得: x≠1.故选 A.点评:本题考查了分式有意义的条件,属于基础题,注意掌握分式有意义分母不为零.3.已知一组数据 12, 5, 9,5, 14,下列说法不正确的是()A.中位数是 9B.众数是 5 C.极差是 9 D.平均数是 8考点:中位数;加权平均数;众数;极差.分析:根据中位数、众数、极差、平均数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:5, 5, 9, 12, 14,则中位数为 9,众数为 5,极差为: 14﹣ 5=9,平均数为:=9,故D 选项错误.故选 D.点评:本题考查了中位数、众数、极差、平均数的知识,掌握各知识点的概念是解答本题的关键.4.下列多项式中,能用公式法进行因式分解的是()A. x2﹣2xy+4y 2B.C. D . x2+4xy ﹣ 4y2考点:因式分解 - 运用公式法.分析:直接利用公式法分解因式判断得出即可.22解答:解:A、x﹣2xy+4y,无法分解因式,故此选项错误;B、﹣x2+ y2,可以运用平方差公式分解因式即可,故此选项正确;C、无法分解因式,故此选项错误;D、无法分解因式,故此选项错误;故选: B.点评:此题主要考查了公式法分解因式,正确掌握乘法公式的基本形式是解题关键.5.方程﹣3=有增根,则增根是()A. x=6 B. x=5 C. x=3D. x=1考点:分式方程的增根.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母( x﹣ 5) =0,得到 x=5 就是答案.解答:解:∵方程﹣3=有增根,∴x﹣ 5=0,解得 x=5,故选 B.点评:本题考查了分式方程的增根,让最简公分母为0 确定增根是解题的关键.6.为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的 7 名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为 1.6m.根据各班选出的学生,测量其身高,计算得到的数据如下表所示,学校应选择()A.九( 1)班B.九( 2)班C.九( 3)班D.九( 4)班班级学生平均身高(单位:m)标准差九( 1)班 1.570.3九( 2)班 1.570.7九( 3)班 1.60.3九( 4)班 1.60.7考点:方差;算术平均数;标准差.分析:根据标准差的意义,标准差越小数据越稳定,故比较标准差后可以选出身高比较整齐的班级,再根据平均身高的要求即可作出判断.解答:解:由于选的是学生身高较为整齐的,故要选取标准差小的,应从九(1)和九( 3)里面选,再根据平均身高约为 1.6m 可知只有九( 3)符合要求,故选:C.点评:此题主要考查了差的意义.标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标.标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.分解因式3﹣ a 的结果是()aA. a( a2﹣ 1)B. a( a﹣ 1)2C. a( a+1)( a﹣ 1)D.( a2+a)(a﹣ 1)考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,再利用平方差公式进行二次分解即可.解答:解: a3﹣ a=a( a2﹣ 1) =a( a+1)( a﹣ 1),故选: C.点评:此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.若分式的值为0,则x 的值为()A.± 2 B. 2C.﹣ 2D.0考点:分式的值为零的条件.专题:计算题.分析:分式的值为0 的条件是:( 1)分子 =0;( 2)分母≠ 0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:根据题意得x2﹣ 4=0 且 x+2≠ 0,解得 x=2.故选 B.点评:由于该类型的题易忽略分母不为0 这个条件,所以常以这个知识点来命题.9. A、 B 两地相距 120km,一辆汽车以每小时60km的速度由 A 地到 B 地,又以每小时 40km 的速度返回,则这辆汽车往返一次的平均速度是() km/h.A. 50 B. 60C. 40D. 48考点:加权平均数.分析:平均速度的计算方法是总路程除以往返一次的总时间.解答:解:这辆汽车往返一次的平均速度====48( km/h).故选 D.点评:本题考查的是加权平均数的求法.本题易出现的错误是求 60,40 这两个数的平均数,对平均数的理解不正确.10.如图,长与宽分别为a、b 的长方形,它的周长为14,面积为10,则a3 b+2a2b2+ab3的值为()A. 2560 B . 490C. 70D. 49考点:因式分解的应用.分析:利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab( a+ b)2解答:解:∵长与宽分别为a、 b 的长方形,它的周长为14,面积为10,∴a b=10, a+b=7,∴a3b+2a2b2+ab3=ab( a+b)2=10× 72=490.故选: B.点评:此题考查了因式分解法的应用,熟记公式结构正确将原式分解因式是解题的关键.11.某班七个合作学习小组人数如下:4、5、5、 x、 6、7、 8,已知这组数据的平均数是6,则这组数据的中位数是()A.5B. 5.5 C.6D. 7考点:中位数;算术平均数.分析:根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.解答:解:∵ 4、 5、 5、 x、6、 7、 8 的平均数是 6,∴( 4+5+5+x+6+7+8)÷ 7=6,解得: x=7,将这组数据从小到大排列为4、5、 5、 6、 7、 7、 8,最中间的数是 6;则这组数据的中位数是6;故选: C.点评:此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).12.某市为解决部分市民冬季集中取暖问题需铺设一条长 3000 米的管道,为尽量减少施工对交通造成的影响,实施施工时“⋯” ,设实际每天铺设管道 x 米,则可得方程,根据此情景,题中用“⋯”表示的缺失的条件应补为()A.每天比原计划多铺设10 米,结果延期15 天才完成B.每天比原计划少铺设10 米,结果延期15 天才完成C.每天比原计划多铺设10 米,结果提前15 天才完成D.每天比原计划少铺设10 米,结果提前15 天才完成考点:分式方程的应用.分析:工作时间=工作总量÷工作效率.那么3000÷ x 表示实际的工作时间,那么3000÷(x﹣ 10)就表示原计划的工作时间,15 就代表现在比原计划少的时间.解答:解:设实际每天铺设管道x 米,原计划每天铺设管道(x﹣ 10)米,方程,则表示实际用的时间﹣原计划用的时间=15 天,那么就说明实际每天比原计划多铺设10 米,结果提前15 天完成任务.故选 C.点评:本题主要考查了根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.二、填空题(每小题 4 分,共 20 分)13.化简的结果是m.考点:分式的混合运算.专题:计算题.分析:本题需先把( m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.解答:解:=( m+1)﹣ 1= m故答案为: m.点评:本题主要考查了分式的混合运算,在解题时要把(m+1)分别进行相乘是解题的关键.14.已知关于x 的方程的解是负数,则n 的取值范围为n< 2 且 n≠.考点:分式方程的解.分析:求出分式方程的解x=n﹣ 2,得出 n﹣ 2< 0,求出 n 的范围,根据分式方程得出n﹣ 2≠﹣,求出n,即可得出答案.解答:解:,解方程得: x=n﹣ 2,∵关于 x 的方程的解是负数,∴n﹣ 2< 0,解得: n< 2,又∵原方程有意义的条件为:x≠﹣,∴n﹣ 2≠﹣,即 n≠ .故答案为: n< 2 且 n≠ .点评:本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2< 0 和 n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.15.如图,在3× 3 的正方形网格中标出了∠ 1 和∠ 2.则∠ 1+∠ 2= 45°.考点:特殊角的三角函数值.专题:网格型.分析:根据图形,先将角进行转化,再根据勾股定理的逆定理,求得∠ACB=90°,由等腰三角形的性质,推得∠ 1+∠ 2=45°.解答:解:连接 AC, BC.根据勾股定理, AC=BC=,AB=.∵()2+()2=() 2,∴∠ ACB=90°,∠ CAB=45°.∵AD∥ CF,AD=CF,∴四边形 ADFC是平行四边形,∴AC∥ DF,∴∠ 2=∠ DAC(两直线平行,同位角相等),在 Rt △ ABD中,∠1+∠ DAB=90°(直角三角形中的两个锐角互余);又∵∠ DAB=∠ DAC+∠CAB,∴∠ 1+∠ CAB+∠ DAC=90°,∴∠ 1+∠ DAC=45°,∴∠ 1+∠ 2=∠ 1+∠ DAC=45°.故答案为: 45°.点评:本题考查了勾股定理以及勾股定理的逆定理.16.已知( 2x﹣21)( 3x﹣7)﹣( 3x﹣7)( x﹣13)可分解因式为(3x+a)( x+b),其中 a、b 均为整数,则a+3b= ﹣31 .考点:因式分解 - 提公因式法.专题:压轴题.分析:首先提取公因式 3x﹣ 7,再合并同类项即可得到a、b 的值,进而可算出a+3b 的值.解答:解:( 2x﹣ 21)( 3x﹣7)﹣( 3x﹣ 7)( x﹣ 13),=( 3x﹣7)( 2x﹣ 21﹣ x+13),=( 3x﹣7)( x﹣8)=( 3x+a)(x+b),则a=﹣ 7,b=﹣ 8,故a+3b=﹣7﹣ 24=﹣31,故答案为:﹣ 31.点评:此题主要考查了提公因式法分解因式,关键是找准公因式.17.跳远运动员李刚对训练效果进行测试, 6 次跳远的成绩如下:7.6 ,7.8 ,7.7,7.8 , 8.0 ,7.9 (单位: m).这六次成绩的平均数为7.8 ,方差为,如果李刚再跳两次,成绩分别为7.6 , 8.0 ,则李刚这次跳远成绩的方差变大(填“变大” 、“不变”或“变小” ).考点:方差.分析:根据平均数的定义先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.解答:解:∵李刚再跳两次,成绩分别为7.6 ,8.0 ,∴这组数据的平均数是=7.8 ,∴这 8 次跳远成绩的方差是:S2= [2 ×( 7.6 ﹣ 7.8 )2+( 7.8 ﹣ 7.8 )2+( 7.7 ﹣ 7.8 )2 +(7.8 ﹣ 7.8 )2+2×( 8.0﹣7.8 )2+(7.9 ﹣ 7.8 )2]=,∵>,∴方差变大.故答案为:变大.点评:本题考查方差的定义,一般地设n 个数据,x1,x2,⋯ x n的平均数为,则方差 S2= [( x1 222﹣)+(x2﹣)+⋯+(x n﹣)] ,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(共64 分)18.分解因式(1) mx2﹣ 8mx+16m(2) 9( m+n)2﹣( m﹣ n)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式提取公因式后,利用完全平方公式分解即可;(2)原式利用平方差公式分解即可.解答:解:( 1)原式 =m( x﹣4)2;(2)原式 =[3 ( m+n) +( m﹣n) ][3 (m+n)﹣( m﹣ n) ]=4 ( 2m+n)( m+2n).点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.解下列分式方程(1)+=1(2)=﹣2.考点:解分式方程.专题:计算题.分析:( 1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:x(x+2)+3=x2﹣4,22去括号得: x +2x+3=x ﹣ 4,移项合并得: 2x=﹣ 7,解得: x=﹣3.5 ,经检验 x=﹣ 3.5 是分式方程的解;(2)去分母得: 1﹣x=﹣ 1﹣2x+4,移项合并得: x=2,经检验 x=2 是增根,分式方程无解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想” ,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.( 1)化简:﹣x+1(2)先化简(﹣)÷,再选取一个即使原式有意义,又是你喜欢的数代入求值.考点:分式的化简求值.分析:(1)先通分进行计算即可;(2)根据运算顺序,先算括号里面的,再算除法,再取一个使分母不为0 的数代入即可.解答:解:(1)原式=﹣+==;(2)原式 =?=﹣ x﹣ 9,取x=1,原式 =﹣ x﹣9=﹣ 1﹣ 9=﹣ 10.点评:本题考查了分式的化简求值,通分是解题的关键.21.如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移 5 个单位长度,并画出平移后的图形.(2)写出 A、 B、 C三点平移后的对应点A′、 B′、 C′的坐标.考点:利用平移设计图案.专题:作图题.分析:(1)将各能代表图形形状的点向右平移 5 个单位,顺次连接即可;(2)结合坐标系,可得出A′、 B′、 C′的坐标.解答:解:(1)如图所示:.(2)结合坐标系可得:A' (5, 2), B' ( 0, 6), C' ( 1, 0).点评:本题考查了平移作图的知识,解答本题的关键是掌握平移的性质,注意按要求规范作图.22.甲、乙两人在相同条件下各射靶10 次,每次射靶的成绩情况如图所示:(1)请填写下表:平均数方差中位数命中 9 环以上(包括9 环)次数甲7 1.271乙7 5.47.53(2)请你就下列两个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和命中9 环(包括9 环)以上次数相结合看(分析谁的潜能更大).考点:方差;折线统计图;加权平均数.分析:( 1)根据平均数、方差、中位数的概念计算;(2)①从平均数和方差相结合看,方差越小的越成绩越好;②从平均数和命中9 环以上的次数相结合看,中9 环以上的次数越多的成绩越好.解答:解:( 1)通过折线图可知:甲的环数依次是5、6、 6、 7、 7、 7、 7、8、 8、 9,则数据的方差是22×( 7﹣222,[ ( 5﹣ 7) +2×( 6﹣ 7) +47)+2×( 8﹣ 7) +( 9﹣7) ]=1.2中位数是=7,命中 9 环以上(包括9 环)的次数为1;乙的平均数是( 2+4+6+8+7+7+8+9+9+10)=7,中位数是=7.5 ;命中 9 环以上(包括 9环)的次数为3;填表如下:平均数方差中位数命中 9 环以上(包括 9 环)次数甲7 1.271乙7 5.47.53(2)①从平均数和方差相结合看;因为二人的平均数相同,2 2但S 甲< S 乙,故甲的成绩好些;②从平均数和命中9 环以上的次数相结合看;因为二人的平均数相同,甲为 1 次,乙为 3 次,则乙的成绩好些.点评:本题考查平均数、方差、中位数的定义,平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.同时考查了折线统计图.23.某文化用品商店用 1 000 元购进一批“晨光”套尺,很快销售一空;商店又用 1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100 套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套 4 元的价格将这两批套尺全部售出,可以盈利多少元?考点:分式方程的应用.分析:(1)设第一批套尺购进时单价是x 元 / 套,则设第二批套尺购进时单价是x 元/ 套,根据题意可得等量关系:第二批套尺数量﹣第一批套尺数量=100 套,根据等量关系列出方程即可;(2)两批套尺得总数量×4﹣两批套尺的总进价=利润,代入数进行计算即可.解答:解:(1)设第一批套尺购进时单价是x 元 / 套.由题意得:,即,解得: x=2.经检验: x=2 是所列方程的解.答:第一批套尺购进时单价是2元/套;(2)(元).答:商店可以盈利1900 元.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意要检验.24.( 1)有若干块长方形和正方形硬纸片如图1 所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图 2 中长方形的面积;2=( a+1)2.(2)有若干块长方形和正方形硬纸片如图 3 所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出 2a2+5ab+2b2因式分解的结果,画出你的拼图.考点:因式分解的应用.分析:(1)要能根据所给拼图运用不同的计算面积的方法,来推导公式;(2)要能根据等式画出合适的拼图.解答:解:(1)①长方形的面积=a2+2a+1;长方形的面积=( a+1)2;②a2+2a+1=( a+1)2;(2)①如图,可推导出( a+b)2 =a2+2ab+b2;②2a2+5ab+2b2=( 2a+b)( a+2b).点评:本题考查运用正方形或长方形的面积计算推导相关的一些等式;的不同方法得到多项式的因式分解.运用图形的面积计算。
2014山东济南中考数学解析
