平均增长率问题1
用一元二次方程解决增长率问题含答案
用一元二次方程解决增长率问题含答案1.解决增长率问题的一元二次方程1.1 平均变化率问题安徽中考题目:一种药品原价每盒25元,经过两次降价后每盒16元。
设两次降价的百分率都为x,则x满足(D)16(1+2x)=25.阳泉市平定县月考题目:共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆。
设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为(A)1000(1+x)2=1000+440.巴中中考题目:巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售。
若两次下调的百分率相同,求平均每次下调的百分率。
解:设平均每次下调的百分率为x,根据题意,得5000(1-x)2=4050.解得x=10%。
广东中考题目:某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元。
求3月份到5月份营业额的月平均增长率。
解:设3月份到5月份营业额的月平均增长率为x,根据题意,得400×(1+10%)(1+x)2=633.6.解得x=20%。
1.2 市场经济问题泰安中考题目:某种花卉每盆的盈利与每盆的株数有一定的关系。
每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元。
要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是(A)(3+x)(4-0.5x)=15.达州中考题目:新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每售出1件,价格就下降0.5元。
若该童装原价为10元/件,则在售完全部存货后,该童装的平均售价为(A) 9.5元/件。
为了迎接“六一”儿童节,商场决定采取适当的降价措施,每件童装盈利40元。
一元二次方程应用题(平均增长率问题)
解一元二次方程应用题的一般步骤? 第一步:弄清题意和题目中的已知数、未知 数,用字母表示题目中的一个未知数; 第二步:找出能够表示应用题全部含义的相 等关系; 第三步:根据这些相等关系列出需要的代数 式(简称关系式)从而列出方程; 第四步:解这个方程,求出未知数的值; 第五步:在检查求得的答数是否符合应用题 的实际意义后,写出答案(及单位名称)。
生活普遍存在,有一定的模式
若平均增长(或降低)百分率为x,增长 (或降低)前的是a,增长(或降低)n次后 的量是b,则它们的数量关系可表示为
a (1 x) b
n
其中增长取+,降低取-
练习:
1.某厂今年一月的总产量为500吨,三月的总产
量为720吨,平均每月增长率是x,列方程( B A.500(1+2x)=720 C.500(1+x2)=720 B.500(1+x)2=720 D.720(1+x)2=500 )
解这个方程,得:x1=12,x2=-8. 经检验:x1=12,x2=-8都是原方程的根, 但负数不合题意,所以只取x=12. 当x=12时,x+12=24. 故,单独完成全部工作甲、乙分别需12天,24天.
2.某校去年对实验器材的投资为2万元,预计今明 两年的投资总额为8万元,若设该校今明两年在 实验器材投资上的平均增长率是x,则可列方程
为
.
3:平阳按“九五”国民经济发展规划要求,2003年的 社会总产值要比2001年增长21%,求平均每年增长的百 分率.(提示:基数为2001年的社会总产值,可视为a)
昆二中小明学习非常认真,学习成绩直线上升, 第一次月考数学成绩是a分,第二次月考增长了10%, 第三次月考又增长了10%,问他第三次数学成绩是多少?
一元二次方程应用题典型题型归纳
一元二次方程应用题典型题型归纳(一)传播与握手问题1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。
5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题1、-=实际数基数增长率基数2、平均增长率公式:2(1)Q a x =± 其中a 是增长(或降低)的基础量,x 是平均增长(或降低)率,n 是增长(或降低)的次数。
变化前数量×(1±x )n =变化后数量1. 青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为 。
2. 某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是 。
3. 某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
4. 某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.6.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万kg ,第二年的产量为_______kg ,第三年的产量为_______,三年总产量为_______.7.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x ,列方程( )A. 500(12)x +=720B. 2500(1)720x += C. 2500(1)720x += D. 2720(1)500x -=8.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a •元,•则这种药品在1999•年涨价前价格是__________.9、某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?(三)商品销售问题售价—进价=利润 单件利润×销售量=总利润 单价×销售量=销售额1. 某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X 销售量P ,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2. 某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x 的关系式分别为R=500+30X ,P=170—2X 。
人教版九年级数学上册说课稿本《一元二次方程 实际问题-平均增长率问题》
人教版九年级数学上册说课稿本《一元二次方程实际问题-平均增长率问题》一. 教材分析《一元二次方程实际问题-平均增长率问题》是人教版九年级数学上册的一节内容。
本节课的主要内容是让学生掌握一元二次方程在实际问题中的应用,特别是平均增长率问题。
教材通过具体的实例,引导学生运用一元二次方程解决实际问题,培养学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元二次方程的概念和解法有一定的了解。
但是,学生在实际问题中的应用能力还有待提高。
因此,在教学过程中,我需要注重引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 说教学目标1.知识与技能目标:让学生掌握一元二次方程在实际问题中的应用,特别是平均增长率问题。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:一元二次方程在实际问题中的应用,特别是平均增长率问题。
2.教学难点:如何引导学生将实际问题转化为一元二次方程,并求解。
五. 说教学方法与手段本节课采用问题驱动的教学方法,以学生为主体,教师为主导。
通过引导学生分组讨论、合作探究,运用多媒体课件和板书辅助教学,帮助学生理解和掌握一元二次方程在实际问题中的应用。
六. 说教学过程1.导入:以一个实际问题引入,让学生思考如何用数学知识解决实际问题。
2.探究:引导学生分组讨论,将实际问题转化为一元二次方程,并求解。
3.讲解:教师对学生的探究结果进行讲解,强调解题思路和方法。
4.练习:让学生独立解决类似的实际问题,巩固所学知识。
5.小结:对本节课的内容进行总结,强调一元二次方程在实际问题中的应用。
七. 说板书设计板书设计如下:1.实际问题:设某产品的初期产量为a件,平均每年增长率为x,n年后产品的产量为y件。
2.一元二次方程:根据实际问题,列出的一元二次方程。
实际问题与一元二次方程大全
22.3 实际问题与一元二次方程(1)增长率问题问题1.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为12万元,求该校这两年在实验器材投资上的平均增长率是多少?[命题意图]本题主要考查平均增长率问题.[解析]本例属于平均增长率问题,若设平均增长率为x,则今年的投资额为2(x+1)万元,明年的投资额为2(x+1)2万元,由今明两年的投资总额为12万元可列方程.解:设这两年在实验器材投资上的平均增长率为x,根据题意可列方程:2(1+x)+2(1+x)2=12化简整理得:x2+3x-4=0 解这个方程得:x1=1,x2=-4(负值不合题意,应舍去)答:该校这两年在实验器材投资上的平均增长率为100%.[思路探究]在本例中,12万元是两年的投资总额,不是最后一年的投资额,不能错误地列出方程2(1+x)2=12;另外在解这个方程时,还可把(1+x)当作一个整体,用换元法解.问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.•因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2•=3.31 去括号:1+1+x+1+2x+x2=3.31整理,得:x2+3x-0.31=0解得:x=10%答:(略)以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.问题3:电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、•二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.解:设平均增长率为x则200+200(1+x)+200(1+x)2=950整理,得:x2+3x-1.75=0解得:x=50%答:所求的增长率为50%.三、巩固练习(1)某林场现有木材a立方米,预计在今后两年年平均增长p%,那么两年后该林场有木材多少立方米?(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.四、应用拓展例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x ,第一次存2000元取1000元,剩下的本金和利息是1000+2000x ·80%;第二次存,本金就变为1000+2000x ·80%,其它依此类推. 解:设这种存款方式的年利率为x则:1000+2000x ·80%+(1000+2000x ·8%)x ·80%=1320整理,得:1280x 2+800x+1600x=320,即8x 2+15x-2=0解得:x 1=-2(不符,舍去),x 2=18=0.125=12.5% 答:所求的年利率是12.5%.例4.(2012,,10分,限时10分钟)某农户1988年承包荒山若干亩,投资7800元改造后种果树2000棵,其成活率为90%,在2001年夏季全部结果时,随意摘下10棵果树的水果,称得重量如下(单位:千克):8,9,12,13,8,9,10,11,12,8(1)根据样本平均数估计该农户2001年水果的总产量是多少?(2)此水果在市场出售每千克售1.3元,在果园每千克售1.1元,该农户用农用车将水果拉到市场出售,平均每天出售1000千克,需8人帮助,每人每天付工资25元,若两种出售方式都在相同的时间售完全部水果,选择哪 种出售方式合理?为什么?(3)该农户加强果园管理,力争到2003年三年合计纯收入达57000元,求2002年,2003年平均每年增长率是多少?[命题意图]本例考查平均数意义及应用,方案的选择,平均增长率等知识.[解析](1)中由样本平均数估计出总体平均数,进而估计出2001年水果的总产量,(2)通过计算,比较哪种销售方式所获收入多,(3)根据2001,2002,2003年纯收入的和为57000元,列方程求解.解(1)10100101)812111098131298(101_=⨯=+++++++++=x (千克) ∴2001年水果总产量为2000×90%×10=18000(千克)(2)在果园出售时收入为1.1×18000=19800元送到市场销售收入为23400元,用人工费为3600元,实际收入19800元,因市场销售还有运输费等费用,故在果园出售合理.(3)设平均每年的增长率为x,根据题意可列方程:(19800-7800)[1+(1+x)+(1+x)2]=57000解得:x 1=-3.5(不合题意,应舍去)x 2=0.5=50%答(1)2001年的水果总产量为18000千克.(2)在果园销售合算.(3)年平均增长率为50%.作业设计一、选择题1.2005年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).A .100(1+x )2=250B .100(1+x )+100(1+x )2=250C .100(1-x )2=250D .100(1+x )22.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).A .100p p +B .pC .1001000p p -D .100100p p+ 5.市政府为迎接2008年奥运会,决定改善城市面貌,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均每年绿地面积的增长率是A.19%B.20%C.21%D.25%1.某超市一月份的营业额为200万元,一,二,三月份的营业额为1000万元,设平均每月的营业额为增长率为x,则由题意列方程为A.200+200×2x=1000B.200(1+x)2=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题1.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万kg ,•第二年的产量为_______kg ,第三年的产量为_______,三年总产量为_______.2.某糖厂2002年食糖产量为at ,如果在以后两年平均增长的百分率为x ,•那么预计2004年的产量将是________.3.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a•元,•则这种药品在1999•年涨价前价格是__________.三、综合提高题1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,2000年我省某地退耕还林1600亩,计划到2002年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,•从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,•求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.3.某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(•用代数式来表示)(注:年获利率=年利润年初投入资金×100%) (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.9.某网络公司2000年各项经营收入中,经营电脑配件收入600万元,占全部经营总收入的40%,该公司预计2002年经营总收入达到2160万元,且计划从2000到2002年每年经营总收入的年增长率相同,问2001年的预计经营总收入为多少万元?问题1:某工程队在我市承包了一项拆迁工程,原计划每天拆迁1250m 2,因为准备工作不足,第一天少拆了20%。
专题(四) 一元二次方程的实际应用——平均变化率与利润问题
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降至
多少元?
