直角三角形全等的判定
直角三角形全等的判定
两边及其中一边的对角对应相等的两个三角形不一定 全等.
证明:只要举一个反例即可.如图:
B B′ B′
A
●
C A′ (1)
●
(2)
C′A′
●
(3) C′
因此,两边及其中一边的对角对应相等的两个三角形不 一定全等. 切记!!! 两边及其中一边的对角对应相等的两个三 角形不一定全等. 即(SSA)是一个假冒产品!!!
B
B′
C
A C′
A′
直角三角形全等的判定定理
定理:
斜边和一条直角边对应相等的两个直角三角形全 等(斜边,直角边或HL).
如图,在△ABC和△A′B′C′中, ∠C=∠C′=900 , ∵ AC=A′C ′
AB=A′B′
B
∴Rt△ABC≌Rt△A′B′C′(HL).
B′
C
A C′
A′
知识在于积累
回味无穷
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
; / 优鸟-专业菜谱摄影设计制作
hmq823dfk
有生死离别,但也充满了坑坑坎坎。从女儿的出生、送人到今天的相聚,一幕幕场景在脑海中浮现„„人有悲欢离合, 月有阴晴圆缺,此事古难全。想着想着,渐渐地进入了梦乡。我梦见在一个鲜花烂漫的春天,女儿们手拉手地向我走 来„„她们欢呼着跳跃着把我和肖燕围在中间„„ “爸,我是大荷,是一个在温室里长大的女儿。我的人生没有经过 任何分吹雨打,一路从幸福中走来。直到有一天,我知道了„„我的亲生父亲原来是那位与我素不相识的乡巴佬„„我 才开始逐渐放下我的高贵,醒悟我的公主人生„„妈,我感谢您给了我生命;更感谢我的爹地和妈咪对我的养育之恩。 今天,我终于明白了:我有两个爸爸、两个妈妈,你们都在关心我爱护我„„我是世界上最幸福最幸福的女儿„„” “爸,我是荷花,是一个从黄土高坡走来的女儿。我的人生几经波折,充满了泪水和欢乐,一路从荆棘中走来„„我爱 过也恨过,更多的是对人生不公的抱怨„„直到今天,我才知道我的父母无时无刻不在关心着我爱护着我,原来我根本 就不是那种被父母抛弃的弃儿„„爸,我终于明白了您对女儿的一片苦心;我感谢我的母亲给了我生命;也忘不了那些 曾经养育过我的人;更忘不了我的阿爹和阿妈„„感谢上帝给了我这么多的人生磨练,让我深深地体会到我是一个不幸 之中最幸运的女儿„„” “爸„„妈,合上眼不用看就知道我是您的女儿小荷。人们都说我是个幸运儿,是躺在妈妈 的怀里骑在爸爸的背上长大的„„如果说妈妈的怀抱爸爸的背是我童年的摇篮,那么爸妈的肩头就是女儿登天的云梯。 直到今天,我才知道„„爸妈把所有的付出所有的爱都给与了我一个人,我就是爸妈的唯一„„如果不是为了我,我坚 信我的人生会彻底改写,我的爸妈也绝对不是现在的样子,也许您就是某一家国有企业的老板或者拥有自己的公司„„ 然而,您现在却什么也没有,除了老人和孩子„„但是,在女儿的心里你们才是世界上最伟大的父母!是世界上最富有 的人!爸„„妈,如果人生真的有来世,我一定还做您的女儿!”„„„„深夜,万籁俱静,我独自一人思前想后,一 个念头跳入我的脑际,如果能把我过去的一切写下来,不也是一件很有意义的事情吗?于是,我写下了这部不成文的东 西,自名为《把往事写下来》,把它留给我的儿女们,让他们自己去品尝去回味„„这样,也总算是了却了我人生的一 件心事。拉郎配 ——寻求合作伙伴(二)|在回办公室的路上,马启明边走边想,早就听说三角债已经拖垮了许多企业, 没想到华泰啤酒也掉进了这个怪圈,而且是吃人的怪圈。再加上投资人参口服液的项目,的确很烂,到现在连一支人参 口服液也没销售出去,这是一笔非常冒险并且绝对毫无收益的愚蠢投资决策。投资失误!雪上
三角形全等的判定方法6种
三角形全等的判定方法6种
1、SSS(Side-Side-Side)(边边边):三边对应相等的三角形是全等三角形。
2、SAS(Side-Angle-Side)(边角边):两边及其夹角对应相等的三角形是全等三角形。
3、ASA(Angle-Side-Angle)(角边角):两角及其夹边对应相等的三角形全等。
4、AAS(Angle-Angle-Side)(角角边):两角及其一角的对边对应相等的三角形全等。
5、RHS(Rightangle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。
(它的证明是用SSS原理)
下列两种方法不能验证为全等三角形:
1、AAA(Angle-Angle-Angle)(角角角):三角相等,不能证全等,但能证相似三角形。
2、SSA(Side-Side-Angle)(边边角):其中一角相等,且非夹角的两边相等。
两个直角三角形全等的判定条件
直角三角形具有一些特殊的性质 ,如直角边与斜边的关系(勾股 定理)。
直角三角形全等的定义
• 两个直角三角形如果满足一定的条件,它们的形状和大小 完全相同,则称为全等直角三角形。
直角三角形全等的条件
HL全等条件
两角及夹边全等条件
如果两个直角三角形中,一个直角边 和斜边分别与另一个三角形的相应边 相等,则这两个直角三角形全等。
THANKS.
来辅助证明。
HL全等的应用
在几何学中,HL全等是解决几何问题 的重要工具之一。
HL全等也是证明其他三角形全等判定 定理的基础,如SAS、SSS、ASA等。
在实际问题中,如建筑、工程等领域, 经常需要用到HL全等来判断两个直角 三角形是否全等,从而确定物体的形 状和大小。
判定条件二:SAS全
03
等
实际问题解决
在解决实际问题时,如建筑设计、机械制造等领域,经常需要使用SAS全等来判断两个直 角三角形是否相等,从而进行相应的设计和制造。
数学竞赛
在数学竞赛中,如奥林匹克数学竞赛等,SAS全等是重要的知识点之一,常常作为题目考 察的重点和难点。
判定条件三A全等是指两个直角三角形中,一个锐角和斜边分别与另一个三角形的锐角和 斜边对应相等,则这两个直角三角形全等。
2. 根据SSS全等条件,如果两 个三角形的三边分别相等,则
这两个三角形全等。
3. 因此,可以得出这两个直 角三角形全等。
SSS全等的应用
应用场景
当已知两个直角三角形的两边长度相等时,可以使用SSS全等条件来判断这两 个三角形是否全等。
应用实例
在几何图形中,如果两个直角三角形有两边相等,并且其中一个角为直角,则 可以使用SSS全等条件来判断这两个三角形是否全等。
直角三角形全等的判定和一般三角形
直角三角形全等的判定和一般三角形下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!直角三角形是指其中一个角为90度的三角形,全等三角形是指三边和三个角都相等的三角形。
直角三角形全等的判定
三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′,
AB=A′B′, ∠C=∠C′=900.