2014年山东省济南市中考试题数 学(满分120分,考试时间120分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014山东济南,1,3分)4的算术平方根是A. 2B. -2C. ±2D. 16【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】A【考点解剖】本题考查了如何求一个数的算术平方根,解题的关键是准确的掌握算术平方根的概念.【解题思路】根据算术平方根的概念求解即可;【解答过程】解:∵22=4,故选择A .【关键词】算术平方根2. (2014山东济南,2,3分)如图,点O 在直线AB 上,若∠1=40°,则∠2的度数是A. 50°B. 60°C. 140°D. 150°【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:A OB 12 2题图【答案】C【考点解剖】本题考查了平角的概念,解题的关键是准确掌握平角的定义.【解题思路】根据平角的定义,用180度减去∠1的度数即可得∠2的度数.【解答过程】解:180°-∠1=180°-40°=140°.故选C.【关键词】补角的定义.3. (2014山东济南,3,3分)下列运算中,结果是a 5的是A. a 2·a 3B. a 10÷a 2C. (a 2)3D. (-a )5【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】A【考点解剖】本题考查了幂的运算,解题的关键是准确幂的相关运算法则.【解题思路】先判断各个选项适用于那个幂的运算法则.【解答过程】A :a 2·a 3=235a a +=;B :a 10÷a 2=1028a a -=;C :(a 2)3=236a a ⨯=;D :(-a )5=555(1)a a -⋅=-;故选A.【关键词】幂的乘方;积的乘方;4. (2014山东济南,4,3分)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的的发射总质量约3700千克,3700用科学记数法表示为A. 3.7×102B. 3.7×103C. 37×102D. 0.37×104【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】B【考点解剖】本题考查用科学记数法表示一个数,掌握将一个数表示成科学记数法的规律是关键.【解题思路】用科学记数法表示一个数时一般要分为两个步骤:第一步确定乘号前面的数,第二步确定10的指数.【解答过程】解:∵3700的整数位数为4,∴3700=3.7×103,故选B.【关键词】科学记数法.5. (2014山东济南,5,3分)下列图案中既是轴对称图形又是中心对称图形的是【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】D【考点解剖】本题考查了轴对称图形和中心对称图形的识别,解题的关键是准确掌握轴对称图形和中心对称图形的定义.【解题思路】先判断哪些图形是轴对称图形,再判断哪些图形是中心对称图形即可作出正确判断.【解答过程】A是轴对称图形;B是中心对称图形;C既不是轴对称图形也不是中心对称图形;D既是轴对称图形也是中心对称图形.故选D【关键词】轴对称图形;中心对称图形.6. (2014山东济南,6,3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是A. 主视图的面积为5B. 左视图的面积为3C. 俯视图的面积为3D. 三种视图的面积都是4正面6题图【答案】【试题解析】【难度】难、中、易【知识点标签】1级:3级:【答案】B【考点解剖】本题考查了三视图的识别和简单图形面积的计算,解题的关键是可以先正确画出该几何体的三种视图.【解题思路】先判断该几何体的主视图、左视图和俯视图有几个小正方形组成.【解答过程】该几何体的主视图由4个小正方形组成,左视图由3个小正方形组成,俯视图由4个小正方形组成,故选B.【关键词】三视图;面积.7. (2014山东济南,7,3分)化简211m m m m --÷的结果是 A. m B. 1m C. m -1 D. 11m - 【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】A【考点解剖】本题考查了分式的除法,解题关键是正确掌握分式的除法法则.【解题思路】根据分式除法法则先把除法转化为乘法,211m m m m--÷=211m m m m -⨯-. 【解答过程】211m m m m--÷=211m m m m m -⨯=-,故选A. 【关键词】分式的除法.8. (2014山东济南,8,3分)下列命题中,真命题是A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形【答案】【试题解析】【难度】难、中、易【知识点标签】1级:3级:【答案】B【考点解剖】本题考查了矩形、平行四边形、菱形、等腰梯形的判定,解题关键是准确掌握相关判定定理.【解题思路】根据相关的判定定理逐一进行判断即可.【解答过程】A :两对角线相等的平行四边形才是矩形;C :两对角线互相垂直的平行四边形四边形才是菱形:D :两对角线相等的梯形才是等腰梯形。
山东省莱芜市中考数学试卷含答案
绝密★启用前 试卷类型A莱芜市中等学校招生考试数 学 试 题注意事项:1.答卷前考生务必在规定位置将姓名、准考证号等内容填写准确。
2.本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分,共120分。
考试时间为120分钟。
3.请将第Ⅰ卷选择题答案填写在第Ⅱ卷首答案栏内,填在其它位置不得分。
4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷一并收回。
第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项填写在答案栏的相应位置上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分) 1.31-的倒数是A .3-B .31-C .31 D .32.下列计算结果正确的是A .923)(a a =-B .632a a a =⋅ C .22)21(21-=-- D .1)2160(cos 0=-3.在下列四个图案中既是轴对称图形,又是中心对称图形的是C .D .4.4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为A .3.1×106元 B .3.11×104元 C .3.1×104元 D .3.10×105元 5.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a 6.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是10 -1 a b BA (第5题图) (第6题图)A.B.C.D.7.已知反比例函数xy 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大 C .图象在第二、四象限内 D .若x >1,则y >-2 8.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为A .2.5B .5C .10D .159.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的 图象不经过 A .第一象限 B .第二象限 C .第三象限D .第四象限10.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为A .4B .2C . 2D . ±211.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下 列结论不正确...的是 A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米(第9题图)(第12题图)乙甲绝密★启用前试卷类型A莱芜市中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:第II 卷共6页,用钢笔或圆珠笔直接答在本试卷上。
2014年数学中考试题及答案word版
16.在1×2的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,
若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直
角三角形的概率为_______.
17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(+1),第2位同学报(+1),第1位同学报(+1)……这样得到的20个数的积为___________.
C.必有5次正面向上D.不可能有10次正面向上
7.如图3,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG是()
A.以点C为圆心,OD为半径的弧
B.以点C为圆心,DM为半径的弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DM为半径的弧
8.用配方法解方程x2+4x+1=0,配方后的方程是()
2014数学中考复习资料
数学试卷
卷Ⅰ(选择题,共30分)
一、选择题(本大题共12个小题;1~6小题,每小题2分,7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列各数中,为负数的是()
A.0B.-2C.1D.
2.计算(ab)3的结果是()A.ab3B.a3bC.a3b3D.3ab
19.(本小题满分8分)
计算:|-5|-(-3)0+6×(-)+(-1)2.
20.(本小题满分8分)
如图10,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC-CB这两条公路围成等腰梯形ABCD,其中CD∥AB,AB︰AD︰DC=10︰5︰2.
2014年山东省济南市中考数学试卷(真题及答案)
2014年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,共45分)1.(3分)4的算术平方根是()A.2B.﹣2 C.±2 D.162.(3分)如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A.50°B.60°C.140°D.150°3.(3分)下列运算中,结果是a5的是()A.a2•a3B.a10÷a2C.(a2)3D.(﹣a)54.(3分)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A.3.7×102B.3.7×103C.37×102D.0.37×1045.(3分)下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是47.(3分)化简÷的结果是()A.m B.C.m﹣1 D.8.(3分)下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形9.(3分)若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m<310.(3分)如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.E F=DF C.A D=2BF D.B E=2CF11.(3分)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.B.C.D.12.(3分)如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A.(,3)B.(,)C.(2,2)D.(2,4)13.(3分)如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A.2B.C.D.14.(3分)现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)15.(3分)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.t≥﹣1 B.﹣1≤t<3 C.﹣1<t<8 D.3<t<8二、填空题(共6小题,每小题3分,共18分)16.(3分)|﹣7﹣3|=_________.17.(3分)分解因式:x2+2x+1=_________.18.(3分)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为_________.19.(3分)若代数式和的值相等,则x=_________.20.(3分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于_________.21.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为_________.三、解答题(共7小题,共57分)22.(7分)(1)化简:(a+3)(a﹣3)+a(4﹣a)(2)解不等式组:.23.(7分)(1)如图1,四边形ABCD是矩形,点E是边AD的中点,求证:EB=EC.(2)如图2,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,求OA的长.24.(8分)2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?25.(8分)在济南开展“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制不完整的统计图表,如图所示:劳动时间(时)频数(人数)频率0.5 12 0.121 30 0.31.5 x 0.42 18 y合计m 1(1)统计表中的m=_________,x=_________,y=_________.(2)被调查同学劳动时间的中位数是_________时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.26.(9分)如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.27.(9分)如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的第四个顶点分别在l1,l2,l3,l4上,EG过点D 且垂直l1于点E,分别交l2,l4于点F1,G1,EF=DG=1,DF=2.(1)AE=_________,正方形ABCD的边长=_________;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.28.(9分)如图1,抛物线y=﹣x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积S阴影;(2)如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t,试探究:①t为何值时△MAN为等腰三角形;②t为何值时线段PN的长度最小,最小长度是多少.2014年山东省济南市中考数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,共45分)1.(3分)4的算术平方根是()A.2B.﹣2 C.±2 D.16考点:算术平方根.分析:根据乘方运算,可得一个数的算术平方根.解答:解:∵22=4,∴=2,故选:A.点评:本题考查了算术平方根,乘方运算是解题关键.2.(3分)如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A.50°B.60°C.140°D.150°考点:余角和补角.专题:常规题型.分析:根据互补两角之和为180°,求解即可.解答:解:∵∠1=40°,∴∠2=180°﹣∠1=140°.故选:C.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补两角之和为180°.3.(3分)下列运算中,结果是a5的是()A.a2•a3B.a10÷a2C.(a2)3D.(﹣a)5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、a2•a3=a5,故A选项正确;B、a10÷a2=a8,故B选项错误;C、(a2)3=a6,故C选项错误;D、(﹣a)5=﹣a5,故D选项错误.故选:A.点评:此题考查了同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.4.(3分)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A.3.7×102B.3.7×103C.37×102D.0.37×104考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于3700有4位,所以可以确定n=4﹣1=3.解答:解:3 700=3.7×103.故选:B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(3分)下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故A选项错误;B、不是轴对称图形,是中心对称图形.故B选项错误;C、不是轴对称图形,也不是中心对称图形.故C选项错误;D、是轴对称图形,也是中心对称图形.故D选项正确.故选:D.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.6.(3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是4考点:简单组合体的三视图.专题:几何图形问题.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.解答:解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.点评:本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.7.(3分)化简÷的结果是()A.m B.C.m﹣1 D.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=m.故选:A.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.8.(3分)下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形考点:命题与定理.专题:常规题型.分析:根据矩形的判定方法对A进行判断;根据平行四边形的判定方法对B进行判断;根据菱形的判定方法对C 进行判断;根据等腰梯形的定义对D进行判断.解答:解:A、两对角线相等的平行四边形是矩形,故A选项错误;B、两对角线互相平分的四边形是平行四边形,故B选项正确;C、两对角线互相垂直的平行四边形是菱形,故C选项错误;D、两对角线相等的梯形是等腰梯形,故D选项错误.故选:B.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.(3分)若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m<3考点:一次函数图象与系数的关系.分析:直接根据一次函数的性质可得m﹣3>0,解不等式即可确定答案.解答:解:∵一次函数y=(m﹣3)x+5中,y随着x的增大而增大,∴m﹣3>0,解得:m>3.故选:C.点评:本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.10.(3分)如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.E F=DF C.A D=2BF D.B E=2CF考点:平行四边形的性质;全等三角形的判定与性质.分析:首先根据平行四边形的性质可得CD∥AB,再根据平行线的性质可得∠E=∠CDF;首先证明△DCF≌△EBF 可得EF=DF;根据全等可得CF=BF=BC,再利用等量代换可得AD=2BF;根据题意不能证明AD=BE,因此BE不一定等于2CF.解答:解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠E=∠CDF,(故A成立);∵四边形ABCD是平行四边形,∴CD=AB,CD∥BE,∴∠C=∠CBE,∵BE=AB,∴CD=EB,在△CDF和△BEF中,,∴△DCF≌△EBF(AAS),∴EF=DF,(故B成立);∵△DCF≌△EBF,∴CF=BF=BC,∵AD=BC,∴AD=2BF,(故C成立);∵AD≠BE,∴2CF≠BE,(故D不成立);故选:D.点评:此题主要考查了平行四边形的性质,关键是掌握平行四边形对边平行且相等.11.(3分)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与征征和舟舟选到同一社团的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,征征和舟舟选到同一社团的有3种情况,∴征征和舟舟选到同一社团的概率是:=.故选:C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A.(,3)B.(,)C.(2,2)D.(2,4)考点:翻折变换(折叠问题);一次函数的性质.专题:数形结合.分析:作O′M⊥y轴,交y于点M,O′N⊥x轴,交x于点N,由直线y=﹣x+2与x轴、y轴分别交于A、B两点,求出A(0,2),B(2,0)和∠BAO=30°,运用直角三角形求出MB和MO′,再求出点O′的坐标.解答:解:如图,作O′M⊥y轴,交y于点M,O′N⊥x轴,交x于点N,∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,∴A(0,2),B(2,0),∴∠BAO=30°,由折叠的特性得,O′B=OB=2,∠ABO=∠ABO′=60°,∴MB=1,MO′=,∴OM=3,ON=O′M=,∴O′(,3),故选:A.