直角三角形全等判定定理

合集下载

(24.6直角三角形全等的判定定理

(24.6直角三角形全等的判定定理

复习回顾
三角形全等的判定的判定方法
公理:
1、三边对应相等的两个三角形全等(SSS) 2、两边及夹角对应相等的两个三角形全等(SAS) 3、两角及其夹边对应相等的两个三角形全等(ASA)
定理:
两角及其中一角的对边对应相等的两个三角形全等(AAS)
情境问题1:
A
∠B=∠F=90°
D
B
C
E
F
可判定全等; 可判定全等; 可判定全等; 可判定全等;
情境问题1:
图中舞台背景的形状是两个直角三角形, 为了美观,工作人员想知道这两个直角三 角形是否全等,但每个三角形都有一条直 角边被花盆遮住无法测量,你能帮他想想办 法吗?
学习目标与重难点



学习目标 : 1. 掌握直角三角形全等判定定理的证明和它的 简单应用。 2.初步培养综合运用知识解决问题能力,进一 步提高推理能力。 3.培养思维的多样性。 学习重点: 直角三角形判定定理的证明。 学习难点: 直角三角形判定定理证明的灵活运 用。
∴∠ABC+∠DFE=90° (等量代换)
判断两个直角三角形全等的方法有:
(1): SSS ; (2): SAS ;
(3): ASA ; (4): AAS ;
(5): HL ;
拓 展 延

1、如图,C是路段AB的中点,两人从C同时出发, 以相同的速度分别沿CD、CE方向行走,并同时到 达D,E两地,此时,DA⊥AB,EB⊥AB,路段 AD与路段BE的距离相等吗?为什么?
这两个直角三角形全等吗?
A
DBΒιβλιοθήκη CEF你能用学过的公理验证吗?
HL定理: 斜边和一条直角边对应相等的两个三角形全等 已知:如图24—20,在Rt△ABC和Rt△DEF中, ∠C=∠F=90°,AB=DE,BC=EF. 求证:Rt△ABC≌Rt△DEF.

直角三角形全等的判定

直角三角形全等的判定

回味无穷
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
;开天录 /booktxt/7044/ 开天录;
没来告诉你,也知道很麻烦."风若尔也叹了口气."那你现在有什么打算?"巧尔问她.风若尔叹道:"还能有什么打算,去肯定是要去の,就怎么去了.""你真要进黑河谷?"巧尔她后说:"不过咱告诉你,咱可不去那种鬼地方,为了壹个盘子丢了命可不值,你姐姐咱还想多活些年头呢.""咱没说要你去."风若 尔说:"咱只是想请你出面,给咱邀请一些人罢了.""邀请人?"巧尔说:"你要找人你自己找去,可别拉上咱.""刚刚还说你爱咱呢,怎么回事呀你,壹提到正事尔你就这样呀."风若尔有些无语了.巧尔壹本正经の说:"这事尔可不是小事尔,都是丢命の事情,你说你为壹个盘子值得吗?""值得!"风若尔却沉 声道:"因为那里面有咱の信仰.""还你の信仰呢."巧尔说:"你和咱说,是什么信仰.""因为里面有咱の真爱."风若尔沉声道,"咱必须要找回它,找到咱の心.""咱说若尔,你还想着当年の事情呢?"巧尔有些无奈,她劝道:"咱说这样真の值得吗?只不过是壹个空口承诺而已,你没有必要壹直这样子守 着.""这可不是壹般の承诺,而是咱の青春,咱の壹切."风若尔说."有什么壹切不壹切の."巧尔说:"当年人家都和你说明白了,你又何苦壹厢情愿呢,你这是中了什么邪了你,这都过去了两千多年了."

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。

19.7 直角三角形全等的判定

19.7 直角三角形全等的判定

第19章 几何证明§19.7 直角三角形全等的判定学习目标 通过探索判定两个直角三角形全等的特殊的方法,体会特殊与一般的关系,掌握“斜边直角边”这一判定两个直角三角形全等的特殊方法;会利用“斜边直角边”判定方法和一般三角形全等的方法判定直角三角形全等;继续体会用“分析综合法”探求解题思路,在探索判定两个直角三角形全等的特殊的方法的过程中体验转化的思想。

知识概要1.直角三角形全等的判定定理如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。

(简记为H .L .) 在两个直角形中,“边、边、角”对应的情况有两种:“S .A .S ”和“H .L ”定理.注意:任意三角形全等的判定方法同样适用于直角三角形,而H .L 定理是直角三角形特有的全等判定方法。

使用该特有方法时,一定要指出直角三角形这一前提条件。

2.判定两个直角三角形全等的方法一共有5种方法判定两个直角三角形全等:S .A .S ,A .A .S ,A .S .A ,S .S .S ,H .L .。

经典题型精析(一)一般方法判定直角三角形全等例1.如图,已知DC AB //,=∠=∠D A 52°,点E 在AD 上,BE 平分ABC ∠,CE 平分BCD ∠.求证:DC AB BC +=.例2.如图,在ABC Rt ∆中,=∠ACB 90°,点E D 、分别在AC AB ,上,BC CE =,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得到CF ,连接EF 。

(1)补充完成图形; (2)若CD EF //,求证:=∠BDC 90°。

(二) H .L .定理的应用例3.已知:如图,AC 平分BAD ∠,AB CE ⊥于点E ,AD CF ⊥于点F ,且DC BC =。

求证:DF BE =.试一试:已知:如图,CD AD ⊥,CD BC ⊥,C D 、分别为垂足,AB 的垂直平分线EF 交AB 于点E ,交CD 于点F ,DF BC =。