C D
F
E
A
B
老师期望:请将证明过程规范化书写出来 .
3、已知BE和CF是△ABC的高, BE=CF, H是BE和CF的交点。求证:HB=HC。
A
F
H
E
B
C
2. 如图, AB是圆O的直径, ∠ 1 = ∠ 2 , 试说明△ABC≌△ABD
C
1
2 A
•O
B
D
回味无穷
直角三角形全等的判定定理: 1.斜边和一条直角边对应相等的两个直角三角形全等(斜 边,直角边或
求证:△ABC≌△A′B′C′.
B
B′
C
A C′
A′
直角三角形全等的判定定理
定理: 斜边和一条直角边对应相等的两个直角三角形全 等(斜边,直角边或HL).
如图,在△ABC和△A′B′C′中, ∠C=∠C′=900 , ∵ AC=A′C ′
AB=A′B′ ∴Rt△ABC≌Rt△A′B′C′(HL).
H.L.). 2.三边对应相等的两个三角形全等(S.S.S.).
3.两边及其夹角对应相等的两个三角形全等(S.A.S.).
4.两角及其夹边对应相等的两个三角形全等(A.S.A.).
5.两角及其中一角的对边对应相等的两个三角形全等(A.A.S.).
综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
直角三角形全等的判定
小结
拓展
• 直角三角形全等的判定定理: 定理:斜边和一条直角边对应相等的两个直角三角 形全等(斜边,直角边或HL). 公理:三边对应相等的两个三角形全等(SSS). 公理:两边及其夹角对应相等的两个三角形全等 (SAS). 公理:两角及其夹边对应相等的两个三角形全等 (ASA). 推论:两角及其中一角的对边对应相等的两个三角 形全等(AAS). • 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个吗?并说明理由: 1、两个锐角对应相等的两个直角三角形全等; 2、斜边及一个锐角对应相等的两个直角三角形全等; 3、两直角边对应相等的两个直角三角形全等; 4、一条直角边和另一条直角边上的中线对应相等 的两个直角三角形全等.
如图,已知∠ACB=∠BDA=90°,要使 △ACB与△BAD全等,还需要什么条件? 把它们分别写出来.
就是唯一的。
直角三角形全等的判定方法:
有斜边和一条直角边对应相等的两个 直角三角形全等(可以简写成“斜边、直 B 角边”或“HL”)
在Rt Δ ABC和Rt Δ A’B’C’中, AB=A’B’ AC=A’C’
A C
∴ Rt△ABC≌Rt△ A’B’C’
如图,已知CE ┴ AB,DF ┴ AB,AC=BD, AF=BE,求证:CE=DF。
回味无穷
作业:作业本
; 杏耀: ;
凤有些不知道该如何面对她の姑姑.但是,她の姑姑毕竟对他们兄妹二人有抚养の恩情,理应去探望.更何况,他们现在还到了绿野郡城地域.壹个多事辰后,两人就到了绿野郡城之外.“名不虚传!”鞠言看着前方整座绿色の城市,赞叹说道.那壹颗颗高耸の参天大树,直入云霄,从外面看,连里 面の建筑都很难看到.呐就难怪,大陆上の修行者,对绿野郡城
两个直角三角形全等的判定定理
两个直角三角形全等的判定定理
直角三角形全等的判定定理是指如果两个直角三角形上的三条边长分别相等,那么这两个三角形就是全等的。
根据此定理,可以把两个直角三角形的两个脚的夹角定义为相同的角度。
从几何学的角度来说,两个全等的直角三角形是同一形状的不同位置的副本,因此可以利用该定理作为基本准则来求解特定形状的直角三角形的解析解。
此外,可以利用直角三角形全等的判定定理来计算两个直角三角形之间距离的大小。
因为当三角形上的三条边都相等时,它们之间的距离也会相等,因此可以计算某个特定角度下两个直角三角形的距离。
这在很多地方都有应用,例如在地图绘制、工程绘图和地质勘测中都有用处。
直角三角形全等的判定定理也可以推广到非直角三角形上。
如果两个三角形的内角的余弦值相等,即cosA=cosB,则这两个三角形就全等了。
具体而言,当以直角三角形为例时,只要边长全等,便可认定两个三角形是全等的。
而非直角三角形在这种情况下,仅当两个三角形上的三边长都相等,而它们的内角的余弦值也相等时,才能说明这两个三角形是全等的。
总之,两个直角三角形全等的判定定理是指,当两个三角形上的三条边长分别相等时,它们就是全等的。
此外,可以利用它来判断两个直角三角形的距离,或者将其应用到非直角三角形上,以判定两个三角形是否是全等的。
直角三角形全等的判定
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果
相应,言必有据.这是初学证明者谨记 和遵循的原则.
; 亚博足彩 亚博app ;
H.L.). 2.三边对应相等的两个三角形全等(S.S.S.).
3.两边及其夹角对应相等的两个三角形全等(S.A.S.).
4.两角及其夹边对应相等的两个三角形全等(A.S.A.).
5.两角及其中一角的对边对应相等的两个三角形全等(A.A.S.).
综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
两边及其中一边的对角对应相等的两个三角形不一定 全等.
证明:只要举一个反例即可.如图:
B
B′
B′
A● (1)
C A′ ● (2)
C′A′
●
(3)
C′
因此,两边及其中一边的对角对应相等的两个三角形不
一定全等.
切记!!! 两边及其中一边的对角对应相等的两个三 角形不一定全等. 即(SSA)是一个假冒产品!!!
三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′,
AB=A′B′, ∠C=∠C′=900.
C D
F
E
A
B
老师期望:请将证明过程规范化书写出来 .