点评:本题主要考查了折叠问题及一次函数问题,解题的关键是运用折叠的特性得出相等的角与线段.13.(3分)如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A.2B.C.D.考点:垂径定理;等边三角形的性质;矩形的性质;解直角三角形.分析:连接BD、OC,根据矩形的性质得∠BCD=90°,再根据圆周角定理得BD为⊙O的直径,则BD=2;由ABC 为等边三角形得∠A=60°,于是利用圆周角定理得到∠BOC=2∠A=120°,易得∠CBD=30°,在Rt△BCD中,根据含30°的直角三角形三边的关系得到CD=BD=1,BC=CD=,然后根据矩形的面积公式求解.解答:解:连结BD、OC,如图,∵四边形BCDE为矩形,∴∠BCD=90°,∴BD为⊙O的直径,∴BD=2,∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,而OB=OC,∴∠CBD=30°,在Rt△BCD中,CD=BD=1,BC=CD=,∴矩形BCDE的面积=BC•CD=.故选:B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理、等边三角形的性质和矩形的性质.14.(3分)现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)考点:规律型:数字的变化类.专题:新定义.分析:根据题意可知,S1中2有2的倍数个,3有3的倍数个,据此即可作出选择.解答:解:A、∵2有3个,∴不可以作为S1,故A选项错误;B、∵2有3个,∴不可以作为S1,故B选项错误;C、3只有1个,∴不可以作为S1,故C选项错误;D、符合定义的一种变换,故D选项正确.故选:D.点评:考查了规律型:数字的变化类,探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.15.(3分)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.t≥﹣1 B.﹣1≤t<3 C.﹣1<t<8 D.3<t<8考点:二次函数与不等式(组).分析:根据对称轴求出b的值,从而得到x=﹣1、4时的函数值,再根据一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解相当于y=x2+bx与y=t在x的范围内有交点解答.解答:解:对称轴为直线x=﹣=1,解得b=﹣2,所以,二次函数解析式为y=x2﹣2x,=(x﹣1)2﹣1,x=﹣1时,y=1+2=3,x=4时,y=16﹣2×4=8,∵x2+bx﹣t=0相当于y=x2+bx与直线y=t的交点的横坐标,∴当﹣1<t<8时,在﹣1<x<4的范围内有解.故选:C.点评:本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键,作出图形更形象直观.二、填空题(共6小题,每小题3分,共18分)16.(3分)|﹣7﹣3|=10.考点:有理数的减法;绝对值.专题:计算题.分析:根据有理数的减法运算法则和绝对值的性质进行计算即可得解.解答:解:|﹣7﹣3|=|﹣10|=10.故答案为:10.点评:本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.17.(3分)分解因式:x2+2x+1=(x+1)2.考点:因式分解-运用公式法.专题:因式分解.分析:本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.解答:解:x2+2x+1=(x+1)2.点评:本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).18.(3分)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为15.考点:概率公式.分析:由在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,利用概率公式求解即可求得答案.解答:解:∵在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,∴口袋中球的总个数为:3÷=15.故答案为:15.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(3分)若代数式和的值相等,则x=7.考点:解分式方程.专题:计算题;转化思想.分析:根据题意列出分式方程,求出分式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:根据题意得:=,去分母得:2x+1=3x﹣6,解得:x=7,经检验x=7是分式方程的解.故答案为:x=7.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(3分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于4或8.考点:平移的性质;解一元二次方程-因式分解法;平行四边形的判定与性质;正方形的性质.专题:几何动点问题.分析:根据平移的性质,结合阴影部分是平行四边形,△AA′H与△HCB′都是等腰直角三角形,则若设AA′=x,则阴影部分的底长为x,高A′D=2﹣x,根据平行四边形的面积公式即可列出方程求解.解答:解:设AC交A′B′于H,∵∠A=45°,∠D=90°∴△A′HA是等腰直角三角形设AA′=x,则阴影部分的底长为x,高A′D=12﹣x∴x•(12﹣x)=32∴x=4或8,即AA′=4或8cm.故答案为:4或8.点评:考查了平移的性质及一元二次方程的解法等知识,解决本题关键是抓住平移后图形的特点,利用方程方法解题.21.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为6.考点:反比例函数图象上点的坐标特征;平方差公式;等腰直角三角形.分析:设B点坐标为(a,b),根据等腰直角三角形的性质得OA=AC,AB=AD,OC=AC,AD=BD,则OA2﹣AB2=12变形为AC2﹣AD2=6,利用平方差公式得到(AC+AD)(AC﹣AD)=6,所以(OC+BD)•CD=6,则有a•b=6,根据反比例函数图象上点的坐标特征易得k=6.解答:解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=12,∴2AC2﹣2AD2=12,即AC2﹣AD2=6,∴(AC+AD)(AC﹣AD)=6,∴(OC+BD)•CD=6,∴a•b=6,∴k=6.故答案为:6.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.三、解答题(共7小题,共57分)22.(7分)(1)化简:(a+3)(a﹣3)+a(4﹣a)(2)解不等式组:.考点:整式的混合运算;解一元一次不等式组.专题:计算题.分析:(1)原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:(1)原式=a2﹣9+4a﹣a2=4a﹣9;(2),由①得:x<4;由②得:x≥2,则不等式组的解集为2≤x<4.点评:此题考查了整式的混合运算,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.23.(7分)(1)如图1,四边形ABCD是矩形,点E是边AD的中点,求证:EB=EC.(2)如图2,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,求OA的长.考点:切线的性质;全等三角形的判定与性质;矩形的性质.专题:几何图形问题.分析:(1)证明△ABE≌△DCE,根据全等三角形的对应边相等即可证得;(2)连接OC,根据三线合一定理即可求得AC的长,然后在直角△OAC中,利用勾股定理即可求得OA 的长.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC;(2)解:连接OC,∵AB与⊙O相切于点C,∴OC⊥AB,又∵∠A=∠B,∴OA=OB,∴AC=AB=×16=8,在直角△AOC中,OA===10.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.(8分)2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?考点:二元一次方程组的应用.专题:应用题.分析:设小李预定了小组赛和淘汰赛的球票各x张,y张,根据10张球票共5800元,列方程组求解.解答:解:设小李预定了小组赛和淘汰赛的球票各x张,y张,由题意得,,解得:.答:小李预定的小组赛和淘汰赛的球票各8张,2张.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.25.(8分)在济南开展“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制不完整的统计图表,如图所示:劳动时间(时)频数(人数)频率0.5 12 0.121 30 0.31.5 x 0.42 18 y合计m 1(1)统计表中的m=100,x=40,y=0.18.(2)被调查同学劳动时间的中位数是 1.5时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.考点:频数(率)分布直方图;频数(率)分布表;加权平均数;中位数.专题:图表型.分析:(1)根据劳动时间是0.5小时的频数是12,所占的频率是0.12,即可求得总人数,即m的值,然后根据频率公式即可求得x,y的值;(2)根据中位数的定义即可求解;(3)根据(1)计算的结果,即可解答;(4)利用加权平均数公式即可求解.解答:解:(1)m=12÷0.12=100,x=100×0.4=40,y=18÷100=0.18;(2)中位数是:1.5小时;(3)(4)被调查同学的平均劳动时间是:=1.32(小时).点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26.(9分)如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.考点:反比例函数综合题;一次函数的性质;二次函数的最值.专题:代数几何综合题.分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<1),由于直线l⊥x轴,与AC 相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t,t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△OMN=•t•(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<1),最后根据二次函数的最值问题求解.解答:解:(1)把A(2,1)代入y=得k=2×1=2;(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=得a=2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,﹣1)代入得,解,∴直线AC的解析式为y=x﹣1;(3)设M点坐标为(t,)(0<t<1),∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△OMN=•t•(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<1),∵a=﹣<0,∴当t=时,S有最大值,最大值为.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法求一次函数解析式;理解坐标与图形的性质;会利用二次函数的性质解决最值问题.27.(9分)如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的第四个顶点分别在l1,l2,l3,l4上,EG过点D 且垂直l1于点E,分别交l2,l4于点F1,G1,EF=DG=1,DF=2.(1)AE=1,正方形ABCD的边长=;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.考点:几何变换综合题;全等三角形的判定与性质;勾股定理的应用.专题:几何综合题.分析:(1)利用已知得出△AED≌△DGC(AAS),即可得出AE,以及正方形的边长;(2)①过点B′作B′M垂直于l1于点M,进而得出Rt△AED′≌Rt△B′MA(HL),求出∠B′AD′与α的数量关系即可;②首先过点E作ON垂直于l1分别交l1,l2于点O,N,若α=30°,则∠ED′N=60°,可求出AE=1,EO,EN,ED′的长,进而由勾股定理可知菱形的边长.解答:解:(1)由题意可得:∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△AED和△DGC中,,∴△AED≌△DGC(AAS),∴AE=GD=1,又∵DE=1+2=3,∴正方形ABCD的边长==,故答案为:1,;(2)①∠B′AD′=90°﹣α;理由:过点B′作B′M垂直于l1于点M,在Rt△AED′和Rt△B′MA中,,∴Rt△AED′≌Rt△B′MA(HL),∴∠D′AE+∠B′AM=90°,∠B′AD′+α=90°,∴∠B′AD′=90°﹣α;②过点E作ON垂直于l1分别交l1,l3于点O,N,若α=30°,则∠ED′N=60°,AE=1,故EO=,EN=,ED′=,由勾股定理可知菱形的边长为:==.点评:此题主要考查了勾股定理以及全等三角形的判定与性质等知识,熟练应用全等三角形的判定方法是解题关键.28.(9分)如图1,抛物线y=﹣x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积S阴影;(2)如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t,试探究:。
山东省济南市2014年中考数学真题试题(含解析)
山东省济南市2014年中考数学真题试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为45分;第Ⅱ卷共6页,满分为75分.本试卷共8页,满分为120分.考试时间为120分钟.答题前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第Ⅰ卷(选择题 共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮檫干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.4的算术平方根是A .2B .-2C .±2D .16 【解析】4算术平方根为非负数,且平方后等于4,故选A .2.如图,点O在直线AB 上,若401=∠,则2∠的度数是 A . 50 B . 60 C . 140 D .150 【解析】因为 18021=∠+∠,所以1402=∠,故选C . 3.下列运算中,结果是5a 的是A .23a a ⋅B .210a a ÷ C .32)(a D .5)(a -【解析】由同底的幂的运算性质,可知A 正确.4.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3700千克,3700用科学计数法表示为A .2107.3⨯B .3107.3⨯C .21037⨯D .41037.0⨯ 【解析】3700用科学计数法表示为3107.3⨯,可知B 正确. 5.下列图案既是轴对称图形又是中心对称图形的是AB O 2 1第2题图A .B .C .D .【解析】图A 为轴对称图但不是中心对称图形;图B 为中心对称图但不是轴对称图形; 图C 既不是轴对称图也不是中心对称图形; 图D 既是轴对称图形又是中心对称图形.6.如图,一个几何体由5个大小相同、棱长为1的正方体搭成, 下列关于这个几何体的说法正确的是A .主视图的面积为5B .左视图的面积为3C .俯视图的面积为3D .三种视图的面积都是4【解析】主题图、俯视图均为4个正方形,其面积为4,左视图为3个正方形,其面积为3,故选B . 7.化简211mm m m -÷- 的结果是 A .m B .m 1 C .1-m D .11-m【解析】m m m m m m m m m =-⨯-=-÷-111122,故选 A . 8.下列命题中,真命题是A .两对角线相等的四边形是矩形B .两对角线互相平分的四边形是平行四边形C .两对角线互相垂直的四边形是菱形D .两对角线相等的四边形是等腰梯形【解析】两对角线相等的四边形不一定是矩形,也不一定是等腰梯形,所以A ,D 都不是真命题.又两对角线互相垂直如果不平分,此时的四边形不是菱形,故选B . 9.若一次函数5)3(+-=x m y 的函数值y 随x 的增大而增大,则A .0>mB .0<mC .3>mD .3<m【解析】由函数值y 随x 的增大而增大,可知一次函数的斜率03>-m ,所以3>m ,故选C . 10.在□ABCD 中,延长AB 到E ,使BE =AB ,连接DE 交BC 于F ,则下列结论不一定成立的是A .CDF E ∠=∠B .DF EF =C .BF AD 2= D .CF BE 2=【解析】由题意可得FBE FCD ∆≅∆,于是A ,B 都一定成立;又由BE =AB ,可知BF AD 2=,所以C 所给结论一定成立,于是不一定成立的应选D . 11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为正面 第6题ABCDEF第10题图A .32 B .21 C .31 D .41 【解析】用H ,C ,N 分别表示航模、彩绘、泥塑三个社团,用数组(X ,Y )中的X 表示征征选择的社团,Y 表示舟舟选择的社团. 于是可得到(H ,H ),(H ,C ),(H ,N ), (C ,H ),(C ,C ),(C ,N ),(N ,H ),(N ,C ),(N ,N ),共9中不同的选择结果, 而征征和舟舟选到同一社团的只有(H ,H ),(C ,C ),(N ,N )三种, 所以,所求概率为3193=,故选C . 12.如图,直线233+-=x y 与x 轴,y 轴分别交于B A ,两点, 把AOB ∆沿着直线AB 翻折后得到B O A '∆,则点O '的坐标是A .)3,3(B .)3,3(C .)32,2(D .)4,32(【解析】连接OO ',由直线233+-=x y 可知223OB=,OA=,故30BAO ∠=︒,点O '为点O 关于直线AB 的对称点,故60O AO '∠=︒,AOO ∆'是等边三角形,O '点的横坐标是OA 长度的一半3,纵坐标则是AOO ∆'的高3,故选A .13.如图,O ⊙的半径为1,ABC ∆是O ⊙的内接等边三角形, 点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是A .2B .3C .23D .23【解析】1=OA ,知3,1==BC CD ,所以矩形的面积是3.14.现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是A .(1,2,1,2,2)B .(2,2,2,3,3)ABOO'xyABCDE.O第13题图C .(1,1,2,2,3)D .(1,2,1,1,2)【解析】由于序列0S 含5个数,于是新序列中不能有3个2,所以A ,B 中所给序列不能作为1S ; 又如果1S 中有3,则1S 中应有3个3,所以C 中所给序列也不能作为1S ,故选D . 15.二次函数的图象如图,对称轴为1=x . 若关于x 的一元二次方程02=-+t bx x (t 为实数) 在41<<-x 的范围内有解,则t 的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t 【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤, 即81<≤-t ,故选C .