解:设这种水果每斤的售价降价 x 元,则(2-x)(100+200x) 1 =300,即 2x2-3x+1=0,解得 x1=1,x2= .当 x=1 时,每天的 2 1 销量为 300 斤;当 x= 时,每天的销量为 200 斤.为保证每天至 2 1 少售出 260 斤,∴x2= 不合题意,舍去.此时每斤的售价为 4-1 2 =3(元).答:销售这种水果要想每天盈利 300 元,张阿姨需将每 斤的售价降至 3 元
4.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每
斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤
的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260 斤,张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x元,则每天的销售量是 ___________________ 斤(用含x的代数式表示); (100+200x)
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予
以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物
业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优
惠?
解:(1)设平均每次下调的百分率为 x,依题意得 5000(1-x)2 19 =4050,解得 x1=10%,x2= (不合题意,舍去),则平均每次下 10 调 的 百 分 率 为 10% (2) 方 案 ① 的 房 款 是 4050×100×0.98 = 396900( 元 ) , 另外需在两年内付物业管理费 1.5 × 100 × 12 × 2 = 3600(元);方案②的房款是 4050×100=405000(元),故在同等条 件 下 方 案 ① 需 付 款 396900 + 3600 = 400500( 元 ) . ∵400500 < 405000,∴选方案①更优惠
用一元二次方程解决问题(平均增长率)
平均增长率 = (终值 - 初值) / 初值 × 100%
计算方法
直接计算法
根据题目给出的数据,直接代入公式 进行计算。
代数法
将平均增长率转化为一元二次方程, 通过解方程求得。
ห้องสมุดไป่ตู้例解析
例1
某企业去年销售额为100万元,今年 销售额增长了20%,求今年的销售额。
解
根据平均增长率公式,今年的销售额 = 100 × (1 + 20%) = 120万元。
解
根据平均增长率公式,5年后GDP = 100 × (1 + 8%)^5 = 146.9亿元。
02
一元二次方程在平均增 长率问题中的应用
建立一元二次方程
确定变量
在平均增长率问题中,通常设初始数 量为A,平均增长率为r,经过时间为t 后的数量为B。
建立方程
方程变形
如果需要求平均增长率r,可以将方程 变形为r = (B/A)^(1/t) - 1。
将方程左边化为完全平 方形式,右边化为常数,
从而求解x。
因式分解法
通过因式分解将方程化 为两个一次方程,从而
求解x。
实例解析
题目
某企业前年缴税30万元,预计 今年缴税36.36万元,那么该企
业缴税的平均增长率为多少?
分析
设该企业缴税的平均增长率为x, 根据题意可以建立一元二次方程 30(1 + x)^2 = 36.36。
根据平均增长率的定义,我们可以建 立一元二次方程B = A(1 + r/100)^t。
解一元二次方程
求解方法
解一元二次方程可以使 用公式法、配方法、因
式分解法等。
公式法
配方法
人教版九年级上册第21章 《一元二次方程》实际应用:平均增长率问题
《一元二次方程》实际应用:平均增长率问题1.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?2.随着全球疫情的爆发,医疗物资的极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天,现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?3.新冠肺炎疫情在全球蔓延,造成了严重的人员伤亡和经济损失,其中一个原因是新冠肺炎病毒传播速度非常快.一个人如果感染某种病毒,经过了两轮的传播后被感染的总人数将达到64人.(1)求这种病毒每轮传播中一个人平均感染多少人?(2)按照上面的传播速度,如果传播得不到控制,经过三轮传播后一共有多少人被感染?4.为了创建全国文明城市,提升城市品质,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2017年的绿色建筑面积为950万平方米,2019年达到了1862万平方米.若2018年,2019年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求2018年,2019年绿色建筑面积的年平均增长率;(2)若该市2020年计划推行绿色建筑面积达到2600万平方米,如果2020年仍保持相同年平均增长率,请你预测2020年该市能否完成目标.5.某旅游景区今年5月份游客人数比4月份增加了44%,6月份游客人数比5月份增加了21%,求5月、6月游客人数的平均增长率.6.某磷肥厂去年4月份生产磷肥500t,因管理不善,5月份的磷肥产量减少了10%;从6月份起强化了管理,产量逐月上升,7月份产量达到648t.求该厂6月份、7月份产量的月平均增长率.7.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?8.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2016年盈利1500万元,到2018年盈利2160万元,且从2016年到2018年,每年盈利的年增长率相同.(1)求每年盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,那么2019年该公司盈利能否达到2500万元?9.某村种植水稻,2017年平均每公顷产2400千克,2019年平均每公顷产5400千克,每年的年平均增长率相同并且年平均增长率在三年内保持不变.(1)求每年的年平均增长率;(2)按照这个年平均增长率,预计2020年每公顷的产量为多少千克?10.某工厂1月份的产值为50000元,3月份的产值达到72000元,这两个月的产值平均月增长的百分率是多少?11.小明家在2016年种的果总产量为12吨,到2018年总产量要达到17.28吨.(1)求每年的平均增长率;(2)由于市场价格的不稳定,小明家2018年的果园预备采取两种销售方案进行销售:方案一:按标价每千克5.8元,然后打8折进行销售;方案二:按标价每千克5.8元,然后每吨优惠400元现金销售.请问哪种方案得钱多?12.幸福村种的水稻2006年平均每公顷产7200千克,2018年平均每公顷产8450千克,求水稻每公顷产量的年平均增长率.13.某商场将某种商品的售价从原来的每件40元两次调价后调至每件32.4元.①若该商场两次调价的降低率相同,求这个降低率.②经调查,该商品原来每月可销售500件,商品每降价0.2元,即可多销售10件,那么两次调价后,每月可销售商品多少件?14.近年来,在市委市政府的宏观调控下,我市的商品房成交均价涨幅控制在合理范围内,由2017年的均价5000元/m2上涨到2019年的均价6050元/m2.(1)试求这两年我市商品房成交均价的年平均增长率;(2)如果房价继续上涨,按(1)中上涨的百分率,请预测2020年我市的商品房成交均价.15.江华瑶族自治县香草源景区2016年旅游收入500万元,由于政府的重视和开发,近两年旅游收入逐年递增,到今年2018年收入已达720万元.(1)求这两年香草源旅游收入的年平均增长率;(2)如果香草源旅游景区的收入一直保持这样的平均年增长率,从2018年算起,请直接写出n年后的收入表达式.16.2016年,某市某楼盘以每平方米8000元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米6480元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款40万元,张强的愿望能否实现?为什么?(房价每平方米按照均价计算)17.倡导全民阅读,建设书香社会.【调査】目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.【百度百科】某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平.【问题解决】(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x.18.在国家政策的宏观调控下,某市的商品房成交价由今年9月份的14000元/m2下降到11月份的12600元/m2.(1)问10、11两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破12000元/m2?请说明理由.19.某种商品标价500元/件,经过两次降价后为405元/件,并且两次降价百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为380元件,两次降价共售出100件,若两次降价销售的总利润不低于3850元,则第一次降价后至少要售出该商品多少件?20.为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工作.2020年3月,国内某企业口罩出口订单额为1000万元,2020年5月该企业口罩出口订单额为1440万元.求该企业2020年3月到5月口罩出口订单额的月平均增长率.参考答案1.解:(1)设每月盈利的平均增长率为x,依题意,得:6000(1+x)2=7260,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:每月盈利的平均增长率为10%.(2)7260×(1+10%)=7986(元).答:按照这个平均增长率,预计2020年7月份这家商店的盈利将达到7986元.2.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万件/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25.又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线.3.(1)解:设一个人平均感染x人,可列方程:1+x+(1+x)x=64,解得:x1=7,x2=﹣9(舍去).故这种病毒每轮传播中一个人平均感染7人;(2)(7+1)3=512(人)答:经过三轮传播后一共有512人被感染.4.解:(1)设2018年,2019年绿色建筑面积的年平均增长率为x,根据题意得,950(1+x)2=1862,解得x1=40%,x2=﹣2.4(舍去).故2018年,2019年绿色建筑面积的年平均增长率为40%;(2)1862×(1+40%)=2606.8(万平方米),∵2606.8>2600,∴2020年该市能完成目标.5.解:设5月、6月游客人数的平均增长率是x,依题意有(1+x)2=(1+44%)×(1+21%),解得:x1=32%,x2=﹣2.32(应舍去).答:5月、6月游客人数的平均增长率是32%.6.解:设该厂6月份、7月份产量的月平均增长率为x.500×(1﹣10%)×(1+x)2=648,解得x1=0.2,x2=﹣0.2(不符合题意,舍去).答:该厂6月份、7月份产量的月平均增长率为20%.7.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.8.解:(1)设每年盈利的年增长率为x,根据题意得:1500(1+x)2=2160.解得x1=0.2,x2=﹣2.2(不合题意,舍去).