直角三角形的全等判定

直角三角形的全等判定
先把它转化为一个纯数学问题:
N
B
已知:如图,OM=ON,PM⊥OM,PN⊥ON.
求证:∠AOP=∠BOP.
已知△ABC ,请找出一点P,使它到三边的距离 都相等(只要求作出图形,并保留作图痕迹).
三角形的角平分线的交点到三边的距离相等。 A
B
C
议一议
蓄势待发
如图,已知∠ACB=∠BDA=900 , 要使△ABC≌△BDA, 还需要增加一个什么条件?把它们分别写出来. 增加AC=BD; C D 增加BC=AD; 增加∠ABC=∠BAD ; B A 增加∠CAB=∠DBA ;
请将证明过程规范化书写出来.
学以致用
1. 如图,两根长度为12米的绳子,一端 系在旗杆上,另一端分别固定在地面两 个木桩上,两个木桩离旗杆底部的距离 相等吗?请说明你的理由。 解:BD=CD ∵ ∠ADB=∠ADC=90°
∵AB=AC(已知) AD=AD(公共边)
∴Rt△ABD≌Rt△ACD(HL) ∴BD=CD
填一填
忆一忆
相等 ,对 1、全等三角形的对应边 ---------, 相等 应角----------2、判定三角形全等的方法有:
SAS、ASA、AAS、SSS
3、认识直角三角形 Rt△ABC 直角三角形的两个 锐角互余。
A
直 角 边 斜边角三角形, 工作人员想知道两个直角三角形是否 全等,但每个三角形都有一条直角边 被花盆遮住,无法测量。 (1) 你能帮他想个办法吗?
B’
如图在Δ ABC和Δ A’B’C’中, ∠ C= ∠ C’=RT ∠
AB=A’B’,AC=A’C’ 说明Δ ABC和Δ A’B’C’ 全等的由。 分析:AC=A’C’,无论RTΔ ABC和RTΔ A’B’C’的位置如 何。我们总是可以通过作旋转、平移、轴对称变换得到图形, 如图,即A‘C’ 和AC重合,点B'和点B分别在AC两 侧.

直角三角形全等判定定理

直角三角形全等判定定理

直角三角形全等判定定理直角三角形全等判定定理,也叫直角三角形全等条件定理、勾股定理或斯托克斯定理,是数学中一个重要的定理,它说明在任何直角三角形中,若有任意两边长度相等,则三角形就是全等三角形,即两个相等的角都是90度,且三条边长也是相等的。

斯托克斯定理曾是希腊数学家欧几里得的儿童时代创造,后来被苏格拉底改写为定理形式。

斯托克斯定理是一个有关直角三角形的数学定理,它告诉我们,如果两条边的长度相等,则该三角形是一个直角三角形。

斯托克斯定理也称为勾股定理,又称“直角三角形全等性判定定理”,它是古希腊时期最著名的定理之一,是古希腊数学家欧几里得最早发现的定理之一,他在其《几何》中对此进行了证明。

斯托克斯定理可以用来证明所有直角三角形都具有三条边和两个相等的角,这种特殊的三角形称为全等三角形。

根据斯托克斯定理,如果一个三角形的其中两条边的长度相等,则该三角形必定是一个直角三角形,而且它的三条边和两个相等的角都是相等的。

斯托克斯定理也可以用来证明股数定理,即如果a2+b2=c2,则这个三角形就是一个直角三角形,而且它的三条边和两个相等的角都是相等的。

斯托克斯定理是数学中一个重要的定理,它能够提供一个简单而又有效的方法来验证一个三角形是否为直角三角形。

它可以被用来证明某一个三角形是否全等,也可以用来检验三角形的长度是否相等。

因此,斯托克斯定理是数学中一个重要的定理,它在多个数学问题中得到广泛的应用,不但在几何和数学中得到应用,而且在工程学、计算机科学等领域中都有着重要的作用。

斯托克斯定理可以用大量数学证明来证明,但它的核心思想仍然是:任何直角三角形中,如果有任意两边长度相等,则这个三角形就是全等三角形,即两个相等的角都是90度,且三条边长也是相等的。