第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上) 16.=--37________.【解析】101037=-=--,应填10. 17.分解因式:=++122x x ________. 【解析】22)1(12+=++x x x ,应填2)1(+x .18.在一个不透明的口袋中,装有若干个出颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为____________. 【解析】设口袋中球的总个数为N ,则摸到红球的概率为513=N ,所以15=N ,应填15. 19.若代数式21-x 和123+x 的值相等,则=x .【解析】解方程12321+=-x x ,的7=x ,应填7.20.如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________. 【解析】设m A A =',则222121264m (m )+-=-,解之m =4或8,应填4或8.1 BOxy4A DADA ’DAyB21.如图,OAC ∆和BAD ∆都是等腰直角三角形,90=∠=∠ADB ACO ,反比例函数xk y =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.【解析】设点B 的坐标为),(00y x B ,则DB OC AD AC y DB OC x -=-=+=00,, 于是62121222200=-=-=-⋅+=⋅=AB OA DB OC DB OC DB OC y x k )()(,所以应填6.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22. (本小题满分7分) (1)化简:)4()3)(3(a a a a -+-+.【解析】9449)4()3)(3(22-=-+-=-+-+a a a a a a a a(2)解不等式组:⎩⎨⎧+≥-<-24413x x x .【解析】由13<-x 得4<x ;由244+≥-x x 得2≥x . 所以原不等式组的解为42<≤x .23.(本小题满分7分)(1)如图,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EC EB =.【解析】在ABE ∆和DCE ∆中,EDC EAB DE AE DC AB ∠=∠==,,,于是有 DCE ABE ∆≅∆,所以EC EB =.A BCDE第23题(1)图(2)如图,AB 与O ⊙相切于C ,B A ∠=∠,O ⊙的半径为6,AB =16,求OA 的长.【解析】在OAB ∆中,OB OA B A =∴∠=∠, ,连接OC ,则有8,6,===⊥BC AC OC AB OC , 所以10862222=+=+=AC OC OA .24.(本小题满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【解析】设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有 ⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x .所以,小李预定了小组赛球票8张,淘汰赛球票2张.25.(本小题满分8分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:劳动时间(时) 频数 (人数) 频率 0.5 12 0.121 30 0.3 1.5 x 0.42 18y 合计 m 1(1)统计表中的=m ,=x ,=y ; (2)被调查同学劳动时间的中位数是 时;ABCO第23题(2)图0 时间(时) 人数102030 40 123018 0.5 1 2(3)请将频数分布直方图补充完整; (4)求所有被调查同学的平均劳动时间.【解析】(1)由于频率为0.12时,频数为12,所以频率为0.4时,频数为40,即40=x ; 频数为18,频率应为0.18时,即18.0=y ;10018403012=+++=m . (2)被调查同学劳动时间的中位数为1.5时; (3)略(4)所有被调查同学的平均劳动时间为32.118.024.05.13.0112.05.0=⨯+⨯+⨯+⨯时.26.(本小题满分9分)如图1,反比例函数)0(>=x xky 的图象经过点A (32,1),射线AB 与反比例函数图象交与另一点B (1,a ),射线AC 与y 轴交于点C ,y AD BAC ⊥=∠,75轴,垂足为D . (1)求k 的值;(2)求DAC ∠tan 的值及直线AC 的解析式;(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线x l ⊥轴,与AC 相交于N ,连接CM ,求CMN ∆面积的最大值. 【解析】(1)由反比例函数)0(>=x xky 的 图象经过点A (32,1),得32132=⨯=k ;(2)由反比例函数)0(32>=x xy 得 第26题图1ABCDO xy点B 的坐标为(1,32),于是有30,45=∠∴=∠DAC BAD ,33tan =∠DAC , AD =32,则由33tan =∠DAC 可得CD =2,C 点纵坐标是-1,直线AC 的截距是-1,而且过点A (32,1)则直线解析式为133-=x y . (3)设点M 的坐标为)1)(,32(>m m m, 则点N 的坐标为)12,32(-mm ,于是CMN ∆面积为 )12(3221+-⨯⨯=∆mm m S CMN ])422(89[3)112(322--=++-⨯=m m m , 所以,当4=m 时,CMN ∆面积取得最大值839.27.(本小题满分9分)如图1,有一组平行线4321l l l l ∥∥∥,正方形ABCD 的四个顶点分别在4321,,,l l l l 上,EG 过点D且垂直于1l 于点E,分别交42,l l 于点F,G,2,1===DF DG EF .(1)=AE ,正方形ABCD 的边长= ;(2)如图2,将AEG ∠绕点A 顺时针旋转得到D E A ''∠,旋转角为)900(<<αα,点D '在直线3l 上,以D A '为边在的D E ''左侧作菱形B C D A ''',使点C B '',分别在直线42,l l 上. ①写出D A B ''∠与α的函数关系并给出证明; ②若30=α,求菱形B C D A '''的边长.第26题图2AB CDOxyMNl 1l 2l 3lABDEF 1l 2l 3lAE ’D ’B ’【解析】(1)在R T R T A E D G D C∆∆,中,AD=DC,又有ADE ∠和DAE ∠互余,ADE ∠和CDG∠互余,故DAE ∠和CDG ∠相等,GDC AED ∆≅∆,知1==GD AE , 又321=+=AD ,所以正方形ABCD 的边长为103122=+.(2)①过点B '作B M '垂直于1l 于点M ,在R TR T ’A E D AB M ∆∆'',中, =’B M AE ',=AD AB '',故RT RT ’AE D AB M ∆∆''≅,所以A ,’D E B AM ''∠∠互余,D A B ''∠与α之和为90︒,故D A B ''∠=90︒-α.②过E 点作ON 垂直于1l 分别交12l ,l 于点O ,N ,若30=α,60E D N ''∠=︒,=1AE ',故1=2E O ', 5=2E N ', 533E D ''=,由勾股定理可知菱形边长为2584133+=.28.(本小题满分9分)如图1,抛物线2163x y -=平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D . (1)求平移后抛物线的解析式并直接写出阴影部分的面积阴影S ;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边MN 与AP 相交于点N ,设t OM =,试探求:①t 为何值时MAN ∆为等腰三角形;②t 为何值时线段PN 的长度最小,最小长度是多少. 【解析】(1)设平移后抛物线的解析式2316y x bx =-+, 将点A (8,,0)代入,得233162y x x =-+.顶点B (4,3), 阴影S =OC ×CB =12.ABCDxyO第28题图1PAB CM Nxy O第28题图2(2)直线AB 的解析式为364y x =-+,作NQ 垂直于x 轴于点Q , ①当MN =AN 时, N 点的横坐标为82t +,纵坐标为2438t-,由三角形NQM 和三角形MOP 相似可知NQ MQ OM OP =,得2438826t tt --=,解得982t ,=(舍去). 当AM =AN 时,AN =8t -,由三角形ANQ 和三角形APO 相似可知()385NQ t =-()485AQ t =-,MQ =85t -,由三角形NQM 和三角形MOP 相似可知NQ MQOM OP =得:()388556t t t --=,解得:t =12(舍去).当MN =MA 时,45MNA MAN ∠=∠<︒故AMN ∠是钝角,显然不成立.故92t =.②方法一:作PN 的中点C ,连接CM ,则CM =PC =21P N,当CM 垂直于x 轴且M 为OQ 中点时PN 最小, 此时t =3,证明如下:假设t =3时M 记为0M ,C 记为0C 若M 不在0M 处,即M 在0M 左侧或右侧,若C 在0C 左侧或者C 在0C 处,则CM 一定大于00C M ,而PC 却小于0PC ,这与CM =PC 矛盾, 故C 在0C 右侧,则PC 大于0PC ,相应PN 也会增大, 故若M 不在0M 处时 PN 大于0M 处的PN 的值,故当t =3时,MQ =3, 3=2NQ ,根据勾股定理可求出PM =35与MN =352,15=2PN . 故当t =3时,PN 取最小值为152.方法二:由MN 所在直线方程为662t x t y -=,与直线AB 的解析式364y x =-+联立,得点N 的横坐标为t t x N 292722++=,即029362=-+-N N x t x t ,由判别式0)2936(42≥--=∆N N x x ,得6≥N x 或14-≤N x ,又80<<N x , 所以N x 的最小值为6,此时t =3, 当t =3时,N 的坐标为(6,23),此时PN 取最小值为152.。
山东省莱芜市2014年中考数学真题试题(解析版)
山东省莱芜市2014年中考数学真题试题(解析版)一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.下列四个实数中,是无理数的为()A. 0 B. -3 C.8 D.3 112.下面计算正确的是()A. 3a-2a=1 B. 3a2+2a=5a3C.(2ab)3=6a3b3D. -a4•a4=-a8【考点】1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.3.2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为()A. 15×105 B. 1.5×106 C. 1.5×107 D. 0.15×108【答案】C.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把4.如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是()【考点】简单组合体的三视图.5.对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表:年龄13 14 15 16 17 18人数 4 5 6 6 7 2则这些学生年龄的众数和中位数分别是()A. 17,15.5 B. 17,16 C. 15,15.5 D.16,166.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A. 13 B. 14 C. 15 D. 1 6【答案】C.【解析】试题分析:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°-156°=24°, ∴这个多边形的边数为:360°÷24°=15, 故选C .【考点】多边形内角与外角.7.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( ) A .405012x x =- B .405012x x=- C .405012x x =+ D . 405012x x=+8.如图,AB 为半圆的直径,且AB=4,半圆绕点B 顺时针旋转45°,点A 旋转到A′的位置,则图中阴影部分的面积为( )A . πB . 2πC .2πD . 4π9.一个圆锥的侧面展开图是半径为R 的半圆,则该圆锥的高是( )A. R B.12R C.3R D.32R【考点】圆锥的计算.10.如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=()A. 1:16 B. 1:18 C. 1:20 D. 1:24∴S△BDE:S△ACD=a:20a=1:20.故选C.【考点】相似三角形的判定与性质.11.如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A.△CDF的周长等于AD+CD B.FC平分∠BFD C.AC2+BF2=4CD2D. DE2=EF•CE【答案】【解析】∴AC2+BF2=4CD2.故C说法正确;由正五边形的性质得,△ADE≌△CDE,∴∠DCE=∠EDF,∴△CDE∽△DFE,∴CE DE DE EF,∴DE2=EF•CE,故C说法正确;故选B.【考点】正多边形和圆.12.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2其中正确的个数有()A. 1 B. 2 C. 3 D. 4 【答案】D.【解析】∵当x=-1时,y>0,∴a-b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a-b+c)(a+b+c)<0,即(a+c-b)(a+c+b)<0,∴(a+c)2-b2<0,所以④正确.故选D.【考点】二次函数图象与系数的关系.二、填空题(本题包括5小题,每小题4分,共20分)13.分解因式:a3-4ab2=【答案】a(a+2b)(a-2b).【解析】【考点】1.实数的运算;2.零指数幂;3.负整数指数幂.15.若关于x的方程x2+(k-2)x+k2=0的两根互为倒数,则k= 【答案】-1.【解析】试题分析:根据已知和根与系数的关系x1x2=ca得出k2=1,求出k的值,再根据原方程有两个实数根,求出符合题意的k的值.试题解析:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或-1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,故k的值为-1.【考点】根与系数的关系.16.已知一次函数y=ax+b与反比例函数kyx的图象相交于A(4,2)、B(-2,m)两点,则一次函数的表达式为【考点】反比例函数与一次函数的交点问题.17.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.【答案】(1342,0).【解析】∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=90°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.【考点】1.规律型:点的坐标;2.等边三角形的判定与性质;3.菱形的性质.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤) 18.先化简,再求值:24512(1)()11a a a a a a-+-÷----,其中a=-1.【考点】分式的化简求值.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少? (2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人. 【答案】(1) 150;(2)补图见解析;(3)108°;(4)6000. 【解析】试题分析:(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量; (2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;【考点】1.条形统计图;2.用样本估计总体;3.扇形统计图.20.如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)【答案】6.58米.【解析】试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DC-BE即可求解.试题解析:过A点作AE⊥CD于E.【考点】解直角三角形的应用-坡度坡角问题.21.如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.∴AB=AC,∴∠BAE=∠CAD,在△ACD 和△ABE 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴EB=EF,∴BD=BE=EF=FD,∴四边形BDFE 为菱形.【考点】1.全等三角形的判定与性质;2.菱形的判定;3.旋转的性质.22.某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?【答案】(1)10%;(2)园林绿化的费用应在190万~242万的范围内.【解析】由题意,得1121000004003502100000400400200400002200a a a a --≥⎧+≥⎪⎪⎨⎪⎪⨯⨯⎩①②,由①得a≤25500,由②得a≥24200,∴24200≤a≤25500,∴968万≤400a≤1020万,∴190万≤1210万-400a≤242万,答:园林绿化的费用应在190万~242万的范围内.【考点】1.一元二次方程的应用;2.一元一次不等式组的应用.23.如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=23r(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.【答案】(1)证明见解析;(2)49r2;(3)23r.【解析】AB的四等分点,所以HF=1222r,于是在Rt△EFH中可计算出23r,然后利用(2)中的结论可计算出EC.试题解析:(1)证明:连结OC、OE,OE交AB于H,如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:连结BC,∵E是»AB的中点,∴»»AE BE,设OH=x,则HE=r-x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r-x)2=(23r)2,∴x2-(r-x)2=r2-(23r)2,即得x=79r,∴HE=r-79r=29r,【考点】圆的综合题.24.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4-x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.【答案】(1)y=-43x2+133x.(2)32或3322+或3322-.(3)13.【解析】试题分析:(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.设点M的横坐标为x,则求出MN=|43x2-4x|;解方程|43x2-4x|=3,求出x的值,即点M横坐标的值;(3)设水平方向的平移距离为t(0≤t<2),利用平移性质求出S的表达式:S=-16(t-1)2+13;当t=1由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.∴|43x2-4x|=3.若43x2-4x=3,整理得:4x2-12x-9=0,解得:x=3322+或x=3322-;∴直线O′C′的解析式为y=3x-4t.∴E(43t,0).联立y=3x-4t与y=13x,解得x=32t,∴P(32t,12t).过点P作PG⊥x轴于点G,则PG=12t.∴S=S△OFQ-S△OEP=12OF•FQ-12OE•PG=12(1+t)(13+13t)-12•43t•12t=-16(t-1)2+13当t=1时,S有最大值为13.∴S的最大值为13.感谢您选择明昊教育,明昊内部教学资料助力您成绩突飞猛进!【考点】二次函数综合题.楊老师联系电话(微信)无。