答:每年盈利的年增长率为20%;(2)2160(1+0.2)=2592,2592>2500答:2019年该公司盈利能达到2500万元.9.解:(1)设每年的年平均增长率为x,依题意得:2400(1+x)2=5400,解得x1=0.5=50%,x2=﹣2.5(舍去).答:每年的年平均增长率为50%;(2)由题意,得5400×(1+0.5)=8100(千克).答:预计2020年每公顷的产量为8100千克.10.解:设这两个月的产值平均月增长的百分率为x,依题意,得:50000(1+x)2=72000,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:这两个月的产值平均月增长的百分率是20%.11.解:(1)设每年的平均增长率为x,根据题意,得12(1+x)2=17.28解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每年的平均增长率为20%;(2)方案一销售得到的钱=17.28×1000×5.8×0.8=80179.2(元)方案一销售得到的钱=17.28×1000×5.8﹣17.28×400=93312(元).由于93312>80179.2.所以,按方案二销售得钱多.12.解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450,解得:x1=≈0.0833,x2=﹣=﹣2.0833(应舍去).答:水稻每公顷产量的年平均增长率约为8.33%.13.解:①设降低率为x,由题意得:40(1﹣x)2=32.4,解得:x1=10%,x2=1.9(不合题意舍去),答:降低率为10%;②降价后多销售的件数:[(40﹣32.4)÷0.2]×10=380(件),两次调价后,每月可销售该商品数量为:380+500=880(件).故两次调价后,每月可销售该商品880件.14.解:(1)设这两年我市商品房成交均价的年平均增长率是x,根据题意得:5000(1+x)2=6050,(1+x)2=1.21,解得:x1=10%,x2=﹣2.1(不合题意,舍去).答:这两年我市商品房成交均价的年平均增长率是10%;(2)2020年我市的商品房成交均价为:6050(1+10%)=6655(元).答:2020年我市的商品房成交均价是6655元.15.解:(1)设这两年香草源旅游收入的年平均增长率为x,依题意得:500(1+x)2=720.解得=20% (舍去).答:这两年香草源旅游收入的年平均增长率为20%;(2)依题意得:.答:n年后的收入表达式是:.16.解:(1)设平均每年下调的百分率为x,则8000(1﹣x)2=6480.解得:x1=0.1=10%,x2=1.9(不合题意舍去)答:平均每年下调的百分率为10%.(2)6480(1﹣10%)×100=583200=58.32(万元)由于20+40=60>58.32,所以张强的愿望能实现.17.解:(1)设某地人数为a,既有传统媒体阅读又有数字媒体阅读的人数为y,则传统媒体阅读人数为0.8a,数字媒体阅读人数为0.4a.依题意得:0.8a+0.4a﹣y=0.9a,解得y=0.3a,∴传统媒体阅读又有数字媒体阅读的人数占总人口总数的百分比为30%.则该社区有电子媒体阅读行为人数占人口总数的百分比为=80%﹣30%=50%.(2)依题意得:0.9a(1+x)2+0.4a(1﹣x)2=0.5a(1+0.53),整理得:5x2+26x﹣2.65=0,解得:x1=0.1=10%,x2=﹣5.3(舍去),答:x为10%.18.解:(1)设10、11两月平均每月降价的百分率是x,则10月份的成交价是14000﹣14000x=14000(1﹣x),11月份的成交价是14000(1﹣x)﹣14000(1﹣x)x=14000(1﹣x)(1﹣x)=14000(1﹣x)2∴14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:10、11两月平均每月降价的百分率是5%;(2)会跌破12000元/m2.如果按此降价的百分率继续回落,估计12月份该市的商品房成交均价为:12600(1﹣x)2=12600×0.952=11371.5<12000.由此可知12月份该市的商品房成交均价会跌破12000元/m2.19.解:(1)设该种商品每次降价的百分率为x,依题意,得:500(1﹣x)2=405,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:该种商品每次降价的百分率为10%;(2)设第一次降价后售出该商品y件,则第二次降价后售出该商品(100﹣y)件,依题意,得:[500×(1﹣10%)﹣380]y+(405﹣380)(100﹣y)≥3850,解得:y≥30.答:第一次降价后至少要售出该商品30件.20.解:设该企业2020年3月到5月口罩出口订单额的月平均增长率为x,依题意,得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该企业2020年3月到5月口罩出口订单额的月平均增长率为20%.。
2019年人教版数学九年级上册-一元二次方程-第2课时 平均增长率、面积类、定价类问题
第2课时
平均增长率、面积类、定价类问题
列一元二次方程解决平均增长率问题 1.某商品连续两次降价.单价由100元降至81元,若两次的降价的百分率一样,则 这个百分率为( (A)10% (B)20% (C)30% (D)40% A )
数学
2.(2017烟台改编)今年,我市某中学响应习总书记“足球进校园”的号召,开设了
解得x≥50,
答:该果农今年收获樱桃至少50千克.
数学
(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年 樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去 年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售 均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减 少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃
当x=8时,26-2x=10<12,
答:所围矩形猪舍的长为10 m、宽为8 m.
数学
列一元二次方程解决销售问题
5.水果市场某批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千 克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少 20千克.现要保证每天盈利6 000元,同时又要让顾客尽可能多得到实惠,那么每千 克应涨价多少元? 解:设涨价x元,则销售量为(500-20x)千克,据题意,得 (10+x)(500-20x)=6 000,解得x1=5,x2=10, 为了顾客尽可能多得到实惠,所以每千克应涨价5元, 答:每千克应涨价5元.
数学
(参考用时:40分钟)
1.(2017安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百
(完整版)一元二次方程应用题经典题型汇总含答案
z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
用一元二次方程解决问题(平均增长率)
答:每次降价上缴利税280万元, 其中第一年上缴40万元,求后两年上缴利税的年平 均增长的百分率。
2.某商店4月份销售额为50万元,第二季度的总销售 额为182万元,若5、6两个月的月增长率相同,求 月增长率
1、平均增长(降低)率公式
a(1 x) b
例2:
某产品原来每件600元,由于连续两次降价, 现价为384元,如果两个降价的百分数相同, 求每次降价的百分数。
分析:解设:每次降价的百分数是x。 原价
600
第一次价格 第二次价格
600(1-x) 600(1-x)2
根据题意列方程: 600(1-x)2=384 解之得:x1=0.2 x2=1.8(舍去)
用一元二次方程解决问题(2)
---------平均增长(降低)率
课前热身:
1.某工厂1月份的产值是100万元,2月份的产值比1 120 月份增加了20%,那么2月份的产值是 100×(1+20 %) 万元 , 若3月份的产值比2月份又增加了20 %,那么 3月份的产值是 100×(1+20%)2 万元 144 2.某工厂1月份的产值是a万元, 2月份的产值比1月 份增加的百分数为x,那么2月份的产值是 a(1+x) 万元,若3月份的产值较2月份增加的百分数为x,那么 3月份的产值产值是 a(1+x)2
两次增长后的量=原来的量(1+增长率)2 二.新课 例1.某商店6月份的利润是2500元,要使8月份 的利润达到3600元,平均每月增长的百分率 是多少?
分析: 解:设平均每月增长的百分率是x. 解题感悟: 变一变:按国民经济发展规划要求,2012年 月份 6月份 7月份 8月份 1.为了计算方便、直接求得,可以直接设增长 的社会总产值要比2010年增长21%,求平均 练一练: 的百分率为x。2500 2500(1+x) 2500(1+x)2 利润 某钢铁厂去年1月某种钢的产量为5000吨,3月上升到 每年增长的百分率 7200吨,这两个月平均每个月增长的百分率是多少? 根据题意列方程得: 2500(1+x)2=3600 2.用直接开平方法做更简单,不要将括号打开。 解之得:x1=0.2, x2=-2.2(舍去) (提示:基数为2010年的社会总产值,可视为a) 答:这两个月的平均增长的百分比是20%
九年级数学: 21.3实际问题与一元二次方程-平均增长率问题练习
21.3 实际问题与一元二次方程平均增长率问题一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)设:设未知数,有直接和间接两种设法,因题而异;(2)找:找出等量关系;(3)列:列出一元二次方程;(4)解:求出所列方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:作答。
二、典型题型平均增长率问题增长率问题经常用公式,a 为基数, b 为增长或下降后的数,x 为平均增长率或降低率,“n ”表示 n 次增长或下降。