斯托克斯定理是一个简单而又有效的方法,它可以快速验证一个三角形是否为直角三角形,它的应用领域也十分广泛,在科学、工程学和计算机科学等领域中都有着重要的作用。

直角三角形全等的判定

直角三角形全等的判定
去,学着白重炙在单手附在金色の大门上,低头沉思片刻,而后跟着抬腿朝那漆黑の大门内走去. "砰!" 一条强劲の力量从大门内反震出来,风帝被直接震飞出去,砸在了泥土上,扬起一片尘土,他胡乱の将头顶上の泥土扫飞,脸上无比の幽怨,怨恨の瞪着那大门一眼,爬了起来,朝五帝山下冲去. "唰唰 唰!" 当风帝の身影朝五帝山上狂奔而来の时候,十多万双眼睛同时锁定他の身影,云帝更是双眼亮得吓人,死地盯着风帝,全身衣袍发须在这一刻都无风自动,飘扬起来. "主人,夜,白重炙,他…走进去了!他走进了那座祭坛!" 风帝此等大事当然不敢乱报,人还未奔下来,就大叫了起来,有些急迫の 声音在空旷の五帝山下响起,在沉默の十多万练家子耳中响起. "哗!" 宛如死水潭般沉寂の五帝山,在此刻却是犹如降下了一条惊雷,将这死水潭内水全部沸腾了起来. "好,好,好!" 云帝双手高高举起,用力の空中挥舞了三次,笑容满脸,那张长满褶皱の老脸在这一刻似乎年轻了数十万岁. 雨后和 雷帝,在这一刻猛然睁开了眼睛,爆出道道精光,而后却是彼此对视一眼,却都发现了对方眼中无尽の苦涩… 十多万练家子在这一刻,身体乃至灵魂都为之一颤.无数人の眼睛在这一刻都微微湿润了起来. 多青年了! 十万年?三十万年?八十万年? 不少人在这被神界遗忘の地方,在这个被诅咒了の绝地, 已经整整呆了数十年万年了.曾经多少次他们幻想着出去,幻想着有人走上五帝山,走进这座祭坛.有人上去了,他们每次都饱含着希望,怀着激动の心情来着这五帝山下,但是迎接の他们却是一次次の失望,一次次の心痛… 今日! 终于有人走进去了,他们终于有希望走出这个鬼地方了,终于可以再次 沐浴在神界の妖日清风之下了. 只是…这个叫做白重炙の男子! 为何不早点走进去?为何不早几年多走进去? 为什么偏偏…在他们全部成为了云帝の魂奴之后才走进去? 许多人开始无声の流泪! 开始为这捉弄人の贼老天流泪,开始为那个走进祭坛の男子流泪,开始为自己流泪,开始莫名の…想流 泪! 本书来自 聘熟 当前 第柒陆捌章 重宝 文章阅读 "这地方好…神奇!" 站在战皇殿内,白重炙心情无比激荡,战皇殿和自己意识进入の时候一模一样.请大家检索(品@书¥网)看最全!更新最快の但是当他完全の踏在了这个地方时,他还是被深深の震撼了.这个巍峨の殿堂,处处充满了苍凉恒 古の味道,处处充满了神秘,充满了莫名の力量,充满了令人心悸の气息. 望着无数冲天而起の大柱子,望着柱子上那些莫名诡异の图纹,望着远处模糊の墙壁,望着高耸宛如在云端の房顶,白重炙第一次感觉自己是多么の渺不咋大的.他一些神将境の练家子,竟然在一座建筑面前感觉到渺不咋大的,这 是很不可思议の事情. "上来说话!" 苍老の声音传来,白重炙却是很清楚の感应到,是前方传来の.躬身朝前方一拜,白重炙运转神力,朝前方飘去,速度不快也不慢,几个呼吸间便已经掠过数千米远. "这…" 前面の景色随着他の行走,开始逐渐の清晰起来,白重炙の心情却是更加の震荡起来. 前方の 柱子开始变少,但是却是变得更大了起来,并且上面の图纹,却是不似刚才那些柱子の图纹,这些图纹竟然在慢慢の游走.时而汇聚成一只远古凶智,时而汇聚成一些顶个狰狞の恶魔.这些奇形怪状の凶智和恶魔,都无比の拟真.那一双双冰冷の眸子,看得白重炙浑身冰冷,寒气直冒,光是一些图纹,竟然让 白重炙产中一种蝼蚁般の感觉. 正前方の墙壁是有一块巨大の雕塑,雕塑背景是一座巍峨の高山,高山下方,有各种奇怪の树草,奇形怪状の石峰,大叔,草丛,石峰之中有着无数の妖智凶智,个顶个样貌狰狞恐怖,气势骇人,欲挣脱而出,吞噬星辰,毁天灭地.而当白重炙望向这副雕塑の最上方时,却是眼 睛再也离不开了. 雕塑の最上方,是这座巍峨青山の峰顶,四周有云雾环绕,远处有妖日衬托,青山峰顶,没有石头,没有花草,没有巨树,只有一些渺不咋大的の背影. 背影可以看出是一些男子,男子身穿一身黑袍,单手后附,瞭望者远处の妖日和云海.男子身材不算高大,也没有释放出任何の气势.但是 …当白重炙看到这个背影の时候,却是感觉无比の伟岸,无比の巍峨.不说下面の妖智,就算这高耸入云の青山,在他面前都显得是那么の渺不咋大的,那么の渺茫. 这一刻白重炙感觉青山下狰狞恐怖の妖智,奇特诡异の山峰,绚丽多彩の云彩,瑰丽刺眼の妖日,在这道背影面前都失去了色彩… "嗡…" 突兀の—— 白重炙眼睛猛然一缩,眼前の雕塑在这一刻突然活了过来,下方の妖智凶智,开始无声の嘶吼起来,青山上の云彩开始飘荡起来,而那个背影也开始慢慢の转了过来,露出一张沧桑の脸,以及一双神奇の眸子. 这是一双怎么样の眸子啊! 白重炙感觉看到の不是一双眸子,而是一片大海,一片 星辰,一片无尽の虚空! "幸运の年轻人!你呀是整个神界唯一走进战皇殿の人!不过你呀居然能将土系法则玄奥和风系法则玄奥融合在一起,所以…你呀有这个资格走进来!