山东莱芜中考数学试题及答案解析-中考.doc
2014年山东莱芜中考数学试题及答案解析-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2014年山东省济南市中考数学试卷与答案(word整理版)
2014年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,满分45分) 1.4的算术平方根是( )A .2B .-2C .±2D .16 2.如图,点O在直线AB 上,若401=∠,则2∠的度数是( )A . 50B . 60C . 140D . 1503.下列运算中,结果是5a 的是( )A .23a a ⋅B .210a a ÷C .32)(aD .5)(a -4.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3700千克,3700用科学计数法表示为( )A .2107.3⨯ B .3107.3⨯ C .21037⨯ D .41037.0⨯10.在□ABCD 中,延长AB 到E ,使BE =AB ,连接DE 交BC 于F ,则下列结论不一定成立的是( )A .CDF E ∠=∠B .DF EF =C .BF AD 2= D .CF BE 2= 11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( )A .32B .21C .31D .4112.如图,直线233+-=x y 与x 轴,y 轴分别交于B A ,两点,把AOB ∆沿着直线AB 翻折后得到B O A '∆,则点O '的坐标是( )A .)3,3(B .)3,3(C .)32,2(D .)4,32(13.如图,O ⊙的半径为1,ABC ∆是O ⊙的内接等边三角形,点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( )到红球的概率为51,那么口袋中球的总个数为____________.19.若代数式21-x 和123+x 的值相等,则=x .20.如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________.21.如图,OAC ∆和BAD ∆都是等腰直角三角形, 90=∠=∠ADB ACO ,反比例函数xy =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22. (7分)(1)化简:)4()3)(3(a a a a -+-+. (2)解不等式组:⎩⎨⎧+≥-<-24413x x x .23.(7分)(1)如图,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EC EB =..(2)如图,AB 与O ⊙相切于C ,B A ∠=∠,O ⊙的半径为6,AB =16,求OA 的长.24.(8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?A D CB ’第20题图 AB CDE 第23题(1)图 A BC O 第23题(2)图25.(8分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:(1)统计表中的=m,=x,=y;(2)被调查同学劳动时间的中位数是时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.26.(9分)如图1,反比例函数)0(>=xxky的图象经过点A(32,1),射线AB与反比例函数图象交与另一点B(1,a),射线AC与y轴交于点C,yADBAC⊥=∠,75 轴,垂足为D.(1)求k的值;(2)求DAC∠tan的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线xl⊥轴,与AC相交于N,连接CM,求CMN∆面积的最大值.27.(9分)如图1,有一组平行线4321l l l l ∥∥∥,正方形ABCD 的四个顶点分别在4321,,,l l l l 上,EG 过点D且垂直于1l 于点E,分别交42,l l 于点F,G,2,1===DF DG EF . (1)=AE ,正方形ABCD 的边长= ;(2)如图2,将A E G ∠绕点A 顺时针旋转得到D E A ''∠,旋转角为)900( <<αα,点D '在直线3l 上,以D A '为边在的D E ''左侧作菱形B C D A ''',使点C B '',分别在直线42,l l 上. ①写出D A B ''∠与α的函数关系并给出证明; ②若 30=α,求菱形B C D A '''的边长.28.(9分)如图1,抛物线2163x y -=平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D .(1)求平移后抛物线的解析式并直接写出阴影部分的面积阴影S ;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边MN 与AP 相交于点N ,设t OM =,试探求: ①t 为何值时MAN ∆为等腰三角形;②t 为何值时线段PN 的长度最小,最小长度是多少.1l 2l 3l4lABCDEF G1l 2l 3l4lAE ’D ’B ’C ’G ’2014年山东省济南市中考数学试卷答案A .A .B .D .B . A . B .C .D .C .A .B . D .C . 16. 10.17.2)1(+x .18.15.19.7.20. 4或8.21. 6. 22.(1)9449)4()3)(3(22-=-+-=-+-+a a a a a a a a (2)由13<-x 得4<x ;由244+≥-x x 得2≥x . 所以原不等式组的解为42<≤x . 23.(1)在ABE ∆和DCE ∆中,EDC EAB DE AE DC AB ∠=∠==,,,于是有 DCE ABE ∆≅∆,所以EC EB =. (2)在OAB ∆中,OB OA B A =∴∠=∠, ,连接OC ,则有8,6,===⊥BC AC OC AB OC , 所以10862222=+=+=AC OC OA .24.设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x .所以,小李预定了小组赛球票8张,淘汰赛球票2张.25.解:(1)由于频率为0.12时,频数为12,所以频率为0.4时,频数为40,即40=x ; 频数为18,频率应为0.18时,即18.0=y ;10018403012=+++=m . (2)被调查同学劳动时间的中位数为1.5时; (3)略(4)所有被调查同学的平均劳动时间为 32.118.024.05.13.0112.05.0=⨯+⨯+⨯+⨯时. 26.(1)由反比例函数)0(>=x xky 的 图象经过点A (32,1),得32132=⨯=k ;(2)由反比例函数)0(32>=x xy 得 点B 的坐标为(1,32),于是有30,45=∠∴=∠DAC BAD ,33tan =∠DAC , AD =32,则由33tan =∠DAC 可得CD =2,C 点纵坐标是-1,直线AC 的截距是-1,而且过点A (32,1)则直线解析式为133-=x y . (3)设点M 的坐标为)1)(,32(>m m m, 则点N 的坐标为)12,32(-mm ,于是CMN ∆面积为 )12(3221+-⨯⨯=∆m m m S CMN])422(89[3)112(322--=++-⨯=m m m , 所以,当4=m 时,CMN ∆面积取得最大值839. 27.(1)在RT RT AED GDC ∆∆,中,AD=DC,又有ADE ∠和DAE ∠互余,ADE ∠和CDG ∠互余,故DAE ∠和CDG ∠相等,GDC AED ∆≅∆,知1==GD AE ,又321=+=AD ,所以正方形ABCD 的边长为103122=+.(2)①过点B '作B M '垂直于1l 于点M ,在RT RT ’AE D ABM ∆∆'',中, =’B M AE ',=AD AB '',故RT RT ’AE D AB M ∆∆''≅,所以A ,’D E B AM ''∠∠互余,D A B ''∠与α之和为90︒,故D A B ''∠=90︒-α.②过E 点作ON 垂直于1l 分别交12l ,l 于点O ,N ,若30=α,60E D N ''∠=︒,=1AE ',故1=2E O ', 5=2E N ', E D ''=3=. 28.(1)设平移后抛物线的解析式2316y x bx =-+, 将点A (8,,0)代入,得233162y x x =-+.顶点B (4,3), 阴影S =OC ×CB =12.(2)直线AB 的解析式为364y x =-+,作NQ 垂直于x 轴于点Q ,①当MN =AN 时, N 点的横坐标为82t +,纵坐标为2438t-,由三角形NQM 和三角形MOP 相似可知NQ MQ OM OP =,得2438826t tt --=,解得982t ,=(舍去). 当AM =AN 时,AN =8t -,由三角形ANQ 和三角形APO 相似可知()385NQ t =-()485AQ t =-,MQ =85t -,由三角形NQM 和三角形MOP 相似可知NQ MQ OM OP =得:()388556t t t --=,解得:t =12(舍去).当MN =MA 时,45MNA MAN ∠=∠<︒故AMN ∠是钝角,显然不成立.故92t =.②方法一:作PN 的中点C ,连接CM ,则CM =PC =21P N,当CM 垂直于x 轴且M 为OQ 中点时PN 最小, 此时t =3,证明如下:假设t =3时M 记为0M ,C 记为0C 若M 不在0M 处,即M 在0M 左侧或右侧,若C 在0C 左侧或者C 在0C 处,则CM 一定大于00C M ,而PC 却小于0PC ,这与CM =PC 矛盾, 故C 在0C 右侧,则PC 大于0PC ,相应PN 也会增大, 故若M 不在0M 处时 PN 大于0M 处的PN 的值,故当t =3时,MQ =3, 3=2NQ ,根据勾股定理可求出PM=与MN15=2PN . 故当t =3时,PN 取最小值为152.方法二:由MN 所在直线方程为662t x t y -=,与直线AB 的解析式364y x =-+联立,得点N 的横坐标为tt x N 292722++=,即029362=-+-N N x t x t ,由判别式0)2936(42≥--=∆N N x x ,得6≥N x 或14-≤N x ,又80<<N x , 所以N x 的最小值为6,此时t =3, 当t =3时,N 的坐标为(6,23),此时PN 取最小值为152.。
2014年山东省济南市中考数学试卷附详细答案(原版+解析版)
2014年济南市中考数学试题一、选择题(共15小题,每小题3分,共45分) 1.(3分)(2014•济南)4的算术平方根是(的算术平方根是( ) A .2 B .﹣2 C .±2 D .16 2.(3分)(2014•济南)如图,点O 在直线AB 上,若∠1=40°,则∠2的度数是(的度数是( )A .50° B .60° C .140° D .150° 3.(3分)(2014•济南)下列运算中,结果是a 5的是(的是( ) A .a 2•a 3 B .a 10÷a 2 C .(a 2)3 D .(﹣a )5 4.(3分)(2014•济南)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为(示为( )A . 3.7×3.7×10102B . 3.7×3.7×10103C . 37×37×10102D .0.37×0.37×101045.(3分)(2014•济南)下列图案中既是轴对称图形又是中心对称图形的是(济南)下列图案中既是轴对称图形又是中心对称图形的是( ) A .B .C .D .6.(3分)(2014•济南)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是(列关于这个几何体的说法正确的是( )A .主视图的面积为5 B .左视图的面积为3C .俯视图的面积为3 D.三种视图的面积都是4 7.(3分)(2014•济南)化简÷的结果是(的结果是( ) A .m B .C .m ﹣1 D .8.(3分)(2014•济南)下列命题中,真命题是(济南)下列命题中,真命题是( ) A . 两对角线相等的四边形是矩形两对角线相等的四边形是矩形 B . 两对角线互相平分的四边形是平行四边形两对角线互相平分的四边形是平行四边形 C . 两对角线互相垂直的四边形是菱形两对角线互相垂直的四边形是菱形 D . 两对角线相等的四边形是等腰梯形两对角线相等的四边形是等腰梯形9.(3分)(2014•济南)若一次函数y=(m ﹣3)x+5的函数值y 随x 的增大而增大,则( ) A .m >0 B .m <0 C .m >3 D .m <3 10.(3分)(2014•济南)如图,在▱ABCD 中,延长AB 到点E ,使BE=AB ,连接DE 交BC 于点F ,则下列结论不一定成立的是(,则下列结论不一定成立的是( )A .∠E=∠CDF B .EF=DF C .AD=2BF D .BE=2CF 11.(3分)(2014•济南)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是( ) A .B .C .D .12.(3分)(2014•济南)如图,直线y=﹣x+2与x 轴、y 轴分别交于A 、B 两点,把△AOB沿直线AB 翻折后得到△AO′B ,则点O′的坐标是(的坐标是( )A. (,3) B.(,) C.(2,2) D.(2,4)13.(3分)(2014•济南)如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是(为矩形,这个矩形的面积是( )A. 2 B.C.D.14.(3分)(20142014••济南)现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是(的是()A. (1,2,1,2,2) B. (2,2,2,3,3)C. (1,1,2,2,3) D. (1,2,1,1,2)15.(3分)(2014•济南)二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是(的取值范围是( )A. t≥﹣1 B.﹣1≤t<3 C.﹣1<t<8 D.3<t<8二、填空题(共6小题,每小题3分,共18分)16.(3分)(2014•济南)|﹣7﹣3|= .17.(3分)(2014•济南)分解因式:x2+2x+1= .18.(3分)(2014•济南)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,. 如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为,那么口袋中球的总个数为19.(3分)(2014•济南)若代数式和的值相等,则x= .20.(3分)(2014•济南)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC 沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于等于 .21.(3分)(2014•济南)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为的值为 .三、解答题(共7小题,共57分)22.(7分)(2014•济南)(1)化简:(a+3)(a﹣3)+a(4﹣a)(2)解不等式组:.23.(7分)(2014•济南)(1)如图1,四边形ABCD 是矩形,点E 是边AD 的中点,求证:EB=EC .(2)如图2,AB 与⊙O 相切于点C ,∠A=∠B ,⊙O 的半径为6,AB=16,求OA 的长.的长.24.(8分)(2014•济南)2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?元,问小李预定了小组赛和淘汰赛的球票各多少张?\25.(8分)(2014•济南)在济南开展“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制不完整的统计图表,如图所示:的劳动时间,并用得到的数据绘制不完整的统计图表,如图所示: 劳动时间(时)劳动时间(时) 频数(人数)频数(人数)频率频率 0.5 12 0.12 1 30 0.3 1.5 x 0.4 2 18 y 合计合计m1(1)统计表中的m= ,x= ,y= . (2)被调查同学劳动时间的中位数是)被调查同学劳动时间的中位数是 时;时; (3)请将频数分布直方图补充完整;)请将频数分布直方图补充完整; (4)求所有被调查同学的平均劳动时间.)求所有被调查同学的平均劳动时间.26.(9分)(2014•济南)如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;的值;的解析式;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.面积的最大值.27.(9分)(2014•济南)如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的第四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F1,G1,EF=DG=1,DF=2.(1)AE= ,正方形ABCD的边长= ;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上的数量关系并给出证明;①写出∠B′AD′与α的数量关系并给出证明;的边长.②若α=30°,求菱形AB′C′D′的边长.28.(9分)(2014•济南)如图1,抛物线y=﹣x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积S阴影;(2)如图2,直线AB与y轴相交于点P,点M为线段OA上一动点,∠PMN为直角,边MN与AP相交于点N,设OM=t,试探究:,试探究:为等腰三角形;①t为何值时△MAN为等腰三角形;的长度最小,最小长度是多少.②t为何值时线段PN的长度最小,最小长度是多少.2014年山东省济南市中考数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,共45分) 1.(3分)(2014•济南)4的算术平方根是(的算术平方根是( )A . 2B . ﹣2C .±2 D .16考点: 算术平方根.术平方根. 分析: 根据乘方运算,可得一个数的算术平方根.据乘方运算,可得一个数的算术平方根.解答: 解:∵22=4,∴=2, 故选:A . 点评: 本题考查了算术平方根,乘方运算是解题关键.题考查了算术平方根,乘方运算是解题关键. 2.(3分)(2014•济南)如图,点O 在直线AB 上,若∠1=40°,则∠2的度数是(的度数是( )A .50° B .60° C . 140° D .150°考点: 余角和补角.角和补角. 分析: 根据互补两角之和为180°,求解即可.,求解即可. 解答: 解:∵∠1=40°, ∴∠2=180°﹣∠1=140°. 故选C . 