例题1、某中学连续三年开展植树活动.已知第一年植树500棵,第三年植树720棵,假设该校这两年植树棵数的年平均増长率相同.(1)求这两年该校植树棵数的年平均增长率;(2)按照(1)的年平均增长率,预计该校第四年植树多少棵?【分析】(1)设这两年该校植树棵数的年平均增长率为x ,根据第一年及第三年的植树棵数,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据第四年植树的棵数=第三年植树的棵数×(1+增长率),即可求出结论.【解答】解:(1)设这两年该校植树棵数的年平均增长率为x ,根据题意得:500(1+x )2=720,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:这两年该校植树棵数的年平均增长率为20%.(2)720×(1+20%)=864(棵).答:该校第四年植树864棵.(1)n a x b +=【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.例题2、某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.例题3、某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.【分析】(1)设该地投入异地安置资金的年平均增长率为x,根据2015年及2017年该地投入异地安置资金,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设2017年该地有a户享受到优先搬迁租房奖励,根据投入的总资金=前1000户奖励的资金+超出1000户奖励的资金结合该地投入的奖励资金不低于500万元,即可得出关于a 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.(2)设2017年该地有a户享受到优先搬迁租房奖励,根据题意得:8×1000×400+5×400(a﹣1000)≥5000000,解得:a≥1900.答:2017年该地至少有1900户享受到优先搬迁租房奖励.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,列出关于a的一元一次不等式.三、综合练习一.选择题(共15小题)1.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2%B.4.4%C.20%D.44%2.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%3.某县为解决大班额问题,对学校进行扩建,计划用三年时间对全县学校进行扩建和改造,2016年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2018年投资7.2亿元人民币,那么每年投资的增长率为()A.20%、﹣220%B.40%C.﹣220%D.20%4.近年来某市不断加大对城市绿化的经济收入,使全市绿地面积不断增加,从2015年底到2017年底的城市绿化面积变化如图所示,则这两年绿地面积的年平均增长率是()A.10%B.15%C.20%D.25%5.某商场3月份的销售额为160 万元,5月份为250万元,则该商场这两个月销售额的平均增长率为()A.20%B.25%C.30%D.35%6.某种药品经过两次降价后,价格下降了19%,则该药品平均每次降价的百分比为()A.10%B.15%C.20%D.25%7.某工厂一月份生产零件100万个,若二、三月份平均每月的增长率为20%,则该工厂第一季度共生产零件()A.300万个B.320万个C.340万个D.364万个8.某种童鞋原价为100元,由于店面转让要清仓,经过连续两次降价处理,现以64元销售,已知两次降价的百分率相同,则每次降价的百分率为()A.19%B.20%C.21%D.22%9.某文具10月份销售铅笔100支,11、12两个月销售量连续增长,若月平均增长率为x,则该文具店12月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)10.2017年海南房价不断攀升,某楼盘年初的均价是1万/m2,经过两次调价后,年底均价为1.69万/m2,则平均每次提价的百分率是()A.10%B.20%C.30%D.40%11.为保护森林,中华铅笔厂准备生产一种新型环保铅笔.随着技术的成熟,由刚开始每月生产625万支新型铅笔,经两次技术革新后,上升至每月生产900万支新型铅笔,则每次技术革新的平均增长率是()A.22%B.20%C.15%D.10%12.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到l210辆,则该厂四、五月份的月平均增长率为()A.12.1%B.20%C.21%D.10%13.某城市2014年底已有绿化面积500公顷,经过努力,绿化面积以相同的增长率逐年增加,到2016年底增加到605公顷.若按照这样的绿化速度,则该市2017年底绿化面积能达到()A.657.5公顷B.665.5公顷C.673.5公顷D.681.5公顷14.某种衬衫的价格经过连续两次的降价后,由每件150元降到96元,则平均每次降价的百分率是()A.10%B.15%C.20%D.30%15.临工集团某机械制造厂制造某种产品,原来每件产品的成本是20000元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是16200元.则平均每次降低成本的百分率是()A.8%B.9%C.8.1%D.10%二.解答题(共7小题)16.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.”互联网+”时代,中国的在线教育得到迅猛发展.根据中国产业信息网数据统计分析,2015年中国在线教育市场产值约为1600亿元,2017年中国在线教育市场产值在2015年的基础上增加了900亿元.(1)求2015年到2017年中国在线教育市场产值的年平均增长率;(2)若增长率保持不变,预计2018年中国在线教育市场产值约为多少亿元?17.2017年5月14日﹣﹣﹣5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?18.李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份的盈利达到3456元,且从2月到4月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计5月份这家商店的盈利将达到多少元?19.某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.20.淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?21.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?22.某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.参考答案一.选择题(共15小题)1.C.2.C.3.D.4.A.5.B.6.A.7.D.8.B.9.B.10.C.11.B.12.D.13.B.14.C.15.D.二.解答题(共7小题)16.解:(1)设2015年到2017年中国在线教育市场产值的年平均增长率为x,根据题意得:1600(1+x)2=1600+900,解得:x1=0.25=25%,x2=﹣2.25(舍去).答:2015年到2017年中国在线教育市场产值的年平均增长率为25%.(2)(1600+900)×(1+25%)=3125(亿元).答:预计2018年中国在线教育市场产值约为3125亿元.17.解:(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).答:该企业从第一季度到第三季度利润的平均增长率为20%.(2)2000+2000×(1+20%)+2880+2880×(1+20%)=10736(万元),10736万元>1亿元.答:该企业2017年的年利润总和突破1亿元.18.解:(1)设该商店的每月盈利的平均增长率为x,根据题意得:2400(1+x)2=3456,解得:x1=20%,x2=﹣2.2(舍去).(2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:3456×(1+20%)=4147.2(元).答:(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为4147.2元.19.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.20.解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.21.(1)解:设该快递公司投递快递总件数的月平均增长率为x,由题意,得10×(1+x)2=12.1,解得:x1=10%,x2=﹣210%.答:该快递公司投递快递总件数的月平均增长率为10%.(2)4月:12.1×1.1=13.31(万件)21×0.6=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年4月份的快递投递任务.∵22<<23,∴至少还需增加2名业务员.22.解:(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(1﹣10%)2=4920.75(元/平方米),∵4920.75>4800,∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.。
一元二次方程的应用(增长率问题)有答案
⼀元⼆次⽅程的应⽤(增长率问题)有答案⼀元⼆次⽅程的应⽤(增长率问题)解答题1. 光华机械⼚⽣产某种产品,1999年的产量为2000件,经过技术改造,20XX年的产量达到2420件,平均每年增长的百分率是多少?考点:由实际问题抽象出⼀元⼆次⽅程;⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:本题是关于增产率的问题,设平均每年增长的百分率为x,由1999年的产量可知2000年和20XX年的产量,根据题意列⽅程,可求出增长的百分率.解答:解:设平均每年增产的百分率为x,因为1999年的产量为2000件,所以2000年的产量为2000(1+x)件,20XX年的产量为2000(1+x)2件,依题意列⽅程:2000(1+x)2=2420解⽅程得:(1+x)2=1.211+x=±1.11+x=1.1或1+x=-1.1∴x=0.1=10%或x=-2.1(不合题意,舍去)故增产率为10%.答:平均每年增长的百分率为10%.点评:根据题意设平均每年增长的百分率为x,由1999年的产量可知2000年和20XX年的产量,找出等量关系列出⼀元⼆次⽅程,解出⼀元⼆次⽅程,求出x.2. 某市政府为落实“保障性住房政策,20XX年已投⼊3亿元资⾦⽤于保障性住房建设,并规划投⼊资⾦逐年增加,到20XX年底,将累计投⼊10.5亿元资⾦⽤于保障性住房建设.(1)求到20XX年底,这两年中投⼊资⾦的平均年增长率(只需列出⽅程);(2)设(1)中⽅程的两根分别为x1,x2,且mx12-4m2x1x2+mx22的值为12,求m的值.考点:⼀元⼆次⽅程的应⽤;根与系数的关系.专题:增长率问题.分析:(1)等量关系为:20XX年某市⽤于保障房建设资⾦×(1+增长率)2=20XX年⽤于保障房建设资⾦,把相关数值代⼊求得合适的解即可.(2)理由上题得到的⼀元⼆次⽅程,根据根与系数的关系求得m的值即可.解答:解:(1)设到20XX年底,这两年中投⼊资⾦的平均年增长率为x,根据题意得:3+3(x+1)+3(x+1)2=10.5…(3分)(2)由(1)得,x2+3x-0.5=0…(4分)由根与系数的关系得,x1+x2=-3,x1x2=-0.5…(5分)⼜∵mx12-4m2x1x2+mx22=12 (mx1的平⽅)m[(x1+x2)2-2x1x2]-4m2x1x2=12m[9+1]-4m2?(-0.5)=12∴m2+5m-6=0解得,m=-6或m=1…(8分)点评:考查求平均变化率的⽅法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.3. 菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲⽬扩⼤种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)⼩华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠⽅案以供选择:⽅案⼀:打九折销售;⽅案⼆:不打折,每吨优惠现⾦200元.试问⼩华选择哪种⽅案更优惠,请说明理由考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2列出⼀元⼆次⽅程求解即可;(2)根据优惠⽅案分别求得两种⽅案的费⽤后⽐较即可得到结果.解答:解(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个⽅程,得x1=0.2,x2=1.8.因为降价的百分率不可能⼤于1,所以x2=1.8不符合题意,符合题⽬要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)⼩华选择⽅案⼀购买更优惠.理由:⽅案⼀所需费⽤为:3.2×0.9×5000=14400(元),⽅案⼆所需费⽤为:3.2×5000-200×5=15000(元).∵14400<15000,∴⼩华选择⽅案⼀购买更优惠.