直角三角形全等的判定
直角三角形全等的判定
直角三角形全等的判定
直角三角形全等是指两个直角三角形的对边,对应边和
斜边分别相等。
在进行直角三角形全等的判定时,可以使用两种不同的方法,即SAS(边-角-边)和SSS(边-边-边)定理。
1. SAS定理:
SAS定理是指两个直角三角形的一条边、夹角和另一条边分别
相等,则这两个直角三角形全等。
具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。
b) 两个直角三角形的一条边相等。
c) 两个直角三角形的夹角(不是直角的角)相等。
d) 两个直角三角形的另一条边相等。
2. SSS定理:
SSS定理是指两个直角三角形的三条边分别相等,则这两个直
角三角形全等。
具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。
b) 两个直角三角形的三条边分别相等。
需要注意的是,在判定直角三角形全等时,必须要确定
其中一个角为直角。
因为如果两个直角三角形的所有边长相等,但没有一个角为直角,那么这两个三角形并不一定全等。
在解题时,需要根据给定的条件,判断所给的直角三角
形是否全等。
常见的判定方法包括测量边长和角度、利用勾股定理判断是否满足直角条件等。
判断过程中需要小心操作,确保测量准确、计算无误。
总之,直角三角形的全等判定是一种基本的几何判断方法,可以通过SAS定理或SSS定理来进行。
在解题时,要注意给定的条件,准确判断边长和角度是否相等,以确定两个直角三角形是否全等。
直角三角形全等的判定
已知:如图,AB=CD,DE⊥AC,BF⊥AC, 垂足分别为E,F,DE=BF. 求证: (1)AE=CF; D (2)AB∥CD.
E A
C F
B
例 如图,在△ABC与△A′B′C′中,CD, C′D′分别是高,并且AC=A’C′,CD= C’D′,∠ACB=∠A’C’B′. 求证:△ABC≌△A′B′C′.
小结
拓展
• 直角三角形全等的判定定理: 定理:斜边和一条直角边对应相等的两个直角三角 形全等(斜边,直角边或HL). 公理:三边对应相等的两个三角形全等(SSS). 公理:两边及其夹角对应相等的两个三角形全等 (SAS). 公理:两角及其夹边对应相等的两个三角形全等 (ASA). 推论:两角及其中一角的对边对应相等的两个三角 形全等(AAS). • 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
就是唯一的。
直角三角形全等的判定方法:
有斜边和一条直角边对应相等的两个 直角三角形全等(可以简写成“斜边、直 B 角边”或“HL”)
在Rt Δ ABC和Rt Δ A’B’C’中, AB=A’B’ AC=A’C’
A C
∴ Rt△ABC≌Rt△ A’B’C’
如图,已知CE ┴ AB,DF ┴ AB,AC=BD, AF=BE,求证:CE=DF。
回味无穷
作业:作业本
; / 酒店布草厂家
cth36dwc
天的神,说起居室太冷些,先叫关严了窗子、拉紧了帘子,还说冷,就移到里头拔步床里了。闺房里的事,悄没声儿的,外头也不知道。那鬼哭, 就挨着起居室的窗子响起。宝音惊醒,陪睡的是洛月,也早被吓醒了,抚慰宝音:“姑娘莫怕„„”自己牙关却打战来。手挨着宝音,指头也是 抖的。宝音笑了:“原来你比我还怕。”反过来搂着她,洛月觉着 的怀抱比自己温暖、手也比自己稳定,不由问:“姑娘您不怕?”宝音含笑道: “我有个不怕鬼的法子。”鬼哭声恰在此时停了。窗外沉寂得不怀好意。不知什么时候、从凭什么方向,又会来一次可怕袭击。洛月瑟缩着身子, 问:“什么法子?”“你我都会死,死了都会变成鬼,”宝音冷然,“被鬼所侵,大不了一死,死之后,又可与它斗一场。老鬼狠么?你只要死 得比它惨,大可比它更狠,届时谁强谁弱还不一定呢。”洛月闻所未闻,难免骇然,转念一想,却大大的有理,任它窗外鬼哭又起,胆子顿时肥 了,依偎在 身边,竟安然睡去。第二十三章 芙蓉泣血移宝屋(1)第二天早晨,明蕙急不可耐等韩毓笙垂危的消息,等来的却是她自己的人面青 唇白过来报告:“那花成精了!”饶明蕙胆大包天,脑子里也“嗡”一下:“胡说八道!什么精不精的?”“是真的呀!”那几个男女,都是走 刘四姨娘的路子进苏府做事的刘家人,园子里搬搬弄弄,赚了不少,都是刨土,合着比田里赚得多,平常唯刘四姨娘母女之马首是瞻,但这会儿, 再借他们八个胆子,看他们也不敢再到表 院子里去了!他们抽抽答答道:“昨天挖的那树„„流血了!”是天刚蒙蒙亮,起得最早的人就发现, 红白两棵芙蓉树,挖断的根须、剪断的枝子,断口都在渗出血来。“一派胡言!”明蕙怒道,“准是表姐在枝上抹了红颜料,吓唬你们!”刘家 人们很不满意的回答她:“姑娘!咱们吃了这么多年饭,抹上去的、还是渗出来的,那还是分得清的。”再说,那么多断口,大大小小、有的还 藏在泥土、其他根须或枝叶的里头,居然全能抹一遍?也近乎神迹了吧!明蕙自己也心慌,但再慌不能露出来,色厉内荏喝问:“那流出来的红 汁,有血腥味吗?”“这倒没有„„”“却又来!”明蕙找到了主意,“没有血味,叫什么血?你揉坏了指甲花、劈开西瓜,都有红汁,这怎么 能叫血呢?!”说是这么说的„„但又不是这么说的!刘家人不跟七姑娘吵,规规矩矩的告退,告退前劝一句话:“姑娘还是小心些罢!”明蕙 是要小心了,还用他们讲?芙蓉泣血,兹事体大,如何瞒得住?连着那“半夜鬼哭”,一下子传出去,并且到了老太太的耳朵边!不用宝音拜谒 老太太诉苦,老太太自己过问了:“那几棵树为什么要移?”下头回答:“生了虫病„„”老太太哼一声,都已经
直角三角形全等的判定
三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′,
AB=A′B′, ∠C=∠C′=900.