点评: 本题考查了余角和补角的知识,解答本题的关键是掌握互补两角之和为180°.3.(3分)(2014•济南)下列运算中,结果是a 5的是(的是() A . a 2•a 3 B . a 10÷a 2C . (a 2)3D . (﹣a )5 考点: 同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方. 分析: 根据同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.据同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案. 解答: 解:A 、a 2•a 3=a 5,故A 选项正确;选项正确;B 、a 10÷a 2=a 8,故B 选项错误;选项错误;C 、(a 2)3=a 6,故C 选项错误;选项错误;D 、(﹣a )5=﹣a 5,故D 选项错误.选项错误.故选:A . 点评: 此题考查了同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.题考查了同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心. 4.(3分)(2014•济南)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为(示为( ) A .3.7×.7×10102 B .3.7×.7×10103 C .37×7×10102 D .0.37×.37×10104考点: 科学记数法—表示较大的数.表示较大的数.分析: 科学记数法的表示形式为a×a×1010n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于3700有4位,所以可以确定n=4﹣1=3. 解答: 解:3 700=3.7×3 700=3.7×10103. 故选B . 点评: 此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.值是关键.5.(3分)(2014•济南)下列图案中既是轴对称图形又是中心对称图形的是(济南)下列图案中既是轴对称图形又是中心对称图形的是( ) A . B . C .D .考点: 中心对称图形;轴对称图形.心对称图形;轴对称图形. 分析: 根据轴对称图形与中心对称图形的概念求解.据轴对称图形与中心对称图形的概念求解. 解答: 解:A 、是轴对称图形,不是中心对称图形.故选项错误;、是轴对称图形,不是中心对称图形.故选项错误;B 、不是轴对称图形,是中心对称图形.故选项错误;、不是轴对称图形,是中心对称图形.故选项错误;C 、不是轴对称图形,也不是中心对称图形.故选项错误;、不是轴对称图形,也不是中心对称图形.故选项错误;D 、是轴对称图形,也是中心对称图形.故选项正确.、是轴对称图形,也是中心对称图形.故选项正确. 故选D . 点评: 本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.原图重合.6.(3分)(2014•济南)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是(列关于这个几何体的说法正确的是( )A . 主视图的面积为5B . 左视图的面积为3C . 俯视图的面积为3D . 三种视图的面积都是4考点: 简单组合体的三视图.单组合体的三视图. 分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.得到几个面,比较即可. 解答: 解:A 、从正面看,可以看到4个正方形,面积为4,故本选项错误;,故本选项错误; B 、从左面看,可以看到3个正方形,面积为3,故本选项正确;,故本选项正确;C 、从上面看,可以看到4个正方形,面积为4,故本选项错误;,故本选项错误;D 、三种视图的面积不相同,故本选项错误.、三种视图的面积不相同,故本选项错误. 故选B . 点评: 本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.7.(3分)(2014•济南)化简÷的结果是(的结果是( ) A . m B . C . m ﹣1 D .考点: 分式的乘除法.式的乘除法.专题: 计算题.算题.分析: 原式利用除法法则变形,约分即可得到结果.式利用除法法则变形,约分即可得到结果.解答:解:原式=•=m .故选A .点评: 此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.8.(3分)(2014•济南)下列命题中,真命题是(济南)下列命题中,真命题是( )A . 两对角线相等的四边形是矩形对角线相等的四边形是矩形B . 两对角线互相平分的四边形是平行四边形对角线互相平分的四边形是平行四边形C . 两对角线互相垂直的四边形是菱形对角线互相垂直的四边形是菱形D . 两对角线相等的四边形是等腰梯形对角线相等的四边形是等腰梯形考点: 命题与定理.题与定理.专题: 常规题型.规题型.分析: 根据矩形的判定方法对A 进行判断;根据平行四边形的判定方法对B 进行判断;根据菱形的判定方法对C 进行判断;根据等腰梯形的定义对D 进行判断.进行判断.解答: 解:A 、两对角线相等的平行四边形是矩形,所以A 选项错误;选项错误;B 、两对角线互相平分的四边形是平行四边形,所以B 选项正确;选项正确;C 、两对角线互相垂直的平行四边形是菱形,所以C 选项错误;选项错误;D 、两对角线相等的梯形是等腰梯形,所以D 选项错误.选项错误.故选B .点评: 本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.题称为假命题;经过推理论证的真命题称为定理.9.(3分)(2014•济南)若一次函数y=(m ﹣3)x+5的函数值y 随x 的增大而增大,则( ) A . m >0 B . m <0 C . m >3 D . m <3考点: 一次函数图象与系数的关系.次函数图象与系数的关系.分析: 直接根据一次函数的性质可得m ﹣3>0,解不等式即可确定答案.,解不等式即可确定答案.解答: 解:∵一次函数y=(m ﹣3)x+5中,y 随着x 的增大而增大,的增大而增大,∴m ﹣3>0,解得:m >3.故选C .点评: 本题考查的是一次函数的性质,熟知一次函数y=kx+b (k≠0)中,当k <0时,y 随x的增大而减小是解答此题的关键.的增大而减小是解答此题的关键.10.(3分)(2014•济南)如图,在▱ABCD 中,延长AB 到点E ,使BE=AB ,连接DE 交BC 于点F ,则下列结论不一定成立的是(,则下列结论不一定成立的是( )A . ∠E=∠CDFB . E F=DFC .A D=2BF D .B E=2CF考点: 平行四边形的性质;全等三角形的判定与性质.行四边形的性质;全等三角形的判定与性质. 分析: 首先根据平行四边形的性质可得CD ∥AB ,再根据平行线的性质可得∠E=∠CDF ;首先证明△DCF ≌△EBF 可得EF=DF ;根据全等可得CF=BF=BC ,再利用等量代换可得AD=2BF ;根据题意不能证明AD=BE ,因此BE 不一定等于2CF .解答: 解:∵四边形ABCD 是平行四边形,是平行四边形,∴CD ∥AB ,∴∠E=∠CDF ,故A 成立;成立;∵四边形ABCD 是平行四边形,是平行四边形,∴CD=AB ,CD ∥BE ,∴∠C=∠CBE ,∵BE=AB ,∴CD=EB ,在△CDF 和△BEF 中,中,,∴△DCF ≌△EBF (AAS ),∴EF=DF ,故B 成立;成立;∵△DCF ≌△EBF ,∴CF=BF=BC ,∵AD=BC ,∴AD=2BF ,故C 成立;成立;∵AD≠BE ,∴2CF≠BE ,故D 不成立;不成立;故选:D .点评: 此题主要考查了平行四边形的性质,关键是掌握平行四边形对边平行且相等.11.(3分)(2014•济南)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是( ) A .B .C .D .考点: 列表法与树状图法.表法与树状图法.分析: 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与征征和舟舟选到同一社团的情况,再利用概率公式即可求得答案.一社团的情况,再利用概率公式即可求得答案.解答: 解:画树状图得::画树状图得:∵共有9种等可能的结果,征征和舟舟选到同一社团的有3种情况,种情况,∴征征和舟舟选到同一社团的概率是:∴征征和舟舟选到同一社团的概率是:=. 故选C .点评: 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.所求情况数与总情况数之比.12.(3分)(2014•济南)如图,直线y=﹣x+2与x 轴、y 轴分别交于A 、B 两点,把△AOB 沿直线AB 翻折后得到△AO′B ,则点O′的坐标是(的坐标是( )A . (,3)B . (,)C . (2,2) D . (2,4)考点: 翻折变换(折叠问题);一次函数的性质.;一次函数的性质. 分析: 作O′M ⊥y 轴,交y 于点M ,O′N ⊥x 轴,交x 于点N ,由直线y=﹣x+2与x 轴、y 轴分别交于A 、B 两点,求出A (0,2),B (2,0)和∠BAO=30°,运用直角三角形求出MB 和MO′,再求出点O′的坐标.的坐标.解答: 解:如图,作O′M ⊥y 轴,交y 于点M ,O′N ⊥x 轴,交x 于点N ,∵直线y=﹣x+2与x 轴、y 轴分别交于A 、B 两点,两点,∴A (0,2),B (2,0),∴∠BAO=30°,由折叠的特性得,O′B=OB=2,∠ABO=∠ABO′=60°,∴MB=1,MO′=,∴OM=3,ON=O′M=,∴O′(,3),故选:A .点评: 本题主要考查了折叠问题及一次函数问题,解题的关键是运用折叠的特性得出相等的角与线段.角与线段.13.(3分)(2012014•4•济南)如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是(为矩形,这个矩形的面积是( )A . 2B .C .D .考点: 垂径定理;等边三角形的性质;矩形的性质;解直角三角形.径定理;等边三角形的性质;矩形的性质;解直角三角形.专题: 计算题.算题.分析: 连结BD 、OC ,根据矩形的性质得∠BCD=90°,再根据圆周角定理得BD 为⊙O 的直径,则BD=2;由ABC 为等边三角形得∠A=60°,于是利用圆周角定理得到∠BOC=2∠A=120°,易得∠CBD=30°,在Rt △BCD 中,根据含30度的直角三角形三边的关系得到CD=BD=1,BC=CD=,然后根据矩形的面积公式求解.,然后根据矩形的面积公式求解. 解答: 解:连结BD 、OC ,如图,,如图,∵四边形BCDE 为矩形,为矩形,∴∠BCD=90°,∴BD 为⊙O 的直径,的直径,∴BD=2,∵△ABC 为等边三角形,为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,而OB=OC ,∴∠CBD=30°,在Rt △BCD 中,CD=BD=1,BC=CD=,∴矩形BCDE 的面积=BC•CD=.故选B .点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理、等边三角形的性质和矩形的性质.了圆周角定理、等边三角形的性质和矩形的性质.14.(3分)(2012014•4•济南)现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是(的是( )A . (1,2,1,2,2)B . (2,2,2,3,3)C . (1,1,2,2,3)D . (1,2,1,1,2)考点: 规律型:数字的变化类.律型:数字的变化类.专题: 新定义.定义.分析: 根据题意可知,S 1中2有2的倍数个,3有3的倍数个,据此即可作出选择.的倍数个,据此即可作出选择. 解答: 解:A 、∵2有3个,∴不可以作为S 1,故选项错误;,故选项错误;B 、∵2有3个,∴不可以作为S 1,故选项错误;,故选项错误;C 、3只有1个,∴不可以作为S 1,故选项错误,故选项错误D 、符合定义的一种变换,故选项正确.、符合定义的一种变换,故选项正确.故选:D .点评: 考查了规律型:数字的变化类,探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.规律.15.(3分)(2014•济南)二次函数y=x 2+bx 的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2+bx ﹣t=0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是(的取值范围是( )A . t ≥﹣1B . ﹣1≤t <3C . ﹣1<t <8D . 3<t <8考点: 二次函数与不等式(组).分析: 根据对称轴求出b 的值,从而得到x=﹣1、4时的函数值,再根据一元二次方程x 2+bx ﹣t=0(t 为实数)在﹣1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答.交点解答.解答: 解:对称轴为直线x=﹣=1, 解得b=﹣2,所以,二次函数解析式为y=x 2﹣2x , =(x ﹣1)2﹣1,x=﹣1时,y=1+2=3,x=4时,y=16﹣2×2×4=84=8,∵x 2+bx ﹣t=0相当于y=x 2+bx 与直线y=t 的交点的横坐标,的交点的横坐标,∴当﹣1<t <8时,在﹣1<x <4的范围内有解.的范围内有解.故选C .点评: 本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键,作出图形更形象直观.解题的关键,作出图形更形象直观.二、填空题(共6小题,每小题3分,共18分) 16.(3分)(2014•济南)|﹣7﹣3|= 10 .考点: 有理数的减法;绝对值.理数的减法;绝对值.分析: 根据有理数的减法运算法则和绝对值的性质进行计算即可得解.据有理数的减法运算法则和绝对值的性质进行计算即可得解.解答: 解:|﹣7﹣3|=|﹣10|=10. 故答案为:10.点评: 本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.题的关键.17.(3分)(2014•济南)分解因式:x 2+2x+1= (x+1)2.考点: 因式分解-运用公式法.运用公式法.分析: 本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.倍,直接运用完全平方和公式进行因式分解.解答: 解:x 2+2x+1=(x+1)2. 点评: 本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).18.(3分)(2014•济南)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为个红球且摸到红球的概率为,那么口袋中球的总个数为 15 .考点: 概率公式.率公式.分析: 由在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,利用概率公式求解即可求得答案.个红球且摸到红球的概率为,利用概率公式求解即可求得答案.解答: 解:∵在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,个红球且摸到红球的概率为, ∴口袋中球的总个数为:3÷3÷=15=15. 故答案为:15.点评: 此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.所求情况数与总情况数之比.19.(3分)(2014•济南)若代数式和的值相等,则x= 7 .考点: 解分式方程.分式方程.专题: 计算题.算题.分析: 根据题意列出分式方程,求出分式方程的解得到x 的值,经检验即可得到分式方程的解.解.解答: 解:根据题意得:=,去分母得:2x+1=3x ﹣6,解得:x=7,经检验x=7是分式方程的解.是分式方程的解. 故答案为:x=7.点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.式方程求解.解分式方程一定注意要验根.20.(3分)(2012014•4•济南)如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于等于 4或8 .考点: 平移的性质;解一元二次方程-因式分解法;平行四边形的判定与性质;正方形的性质.质.分析: 根据平移的性质,结合阴影部分是平行四边形,△AA′H 与△HCB′都是等腰直角三角形,则若设AA′=x ,则阴影部分的底长为x ,高A′D=2﹣x ,根据平行四边形的面积公式即可列出方程求解.式即可列出方程求解.解答: 解:设AC 交A′B′于H , ∵∠A=45°,∠D=90°∴△A′HA 是等腰直角三角形是等腰直角三角形设AA′=x ,则阴影部分的底长为x ,高A′D=12﹣x∴x•(12﹣x )=32∴x=4或8,即AA′=4或8cm .故答案为:4或8.点评: 考查了平移的性质及一元二次方程的解法等知识,解决本题关键是抓住平移后图形的特点,利用方程方法解题.特点,利用方程方法解题.21.(3分)(2014•济南)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B .若OA 2﹣AB 2=12,则k 的值为的值为 6 .考点: 反比例函数图象上点的坐标特征;平方差公式;等腰直角三角形.比例函数图象上点的坐标特征;平方差公式;等腰直角三角形.专题: 计算题.算题.分析: 设B 点坐标为(a ,b ),根据等腰直角三角形的性质得OA=AC ,AB=AD ,OC=AC ,AD=BD ,则OA 2﹣AB 2=12变形为AC 2﹣AD 2=6,利用平方差公式得到(AC+AD )(AC ﹣AD )=6,所以(OC+BD )•CD=6,则有a•b=6,根据反比例函数图象上点的坐标特征易得k=6.解答: 解:设B 点坐标为(a ,b ),∵△OAC 和△BAD 都是等腰直角三角形,都是等腰直角三角形,∴OA=AC ,AB=AD ,OC=AC ,AD=BD , ∵OA 2﹣AB 2=12,∴2AC 2﹣2AD 2=12,即AC 2﹣AD 2=6,∴(AC+AD )(AC ﹣AD )=6,∴(OC+BD )•CD=6,∴a•b=6,∴k=6.故答案为6.点评: 本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .三、解答题(共7小题,共57分) 22.(7分)(2014•济南)(1)化简:(a+3)(a ﹣3)+a (4﹣a )(2)解不等式组:.考点: 整式的混合运算;解一元一次不等式组.式的混合运算;解一元一次不等式组. 专题: 计算题.算题.分析: (1)原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;括号合并即可得到结果;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答: 解:(1)原式=a 2﹣9+4a ﹣a 2=4a ﹣9;(2),由①得:x <4;由②得:x≥2,则不等式组的解集为2≤x <4.点评: 此题考查了整式的混合运算,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.的关键.23.(7分)(2012014•4•济南)(1)如图1,四边形ABCD 是矩形,点E 是边AD 的中点,求证:EB=EC .(2)如图2,AB 与⊙O 相切于点C ,∠A=∠B ,⊙O 的半径为6,AB=16,求OA 的长.的长.考点: 切线的性质;全等三角形的判定与性质;矩形的性质.线的性质;全等三角形的判定与性质;矩形的性质.分析: (1)证明△ABE ≌△DCE ,根据全等三角形的对应边相等即可证得;,根据全等三角形的对应边相等即可证得;(2)连接OC ,根据三线合一定理即可求得AC 的长,然后在直角△OAC 中,利用勾股定理即可求得OA 的长.的长.解答: (1)证明:∵四边形ABCD 是矩形,是矩形,∴∠A=∠D=90°,AB=DC ,在△ABE 和△DCE 中,,∴△ABE ≌△DCE ,∴EB=EC ;(2)解:连接OC ,∵AB 与⊙O 相切于点C ,∴OC ⊥AB ,又∵∠A=∠B ,∴OA=OB ,。