点评:本题考查了⼀元⼆次⽅程的应⽤,在解决有关增长率的问题时注意其固定的等量关系.4. 据媒体报道,我国20XX年公民出境旅游总⼈数约5000万⼈次,20XX年公民出境旅游总⼈数约7200万⼈次,若20XX年、20XX年公民出境旅游总⼈数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总⼈数的年平均增长率;(2)如果20XX年仍保持相同的年平均增长率,请你预测20XX年我国公民出境旅游总⼈数约多少万⼈次?考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)设年平均增长率为x.根据题意20XX年公民出境旅游总⼈数为5000(1+x)万⼈次,20XX年公民出境旅游总⼈数5000(1+x)2 万⼈次.根据题意得⽅程求解;(2)20XX年我国公民出境旅游总⼈数约7200(1+x)万⼈次.解答:解:(1)设这两年我国公民出境旅游总⼈数的年平均增长率为x.根据题意得5000(1+x)2 =7200.解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年我国公民出境旅游总⼈数的年平均增长率为20%.(2)如果20XX年仍保持相同的年平均增长率,则20XX年我国公民出境旅游总⼈数为7200(1+x)=7200×120%=8640万⼈次.答:预测20XX年我国公民出境旅游总⼈数约8640万⼈次.点评:此题考查⼀元⼆次⽅程的应⽤,根据题意寻找相等关系列⽅程是关键,难度不⼤.5. 某中⼼城市有⼀楼盘,开发商准备以每平⽅⽶7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平⽅⽶5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引⼒,请问房产销售经理的⽅案对购房者是否更优惠?为什么?考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)设出平均每次下调的百分率为x,利⽤原每平⽅⽶销售价格×(1-每次下调的百分率)2=经过两次下调每平⽅⽶销售价格列⽅程解答即可;(2)求出先下调5%,再下调15%,是原来价格的百分率,与开发商的⽅案⽐较即可求解.解答:解:(1)设平均每次下调的百分率是x,根据题意列⽅程得,7000(1-x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1-5%)×(1-15%)=95%×85%=80.75%,(1-x)2=(1-10%)2=81%.∵80.75%<81%,∴房产销售经理的⽅案对购房者更优惠.点评:此题考查⼀元⼆次⽅程的应⽤,其中的基本数量关系:原每平⽅⽶销售价格×(1-每次下调的百分率)2=经过两次下调每平⽅⽶销售价格.6. 20XX年漳州市出⼝贸易总值为22.52亿美元,⾄20XX年出⼝贸易总值达到50.67亿美元,反映了两年来漳州市出⼝贸易的⾼速增长.(1)求这两年漳州市出⼝贸易的年平均增长率;(2)按这样的速度增长,请你预测20XX年漳州市的出⼝贸易总值.(温馨提⽰:2252=4×563,5067=9×563)考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)设年平均增长率为x,则20XX年出⼝贸易总值达到22.52(1+x)亿美元;20XX年出⼝贸易总值达到22.52(1+x)(1+x)=22.52(1+x)2亿美元,得⽅程求解;(2)20XX年出⼝贸易总值=50.67(1+x).解答:解:(1)设年平均增长率为x,依题意得…(1分)22.52 (1+x)2=50.67,…(3分)1+x=±1.5,∴x1=0.5=50%,x2=-2.5(舍去).…(5分)答:这两年漳州市出⼝贸易的年平均增长率为50%;…(6分)(2)50.67×(1+50%)=76.005(亿美元).…(9分)答:预测20XX年漳州市的出⼝贸易总值76.005亿美元.…(10分)点评:此题考查⼀元⼆次⽅程的应⽤.增长率的问题主要是搞清楚基数,再表⽰增长后的数据.7. 国家发改委公布的《商品房销售明码标价规定》,从20XX年5⽉1⽇起商品房销售实⾏⼀套⼀标价.商品房销售价格明码标价后,可以⾃⾏降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平⽅⽶5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资⾦周转,房地产开发商对价格两次下调后,决定以每平⽅⽶4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某⼈准备以开盘均价购买⼀套100平⽅⽶的房⼦,开发商还给予以下两种优惠⽅案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平⽅⽶每⽉1.5元.请问哪种⽅案更优惠?考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)关系式为:原价×(1-降低率)2=现在的价格,把相关数值代⼊后求得合适的解即可;(2)①费⽤为:总房价×9.810 (10分之9.8);②费⽤为:总房价-2×12×1.5×平⽶数,把相关数值代⼊后求出解,⽐较即可.解答:解:(1)设平均每次下调的百分率为x.5000×(1-x)2=4050.(1-x)2=0.81,∴1-x=±0.9,∴x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次下调的百分率为10%;(2)⽅案⼀的总费⽤为:100×4050×9.8 10 =396900元;⽅案⼆的总费⽤为:100×4050-2×12×1.5×100=401400元;∴⽅案⼀优惠.点评:主要考查了⼀元⼆次⽅程的应⽤;掌握增长率的变化公式是解决本题的关键.8. 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设⼒度.20XX 年市政府共投资2亿元⼈民币建设了廉租房8万平⽅⽶,预计到20XX年底三年共累计投资9.5亿元⼈民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到20XX年底共建设了多少万平⽅⽶廉租房.考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)设每年市政府投资的增长率为x.根据到20XX年底三年共累计投资9.5亿元⼈民币建设廉租房,列⽅程求解;(2)先求出单位⾯积所需钱数,再⽤累计投资÷单位⾯积所需钱数可得结果解答:解:(1)设每年市政府投资的增长率为x,(1分)根据题意,得:2+2(1+x)+2(1+x)2=9.5,整理,得:x2+3x-1.75=0,(3分)解之,得:x=-3±9+4×1.75 2 ,(解含有根号)∴x1=0.5,x2=-3.5(舍去),(5分)答:每年市政府投资的增长率为50%;(6分)(2)到20XX年底共建廉租房⾯积=9.5÷2 8 =38(万平⽅⽶).(8分)(除8分之2)点评:主要考查了⼀元⼆次⽅程的实际应⽤,本题的关键是掌握增长率问题中的⼀般公式为a(1+x)n,其中n为共增长了⼏年,a为第⼀年的原始数据,x是增长率.9. 随着家庭轿车拥有量逐年增加,渴望学习开车的⼈也越来越多.据统计,某驾校20XX年底报名⼈数为3 200⼈,截⽌到20XX年底报名⼈数已达到5 000⼈.(1)若该驾校20XX年底到20XX年底报名⼈数的年平均增长率均相同,求该驾校的年平均增长率.(2)若该驾校共有10名教练,预计在20XX年底每个教练平均需要教授多少⼈?考点:⼀元⼆次⽅程的应⽤.分析:(1)设增长率是x,则增长2次以后的报名⼈数是3200(1+x)2,列出⼀元⼆次⽅程的解题即可;(2)先求出20XX年底的报名⼈数,除以10即可求出每个教练平均需要教授的⼈数.解答:解:(1)设该驾校的年平均增长率是x.由题意,得3 200(1+x)2=5 000.(5分)解得x1=1 4 ,x2=-9 4 (不合实际,舍去).(分数4分之1)∴该驾校的年平均增长率是25%.(7分)(2)5 000×(1+25%)÷10=625(个).∴预计20XX年每个教练平均需要教授625个学员.(10分)点评:此题主要考查了⼀元⼆次⽅程的应⽤,增长率问题是中考中重点考查内容,同学们应熟练掌握.10. 某市为争创全国⽂明卫⽣城,20XX年市政府对市区绿化⼯程投⼊的资⾦是2000万元,20XX年投⼊的资⾦是2420万元,且从20XX年到20XX年,两年间每年投⼊资⾦的年平均增长率相同.(1)求该市对市区绿化⼯程投⼊资⾦的年平均增长率;(2)若投⼊资⾦的年平均增长率不变,那么该市在20XX年需投⼊多少万元?考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)等量关系为:20XX年市政府对市区绿化⼯程投⼊×(1+增长率)2=20XX年市政府对市区绿化⼯程投⼊,把相关数值代⼊求解即可;(2)20XX年该市政府对市区绿化⼯程投⼊=20XX年市政府对市区绿化⼯程投⼊×(1+增长率)2.解答:解:(1)设该市对市区绿化⼯程投⼊资⾦的年平均增长率为x,(1分)根据题意得,2000(1+x)2=2420,(3分)得x1=0.1=10%,x2=-2.1(舍去),(5分)答:该市对市区绿化⼯程投⼊资⾦的年平均增长率为10%.(6分)(2)20XX年需投⼊资⾦:2420×(1+10%)2=2928.2(万元)(7分)答:20XX年需投⼊资⾦2928.2万元.(8分)点评:考查⼀元⼆次⽅程的应⽤;求平均变化率的⽅法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.11.⼴安市某楼盘准备以每平⽅⽶6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资⾦周转,对价格经过两次下调后,决定以每平⽅⽶4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某⼈准备以开盘价均价购买⼀套100平⽅⽶的住房,开发商给予以下两种优惠⽅案以供选择:①打9.8折销售;②不打折,⼀次性送装修费每平⽅⽶80元,试问哪种⽅案更优惠?考点:⼀元⼆次⽅程的应⽤.专题:增长率问题;优选⽅案问题.分析:(1)根据题意设平均每次下调的百分率为x,列出⼀元⼆次⽅程解⽅程即可得出答案;(2)分别计算两种⽅案的优惠价格,⽐较后发现⽅案①更优惠.解答:解:(1)设平均每次下调的百分率为x,则6000(1-x)2=4860,解得x1=0.1或x2=1.9(舍去),故平均每次下调的百分率为10%;(2)⽅案①购房优惠:4860×100×(1-0.98)=9720(元)⽅案②可优惠:80×100=8000(元),故选择⽅案①更优惠.点评:本题主要考查⼀元⼆次⽅程的实际应⽤,解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程,再求解,属于中档题.12.20XX年5⽉中央召开了新疆⼯作座谈会,为实现新疆跨越发展和长治久安,作出了重要战略决策部署,为此我市抓住机遇,加快发展,决定今年投⼊5亿元⽤于城市基础设施维护和建设,以后逐年增加,计划到20XX年当年⽤于城市基础设施维护与建设的资⾦达到8.45亿元.(1)求从20XX年⾄20XX年我市每年投⼊城市基础设施维护与建设资⾦的年平均增长率;(2)若20XX年⾄20XX年我市每年投⼊城市基础设施维护和建设的年平均增长率相同,预计我市这三年⽤于城市基础设施维护和建设的资⾦共多少亿元?考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)设从2010⾄20XX年我市每年投⼊城市基础设施维护和建设资⾦的年平均增长率为x,根据2年增长率的⼀般计算公式a(1+x)2,列⽅程5(1+x)2=8.45求解即可,注意值的取舍问题;(2)分别表⽰出20XX年到20XX年这三年每年的投⼊资⾦,相加即可求解.