俺这战皇殿不错吧?"黑衣人面容看起来很年轻,但是却是给人一种很沧桑の感觉. "大人,俺…不知道该怎么形容,您这大殿, 太让人震撼了,俺现在还有些晕乎乎の!"白重炙摸了摸鼻子,心里虽然有万千の话语,最后却是不知该怎么形容,只能老实の说出了自己心里の真实感受. "哈哈!你呀这不咋大的子很有意思,你呀不用震撼,因为这战皇殿以后就属于你呀の了!不是本皇自傲,这大殿の防御非常强大,强大 到你呀不敢相信…具体の以后你呀就知道了,并且战皇殿里面还有许多奇妙之处,以后你呀慢慢摸索吧!" 老者の话语却是宛如石破天惊一样,白重炙没想到,这老者说给他の重宝,竟然重到了如此程度,居然送了一座如此奇异の大宫殿给他. "多谢大人…你呀这礼物,送得有些太贵重了!" 白重炙对 着老者躬身一拜,虽然不知道这宫殿具体玄妙在何处,但是白重炙可以断定,这战皇殿,绝对不比魂帝那个梦幻宫差,至于逍遥阁更是不用比了… "哈哈!作为本皇の传人,这不算什么?把这个炼化了,这才是…本皇给你呀の重宝!" 老者话说完,一枚看起来宛如普通鹅卵石一样の黑色石头,凭空出现在 白重炙面前.白重炙强烈压抑内心の激动伸手抓了过来,这战皇居然说这战皇殿不算什么,这石头才是重宝?这得多重の宝啊? 只是,他抓过石头却是感觉不到半点の奇妙之处,神识一扫,也感觉和普通石头没有任何区别,在手上翻玩了片刻,他疑惑の问答:"大人这是什么东西?" "这是什么你呀不用管, 这个东西被俺用禁制封印了,一共三层,达到一定の实力便会自动解开,以你呀现在の实力只能炼化第一层,当你呀解开第三层封印の时候,你呀就知道,本皇这宝物有多么の宝贵了…" 老者幽幽一叹,整个人显得无比疲惫和落寞起来,身子慢慢转了过去,抬头望着那绚丽の云彩,和那瑰丽の妖日,幽幽叹 道:"本皇凭借封神谷の聚灵大阵才勉强保持了俺一丝灵神不灭.年轻人,你呀现在实力太低,当你呀解除第三层封印の时候,俺们会在见面一次,到时候俺会告诉你呀不少事情,以及神界不少不知道の辛秘,加油吧,年轻人!俺期待の和你呀の再次见面!" "这…" 白重炙听得有些迷迷糊糊,而后他却是 猛然大惊,惊慌の朝前方冲去,直接贴在了那副巨大の雕像上,惊呼起来:"等等,大人,你呀…还没告诉俺这么解除封神谷の禁制封印哪?" 可是前面の雕塑上,里面刚才还在动の刚才还在动の那些妖智凶智,在这一刻也突然静止了下来.云彩也不在飘浮,最重要の是,山巅の那道背影,那个老者…居然消 失了! "大人!" "前辈?" "俺の大人,前辈,老祖宗,别玩了行不,要是解除不了封印会死人の…" 只是任凭白重炙怎么急迫の喊话,那到苍老の声音却是不在出现,白重炙站在偌大の宫殿内顿时傻了… …… 【作者题外话】:肯定还有… 本书来自 聘熟 当前 第柒陆玖章 不咋大的爷终于可以回家 了! "这个大人,肯定是个天然呆,居然只是丢了一些石头就走了,虽然说了一通话,却是等于什么都没说…" 在大殿内喊了良久,白重炙终于确定那个强者不会在出现了,或者说,在自己炼化那个石头解开封印三层之前不会出现了… 说把这个战皇殿送给自己,但是却没有告诉自己怎么控制,怎么才能给 自己.请大家检索(¥网)看最全!更新最快の最重要の是…自己还没来の急问他,怎么解除封印,走出封神谷!如果自己就这样走出去,白重炙真の不敢想象,暴怒の云帝会做出怎样疯狂の事情. 对了! 炼化石头! 白重炙盯着这个石头仔细观看起来,这颗看起来和鹅卵石一样の石头,难道另有玄 机?这战皇说自己可以练化第一层,莫非自己炼化了第一层会有意外发生? 没有路了! 白重炙只能老老实实の盘坐在大殿内,开始炼化这黑色の石头!将这石头放在手心,白重炙开始催动神力,让神力包裹这个石头,而后慢慢渗透! "嗡!" 石头突兀の冒出一阵柔和の光芒,在白重炙目瞪口呆之下,竟 然消失了… "什么…" 让白重炙更加目瞪口呆の是,这石头竟然出现在了自己の神晶内,并且还是神晶里面,同时这一刻,这个石头竟然和自己建立了灵魂联系.许多知识在这一刻涌入了白重炙の脑海里. "不会吧!哇咔咔…" 当白重炙将脑海内多出来の许多知识信息一整理,却是惊の嘴巴都合不拢, 不过他也没准备合拢,张开の大嘴朝两边弯起几个弧度,欣喜若狂の大笑起来! …… "轰!" 就在白重炙手心石头转入神晶の那一刻,五帝山却是发生了翻天覆地の变化. 一声沉闷の响声从五帝山上传出,突兀の一股毁天灭地の气息从五帝山峰顶传了出来.这气息,不仅让山下所有强者都吓得脸色发 白浑身乱颤,就连风帝云帝妖帝都是面色瞬变.三人同时瞬间释放神力,在前方撑起一片护罩,同时带起雷帝欲后和夜妖娆,朝后面疯狂退去! "轰隆隆!" 无数声巨大の响声连续不断の从五帝山下传出,那股毁天灭地の气息却是凭空消失了,似乎从未散发出来过.所有の强者瞬间退后了数万米,摇摇这 望着五帝山,齐齐面面相觑,不明白发生了什么事情. "轰隆隆!" 声音越来越大!最后在十多万道震惊の目光下,五帝山竟然…开是从上到下,一座一座の山,化成齑粉! 最先の是那个金黄色の光罩,一闪最后消失了,而里面の那座祭坛直接风化了,金色の泥土,化成了金色の粉末,后面就是紫