2014年山东省济南市中考数学试题(含答案)
120
必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、
将本试卷和答题卡一并交回.
是世界上第三个实现月面软着陆和月面巡视探测的国家.
为轴对称图但不是中心对称图形;图
既不是轴对称图也不是中心对称图形;
【解析】两对角线相等的四边形不一定是矩形,也不一定是等腰梯形,所以题.又两对角线互相垂直如果不平分,此时的四边形不是菱形,故选
,于是A
所给结论一定成立,于是不一定成立的应选
.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一分别表示航模、彩绘、泥塑三个社团,
D.
____________.
,则摸到红球的概率为.若代数式
【解析】解方程
10张,总价为
李预定了小组赛和淘汰赛的球票各多少张?
.
)如图
上,以
②过。
2014年山东省烟台市中考数学试卷(word解析版)
2014年山东省烟台市中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)1.﹣3的绝对值等于()A.﹣3 B.3 C.±3 D.﹣2.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元4.如图是一个正方体截去一角后得到的几何体,它的主视图是()A.B.C.D.5.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣96.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5 B.3 C.3.5 D.4.58.关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣19.将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)11.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分)13.(﹣1)0+()﹣1=_________.14.在函数中,自变量x的取值范围是_________.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球_________个.16.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.17.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于_________.18.如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于_________.三、解答题(本大题共8个小题,满分66分)19.(6分)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.20.(7分)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.21.(7分)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.22.(8分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.23.(8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格200024.(8分)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC 上.设∠PCB=α,∠POC=β.求证:tanα•tan=.25.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P 也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.26.(12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.2014年山东省烟台市中考数学试卷试题解析一、选择题(本题共12小题,每小题3分,满分36分)【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将5613亿元用科学记数法表示为:5.613×1011元.故选;A.4.如图是一个正方体截去一角后得到的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图;截一个几何体.【分析】根据主视图是从正面看到的图形判定则可.【详解】解:从正面看,主视图为.故选:C.5.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【详解】解:由题意得,2x﹣y=3,A、x=5时,y=7,故本选项错误;B、x=3时,y=3,故本选项错误;C、x=﹣4时,y=﹣11,故本选项错误;D、x=﹣3时,y=﹣9,故本选项正确.故选D.6.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【考点】菱形的性质;全等三角形的判定与性质.【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选C.7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5 B.3 C.3.5 D.4.5【考点】等腰梯形的性质;梯形中位线定理.【分析】根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.【详解】解:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC=6=3,故选:B.8.关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是()A.﹣1或5 B.1 C.5 D.﹣1【考点】根与系数的关系.【分析】设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.【详解】解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.9.将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)【考点】实数;规律型:数字的变化类.【分析】根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.【详解】解:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)【考点】坐标与图形变化-旋转.【分析】先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.【详解】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点B的对应点为点B′,作线段AA′和BB′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选B.11.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.专题:数形结合.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【详解】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,所以③正确;∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,所以④错误.故选B.12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.【详解】解:点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选:A.二、填空题(本大题共6小题,每小题3分,满分18分)13.(﹣1)0+()﹣1=2015.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据0指数幂及负整数指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:原式=1+2014=2015.故答案为:2015.14.在函数中,自变量x的取值范围是x≤1且x≠﹣2.【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12个.【考点】概率公式.【分析】设袋中共有球x个,根据概率公式列出等式解答.【详解】解:设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.16.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4.【考点】一次函数与一元一次不等式.【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【详解】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得﹣x﹣3>2x﹣14解得x<4.故答案为:x<4.17.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于π.【考点】正多边形和圆;扇形面积的计算.【分析】先正确作辅助线,构造扇形和等边三角形、直角三角形,分别求出两个弓形的面积和两个三角形面积,即可求出阴影部分的面积.【详解】解:连接OC、OD、OE,OC交BD于M,OE交DF于N,过O作OZ⊥CD于Z,∵六边形ABCDEF是正六边形,∴BC=CD=DE=EF,∠BOC=∠COD=∠DOE=∠EOF=60°,由垂径定理得:OC⊥BD,OE⊥DF,BM=DM,FN=DN,∵在Rt△BMO中,OB=4,∠BOM=60°,∴BM=OB×sin60°=2,OM=OB•cos60°=2,∴BD=2BM=4,∴△BDO的面积是×BD×OM=×4×2=4,同理△FDO的面积是4;∵∠COD=60°,OC=OD=4,∴△COD是等边三角形,∴∠OCD=∠ODC=60°,在Rt△CZO中,OC=4,OZ=OC×sin60°=2,∴S扇形OCD﹣S△COD=﹣×4×2=π﹣4,∴阴影部分的面积是:4+4+π﹣4+π﹣4=π,故答案为:π.18.如图,∠AOB=45°,点O1在OA上,OO1=7,⊙O1的半径为2,点O2在射线OB上运动,且⊙O2始终与OA相切,当⊙O2和⊙O1相切时,⊙O2的半径等于3或15.【考点】圆与圆的位置关系.【分析】作O2C⊥OA于点C,连接O1O2,设O2C=r,根据⊙O1的半径为2,OO1=7,表示出O1O2=r+2,O1C=7﹣r,利用勾股定理列出有关r的方程求解即可.【详解】解:如图,作O2C⊥OA于点C,连接O1O2,设O2C=r,∵∠AOB=45°,∴OC=O2C=r,∵⊙O1的半径为2,OO1=7,∴O1O2=r+2,O1C=7﹣r,∴(7﹣r)2+r2=(r+2)2,解得:r=3或15,故答案为:3或15.三、解答题(本大题共8个小题,满分66分)19.(6分)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.【考点】分式的化简求值;极差.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出数据的极差确定出x,代入计算即可求出值.【详解】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.20.(7分)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图中的数据,找出中位数即可;(2)根据扇形统计图找出关注本届世界杯的百分比,乘以2400即可得到结果;(3)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.【详解】解:(1)四个年级被抽出的人数由小到大排列为30,40,50,80,∴中位数为=45(人);(2)根据题意得:2400×(1﹣45%)=1320(人),则该校关注本届世界杯的学生大约有1320人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.21.(7分)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.【考点】解直角三角形的应用-坡度坡角问题.【分析】延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.【详解】解:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.22.(8分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)根据题意列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A与B坐标,设出反比例函数解析式,将A坐标代入即可确定出解析式;(2)存在,设E(x,0),表示出DE与CE,连接AE,BE,三角形ABE面积=四边形ABCD面积﹣三角形ADE 面积﹣三角形BCE面积,求出即可.【详解】解:(1)由题意得:,解得:,∴A(1,6),B(6,1),设反比例函数解析式为y=,将A(1,6)代入得:k=6,则反比例解析式为y=;(2)存在,设E(x,0),则DE=x﹣1,CE=6﹣x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE,BE,则S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE=(BC+AD)•DC﹣DE•AD﹣CE•BC=×(1+6)×5﹣(x﹣1)×6﹣(6﹣x)×1=﹣x=5,解得:x=5,则E(5,0).23.(8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)1100 1400销售价格(元)今年的销售价格2000【考点】一次函数的应用;分式方程的应用;一元一次不等式的应用.【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【详解】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得,解得:x=1600.经检验,x=1600是元方程的根.答:今年A型车每辆售价1600元;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.24.(8分)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC 上.设∠PCB=α,∠POC=β.求证:tanα•tan=.25.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P 也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.【考点】四边形综合题.【分析】(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.【详解】解:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.26.(12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.【考点】二次函数综合题.【分析】(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD∽△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.【详解】解:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m=m=1,∴OC=OF=1,当x=0时y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD∽△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省莱芜市2014年中考数学试卷一、选择题(本题共12小题,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)(2014•莱芜)下列四个实数中,是无理数的为()A.0B.﹣3 C.D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、0是整数,是有理数,选项错误;B、﹣3是整数,是有理数,选项错误;C、=2是无理数正确;D、是无限循环小数,是有理数,选项错误.故选:C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2014•莱芜)下面计算正确的是()A.3a﹣2a=1 B.3a2+2a=5a3C.(2ab)3=6a3b3D.﹣a4•a4=﹣a8考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:分别进行合并同类项、积的乘方和幂的乘方等运算,然后选择正确答案.解答:解:A、3a﹣2a=a,原式计算错误,故本选项错误;B、3a2和2a不是同类项,不能合并,故本选项错误;C、(2ab)3=8a3b3,原式计算错误,故本选项错误;D、﹣a4•a4=﹣a8,计算正确,故本选项正确.故选D.点评:本题考查了合并同类项、积的乘方和幂的乘方等知识,掌握运算法则是解答本题的关键.3.(3分)(2014•莱芜)2014年4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为()A.15×105B.1.5×106C.1.5×107D.0.15×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1500万用科学记数法表示为:1.5×107.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•莱芜)如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的图形判定即可.解答:解:从上面可看到从左往右有三个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)(2014•莱芜)对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表:年龄13 14 15 16 17 18人数 4 5 6 6 7 2则这些学生年龄的众数和中位数分别是()A.17,15.5 B.17,16 C.15,15.5 D.16,16考点:众数;中位数.分析:出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.解答:解:17出现的次数最多,17是众数.第15和第16个数分别是15、16,所以中位数为16.5.故选A.点评:本题考查了众数及中位数的知识,掌握各部分的概念是解题关键.6.