; https:/// 网上赚钱棋牌游戏 ;
没有回头路可以走的,刻骨铭心的友谊也如仇恨一样,没齿难忘。 友情这棵树上只结一个果子,叫做信任。红苹果只留给灌溉果树的人品尝。别的人摘下来尝一口,很可能酸倒了牙。 友谊之链不可继承,不可转让,不可贴上封条保存起来而不腐烂,不可冷冻在冰箱里永远新鲜。 友谊需要滋养。有的人用钱,有的人用汗,还有的人用血。友谊是很贪婪的,绝不会满足于餐风饮露。友谊是最简朴同时也是最奢侈的营养,需要用时间去灌溉。友谊必须述说,友谊必须倾听,友谊必须交谈的时刻双目凝视,友谊必须倾听的时分全神贯注。友谊有的时候是那样脆弱,一 句不经意的言辞,就会使大厦顷刻倒塌。友谊有的时候是那样容易变质,一个未经实的传言,就会让整盆牛奶变酸。这个世界日新月异。在什么都是越现代越好的年代里,唯有友谊,人们保持着古老的准则。朋友就像文物,越老越珍贵。 礼物分两种,一种是实用的,一种是象征性 的。 我喜欢送实用的礼物。 不单是因为它可为朋友提供立等可取的服务功能,更因为我的利己考虑。 此刻我们是朋友,十年以后不一定是朋友。 就算你耿耿忠心,对方也许早已淡忘。 速朽的礼物,既表达了我此时此刻的善意,又给予朋友可果腹可悦目可哈哈 一笑或是凝神端详的价值,虽是一次性的,也留下美好的瞬间,我心足矣。象征久远意义的礼物,若是人家不珍惜这份友谊了,留着就是尴尬。或丢或毁,都是物件的悲哀,我的心在远处也会颤抖。 若是给自己的礼物,还是具有象征意义的好。比如一块石子一片树叶,在别人眼里 那样普通,其中的美妙含义只有自己知晓。 电话簿是一个储存朋友的魔盒,假如我遇到困难,就要向他们发出求救信号。一种畏惧孤独的潜意识,像冬眠的虫子蛰伏在心灵的旮旯。人生一世,消失的是岁月,收获的是朋友。虽然我有时会几天不同任何朋友联络,但我知道自己牢牢 地粘附于友谊网络之中。 利害关系这件事,实在是交友的大敌。我不相信有永久的利益,我更珍视患难与共的友谊。长留史册的,不是锱铢必较的利益,而是肝胆相照的情分,和朋友坦诚的交往,会使我们留存着对真情的敏感,会使我们的眼睛抹去云翳,心境重新开朗。 ? 孝心无 价 ? ? 我不喜欢一个苦孩求学的故事。家庭十分困难,父亲逝去,弟妹嗷嗷待哺,可他大学毕业后,还要坚持读研究生,母亲只有去卖血……我以为那是一个自私的学子。求学的路很漫长,一生一世的事业,何必太在意几年蹉跎?况且这时间的分分秒秒都苦涩无比,需用母亲的鲜血灌溉! 一个连母亲都无法挚爱的人,还能指望他会爱谁?把自己的利益放在至高无上位置的人,怎能成为为人类献身的大师? ? 我也不喜欢父母重病在床,断然离去的游子,无论你有多少理由。地球离了谁都照样转动,不必将个人的力量夸大到不可思议的程度。在一位老人行将就木的时候,将 他对人世间最后的期冀斩断,以绝望之心在寂寞中远行,那是对生命的大不敬。 ?我相信每一个赤诚忠厚的孩子,都曾在心底向父母许下“孝”的宏愿,相信来日方长,相信水到渠成,相信自己必有功成名就衣锦还乡的那一天,可以从容尽孝。 ?可惜人们忘了,忘了时间的残酷,忘了人 生的短暂,忘了世上有永远无法报答的恩情,忘了生命本身有不堪一击的脆弱。 ?父母走了,带着对我们深深的挂念。父母走了,遗留给我们永无偿还的心情。你就永远无以言孝。 ?有一些事情,当我们年轻的时候,无法懂得。当我们懂得的时候,已不再年轻。世上有些东西可以弥补, 有些东西永无弥补。 ?“孝”是稍纵即逝的眷恋,“孝”是无法重现的幸福。“孝”是一失足成千古恨的往事,“孝”是生命与生命交接处的链条,一旦断裂,永无连接。 ?赶快为你的父母尽一份孝心。也许是一处豪宅,也许是一片砖瓦。也许是大洋彼岸的一只鸿雁,也许是近在咫尺的 一个口信。也许是一顶纯黑的博士帽,也许是作业簿上的一个红五分。也许是一桌山珍海味,也许是一只野果一朵小花。也许是花团锦簇的盛世华衣,也许是一双洁净的旧鞋。也许是数以万计的金钱,也许只是含着体温的一枚硬币……但“孝”的天平上,它们等值。 ?只是,天下的儿女 们,一定要抓紧啊!趁你父母健在的光阴。 请为你的夸奖道歉 朋友同我讲过这样一个故事。 她到北欧某国做访问学者,周末到当地教授家中做客。一进屋,问候之后,看到教授五岁的小女儿。这孩子满头金发,眼珠如同纯蓝的蝌蚪顾盼生辉,极其美丽。朋友带去了中国礼物, 小女孩有礼貌地微笑道谢,朋友抚摸着女孩的头发说,你长得这么漂亮,真是可爱极了! 教授等女儿退走之后,很严肃地对朋友说,你伤害了我的女儿,你要向她道歉。朋友大惊,说我一番好意,夸奖她,还送了她礼物,伤害二字从何谈起?教授说,你是因为她的漂亮而夸奖她, 而漂亮这件事,不是她的功劳,这取决于我和她的父亲的基因遗传,与她个人基本上没有关系。你夸奖了她,孩子很小,不会分辨,她就会认为这是她的本领。而她一旦认为天生的美丽是值得骄傲的资本,她就会看不起长相平平甚至丑陋的孩子,这就成了误区。而且,你未经她的允许, 就抚摸她的头,这使她以为一个陌生人可以随意抚摸她的身体而可以不经她的同意,这也是不良引导。不过你不要这样沮丧,你还有机会弥补。有一点,你是可以夸奖她的,这就是她的微笑和有礼貌。这是她自己努力的结果。 请你为你刚才的夸奖道歉。教授这样结束了她的话。 后来呢?我问。 后来我就很正式地向教授的小女儿道了歉,同时表扬了她的礼貌。朋友说。 从那以后,每当我看到美丽的孩子,我都会对自己说,忍住你对他们容貌的夸赞,从他们成长的角度来说,这件事要处之淡然。孩子不是一件可供欣赏的瓷器或是可供抚摸的羽毛。他们 的心灵像很软的透明皂,每一次夸奖都会留下划痕。 给人生加个意义 那是一所很有名望的大学,从我演讲一开始就不断有纸条递上来.纸条上提得最多的问题是"人生有什么意义?请你务必说真话,因为我们已经听了太多言不由衷的假话了." 我念完这个纸条后台上响起了掌声,我说今天你 们提的这个问题很好,我会讲真话.我在西藏的阿里雪山之上,面对着浩瀚的苍穹和壁立的冰川,如同一个茹毛饮血的原始人,反复地思索这个问题,我相信,一个人在他年青的时候,是会无数次的叩问自己---我的一生,到底要追索怎样的意义?我想了无数个晚上和白天,终于得到了一个答案.今 天,在这里,我将非常负责任地对大家说,人生是没有任何意义的. 这句话说完,全场出现了短暂的寂静,如同是旷野 ,但是紧接着就响起了暴风雨般的掌声.那是我演讲中获得的最热烈的掌声.在以前我从来不相信什么"暴风雨"般的掌声这种话,觉得那只是一个拙劣的比喻.但这一次我相信了. 我赶快用手做了一个"暂停"的手势,但掌声还是绵延了若干时间. 我说,大家先不要忙着给我鼓掌,我的话还没有说完.我说人生是没有意义的,这不错,但是----我信每一个人要为自己确立一个意义! 是的,关于人生的意义的讨论,充斥在我们的周围.很多说法,由于熟习和重复,已让我们----从熟视无睹滑到了厌烦.可是,这不是问题的真谛.真谛是,别人强加给你的意义,无论它多么正确,如果它不曾进入你的心理结构,它就永远是身外之物.比如我们从小就被家长灌输过人生意义的答案.在此后漫长的岁月里,谆谆告诫的老师和各种类型的教育,也都不断地向我们批发人生意义的 补充版.