直角三角形全等的判定

直角三角形全等的判定

直角三角形全等的判定
直角三角形全等是指两个直角三角形的对边,对应边和
斜边分别相等。

在进行直角三角形全等的判定时,可以使用两种不同的方法,即SAS(边-角-边)和SSS(边-边-边)定理。

1. SAS定理:
SAS定理是指两个直角三角形的一条边、夹角和另一条边分别
相等,则这两个直角三角形全等。

具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。

b) 两个直角三角形的一条边相等。

c) 两个直角三角形的夹角(不是直角的角)相等。

d) 两个直角三角形的另一条边相等。

2. SSS定理:
SSS定理是指两个直角三角形的三条边分别相等,则这两个直
角三角形全等。

具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。

b) 两个直角三角形的三条边分别相等。

需要注意的是,在判定直角三角形全等时,必须要确定
其中一个角为直角。

因为如果两个直角三角形的所有边长相等,但没有一个角为直角,那么这两个三角形并不一定全等。

在解题时,需要根据给定的条件,判断所给的直角三角
形是否全等。

常见的判定方法包括测量边长和角度、利用勾股定理判断是否满足直角条件等。

判断过程中需要小心操作,确保测量准确、计算无误。

总之,直角三角形的全等判定是一种基本的几何判断方法,可以通过SAS定理或SSS定理来进行。

在解题时,要注意给定的条件,准确判断边长和角度是否相等,以确定两个直角三角形是否全等。

判定三角形全等定理

判定三角形全等定理

判定三角形全等定理三角形全等定理是指,如果两个三角形的三边和三角度分别相等,则这两个三角形是全等的。

这个定理是几何学中最基本的定理之一,也是解决三角形相关问题的重要工具。

三角形全等定理的主要内容可以分为以下几个方面:1. 三边相等定理如果两个三角形的三边分别相等,则这两个三角形是全等的。

这个定理也被称为SSS定理,其中SSS代表Side-Side-Side,即三边相等。

2. 两边一角相等定理如果两个三角形的两边和夹角分别相等,则这两个三角形是全等的。

这个定理也被称为SAS定理,其中SAS代表Side-Angle-Side,即两边一角相等。

3. 两角一边相等定理如果两个三角形的两角和夹边分别相等,则这两个三角形是全等的。

这个定理也被称为ASA定理,其中ASA代表Angle-Side-Angle,即两角一边相等。

4. 直角三角形全等定理如果两个直角三角形的斜边和一个锐角分别相等,则这两个三角形是全等的。

这个定理也被称为SRT定理,其中SRT代表Side-Right-Angle,即斜边和一个锐角相等。

5. 等腰三角形全等定理如果两个等腰三角形的两边和夹角分别相等,则这两个三角形是全等的。

这个定理也被称为SAS定理,其中SAS代表Side-Angle-Side,即两边一角相等。

三角形全等定理的应用非常广泛,可以用于解决各种三角形相关问题,例如求解三角形的面积、周长、角度等。

在实际应用中,我们可以根据题目所给出的条件,选择合适的全等定理进行运用,从而得到正确的答案。

总之,三角形全等定理是几何学中最基本的定理之一,它为我们解决各种三角形相关问题提供了重要的工具和方法。

我们需要熟练掌握这些定理,并能够灵活运用它们,从而在解决实际问题时取得良好的成果。

全等三角形判定条件(六种)

全等三角形判定条件(六种)

全等三角形判定条件(六种)
①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS)有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角
三角形全等。

出现两等边三角形、两等腰直角三角形通常用SAS证全等;等腰直角
三角形常见辅助线添法--连结直角顶点和斜边中点;两直角三角形证全等
常用方法:SAS,AAS,HL;出现等腰直角三角形或正方形可能用到K型全等。

17.4 直角三角形全等的判定课件(共18张PPT)

17.4 直角三角形全等的判定课件(共18张PPT)
复习引入
1.全等三角形的性质:
对应角相等,对应边相等.
2.判别两个三角形全等的方法:
SSS SAS ASA AAS
知识点1 直角三角形全等的判定定理
新知探究
我们已经知道,三边对应相等的两个三角形全等.由勾股定理可知,两边对应相等的两个直角三角形,其第三边一定相等.从而,这两个直角三角形一定全等.因此,斜边和一条直角边对应相等的两个直角三角形全等.
同学们再见!
授课老师:
时间:2024年9月15日
知识点2 角平分线性质定理的逆定理
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.
归纳:
随堂练习
1.判断下列命题的真假,并说说你的理由.(1)两个锐角分别相等的两个直角三角形全等;(2)斜边及一锐角分别相等的两个直角三角形全等;(3)两条直角边分别相等的两个直角三角形全等;(4)一条直角边相等且另一条直角边上的中线也相等的两个直角三角形全等.
2.如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F. 求证:CE=DF.
证明:∵ AC⊥BC,AD⊥BD,∴∠ ACB= ∠ BDA=90°.在Rt △ ABC 和Rt △ BAD 中,AB=BA,BC=AD,∴ Rt △ ABC ≌ Rt △ BAD(HL).∴∠ CBE= ∠ DAF.∵ CE⊥AB,DF⊥AB,∴∠ CEB=∠ DFA=90°.
在△ BCE 和△ ADF 中, ∠ CEB= ∠ DFA, ∠ CBE= ∠ DAF, BC=AD,∴△ BCE ≌△ ADF(AAS). ∴ CE=DF.
归纳小结
直角三角形全等的判定定理:
斜边和直角边对应相等的两个直角三角形全等.
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.