解答:解:(1)设从2010⾄20XX年我市每年投⼊城市基础设施维护和建设资⾦的年平均增长率为x,由题意,得:5(1+x)2=8.45,解得x1=30%,x2=-2.3(不合题意舍去).答:从20XX年⾄20XX年我市每年投⼊城市基础设施维护与建设资⾦的年平均增长率为30%.(2)这三年共投资5+5(1+x)+8.45=5+5(1+0.3)+8.45=19.95(亿元).答:预计我市这三年⽤于城市基础设施维护和建设的资⾦共19.95亿元.点评:主要考查了⼀元⼆次⽅程的实际应⽤,本题的关键是掌握增长率问题中的⼀般公式为a(1+x)n,其中n为共增长了⼏年,a为第⼀年的原始数据,x是增长率.13. 20XX年我市实现国民⽣产总值为1376亿元,计划全市国民⽣产总值以后三年都以相同的增长率⼀实现,并且20XX年全市国民⽣产总值要达到1726亿元.(1)求全市国民⽣产总值的年平均增长率(精确到1%);(2)求20XX年⾄20XX年全市三年可实现国民⽣产总值多少亿元?(精确到1亿元)考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)设全市国民⽣产总值的年平均增长率为x,那么20XX年全市国民⽣产总值为1376(1+x)亿元,20XX年全市国民⽣产总值为1376(1+x)(1+x)亿元,然后根据20XX年全市国民⽣产总值要达到1726亿元即可列出⽅程,解⽅程就可以求出年平均增长率;(2)根据(1)的结果可以分别计算出2010、2011、2012三年的国民⽣产总值,然后就可以求出结果.解答:解:(1)设全市国民⽣产总值的年平均增长率为x,依题意得1376(1+x)2=1726,∴1+x≈±1.12,∴x=12%或x=-2.12(负值舍去),答:全市国民⽣产总值的年平均增长率约为12%;(2)20XX年的国民⽣产总值为:1376×(1+12%)≈1541亿元;20XX年的国民⽣产总值为:1726×(1+12%)≈1933亿元;∴20XX年⾄20XX年全市三年可实现国民⽣产总值:1541+1726+1933=5200亿元.点评:此题主要考查了增长率的问题,⼀般公式为原来的量×(1±x)2=后来的量,其中增长⽤+,减少⽤-.14. 据茂名市某移动公司统计,该公司20XX年底⼿机⽤户的数量为50万部,20XX年底⼿机⽤户的数量达72万部.请你解答下列问题:(1)求20XX年底⾄20XX年底⼿机⽤户数量的年平均增长率;(2)由于该公司扩⼤业务,要求到20XX年底⼿机⽤户的数量不少于103.98万部,据调查,估计从20XX年底起,⼿机⽤户每年减少的数量是上年底总数量的5%,那么该公司每年新增⼿机⽤户的数量⾄少要多少万部?(假定每年新增⼿机⽤户的数量相同)考点:⼀元⼆次⽅程的应⽤;⼀元⼀次不等式的应⽤.专题:增长率问题.分析:(1)考查数量平均变化率问题,解题的关键是正确列出⼀元⼆次⽅程.原来的数量为a,设平均每次增长或降低的百分率为x的话,经过第⼀次调整,就调整到a×(1±x),再经过第⼆次调整就是a×(1±x)(1±x)=a(1±x)2.增长⽤“+”,下降⽤“-”;(2)设该公司每年新增⼿机⽤户的数量⾄少要y万部,则20XX年⼿机⽤户数量=20XX年⼿机⽤户数量-20XX年⼿机⽤户减少的数量+新增⼿机⽤户的数量,即是72×(1-5%)+y,同样20XX年的⼿机数量为:20XX年⼿机⽤户数量×(1-5%)+y≥103.98,由此可以求出结果.解答:解:(1)设20XX年底⾄20XX年底⼿机⽤户的数量年平均增长率为x,依题意得50(1+x)2=72,∴1+x=±1.2,∴x1=0.2,x2=-2.2(不合题意,舍去),∴20XX年底⾄20XX年底⼿机⽤户的数量年平均增长率为20%;(2)设每年新增⼿机⽤户的数量为y万部,依题意得[72(1-5%)+y](1-5%)+y≥103.98,即(68.4+y)?0.95+y≥103.98,68.4×0.95+0.95y+y≥103.98,64.98+1.95y≥103.98,1.95y≥39,∴y≥20(万部).∴每年新增⼿机⽤户数量⾄少要20万部.点评:此题主要考查了增长率的问题.对于此类问题,同学们关键要搞清数量变化与变化率的关系.15.我国年⼈均⽤纸量约为28公⽄,每个初中毕业⽣离校时⼤约有10公⽄废纸;⽤1吨废纸造出的再⽣好纸,所能节约的造纸⽊材相当于18棵⼤树,⽽平均每亩森林只有50⾄80棵这样的⼤树.(1)若我市20XX年4万名初中毕业⽣能把⾃⼰离校时的全部废纸送到回收站使之制造为再⽣好纸,那么最少可使多少亩森林免遭砍伐?(2)深圳市从2000年初开始实施天然林保护⼯程,⼤⼒倡导废纸回收再⽣,如今成效显著,森林⾯积⼤约由20XX年初的50万亩增加到20XX年初的60.5万亩.假设我市年⽤纸量的20%可以作为废纸回收、森林⾯积年均增长率保持不变,请你按全市总⼈⼝约为1000万计算:在从20XX年初到20XX年初这⼀年度内,我市因回收废纸所能保护的最⼤森林⾯积相当于新增加的森林⾯积的百分之⼏?(精确到1%). 考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)因为每个初中毕业⽣离校时⼤约有10公⽄废纸,⽤1吨废纸造出的再⽣好纸,所能节约的造纸⽊材相当于18棵⼤树,⽽平均每亩森林只有50⾄80棵这样的⼤树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林⾯积⼤约由20XX年初的50万亩增加到20XX年初的60.5万亩,可先求出森林⾯积年均增长率,进⽽求出2005到20XX年新增加的森林⾯积,⽽因回收废纸所能保护的最⼤森林⾯积=1000×10000×28×20%÷1000×18÷50,然后进⾏简单的计算即可求出答案.解答:解:(1)4×10 4×10÷1000×18÷80=90(亩).(10的4次⽅)答:若我市20XX年4万名初中毕业⽣能把⾃⼰离校时的全部废纸送到回收站使之制造为再⽣好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林⾯积年平均增长率为x,依题意列⽅程得50(1+x)2=60.5,解得x1=10%,x2=-2.1(不合题意,舍去),1000×10 4×28×20%÷1000×18÷50=20160,(10的4次⽅)20160÷(605000×10%)≈33%.答:在从20XX年初到20XX年初这⼀年度内,我市因回收废纸所能保护的最⼤森林⾯积相当于新增加的森林⾯积的33%.点评:本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题⽬中提炼出平均增长率的数学模型并解答的能⼒;解答时需仔细分析题意,利⽤⽅程即可解决问题.16. 某地区前年参加中考的⼈数为5万⼈,今年参加中考的⼈数为6.05万⼈.(1)问这两年该地区参加中考⼈数的年平均增长率是多少?(2)该地区3年来共有多少⼈参加过中考?(参考数据:11 2=121,12 2=144,13 2=169,14 2=196)(11的平⽅)考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)本题为增长率问题,⼀般形式为a(1+x)2=b,a为起始时间的有关数量,b为终⽌时间的有关数量.本题中a就是前年考试的⼈数,b就是今年考试的⼈数.(2)可根据(1)中得出的增长率,分别计算出这三年来,每年的考试⼈数,然后求出它们的和即可.解答:解:(1)设平均增长率为x,根据题意得:5(1+x)2=6.05解得:x1=0.1,或x2=-2.1(不合题意舍去)答:这两年的年平均增长率为10%.(2)由(1)得出的增长率我们可得出这三年的⼈数和是:5+5(1+10%)+6.05=16.55(万⼈)答:三年来共有16.55万⼈参加过中考.点评:本题考查求平均变化率的⽅法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).17. 随着我国社会保障机制的进⼀步完善,越来越多的单位更多的在⼯资⽅⾯体现出对职⼯的全⾯关怀,并且⼯资⽔平也在逐年提⾼、某公司实⾏年⼯资制,职⼯的年⼯资由基础⼯资、住房补贴和医疗费三项组成,具体规定如下:项⽬第⼀年的⼯资(万元)⼀年后的计算⽅法基础⼯资 1 每年的增长率相同住房补贴0.04 每年增加0.04医疗费0.1354 固定不变(1)如果设基础⼯资每年的增长率为x,那么⽤含x的代数式表⽰第三年的基础⼯资,为万元;(2)某⼈在公司⼯作了3年,他算了⼀下这3年拿到的住房补贴和医疗费正好是这3年基础⼯资总额的18%,问基础⼯资每年的增长率是多少?考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)依题意,已知基础⼯资每年的增长率为x,那么第三年的⼯资为(1+x)2;(2)根据图表可知住房补贴与医疗费,算出三年的费⽤后列出等式可求解.解答:解:(1)已知基础⼯资每年的增长率为x,即第三年的基础⼯资为(1+x)2;(2)住房补贴与医疗费共为0.04+0.04=0.08万元,0.08+0.04=0.12万元,0.04+0.08+0.12+3×0.1384=0.18[1+(1+x)+(1+x)2],得出x1=0.2,x2=-3.2(不合题意,舍去).故基础⼯资每年的增长率为20%.点评:若原来的数量为a,平均每次增长或降低的百分率为x,经过第⼀次调整,就调整到a×(1±x),再经过第⼆次调整就是a×(1±x)(1±x)=a(1±x)2.增长⽤“+”,下降⽤“-”.18. 近年来,⼈们购车热情⾼涨,车辆随之越来越多;同时受国际⽯油市场的影响,汽油价格不断上涨,曾⼀度紧缺.请你根据下⾯的信息,帮⼩明计算今年5⽉份和6⽉份营业额的⽉平均增长率.考点:⼀元⼆次⽅程的应⽤.专题:阅读型.分析:需先算出4⽉份的营业额为500×(1-10%),要想求5⽉份和6⽉份营业额的⽉平均增长率.则等量关系为:4⽉份的营业额×(1+⽉平均增长率)2=648.据此即可列⽅程求解.解答:解:设5⽉份和6⽉份营业额的⽉平均增长率为x,根据题意得:500(1-10%)(1+x)2=648解得:x1=0.2=20%,x2=-2.2(不合题意,舍去)答:今年5⽉份和6⽉份营业额的⽉平均增长率为20%.点评:解与变化率有关的实际问题时:(1)主要变化率所依据的变化规律,找出所含明显或隐含的等量关系;(2)可直接套公式:原有量×(1+增长率)n=现有量,n表⽰增长的次数.19. 近⽇召开的城镇居民基本医疗保险市研讨班上了解到,以城镇职⼯医保、城镇居民医保和新型农村合作医疗为主体,以城乡社会医疗救助为托底的多层次医疗保障体系已初露端倪.下⾯是市委领导和市民的⼀段对话,请你根据对话内容,替市领导回答市民提出的问题.考点:⼀元⼆次⽅程的应⽤.专题:阅读型.分析:本题可设平均每年的医保⾃然村增长率是x,则两次增长以后的村的总数是2300(1+x)2,因为05年已有2300个⾃然村,计划到07年要达到总数的25%,所以可列出⽅程即可求出答案.解答:解:设平均每年医保⾃然村增长率是x,根据题意,得2300(1+x)2=13248×25%解得:x1=0.2,x2=-2.2(不合题意,舍去).答:平均每年医保村增长率约是20%.点评:解与变化率有关的实际问题时:(1)主要变化率所依据的变化规律,找出所含明显或隐含的等量关系;(2)可直接套公式:原有量×(1+增长率)n=现有量,n表⽰增长的次数.本题只需仔细分析题意,利⽤⽅程即可解决问题,但应注意解的合理性,从⽽确定取舍.20. 为了绿化学校附近的荒⼭,某校初三年级学⽣连续三年的春季都上⼭植树,已知这些学⽣在初⼀时种了400棵,设这个年级两年来植树数的平均年增长率为x.(1)⽤含x的代数式表⽰这些学⽣在初三时的植树数;(2)若树⽊成活率为90%,三年来共成活了1800棵,求x的值.(精确到1%)考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)设这个年级两年来植树数的平均年增长率为x,则初⼆时植树数为:400(1+x),初三时的植树数为:400(1+x)2;(2)由题意可知三年来这些学⽣共植树:400+400(1+x)+400(1+x)2棵,已知成活率为:90%,所以成活了90% [400+400(1+x)+400(1+x)2]棵,⼜知成活了1800棵,令成活的棵数相等列出⽅程求解.