但是有多少人把这种外在的框架,当成了自己内在的标杆,并为之下定了终身的决心? 那一天结束讲演之后,我听到有同学说,他觉得最大的收获是听到一个活生生的中年人亲口说,人生是没有意义的,你要为之确立一个意义. 其实,不单是中国的年轻人在目标这个问题上飘忽不定,就 是在美国的著名学府哈佛大学,有很多人在青年时代也大都未确立自己的目标.我看到一则材料,说某年哈佛的毕业生临出校门的时候,校方对他们做了一个有关人生目标的调查,60%的人目标模糊,10%的人有近期目标,只有3%的人有着清晰长远的目标. 25年过去了,那3%的人不懈地朝着一个目 标坚韧努力,成了社会的精英,而其余的人,成就要相差很多. 芒果女人 小学同学艨从北美回来探亲,因国内已无亲属,她要求往日同伴除了叙旧以外,就是陪她逛街购物吃饭,于是大家排了表,今日是张三明日是李四,好象医院陪床一般,每天与她周游. 艨的先生在外发了财,艨家 有花园洋房游泳池,艨的女儿在读博士,艨真是吃穿不愁. 可是艨依然很朴素,就像当年在乡下插队时一般. 艨说我这么多年主要是当家庭妇女,每日修剪草坪和购物. 要说有什么本领,就是学会了如何当一名消费者. 艨说中国的商家已经学会了赚钱,可很多人还不知道钱要赚得有 理. 中国老百姓也已经知道了,钱可以买来服务. 可这服务是什么质量的,心里却没数. 和艨乘出租汽车. 司机一边开车,一边用打火机引着了烟. 艨对我说,你抽烟吗?我偏头躲着烟雾说,不抽. 艨说,我也不抽. 然后是寂静,只有发动机的震颤声. 等了一会儿,艨对司机说,师 傅,我本来是想委婉地提醒您一下,没想到您不察觉. 那我就得明说了,请您把烟熄了. 司机愣了一下,好像没听懂他的话,想了想,还算和气地说,起得早,困. 抽一支,提提神. 我这车,不禁烟,没看不贴禁止吸烟的标志吗?艨说,这跟禁烟标志无关,而是您抽烟并没有得到我们的 允许啊 .司机说,新鲜.抽烟这事,连老婆都管不着我,干吗要得到你们的允许? 艨说,你老婆给你钱吗? 司机说,新鲜. 我老婆给我什么钱?是我给她钱,养家糊口. 艨沉着地说,这就对了. 你老婆和你是私事,你可听也可不听. 我们出了钱,从上车到目的地这段时间 内,买了你的服务. 我们是你的雇主,你在车内吸烟,怎能不征询主人的意见呢? 我捏了一把汗,怕司机火起来,没想到他握着烟想了半天把长长的烟蒂丢到车窗外面了. 过了一会,司机看看表,把车上的收音机打开,开始听评书连播《肖飞买药》. 音波起伏,使车内略显尴尬的 气氛,得到某种稀释. 艨的眉头皱起来,这一次,她不再旁敲侧击,径直说,师傅,我心脏不好,不能听这种激动的声音. 请您关闭音响. 司机旧恨新仇一起发作,
全等三角形判定的三种类型
全等三角形判定的三种类型1.SSS判定(边边边)SSS判定是指当两个三角形的三条边分别相等时,它们是全等三角形。
例如,对于两个三角形ABC和DEF,如果AB=DE,BC=EF,AC=DF,则可以通过SSS判定断定三角形ABC和DEF是全等的。
SSS判定的原理是,边长相等可以确保两个三角形的相应边之间的角度也是相等的,根据三角形角度之和为180°的性质,可以推导出它们的角度也是相等的,进而判断三角形全等。
2.SAS判定(边角边)SAS判定是指当两个三角形的两边和夹角分别相等时,它们是全等三角形。
例如,对于两个三角形ABC和DEF,如果AB=DE,∠BAC=∠EDF,BC=EF,则可以通过SAS判定判断三角形ABC和DEF是全等的。
SAS判定的原理是,两个三角形的一边和与这边相邻的两个角相等时,可以确保这两个三角形的三个边都相等,从而判断它们全等。
3.ASA判定(角边角)ASA判定是指当两个三角形的两角和边分别相等时,它们是全等三角形。
例如,对于两个三角形ABC和DEF,如果∠BAC=∠EDF,∠ABC=∠DEF,AC=DF,则可以通过ASA判定判断三角形ABC和DEF是全等的。
ASA判定的原理是,两个三角形的两个角和这两个角所夹的边相等时,可以确保这两个三角形的第三个角也相等,从而判断它们全等。
此外,还有两种特殊情况的判定方法:4.直角全等判定如果两个直角三角形的三个边分别相等,那么它们一定是全等的。
这是因为直角三角形的两个直角以及第三个角也是相等的。
5.等腰全等判定如果两个三角形都为等腰三角形,并且有一个角相等,那么它们一定是全等的。
这是因为等腰三角形的两个底角和底边相等,所以只需要一个额外的角相等即可推断两个等腰三角形全等。
综上所述,全等三角形的判定可以通过SSS、SAS、ASA以及两种特殊情况的判定方法来进行。
这些判定方法不仅可以帮助我们判断三角形的全等性质,而且在数学推导和证明过程中也有重要的应用。
直角三角形的全等判定方法
直角三角形的全等判定方法直角三角形是指一个三角形中有一个角为90度的三角形。
全等是指两个三角形的对应边和对应角分别相等。
在数学中,我们经常需要判定两个直角三角形是否全等。
本文将介绍几种判定直角三角形全等的方法。
方法一:SSS判定法SSS判定法是指当两个直角三角形的三边分别相等时,可以判定它们全等。
例如,已知两个直角三角形的三边分别为a, b, c和a’, b’, c’,如果a = a’,b = b’,c = c’,那么可以判定这两个直角三角形全等。
这个方法的原理是根据全等三角形的定义,两个直角三角形的三边相等时,它们的对应角也相等,而直角三角形的对应角分别为90度,因此可以判定这两个直角三角形全等。
方法二:SAS判定法SAS判定法是指当两个直角三角形的两边和夹角分别相等时,可以判定它们全等。
例如,已知两个直角三角形的一边为a,另一边为b,夹角为C,另一个直角三角形的对应边为a’,对应边为b’,对应夹角为C’,如果a = a’,b = b’,C = C’,那么可以判定这两个直角三角形全等。
这个方法的原理是根据全等三角形的定义,两个直角三角形的两边和夹角相等时,它们的对应边也相等,而直角三角形的对应边分别为斜边和直角边,因此可以判定这两个直角三角形全等。
方法三:HL判定法HL判定法是指当两个直角三角形的斜边和一个直角边分别相等时,可以判定它们全等。
例如,已知两个直角三角形的斜边为h,一个直角边为l,另一个直角三角形的对应斜边为h’,对应直角边为l’,如果h = h’,l = l’,那么可以判定这两个直角三角形全等。
这个方法的原理是根据全等三角形的定义,两个直角三角形的斜边和一个直角边相等时,它们的对应角也相等,而直角三角形的对应角分别为90度,因此可以判定这两个直角三角形全等。
方法四:ASA判定法ASA判定法是指当两个直角三角形的两个角和一个对边分别相等时,可以判定它们全等。
例如,已知两个直角三角形的两个角分别为A和B,对边为a,另一个直角三角形的对应两个角分别为A’和B’,对应对边为a’,如果A = A’,B = B’,a = a’,那么可以判定这两个直角三角形全等。
直角三角形全等的判定
两边及其中一边的对角对应相等的两个三角形不一定 全等.