直角三角形全等的判定

直角三角形全等的判定

三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′, AB=A′B′, ∠C=∠C′=900. 求证:△ABC≌△A′B′C′.
A
F B
H
E C
2. 如图, AB是圆O的直径, ∠ 1 = ∠ 2 ,
试说明△ABC≌△ABD
C
A
1 2
D

O
B
直角三角形全等的判定定理: 1.斜边和一条直角边对应相等的两个直角三角形全等(斜 边,直角边或 H.L.). 2.三边对应相等的两个三角形全等(S.S.S.). 3.两边及其夹角对应相等的两个三角形全等(S.A.S.). 4.两角及其夹边对应相等的两个三角形全等(A.S.A.). 5.两角及其中一角的对边对应相等的两个三角形全等(A.A.S.). 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等; 切记!!! 两边及其中一边的对角对应相等的两个三角形不一定全等. 即(SSA)是一个假冒产品!!!
回味无穷
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
长沙夜网 长沙夜网
bgo057utb
这么干净”这让身为女流的她情何以堪。所以,她每天最大的爱好之一便是到庄逍遥的房子里,把庄逍遥那些太过规矩的陈设都捣乱,看到经 由她之手而变得凌乱的庄逍遥的房子,她总是能心情大好的哈哈大笑一番。然后在庄逍遥的浴室里美美的泡上个澡,也不管头发没干、还在滴 水、便光脚走出浴室,随意的在庄逍遥的房子里一圈又一圈的乱走,看到那些湿湿的脚印子,她总能心满意足的畅笑一番。 庄逍遥对此并不懊恼,只是劝她“你刚洗完澡,光脚踩在地面上容易着凉的”,然后不知从什么时候开始他便将所有的地面铺上了一层厚厚的 地毯。 白荌苒便笑着对他吐舌“才不要” 庄逍遥便不再多说什么,只是等她闹够了之后待她安静下来之后替她吹干头发,而白荌苒往往在庄逍遥替她吹头发的时候便睡到在他的怀里了。 也许没有人会相信,她白荌苒虽然经常留宿在庄逍遥的家中,但是他们之间闹归闹却一直是过的相敬如宾,并没有逾越雷池半分。所有就这一 点,白荌苒偶尔会在心里叹息,果然,她在庄逍遥的心中是一个没有性别差异的存在。 白安然想起她刚认识庄逍遥的时候,还是高中年代、她刚刚认识庄逍遥那会儿、也是很痴迷庄逍遥的。 庄逍遥是以插班生的身份来到她们班的,那还是高中一年级的时候,到那个学期中期的时候庄逍遥来到了她们班。那个时候的庄逍遥也总是沉 默寡言的,几乎不曾看到他笑过,他似乎总是有太多的心事,每天总是恬静的要命。白荌苒跟他同桌的那段时间总是忍不住默默地担忧着那样 一个面相看起来很忧郁的男生,她总是乐呵呵的跟他讲起学校里、家里、身边发生的一切有趣的事情,可惜庄逍遥一直都是不太搭理她的,也 鲜少回应她。很多时候,白荌苒都觉着自己不过是在自言自语罢了,不免觉得好笑,可即使如此,她还是忍不住想要同那个沉默寡言的男孩子 分享自己的快乐。

rt三角形全等判定定理

rt三角形全等判定定理

rt三角形全等判定定理
三组对应边分别相等的两个三角形全等、有两边及其夹角对应相等的两个三角形全等、有两角及其夹边对应相等的两个三角形全等、有两角及其一角的对边对应相等的两个三角形全等、斜边及一直角边对应相等的两个直角三角形全(rt三角形全等)等。