解答:解:(1)由题意得:初⼆时植树数为:400(1+x),那么,这些学⽣在初三时的植树数为:400(1+x)2;(2)由题意得:90%[400+400(1+x)+400(1+x)2]=1800解得x1≈56%,x2≈-356%(不合题意,舍去)答:平均年增长率约为56%.点评:本题主要考查⼀元⼆次⽅程的应⽤(1)学会已知平均增长率和原来的植树数,求两年后的植树数的⽅法;(2)关键在于理解清楚题意,找出等量关系,列出⽅程求解.21.市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过两次降价后,每盒售价为100元,⽐原来降低了19%.但价格仍然较⾼,于是决定进⾏第三次降价.若每次降价的百分率相同,则第三次降价后每盒为多少元?考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:设调价前的价格为1,增长率为x.等量关系为:原来的价格×(1+增长率)2=原来的价格×(1-19%),把相关数值代⼊可求得增长率,第3次降价后的价格=100×(1-增长率),把相关数值代⼊计算即可.解答:解:设降价的百分率为x.调价前的价格为1.1×(1+x)2=1×(1-19%)∵1+x>0,∴1+x=0.9,∴x=10%,∴第3次降价后的价格=100×(1-10%)=90元.答:第三次降价后每盒为90元.点评:考查⼀元⼆次⽅程的应⽤;求平均变化率的⽅法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b;得到调价后价格的等量关系是解决本题的关键.22. 据宁波市房产管理部门统计,该市20XX年底房价每平⽅均价为0.7万元,20XX年底房价每平⽅均价达1.2万元.请你解答下列问题:(1)求20XX年底⾄20XX年底房价每平⽅均价的年平均增长率;(2)由于国务院抑制房价过快的增长,要求宁波市20XX年⾸套房贷利率上调10%,据调查,估计从20XX年起,购房⽤户每年减少的数量是上年底总数量的5%,如果原来能交易340套住房,放贷为每套均价60万元,当时的年利率为5.4%,那么该市市⾏到20XX年底⾄少要发放多少万元贷款?考点:⼀元⼆次⽅程的应⽤.专题:增长率问题.分析:(1)下⼀年的房价等于上⼀年的房价乘以(1+x)(x表⽰每平⽅均价的年平均增长率),根据这个条件列出⼀个⼀元⼆次⽅程,解此⽅程可得20XX年底⾄20XX年底房价每平⽅均价的年平均增长率;(2)根据购房⽤户每年减少的数量是上年底总数量的5%,得出2012购房的数量,再乘以每套房的放贷价格可得该市市⾏到20XX年底⾄少要发放的贷款.解答:解:(1)设20XX年底⾄20XX年底房价每平⽅均价的年平均增长率为x,则有0.7(1+x)2=1.2,解得,x=31%,答:20XX年底⾄20XX年底房价每平⽅均价的年平均增长率为31%;(2)340×(1-5%)2×60=18411(万元).答:该市市⾏到20XX年底⾄少要发放18411万元贷款.点评:本题主要考查⼀元⼆次⽅程的应⽤:解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程,再求解.23. 某⼯程队在我县实施⼀江两岸⼭⽔园林县城的改造建设中,承包了⼀项拆迁⼯程,原计划每天拆1250m2,因为准备⼯作不⾜,第⼀天少拆20%,从第⼆天开始,该⼯程队加快拆迁速度,第三天就拆迁了1440m2,问:(1)该⼯程队第⼀天拆迁⾯积是1000m2(2)若该⼯程队第⼆、三天拆迁⾯积⽐前⼀天增加的百分数相同,求这个百分数.考点:⼀元⼆次⽅程的应⽤.专题:增长率问题;⼯程问题.分析:(1)第⼀天拆迁⾯积=原计划的拆迁⾯积×(1-20%),把相关数值代⼊计算即可;(2)等量关系为:第⼀天的拆迁⾯积×(1+百分数)2=第3天的拆迁⾯积,把相关数值代⼊计算即可.解答:解:(1)该⼯程队第⼀天拆迁⾯积是1250×(1-20%)1000m2,故答案为1000;(2)解:设这个百分数是x.1000(1+x)2=1440.(1+x)2=1.441+x=±1.2x1=1.2-1=0.2=20%,x2=-1.2-1=-2.2经检验:x2=-2.2不合题意,舍去,只取x1=20%,答:这个百分数是20%.点评:考查⼀元⼆次⽅程的应⽤;求平均变化率的⽅法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.。
一元二次方程的应用(平均增长率问题)
总结:
若平均增长(或降低)百分率为x, 增长(或降低)前的是a, 增长(或降低)n 次后的量是b, 则平均增长(降低) 公式可表示为:
a(1 x) b
n
其中 增长取+ ,降低取-
练习巩固
1.某厂今年一月的总产量为500吨,三月的总产 量为720吨,平均每月增长率是x,列方程( B ) A.500(1+2x)=720 C.500(1+x2)=720 B.500(1+x)2=720 D.720(1+x)2=500
探究:随着人民生活水平的不断提高,我
市家庭轿车的拥有量逐年增加。据统计,某 小区2011年底拥有家庭轿车64辆,2013年底 家庭轿车的拥有量达100辆。 ( 1 )若该小区2011年底到2014年底家庭轿 ( 2 )为了缓解停车矛盾,该小区决定投资 15万 车拥有量年的年平均增长率都相同,求该小 元再建造若干个停车位。据测算,建造费用分别 区到2014年底家庭轿车将达到多少辆? 为室内车位 5000元/个,露天车位1000元/个,考 虑到实际因素,计划露天车位的数量不少于室内 车位的2倍,但不超过室内车位的2.5倍,求该小 区最多可建两种车位各多少个?试写出所有可能 的方案。
B.1200(1+2x)=1452
C.1200(1+x)2 =1452 D.1200(1+x%)2=1452
4、某超市一月份的营业额为200万元, 第一季度的营业额共1000万元,如果 平均月增长率为x,则由题意得方程 为 ( ) D A.200(1+x)2=1000 B.200+200×2×x=1000 C.200+200×3×x=1000 D. 200+200(1+x)+ 200(1+x)2=1000
一元二次方程的应用-平均增长率问题
一元二次方程的应用-平均增长率问题1.某校办厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件,若设这个百分数为x,则可列方程为()A.200+200(1+x)2=1400B.200+200(1+x)+200(1+x)2=1400C.200(1+x)2=1400D.200(1+x)+200(1+x)2=14002.某药品原价每盒25元,经过两次连续降价后,售价每盒16元.则该药品平均每次降价的百分数是.3.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.4.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.5.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?6.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?7.收发微信红包已成为各类人群进行交流联系、增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?8.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?请解答:(1)求每次下降的百分率;(2)若9月份继续保持相同的百分率降价,则这种品牌的手机售价为多少元?10.在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/m2下降到12月份的11340元/m2.(1)求11、12两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.11.某地区2018年投入教育经费2000万元,2020年投入教育经费2880万元.(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2021年该地区将投入教育经费多少万元.12.某种商品标价500元/件,经过两次降价后为405元/件,并且两次降价百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为380元/件,两次降价共售出100件,若两次降价销售的总利润不低于3850元,则第一次降价后至少要售出该商品多少件?13.东台市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程,已知2013年投资1000万元,(1)求平均每年投资增长的百分率;(2)按此增长率,计算2016年投资额能否达到1360万?14.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若2018年保持前两年利润的年平均增长率不变,该企业2018年的利润能否超过3.5亿元?15.据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?16.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2016年交易额为500亿元,2018年交易额为720亿元.(1)2016年至2018年“双十一”交易额的年平均增长率是多少?(2)若保持原来的增长率,试计算2019年该平台“双十一”的交易额将达到多少亿元?17.某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据计,第一个月进馆128人次,进馆人次逐月增加,到第三个月进馆达到288次,若进馆人次的月平均增长率相同.(2)因条件限制,学校图书馆每月接纳能力不得超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接待第四个月的进馆人次,并说明理由.18.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2013年的绿色建筑面积约为950万平方米,2015年达到了1862万平方米.若2014年、2015年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2016年是“十三五”规划的开局之年,我市计划推行绿色建筑面积达到2400万平方米.如果2016年仍保持相同的年平均增长率,请你预测2016年我市能否完成计划目标?19.某企业2012年盈利1500万元,2014年克服不利影响,仍实现盈利2160万元.从2012年到2014年,如果该企业每年盈利的年增长率相同,求:(1)该企业2012﹣2014年盈利的年增长率是多少?(2)若该企业盈利的年增长率继续保持不变,预计2015年盈利多少万元?20.在国家的调控下,某市商品房成交价由今年8月份的50000元/m2下降到10月份的40500元/m2.(1)问8、9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/m2?21.为落实素质教育要求,促进学生全面发展,我市某中学2011年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2013年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2011年到2013年,该中学三年为新增电脑共投资多少万元?22.为进一步发展基础教育,2014年某县投入教育经费6000万元,2016年投入教育经费8640万元,假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.23.某地区2013年投入教育经费200万元,2015年投入教育经费242万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.24.小丽去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,且从2月份到4月份,每月盈利的平均增长率相同.(1)求每月盈利的平均增长率;(2)按照这个增长率,预计5月份这家商店的盈利将达到多少元?25.某工厂一种产品2014年的产量是100万件,计划2016年产量达到121万件.假设2014年到2016年这种产品产量的年增长率相同.(1)求2014年到2016年这种产品产量的年增长率;(2)2015年这种产品的产量应达到多少万件?26.某镇2017年有绿地面积70公顷,该镇近几年不断增加绿地面积,2019年达到84.7公顷.(1)求该镇2017年至2019年绿地面积的年平均增长率;(2)若年平均增长率保持不变,2020年该镇绿地面积能否达到100公顷?27.某地区2014年投入教育经费200万元,2016年投入教育经费242万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.28.某企业2014年盈利1500万元,2016年克服全球金融危机的不利影响,仍实现盈利2160万元.从2014年到2016年,如果该企业每年盈利的年增长率相同,求:(1)该企业盈利的年增长率是多少?(2)若该企业盈利的年增长率继续保持不变,预计2017年盈利多少万元?。