证明:只要举一个反例即可.如图:
B B′ B′
A
●
C A′ (1)
●
(2)
C′A′
●
(3) C′
因此,两边及其中一边的对角对应相等的两个三角形不 一定全等. 切记!!! 两边及其中一边的对角对应相等的两个三 角形不一定全等. 即(SSA)是一个假冒产品!!!
A
F B D
E C
老师期望:请将证明过程规范化书写出来 .
2.已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂足分 别为E,F,DE=BF. 求证:(1)AE=AF (2)AB∥CD.
D E A C F
B
老师期望:请将证明过程规范化书写出来 .
3、已知BE和CF是△ABC的高, BE=CF, H是BE和CF的交点。求证:HB=HC。
判断下列命题的真假,并说明理由:
两个锐角对应相等的两个直角三角形全等; 斜边及一个锐角对应相等的两个直角三角形全等;
两直角边对应相等的两个直角三角形全等;
一条直角边和另一条直角边上的中线对应相等 的两个直角三角形全等.
一个角和一条直角分别相等的两个直角三角形全 等.
1.已知:如图,D是△ABC的BC边上的中 点,DE⊥AC,DF⊥AB,垂足分别为E,F,且 DE=DF. 求证: △ABC是等腰三角形.
两个三角形全等的识别方法:
A
A` A A` C B`
B
C B`
C`
B
C`
① 边边边(S S S)
② 边角边(S A S)
A
A` C B`
A
A` C B`
B
C`
B
直角三角形证明全等的方法
直角三角形证明全等的方法
证明两个直角三角形全等只需要除直角外的两个条件分别对应相等即可。
如下四条选一。
1、证明两条直角边分别对应相等;
2、证明一条直角边和一个锐角分别对应相等;
3、证明斜边和一个锐角分别对应相等;
4、证明斜边和一条直角边分别对应相等。
与全等三角形的判定定理比较可知,第1条是两边夹角,第2、3两条都是两角一边,第4条较特殊,是两边和其中一边的对角,在全等三角形的条件里是没有的。
还有全等三角形有三条边分别对应相等的判定条件,直角三角形全等判定条件里没有类似的。
直角三角形全等的判定
已知线段a、c(a﹤c)
画一个Rt△ABC,使∠C=90° ,
一直角边CB=a,斜边AB=c.
a
c
画法:1.画∠MCN=90 °. 2.在射线CM上取CB=a. 3.以B为圆心,c为半径画弧,交射线CN于点A. 4.连结AB . 从上面画直角三角形中,你发现了什么? 斜边与一条直角边长一定时,所画的直角三角形
回味无穷
作业:作业本
娱乐网站开发制作 / 娱乐网站开发制作
跟他最是壹条心,所以在别得已の情况下,他才将那件差事派给咯小柱子。事后,他壹忙起来就将往怡然居派耳目の事情放咯下来,壹是因为第二天他就被皇上调遣到古北口 护送八小格回京の事情耽搁咯,二是他对她也没什么啥啊兴趣,所以怡然居里の情况他也没什么啥啊想探知の。现在别壹样咯,水清“大权”在握,怡然居の点点滴滴他都需 要晓得。并别是出于他别信任水清,而是他の职业习惯使然。壹辈子都在勾心斗角、尔虞我诈の残酷政治竞争环境中成长起来,但凡有壹点点跟权力沾边の事情,他都会高度 警觉,极费心思。现在,水清独揽大权,他当然要格外关注怡然居の壹举壹动。可是,真是应验咯那句话,书到用时方恨少,临时抱佛脚!他现在急于要找壹各奴才,安插到 怡然居。既然是他派过去の,只能是从朗吟阁挑人,但是,他又别想让水清晓得那是他安插过去の眼线,所以他只能选那些没什么在王府里当过差の奴才,才能有效避过她猜 忌。第壹卷 第516章 共管 就那样,水清和惜月开始咯共同掌管王府事务の日子,那是王爷和福晋两方势力别得已而相互妥协の结果。惜月和水清都是聪明绝顶の女子,所 以对于那种共同管理府务の安排,各中原因全都心知肚明。既然晓得咯原因,惜月做事非常收敛,生怕触咯“雷区”。毕竟那是第壹次参与那么重要の事务,取得王爷和福晋 の好感是当务之急,至于培植亲信奴才,做大势力,进壹步插手王府事务等等,反倒别是啥啊着急の事情。兰心惠质の她当然晓得,心急吃别得热豆腐,而且越是着急上手, 越会适得其反。水清则是因为对那种事情提别起丝毫の兴趣,她都别晓得王爷为啥啊要她也参与到府务管理之中!她很有自知之明,深知自己在他心目中の位置,远远达别到 权高位重の地步,作为他极为厌恶の壹各诸人,怎么会万般信任地放手让她来做那么重要の事情呢?更重要の是,他壹直认为她“诡计多端”,壹直认为她“吃里扒外”,如 此说来,现在府中空虚,他更应该特别地提防の她才对,怎么可能是“委以重任”呢?难道说,他那是为咯考验她?果别其然!王爷刚壹出府,怡然居就来咯壹各新太监,余 小福!据说是福晋の救命恩人,现在来府里寻各差事,因为霞光苑现在没什么主子,就临时到她怡然居当差。听完咯苏培盛の那壹番介绍,水清の嘴角立即漾起壹丝自我解嘲 般の苦笑:我说爷呀,那怡然居壹院子の奴才哪各别都是您の奴才?还需要再额外增加壹各余小福?想到那里,她无可奈何地摇咯摇头。现在の水清,自从嫁进王府五年之后, 壹口气创造咯好几各“第壹次”:第壹次掌管府务,第壹次有咯来自朗吟阁の眼线奴才。面对那各局面,真是让她哭笑别得。水清原本就对管理府务那种事情壹点儿兴趣都没 什么,她の心思又全都在悠思の身上,现在别但要分出壹部分精力来照应府里の事情,还要忍受王爷の猜忌和监视,水清真是心力交卒、疲于应付。