(3分)(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16考点:多边形内角与外角.分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解答:解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C.点评:此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键.7.(3分)(2014•莱芜)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.分析:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,根据用相同的时间甲走40千米,乙走50千米,列出方程.解答:解:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,由题意得,=.故选B.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.8.(3分)(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()A.πB.2πC.D.4π考点:扇形面积的计算;旋转的性质.分析:根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积,即为扇形面积即可.解答:解:∵S阴影=S扇形ABA′+S半圆﹣S半圆=S扇形ABA′==2π,故选B.点评:本题考查了扇形面积的计算以及旋转的性质,是基础知识,难度不大.9.(3分)(2014•莱芜)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.考点:圆锥的计算.分析:根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长,然后表示出圆锥的高即可.解答:解:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=R.由勾股定理得到圆锥的高为=,故选D.点评:本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.10.(3分)(2014•莱芜)如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=()A.1:16 B.1:18 C.1:20 D.1:24考点:相似三角形的判定与性质.分析:设△BDE的面积为a,表示出△CDE的面积为4a,根据等高的三角形的面积的比等于底边的比求出,然后求出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后表示出△ACD的面积,再求出比值即可.解答:解:∵S△BDE:S△CDE=1:4,∴设△BDE的面积为a,则△CDE的面积为4a,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE:S△ABC=1:25,∴S△ACD=25a﹣a﹣4a=20a,∴S△BDE:S△ACD=a:20a=1:20.故选C.点评:本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方用△BDE的面积表示出△ABC的面积是解题的关键.11.(3分)(2014•莱芜)如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A.△CDF的周长等于AD+CD B.F C平分∠BFDC.A C2+BF2=4CD2D.D E2=EF•CE考点:正多边形和圆.分析:首先由正五边形的性质可得AB=BC=CD=DE=AE,BA∥CE,AD∥BC,AC∥DE,AC=AD=CE,根据有一组邻边相等的平行四边形是菱形即可证得四边形ABCF为菱形,得CF=AF,即△CDF的周长等于AD+CD,由菱形的性质和勾股定理得出AC2+BF2=4CD2,可证明△CDE∽△DFE,即可得出DE2=EF•CE.解答:解:∵五边形ABCDE是正五边形,∴AB=BC=CD=DE=AE,BA∥CE,AD∥BC,AC∥DE,AC=AD=CE,∴四边形ABCF是菱形,∴CF=AF,∴△CDF的周长等于CF+DF+CD,即△CDF的周长等于AD+CD,故A说法正确;∵四边形ABCF是菱形,∴AC⊥BF,设AC与BF交于点O,由勾股定理得OB2+OC2=BC2,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,∴AC2+BF2=4CD2.故C说法正确;由正五边形的性质得,△ADE≌△CDE,∴∠DCE=∠EDF,∴△CDE∽△DFE,∴=,∴DE2=EF•CE,故C说法正确;故选B.点评:本题考查了正五边形的性质,全等三角形的判定,综合考察的知识点较多,难度中等,解答本题注意已经证明的结论,可以直接拿来使用.12.(3分)(2014•莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1B.2C.3D.4考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线开口方向得a<0,由抛物线对称轴在y轴的左侧得a、b同号,即b<0,由抛物线与y轴的交点在x轴上方得c>0,所以abc>0;根据抛物线对称轴的位置得到﹣1<﹣<0,则根据不等式性质即可得到2a﹣b<0;由于x=﹣2时,对应的函数值小于0,则4a﹣2b+c<0;同样当x=﹣1时,a﹣b+c>0,x=1时,a+b+c<0,则(a﹣b+c)(a+b+c)<0,利用平方差公式展开得到(a+c)2﹣b2<0,即(a+c)2<b2.解答:解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的左侧,∴x=﹣<0,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵﹣1<﹣<0,∴2a﹣b<0,所以②正确;∵当x=﹣2时,y<0,∴4a﹣2b+c<0,所以③正确;∵当x=﹣1时,y>0,∴a﹣b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a﹣b+c)(a+b+c)<0,即(a+c﹣b)(a+c+b)<0,∴(a+c)2﹣b2<0,所以④正确.故选D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题(本题包括5小题,每小题4分,共20分)13.(4分)(2014•莱芜)分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).考点:提公因式法与公式法的综合运用.分析:观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.解答:解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).点评:本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.14.(4分)(2014•莱芜)计算:=2.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、绝对值、负指数幂等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣3+1+=2﹣3+1+=2﹣3+1+2=2.故答案为2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、绝对值、负指数幂等考点的运算.15.(4分)(2014•莱芜)若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=﹣1.考点:根与系数的关系.分析:根据已知和根与系数的关系x1x2=得出k2=1,求出k的值,再根据原方程有两个实数根,求出符合题意的k的值.解答:解:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或﹣1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,故k的值为﹣1.点评:本题考查了根与系数的关系,根据x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=进行求解.16.(4分)(2014•莱芜)已知一次函数y=ax+b与反比例函数的图象相交于A(4,2)、B(﹣2,m)两点,则一次函数的表达式为y=x﹣2.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先把A点坐标代入中求出k,得到反比例函数解析式为y=,再利用反比例函数解析式确定B定坐标,然后利用待定系数法求一次函数解析式.解答:解:把A(4,2)代入得k=4×2=8,所以反比例函数解析式为y=,把B(﹣2,m)代入y=得﹣2m=8,解得m=﹣4,把A(4,2)、B(﹣2,﹣4)代入y=ax+b得,解得,所以一次函数解析式为y=x﹣2.故答案为y=x﹣2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.17.(4分)(2014•莱芜)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为(1342,0).考点:规律型:点的坐标;等边三角形的判定与性质;菱形的性质.专题:规律型.分析:连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2014=335×6+4,因此点B4向右平移1340(即335×4)即可到达点B2014,根据点B4的坐标就可求出点B2014的坐标.解答:解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=90°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2014=335×6+4,∴点B4向右平移1340(即335×4)到点B2014.∵B4的坐标为(2,0),∴B2014的坐标为(2+1340,0),∴B2014的坐标为(1342,0).点评:本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明,证明过程或推演步骤)18.(6分)(2014•莱芜)先化简,再求值:,其中a=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=÷=•=a(a﹣2),当a=﹣1时,原式=﹣1×(﹣3)=3.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2014•莱芜)在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.解答:解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75.;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=6000(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(9分)(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)考点:解直角三角形的应用-坡度坡角问题.分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DC﹣BE即可求解.解答:解:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DC﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.点评:考查了解直角三角形的应用﹣坡度坡角问题,两个直角三角形有公共的直角边,先求出公共边的解决此类题目的基本出发点.21.(9分)(2014•莱芜)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.考点:全等三角形的判定与性质;菱形的判定;旋转的性质.分析:(1)根据旋转可得∠BAE=∠CAD,从而SAS证明△ACD≌△ABE,得出答案BE=CD;(2)由AD⊥BC,SAS可得△ACD≌△ABE≌△ABD,得出BE=BD=CD,∠EBF=∠DBF,再由EF∥BC,∠DBF=∠EFB,从而得出∠EBF=∠EFB,则EB=EF,证明得出四边形BDFE 为菱形.解答:证明:(1)∵△ABC是等腰三角形,顶角∠BAC=α(α<60°),线段AD绕点A顺时针旋转α到AE,∴AB=AC,∴∠BAE=∠CAD,在△ACD和△ABE中,,∴△ACD≌△ABE(SAS),∴BE=CD;(2)∵AD⊥BC,∴BD=CD,∴BE=BD=CD,∠BAD=∠CAD,∴∠BAE=∠BAD,在△ABD和△ABE中,,∴△ABD≌△ABE(SAS),∴∠EBF=∠DBF,∵EF∥BC,∴∠DBF=∠EFB,∴∠EBF=∠EFB,∴EB=EF,∴BD=BE=EF=FD,∴四边形BDFE为菱形.点评:本题考查了全等三角形的判定和性质以及菱形的判定、旋转的性质.22.(10分)(2014•莱芜)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1)求平均每年投资增长的百分率;(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?考点:一元二次方程的应用;一元一次不等式组的应用.分析:(1)设平均每年投资增长的百分率是x.根据2013年投资1000万元,得出2014年投资1000(1+x)万元,2015年投资1000(1+x)2万元,而2015年投资1210万元.据此列方程求解;(2)设2015年河道治污面积为a平方米,园林绿化面积为平方米,根据2015年河道治污及园林绿化总面积不少于35000平方米及河道治污费用不少于园林绿化费用的4倍列出不等式组,解不等式组即可.解答:解:(1)设平均每年投资增长的百分率是x.由题意得1000(1+x)2=1210,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:平均每年投资增长的百分率为10%;(2)设2015年河道治污面积为a平方米,园林绿化面积为平方米,由题意,得,由①得a≤25500,由②得a≥24200,∴24200≤a≤25500,∴968万≤400a≤1020万,∴190万≤1210万﹣400a≤242万,答:园林绿化的费用应在190万~242万的范围内.点评:本题考查了一元二次方程及一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系,列出方程或不等式组.23.(10分)(2014•莱芜)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.考点:圆的综合题.专题:综合题.分析:(1)连结OC、OE,OE交AB于H,如图1,由E是弧AB的中点,根据垂径定理的推论得到OE⊥AB,则∠HEF+∠HFE=90°,由对顶相等得∠HFE=∠CFD,则∠HEF+∠CFD=90°,再由DC=DF得∠CFD=∠DCF,加上∠OCE=∠OEC,所以∠OCE+∠DCE=∠HEF+∠CFD=90°,于是根据切线的判定定理得直线DC与⊙O相切;(2)由弧AE=弧BE,根据圆周角定理得到∠ABE=∠BCE,加上∠FEB=∠BEC,于是可判断△EBF∽△ECB,利用相似比得到EF•EC=BE2=(r)2=r2;(3)如图2,连结OA,由弧AE=弧BE得AE=BE=r,设OH=x,则HE=r﹣x,根据勾股定理,在Rt△OAH中有AH2+x2=r2;在Rt△EAH中由AH2+(r﹣x)2=(r)2,利用等式的性质得x2﹣(r﹣x)2=r2﹣(r)2,即得x=r,则HE=r﹣r=r,在Rt△OAH中,根据勾股定理计算出AH=,由OE⊥AB得AH=BH,而F是AB的四等分点,所以HF=AH=,于是在Rt△EFH中可计算出EF=r,然后利用(2)中的结论可计算出EC.解答:(1)证明:连结OC、OE,OE交AB于H,如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:连结BC,∵E是弧AB的中点,∴弧AE=弧BE,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴EF:BE=BE:EC,∴EF•EC=BE2=(r)2=r2;(3)解:如图2,连结OA,∵弧AE=弧BE,∴AE=BE=r,设OH=x,则HE=r﹣x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r﹣x)2=(r)2,∴x2﹣(r﹣x)2=r2﹣(r)2,即得x=r,∴HE=r﹣r=r,在Rt△OAH中,AH===,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===r,∵EF•EC=r2,∴r•EC=r2,∴EC=r.点评:本题考查了圆的综合题:熟练掌握垂径定理及其推论、切线的判定定理和圆周角定理;会利用勾股定理进行几何计算,利用相似三角形的知识解决有关线段等积的问题.24.(12分)(2014•莱芜)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC 与△OBD重叠部分的面积记为S,试求S的最大值.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.设点M的横坐标为x,则求出MN=|x2﹣4x|;解方程|x2﹣4x|=3,求出x的值,即点M横坐标的值;(3)设水平方向的平移距离为t(0≤t<2),利用平移性质求出S的表达式:S=﹣(t ﹣1)2+;当t=1时,s有最大值为.解答:解:(1)由题意,可得C(1,3),D(3,1).∵抛物线过原点,∴设抛物线的解析式为:y=ax2+bx.∴,解得,∴抛物线的表达式为:y=﹣x2+x.(2)存在.设直线OD解析式为y=kx,将D(3,1)代入求得k=,∴直线OD解析式为y=x.设点M的横坐标为x,则M(x,x),N(x,﹣x2+x),∴MN=|y M﹣y N|=|x﹣(﹣x2+x)|=|x2﹣4x|.由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.∴|x2﹣4x|=3.若x2﹣4x=3,整理得:4x2﹣12x﹣9=0,解得:x=或x=;若x2﹣4x=﹣3,整理得:4x2﹣12x+9=0,解得:x=.∴存在满足条件的点M,点M的横坐标为:或或.(3)∵C(1,3),D(3,1)∴易得直线OC的解析式为y=3x,直线OD的解析式为y=x.如解答图所示,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.设水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t),Q(1+t,+t),C′(1+t,3﹣t).设直线O′C′的解析式为y=3x+b,将C′(1+t,3﹣t)代入得:b=﹣4t,∴直线O′C′的解析式为y=3x﹣4t.∴E(t,0).联立y=3x﹣4t与y=x,解得x=t,∴P(t,t).过点P作PG⊥x轴于点G,则PG=t.∴S=S△OFQ﹣S△OEP=OF•FQ﹣OE•PG=(1+t)(+t)﹣•t•t=﹣(t﹣1)2+当t=1时,S有最大值为.∴S的最大值为.点评:本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.。