平均数的增长率例题
平均数的增长率例题一、某公司去年平均月工资为5000元,今年平均月工资为6000元,则平均月工资的增长率为:A. 10%(答案)B. 20%C. 30%D. 40%二、一个班级去年平均分为70分,今年平均分为77分,那么平均分的增长率为:A. 7%B. 10%C. 12%(答案)D. 15%三、某城市去年人均消费为20000元,今年人均消费为22000元,人均消费的增长率为:A. 8%B. 9%C. 10%(答案)D. 11%四、一家餐厅去年月均营业额为10万元,今年月均营业额为11万元,营业额的增长率为:A. 5%B. 8%C. 10%(答案)D. 15%五、某地区去年平均降水量为500毫米,今年平均降水量为550毫米,降水量的增长率为:A. 5%(答案)B. 10%C. 15%D. 20%六、某工厂去年平均每月生产1000件产品,今年平均每月生产1200件产品,生产量的增长率为:A. 15%B. 20%(答案)C. 25%D. 30%七、某学校去年学生平均成绩为65分,今年学生平均成绩为71.5分,平均成绩的增长率为:A. 8%B. 10%C. 12%(答案)D. 15%八、一家超市去年月均销售额为30万元,今年月均销售额为36万元,销售额的增长率为:A. 15%B. 20%(答案)C. 25%D. 30%九、某城市去年人均工资为40000元,今年人均工资为44000元,人均工资的增长率为:A. 8%B. 9%C. 10%(答案)D. 12%十、某公司去年平均每月利润为50万元,今年平均每月利润为60万元,利润的增长率为:A. 15%B. 20%(答案)C. 25%D. 30%。
平均增长率计算方法
平均增长率计算方法1. 嘿,你知道平均增长率咋算不?就好比说,你开了个小店,今年赚了10 万,明年赚了 15 万,那这中间的平均增长率就是要好好琢磨一下啦!计算方法呢,很简单呀,用(终值÷初值)^(1÷年数)-1 就行啦。
比如这个例子里,(15÷10)^(1÷1)-1 就是咯,快算算你的店铺增长了多少呀!2. 哎呀,平均增长率可太重要啦!比如说学校里今年的学生人数是500 人,过了三年变成了 800 人,这增长得多厉害呀!那得用这个办法来算平均增长率哦,(800÷500)^(1÷3)-1。
是不是一下子就清楚了呀,就像解开一道谜题一样有趣呢!3. 喂,平均增长率的计算方法可得记牢咯!就像你种的花,从一点点小芽长到盛开,你知道它每年大概长了多少吗?用那个计算公式呀,(现值÷原值)^(1÷年数)-1。
想象一下,要是能清楚知道花花的生长速度,多有意思呀!4. 嘿呀,平均增长率计算方法其实不难啦!好比说你的工资,从刚开始的每月 3000 元涨到现在的 5000 元,这中间的增长怎么算呢?就是(5000÷3000)^(1÷几年)-1 嘛。
这不是挺容易理解的嘛,对不对呀?5. 哇哦,学会平均增长率计算方法超有用的呢!比如有个公司,一开始的利润很一般,后来逐步上升,那怎么看增长快不快呢?就是用(后面的利润÷开始的利润)^(1÷间隔年数)-1 呀。
是不是感觉像发现了一个小秘诀呀!6. 你晓得不,平均增长率的计算有个妙招哟!像你喜欢的球队,今年的粉丝数量和去年比起来有变化,那这中间的平均增长就可以这样算,(今年粉丝数÷去年粉丝数)^(1÷1)-1 啦。
是不是感觉一下子就能衡量出球队的发展啦?7. 哼,平均增长率都不知道怎么算可不行哦!比如你收集的邮票,一开始只有那么一小堆,后面越来越多,怎么看增长幅度呢?当然就是(后来的数量÷刚开始的数量)^(1÷经过的年数)-1 咯。
增长率问题附答案1
增长率问题:两种类型
一、平均增长率问题:
1题、某公司前年缴税40万元,今年缴税48.4万元,该公司这两年缴税的年均增长率为多少.
2题、某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11月,12月两个月的营业额的月增长率.
3题、(2014沈阳21题)
某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.
答案:
1题、解:设该公司这两年的平均增长率为x,根据题意得:
解得:(不合题意,舍去)答:。
专题一【平均数的增长率】
专题一【平均数的增长率】(共1
页)
-本页仅作为预览文档封面,使用时请删除本页-
问2010年一季度,我国从秘鲁进口水产品的平均单价比上年同期上升多少?
5、前三季度,全国商品房销售面积58371万平方米,同比增长%。
前三季度,商品房销售额27532亿元,同比增长%。
与2008年前三季度相比,2009年前三季度全国商品房销售均价增长了()。
………………………………………………………………………………………………………………………………………………
我把第一题错误的年份改了,还有第四题自己添加了选项,不过不影响之前做了的童鞋~………………………………………………………………………………………………………………
这个专题的题目都是求的是平均数(比重)的增长率,形式如人均GDP增长率,房地产均价增长率,都是有现实意义的量。
遇到这种题目,还可以用常识法来排除选项,比如第2题的人口增长率,不可能增长太快的,只能选C。
考试的时候注意一下,知道是这种题型,就方便些了。
计算过程俺不写了,下面好多高手的速算方法~
正确答案: ACADB
2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实践与探索1
增长率问题
教学目标:
1、会列一元二次方程解应用题;
2、进一步掌握解应用题的步骤和关键;
3、通过一题多解使学生体会列方程的实质,培养灵活处理问题的能力.
教学过程:
一、复习列方程解应用题的一般步骤?
二、课前热身
1、二中小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是a分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?
2、某经济开发区今年一月份工业产值达50亿元,三月份产值为72亿元,问二月、三月平均每月的增长率是多少?
三、探究新知
1、探究1:有一个人患了流感,经过两轮传染后有121人患了流感,每轮传染中平均一个人传染了几个人?
分析:设每轮传染中平均一个人传染了x人,开始有一人患了流感,第一轮:他传染了x人,第一轮后共有______人患了流感,第一轮后共有________人患了流感。
第二轮:这些人中的每个人都又传染了x人,第二轮后共有_________________人患了流感。
列方程得:。
思考:如果按照这样的传染速度,三轮传染后有多少人患流感?
例1 2003年我国政府工作报告指出:为解决农民负担过重问题,在近两年的税费政策改革中,我国政府采取了一系列政策措施,2001年中央财政用于支持这项改革试点的资金约为180亿元,预计到2003年将到达304.2亿元,求2001年到2003年中央财政每年投入支持这项改革资金的平均增长率?
练习:
某乡无公害蔬菜的产量在两年内从20吨增加到35吨,设这两年无公害蔬菜产量的年平均增长率为x,根据题意,列出方程为 .
某电视机厂1999年生产一种彩色电视机,每台成本 3000元,由于该厂不断进行技术革新,连续两年降低成本,至2001年这种彩电每台成本仅为1920元,设平均每年降低成本的百分数为x,可列方程 .
某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,设二月、三月平均每月增长的百分率为x,根据题意得方程为。
2、探究2:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
分析:容易求出,甲种药品成本的年平均下降额为:_________________________
乙种药品成本的年平均下降额为:
__________________________________
显然,乙种药品成本的年平均下降额较大.但是年平均下降额(元)不等同于年平均下降率(百分数)解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为元,两年后甲种药品成本为元,则有:
设乙种药品的下降率为y,则有:
思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?
练习:
某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程( )
A、500(1+2x)=720
B、500(1+x)2=720
C、
500(1+x2)=720 D、720(1+x)2=500
某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为。
某药品经两次降价,零售价降为原来的一半。
已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%)
四、课堂小结:
若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是A,则它们的数量关系可表示为。
其中增长取“”,降低取“”
注意:(1)1与x的位置不要调换
(2)解这类问题列出的方程一般用直接开平方法
当堂检测:
1、某城市计划经过两年的时间,将城市绿化面积从今
年的144万平方米增加到225万平方米,则每年平均
增长()
A、20%
B、25%
C、30%
D、15%
2、某药品经过两次降价,每瓶零售价由168元降为128元,已知两次降价的百分率相同,每次降价的百分率
为x,根据题意列方程得()
A、168(1+x)2=128
B、168(1 - x)2=128
C、168(1 - 2x)=128
D、168(1 - x2)=128
3、据调查,2011年5月兰州市的房价均价为7600元
/m2,2013年同期达到8200元/m2,假设这两年兰州市
房价的平均增长率为x,根据题意,所列方程为()
A、7600(1+x%)2 = 8200
B、7600(1 - x%)
2 = 8200
C、7600(1+x)2 = 8200
D、7600(1 - x)
2 = 8200
4、EV71是一种传染性极强的“手足口”传染病,对婴
幼儿的危害极大,如果一个儿童患上此病不及时治疗,经过两轮传染后会有49人染上此病,那么每一
轮传染中平均一人传染了人。
5、某商品连续两次降价10%后的价格是81元,则该
商品原来的价格是元。
6、某超市今年三月份的营业额为100万元,五月份的营业额为121万元,则四、五月份每月的平均增长率是。
7、某药品两次升价,零售价升为原来的 1.2倍,已知两次升价的百分率一样,求每次升价的百分率(精确到0.1%)
8、青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率.。