惜月是忌惮王爷和福晋, 水清则是压根儿就没什么那各心思,所以两各人倒也是相安无事,各自在各自の势力范围里,尽心尽力地打理着府里大大小小の事情,整各儿王府别但没什么出啥啊纰漏,而 且运转得井井有条。按照王爷の吩咐,余小福每两天雷打别动地、极其详细地向王爷汇报着来自怡然居の点点滴滴,详细到侧福晋壹天出咯几次房门都清清楚楚地记忆在案。 所以隔三差五地,王爷就会收到来自小福子の报告,通篇全是怡然居、侧福晋、小主子„„他没什么在惜月那里进行特意の安排,毕竟惜月只是负责监督执行,与水清手中の 权力相比,实在是差得太远咯。此外惜月那里原本就已经有两各来自朗吟阁の奴才,就算是他回来以后再听那两各奴才の禀报也别迟,毕竟惜月也别可能闹出啥啊大天去。第 壹卷 第517章 情报对于那隔三差五来自于余小福の尽职尽责消息,虽然印证咯水清是壹各心思纯净得别带壹点点杂质の诸人,却让他有壹种别真实の感觉。俗话说得好,水 至清则无鱼,她实在是太过纯净,纯净得让他有些别敢相信,那世上难道真是有那种对权势无欲无求、熟视无睹、无动于衷到那种地步の人?以前他当然也晓得水清别是壹各 争宠拔尖の人,那是因为他压根儿就没什么看上她,她倒也还算是有点儿自知之明,没什么别识相地愣往他の眼跟前凑。但是现在别壹样咯,现在可是插手王府事务の绝好机 会,手中掌握の可是权高位重の肥差,她真の是面对那么大の诱惑壹样也别在乎?那她下辈子打算怎么办?悠思格格将来总是要出嫁の,别可能陪她壹辈子。他又根本就别喜 欢她,没什么他の宠爱,又没各小小格可以母凭子贵。无依无靠の水清,身体又是那么瘦弱,整日里又病秧秧地,若是在王府里再别给自己谋些权势,挣下些资本,现在她还 年轻,别觉得怎么样,将来年龄大咯,岂别是要凄苦壹生?别知别觉中,王爷开始忧心忡忡地担心着水清の下辈子生活,当他突然意识到自己竟然会那么破天荒地为她担忧别 已の时候,才发觉自己是那么の可笑。他对于后院诸人间の争宠拔尖、争风吃醋、争权夺利行为极为厌恶,虽然他自己对权力の欲望异乎寻常地强烈,但是他又是壹各只许州 官放火,别许百姓点灯之人。他为咯皇位可以别惜壹切代价,但是他の诸人,只有踏实、本分、无欲无求那壹条路可以走。现在,他竟然期盼着水清能够从王府の利益中分壹 杯羮,积极主动地为她の未来谋划壹各美好の
直角三角形全等的判定
三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′, AB=A′B′, ∠C=∠C′=900. 求证:△ABC≌△A′B′C′.
A
F B
H
E C
2. 如图, AB是圆O的直径, ∠ 1 = ∠ 2 ,
试说明△ABC≌△ABD
C
A
1 2
D
•
O
B
直角三角形全等的判定定理: 1.斜边和一条直角边对应相等的两个直角三角形全等(斜 边,直角边或 H.L.). 2.三边对应相等的两个三角形全等(S.S.S.). 3.两边及其夹角对应相等的两个三角形全等(S.A.S.). 4.两角及其夹边对应相等的两个三角形全等(A.S.A.). 5.两角及其中一角的对边对应相等的两个三角形全等(A.A.S.). 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等; 切记!!! 两边及其中一边的对角对应相等的两个三角形不一定全等. 即(SSA)是一个假冒产品!!!
回味无穷
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
长沙夜网 长沙夜网
bgo057utb
这么干净”这让身为女流的她情何以堪。所以,她每天最大的爱好之一便是到庄逍遥的房子里,把庄逍遥那些太过规矩的陈设都捣乱,看到经 由她之手而变得凌乱的庄逍遥的房子,她总是能心情大好的哈哈大笑一番。然后在庄逍遥的浴室里美美的泡上个澡,也不管头发没干、还在滴 水、便光脚走出浴室,随意的在庄逍遥的房子里一圈又一圈的乱走,看到那些湿湿的脚印子,她总能心满意足的畅笑一番。 庄逍遥对此并不懊恼,只是劝她“你刚洗完澡,光脚踩在地面上容易着凉的”,然后不知从什么时候开始他便将所有的地面铺上了一层厚厚的 地毯。 白荌苒便笑着对他吐舌“才不要” 庄逍遥便不再多说什么,只是等她闹够了之后待她安静下来之后替她吹干头发,而白荌苒往往在庄逍遥替她吹头发的时候便睡到在他的怀里了。 也许没有人会相信,她白荌苒虽然经常留宿在庄逍遥的家中,但是他们之间闹归闹却一直是过的相敬如宾,并没有逾越雷池半分。所有就这一 点,白荌苒偶尔会在心里叹息,果然,她在庄逍遥的心中是一个没有性别差异的存在。 白安然想起她刚认识庄逍遥的时候,还是高中年代、她刚刚认识庄逍遥那会儿、也是很痴迷庄逍遥的。 庄逍遥是以插班生的身份来到她们班的,那还是高中一年级的时候,到那个学期中期的时候庄逍遥来到了她们班。那个时候的庄逍遥也总是沉 默寡言的,几乎不曾看到他笑过,他似乎总是有太多的心事,每天总是恬静的要命。白荌苒跟他同桌的那段时间总是忍不住默默地担忧着那样 一个面相看起来很忧郁的男生,她总是乐呵呵的跟他讲起学校里、家里、身边发生的一切有趣的事情,可惜庄逍遥一直都是不太搭理她的,也 鲜少回应她。很多时候,白荌苒都觉着自己不过是在自言自语罢了,不免觉得好笑,可即使如此,她还是忍不住想要同那个沉默寡言的男孩子 分享自己的快乐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形全等的判定
一、教学目标
1.使学生理解判定两个直角三角形全等可用已经学过的全等三角形判定方法来判定.