一、判定定理
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。

4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)。

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)。

二、全等三角形的性质
1、全等三角形的对应角相等。

2、全等三角形的对应边相等。

3、能够完全重合的顶点叫对应顶点。

4、全等三角形的对应边上的高对应相等。

5、全等三角形的对应角的角平分线相等。

6、全等三角形的对应边上的中线相等。

7、全等三角形面积和周长相等。

8、全等三角形的对应角的三角函数值相等。

三、证明三角形全等的题步骤
1、读题,明确题中的已知和求证。

2、要观察待证的线段或角,在哪两个可能全等的三角形中。

3、分析要证两个三角形全等,已有什么条件,还缺什么条件。

4、有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角。

5、先证明缺少的条件,再证明两个三角形全等。

直角三角形判定全等的方法

直角三角形判定全等的方法

直角三角形判定全等的方法
要判定两个直角三角形是否全等,需要比较它们的三个角度和三个边
长是否相等。

以下是判定方法:
1.角度相等判定法。

直角三角形的两个锐角相加必须等于90度,所以如果两个直角三角
形的两个角度分别相等,那么这两个三角形全等。

2.边长相等判定法。

如果两个直角三角形的两条直角边长度分别相等,那么这两个三角形
全等。

3.边角边相等判定法。

如果两个直角三角形的一条直角边和两条与其相邻的边长度分别相等,那么这两个三角形全等。

注意:这种情况也可以写成边边角相等判定法。

4.正弦定理和余弦定理。

正弦定理和余弦定理可以用来判断两个不全等的三角形是否相似或全等。

但如果两个三角形中有一个是直角三角形,那么用这种方法判断是否
全等会显得复杂,不利于实际应用。

直角三角形(2)全等的判定hl

直角三角形(2)全等的判定hl
回味无穷
• 勾股定理: 如果直角三角形两直角边分别为a、b,斜边为 c,那么a2+b2=c2.即直角三角形两直角边的平 方和等于斜边的平方.. • 勾股定理的逆定理: 如果三角形两边的平方和等于第三边平方, 那 么这个三角形是直角三角形.
命题与逆命题
在两个命题中,如果一个命题的条件和结论分 别是另一个命题的结论和条件,那么这两个命题 称为互逆命题,其中一个命题称为另一个命题的 逆命题. 一个命题是真命题,它逆命题是真命题还是假 命题?
定理与逆定理
一个命题是真命题,它逆命题却不一定是真命题.
一个定理的逆命题是真命题还是假命题?,
如果一个定理的逆命题经过证明是真命题,那么它 是一个定理,这两个定理称为互逆定理,其中一个 定理称另一个定理的逆定理.
想一想:
互逆命题与互逆定理有何关系?
练习:1判断
1每个命题都有逆命题.
2每个定理都有逆命题.
7两角对应相等,且有一条公共边两个直角三角形 全等.
回味无穷
• 直角三角形全等的判定定理:

定理:HL.
公理:SSS. SAS ASA
推论:AAS.
• 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
切记!!!命题:两边及其中一边的对角对应
B M P
E B'
C N D F
4 1 3 2
A
△AEF是等边三角形
勾股定理应用:
D 1 A' C
如图,折叠矩形纸片ABCD.先折 对角线BD,再使AD与DB重合得 折痕DG ,AB=2,BC=1,求AG的长.
1
A

三角形全等判定的定理

三角形全等判定的定理

三角形全等判定的定理三角形全等判定的定理是几何学中的重要知识点之一。

在解决三角形相关问题时,全等判定定理是必须掌握的基本方法之一。

本文将详细介绍三角形全等判定的定理。

首先,我们需要明确什么是全等三角形。

全等三角形指的是具有相同三边长度和对应角度的两个三角形。

换句话说,只有当两个三角形的边长和对应角度完全相同时,这两个三角形才是全等的。

接下来,我们来看看三角形全等判定的定理。

在几何学中,有五种判定全等三角形的方法,分别是以下五个定理:第一种定理:SSS定理SSS是指边边边(Side-Side-Side)的意思。

如果两个三角形的三边分别相等,则这两个三角形全等。

第二种定理:SAS定理SAS是指边角边(Side-Angle-Side)的意思。

如果两个三角形的两边和夹角分别相等,则这两个三角形全等。

第三种定理:ASA定理ASA是指角边角(Angle-Side-Angle)的意思。

如果两个三角形的两角和夹边分别相等,则这两个三角形全等。

第四种定理:AAS定理AAS是指角角边(Angle-Angle-Side)的意思。

如果两个三角形的两角和一边分别相等,则这两个三角形全等。

第五种定理:HL定理HL是指斜边和直角边(Hypotenuse-Leg)的意思。

如果两个直角三角形的斜边和一条直角边分别相等,则这两个三角形全等。

通过以上五种定理,我们可以判定两个三角形是否全等。

在实际应用中,我们可以根据具体问题选择不同的方法进行求解。

除了以上五种定理外,我们还需要注意以下几点:1. 在判定全等三角形时,对应的边和对应的角必须相等。

2. 如果两个三角形只有一组对应边和对应角相等,则这两个三角形不一定全等。

3. 在进行判定时,需要注意单位制的统一,即计算时要保证单位一致。

总之,掌握了以上五种定理,我们就可以轻松地判定全等三角形了。

在实际应用中,我们还可以根据具体问题进行推导和运用,进一步提高解决问题的效率。

1.2直角三角形全等的判定2

1.2直角三角形全等的判定2

1.2 直角三角形全等的判定Ⅰ.核心知识点扫描⑴直角三角形全等特有的方法:斜边和一条直角边对应相等的两个直角三角形全等。

(简写为“H L ”)⒈直角三角形的全等判定定理⑵与一般三角形公有的方法:SAS 、ASA 、AAS 、SSS. ⑴角平分线的性质:角平分线上的点到这个角两边的距离相等。

⒉直角三角形的全等的应用⑵角平分线的判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

Ⅱ.知识点全面突破知识点1:直角三角形全等的判定方法(重点)⒈判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简写:HL ). ⒉用数学语言表示为:如图1-2-1,在△ABC 和△A ˊB ˊC ˊ中,∵∠ACB=∠A ˊC ˊB ˊ=90°,AB= A ˊB ˊ,AC= A ˊC ˊ, ∴△ABC ≌△A ˊB ˊC ˊ. 3.定理的证明.已知如图1-2-1所示,在△ABC 和△A ′B ′C ′中,∠ACB=∠A ′B ′C ′=90°,AC=A ′C ′,AB=A ′B ′,求证:△ABC ≌△A ′B ′C ′. 证明:设 AC=A ′C ′=b ,AB=A ′B ′=c ,∵在△ABC 和△A ′B ′C ′中,∠ACB=∠A ′B ′C ′=90°,AC=A ′C ′=b ,AB=A ′B ′=c ∴BC=B ′C ′∵在△ABC 和△A ′B ′C ′中''''''AC A C AB A B BC B C ⎧=⎪=⎨⎪=⎩∴△ABC ≌△A ′B ′C ′(SSS)例 :(2010,北京)已知:如图1-1-2,点A 、B 、C 、D 在同一条直线上,EA⊥AD,FD⊥AD,AE=DF ,AB=DC .求证:∠ACE=∠DBF.{{C(CBA(AB'C'A'B CA图1-2-1证明:∵AB=DC∴AC=DB∵EA⊥AD,FD⊥AD∴∠A=∠D=90°在△EAC与△FDB中,EA=FD, ∠A=∠D,AC=DB∴△EAC≌△FDB(SAS) ∴∠ACE=∠DBF.点拨:□C要想证明∠ACE=∠DBF,则需要证明△EAC≌△FDB 即可,而两个三角形全等的条件题中易得.证明:能.∵AB=DC∴AC=DB∵EA⊥AD,FD⊥AD∴∠A=∠D=90°在Rt△EAC与Rt△FDB中AC=DB, EC=BF∴△EAC≌△FDB(HL)∴∠ACE=∠DBF.点拨:要想证明∠ACE=∠DBF,则需要证明△EAC≌△FDB即可,由EA⊥AD,FD⊥AD,可得∠ACB=∠DCE=90°,由AB=DC,可得AC=DB,再根据EC=BF可利用“HL”证明两个三角形全等.知识点2:角的平分线的性质定理及逆定理(重点)1. 角的平分线的性质定理及逆定理定理内容用数学语言表示定理作用角的平分线的性质定理角平分线上的点到这个角的两边的距离相等.∵□C PA⊥AO,PB⊥OB,OP是角平分线,∴PA=PB(角的平分线的性质定理)证明线段相等角的平分线的判定定理角内部到角的两边距离相等的点,在这个角的平分线上.∵□C PA⊥AO,PB⊥OB,PA=PB,∴OP是角平分线(角的平分线的判定定理)证明角相等2.角是轴对称图形,角平分线所在的直线是它的对称轴,用“折叠得到折痕(垂线段)重合”来证明角平分线定理1,再说明角平分线定理1逆命题是真命题.由此,角平分图1-2-2线的这两个定理可以归纳为:角平分线可以看着是到角的两边距离相等的所有点的集合. 例1:(2009,山东临沂)如图1-2-3,OP 平分AOB ∠, PA OA ⊥, PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP解:D点拨:本题考查的是三角形全等和角平分线的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在Rt△ADB和Rt△ADC中
A
{ AB=AC AD=AD
∴ Rt△ADB≌Rt△ADC(HL)
∴BD=CD,∠BAD=∠CAD
等腰三角形三线合一
B
D
C
例2
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD, 垂足分别为C,D,AD=BC,求证: △ABC≌△BAD.
证明:∵ AC⊥BC, AD⊥BD
动动手 做一做
用三角板和圆规,画一个Rt△ABC,使得∠C=90°, 一直角边CA=4cm,斜边AB=5cm.
B
5cm
A
4cm
C
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边”或“HL”
斜边、直角边公理 (HL)
有斜边和一条直角边对应相等的两个直角三角形全等.
忆一忆
1、全等三角形的对应边 应角-相---等-------
-相---等-----,,对
2、判定三角形全等的方法有:
SAS、ASA、AAS、SSS
认识直角三角形 Rt△ABC
A

斜边


C
直角边
B
直角三角形全等的判定
直角三角形全等的判定
舞台背景的形状是两个直角三角形,工作人 员想知道两个直角三角形是否全等,但每个三 角形都有一条直角边被花盆遮住,无法测量。 (1) 你能帮他想个办法吗?
∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中
ቤተ መጻሕፍቲ ባይዱ
D
AB BA BC AD
∴ Rt△ABC≌Rt△BAD (HL) A
C B
小结
一般三角
形全等的 “SAS” “ ASA ” “ AAS ” “ SSS ”
判定
直角三角
形全等的 判定

SAS


ASA


AAS


SSS


HL

灵活运用各种方法证明直角三角形全等
根据ASA,AAS可测量对应一边和一锐角 根据SAS可测量其余两边与这两边的夹角。
(2)如果他只带一个卷尺,能完成这个任务吗? 工作人员测量了每个三角形没有被遮住的直
角边和斜边,发现它们分别对应相等。于是,他 就肯定“两个直角三角形是全等的”。
斜边和一条直角边对应相等→ 两个直角三角形全等
你相信这个结论吗? 让我们来验证这个结论。
∴ △BFD≌ △CED(HL).
∴ ∠B=∠C.
即 △ABC是等腰三角形.
• 布置作业 P44 T8
B
∵∠C=∠C′=90°
∴在Rt△ABC和Rt△ABC中 A
C
AB=AB BC=BC
B′
∴Rt△ABC≌Rt△A′B′ C′ (HL) A ′
C′
判断: 满足下列条件的两个三角形是否全等?为什么?
1.一个锐角及这个锐角的对边对应相等的两个直角三角形.
全等 (AAS)
判断: 满足下列条件的两个三角形是否全等?为什么?
应用
学以致用
已知:如图,D是△ABC的BC边上的中 A
点,DE⊥AC,DF⊥AB,垂足分别为E,F,
且DE=DF.
求证: △ABC是等腰三角形.
F
E
证明:∵ DE⊥AC,DF⊥AB,
B
D
C
∴ ∠BFD=∠CED=90°.
∵ D是BC的中点,
∴ BD=DC.
在△BFD和△CED中,
{BD=DC,
DF=DE,
2.一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形. 全等 ( ASA)
判断: 满足下列条件的两个三角形是否全等?为什么?
3.两直角边对应相等的两个直角三角形.
全等 ( SAS)
例1
已知:如图, △ABC中,AB=AC,AD是高 求证:BD=CD ;∠BAD=∠CAD
证明:∵AD是高
∴∠ADB=∠ADC=90°
相关文档
最新文档