2.使学生掌握“斜边、直角边”公理,并能熟练地利用这个公理和一般三角形全等的判定方法来判定两个直角三角形全等.
指导学生自己动手,发现问题,探索解决问题(发现探索法).
由于直角三角形是特殊的三角形,因而它还具备一般三角形所没有的特殊性质.因为这是第一次涉及特殊三角形的特殊性,所以教学时要注意渗透由一般到特殊的数学思想,从而体现由一般到特殊处理问题的思想方法.
二、教学重点和难点
1.重点:“斜边、直角边”公理的掌握.
2.难点:“斜边、直角边”公理的灵活运用.
三、教学手段
利用三角板、小黑板、教具(剪好的三角形硬纸片若干个).
四、教学过程
(一)复习提问
1.三角形全等的判定方法有哪几种?
2.三角形按角的分类.
(二)引入新课
前面我们学习了判定两个三角形全等的四种方法——SAS、ASA、AAS、SSS.我们也知道“有两边和其中一边的对角对应相等的两个三角形不一定全等”,这些结论适用于一般三角形.
我们在三角形分类时,还学过了一些特殊三角形(如直角三角形).特殊三角形全等的判定是否会有一般三角形不适用的特殊方法呢?
我们知道,斜边和一对锐角对应相等的两个直角三角形,可以根据“ASA”或“AAS”判定它们全等,两对直角边对应相等的两个直角三角形,可以根据“SAS”判定它们全等.
如果两个直角三角形的斜边和一对直角边相等(边边角),这两个三角形是否能全等呢?
1.可作为预习内容(投影仪)
如图3-43,在△ABC与△A'B'C'中,若AB=A'B',AC=△A'C',∠C=∠C'=Rt∠,这时Rt△ABC与Rt△A'B'C'是否全等?
研究这个问题,我们先做一个实验:
把Rt△ABC与Rt△A'B'C'拼合在一起(教具演示)如图3-44,因为∠ACB=∠A'C'B'=Rt∠,所以B、C(C')、B'三点在一条直线上,因此,△ABB'是一个等腰三角形,于是利用“SSS”可证三角形全等,从而得到∠B=∠B'.根据“AAS”公理可知,Rt△ABC≌Rt△A'B'C'.
2.下面我们再用画图的方法来验证:(同学们一同画图)
例1已知线段a,c(a>c)如图3-45,画一个Rt△ABC,使∠C=90°,一直角边CB=a,斜边AB=c.
画法:(1)画∠MCN=90°如图3-45.
(2)在射线CM上取CB=a.
(3)以B为圆心,C为半径画弧,交射线CN于点A.
(4)连结AB.
△ABC就是所要画的直角三角形.
此例题着重说明,如此画出的Rt△是唯一的(画出的线与射线CN只有一个交点).
3.把2中画出的三角形剪下,两位同学比较一下,看看两人剪下的Rt△是否可以完全重合,从而引出直角三角形全等判定公理——“HL”公理.
(三)讲解新课
斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).
要向学生说明“斜边、直角边”公理的条件,就是两边及其中一边的对角对应相等,但所对的角是直角,这是Rt△的特有物质所决定的,对于一般三角形并不成立.这就是说,Rt△是特殊的三角形,因而它还具备一般三角形所没有的特殊性质,以后我们还会遇到它的其它特殊性质.
这是直角三角形全等的一个特殊的判定公理,其他判定公理同于任意三角形全等的判定公理.
练习(利用投影仪作练习1、2)
1.具有下列条件的Rt△ABC与Rt△A'B'C'(其中∠C=∠C'=Rt∠)是否全等?如果全等在()里填写理由,如果不全等在( )里打“×”.
(1)AC=A'C',∠A=∠A'()
(2)AC=A'C',BC=B'C'()
(3)∠A=∠A',∠B=∠B'()
(4) AB=A'B',∠B=∠B'()
(5) AC=A'C',AB=A'B'()
2.如图3-46,已知∠ACB=∠BDA=Rt∠,若要使△ACB ≌△BDA,还需要什么条件?把它们分别写出来(有几种不同的方法就写几种).
理由:()()()()
设计本练习要求学生执果索因,缺什么,找什么,这即可帮助学生熟悉基本定理,又是一种逆向思维的训练.
例2已知:如图3-47,在△ABC和△A'B'C'中,CD、C'D'分别是高,并且AC=A'C',CD=C'D',∠ACB=∠A'C'B'.
求证:△ABC≌△A'B'C'.
分析:要证明△ABC≌△A'B'C',还缺条件,或证出∠A=∠A',或∠B=∠B',或再证明边BC=B'C',观察图形,再看已知中还有哪些条件可以利用,容易发现高CD和C'D'可以利用,利用它可以证明△ACD≌△A'C'
D'或△BCD≌△B'C'D'从而得到∠A=∠A'或∠B=∠B',BC=B'C'.找出书写顺序.
证明:(略).
*讨论(发展思维)
“边边角”与全等三角形的判定.
我们知道有两边和其中一边对角对应相等的两个三角形未必全等.但是当两个三角形都是直角三角形时,由“边边角”便可断言它们全等(为什么?),那么除此以外“边边角”是否还适用于其它种类的三角形呢?
事实上,对两个钝角三角形、两个锐角三角形“边边角”也是成立的(验证方法与直角三角形类似).
这样,一般地我们便有如下结论:
有两边和其中一边的对角对应相等的两个钝角三角形全等.
有两边和其中一边的对角对应相等的两个锐角三角形全等.
具体验证留给学生们,以上两个结论都是在学习“斜边、直角边”公理时引出的思考,而得出的结论.
我们要问的是:既然“边边角”对直角三角形、钝角三角形、锐角三角形都成立,那么,它为什么对一般的三角形却不成立呢?你能说出其中的奥妙吗?
小结:
由于直角三角形是特殊三角形,因而不仅可以应用判定一般三角形全等的四种方法,还可以应用“斜边、直角边”公理判定两个直角三角形全等.“HL”公理只能用于判定直角三角形全等,不能用于判定一般三角形全等,所以判定两个直角三角形的方法有五种:“SAS、ASA、AAS、SSS、LH”
(四)练习选用课本中练习
(五)作业选用课本习题
(六)板书设计
级上。