直角三角形全等的条件课件
合集下载
《直角三角形全等的判定》PPT课件 湘教版
巩固练习
1.如图,AB=AD,CB⊥AB于点B,CD⊥AD于点D.求证:∠1=∠2.
证明: 在Rt△ABC和Rt△ADC中, ∵AB=AD, AC=AC, ∴Rt△ABC≌Rt△ADC(HL) ∴∠1=∠2.
巩固练习
2.如图,D为BC的中点,DE⊥AB于点E,DF⊥AC于点F,且DE=DF. 试问: AB与AC有什么关系?
∴ AB=AC (等角对等边).
求证:△ABC是等腰三角形.
∴△ABC是等腰三角形.
课堂小结
判断两个直角三角形全等的方法有:
S
全等直角三角形的判定
ASA AAS
SSS
HL
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
点A,连接AB.
则△ABC为所求作的直角三角形,如图所示. C
BN
巩固练习
因为要判断两个三角形全等
1.下面说法是否正确?为什么? 至少要有一组边对应相等. (1)两个锐角对应相等的两个直角三角形全等; × (2)两条直角边对应相等的两个直角三角形全等. √
巩固练习
2.如图,∠DAB和∠BCD都是直角,AD=BC.判断△ABD和△CDB是 否全等,并说明理由. △ABD和△CDB全等,理由如下: 证明:在Rt△DAB和Rt△BCD中, ∵AD=BC, DB=BD, ∴Rt△DAB≌Rt△BCD(HL).
如图1-22,在Rt△ABC和Rt△A'B'C'中,已知AB=A'B',AC=A'C', ∠ACB=∠A'C'B’=90°,那么Rt△ABC 和Rt△A'B'C'全等吗?
证明:在Rt△ABC和Rt△A'B'C'中, ∵AB=A'B',AC=A'C', 根据勾股定理,BC2=AB2-AC2,
探索直角三角形全等的条件(HL)精选教学PPT课件
白:天才啊 千:真理
我们俩坐那儿傻坐着也没什么话 阿千在那儿狂唱 那你先跟人说说话呀 朋友妻不可戏呀
让你说说话 谁让你戏了 可我控制不了自己啊
分手的礼仪 男和女在一起,谈恋爱不需要什么理 由对不 对
但是分手的时候就需要理由了 什么我年纪太大了,你年纪太小了
我太成熟了,你太不成熟了 你人太好了,我配不上你了 我家车被狗撞死了 ——就诸如此类的嘛 终归是要找一个台面上都过得去的说 法,这 样双方 都有面 子,是 不是 可是,分手的最根本的原因是什么呢 特别简单,就是我不爱你了,或者, 我不够 爱你了 ,就这 么简单
最重要的是选择,从我们出生那一天 起,除 了我们 的父母 不能选 择,因 为那在 我们生 下来之 前就已 经存在 的,除 此之外 ,所有 的一切 都可以 选择。 纯洁?我觉得这男女之间就没有纯洁 的关系 ,都男 女关系 了能纯 洁吗?
顾小白:你这话什么意思啊,照你这 说法, 男人和 女人就 没办法 成朋友 了? 米琪:普通朋友肯定没问题,但这好 朋友吧 ,好到 一定程 度上肯 定有问 题。 爱一个人,失去一点点自尊又算什么 呢?谁 先开口 不重要 ,重要 的是彼 此相爱 ,不要 因为害 怕先开 口而错 过了真 爱。
一个男人,没有权利要求爱他的女人 跟他一 起受苦 。●一 个男人 一定要 有自己 的事业 。●我 们生活 在一个 现实的 世界里 ,而这 个世界 很残酷 。所以 ,一定 要有实 力!
第十三集
片头: 自从文明诞生的那一天起,我们就发 明了礼 仪这样 东西, 从穿衣 ,吃饭 ,居住 ,出行 ,每一 样东西 都有它 的礼仪 。每个 国家的 礼仪不 一样, 每个人 的礼仪 也不一 样,礼 仪没有 实际的 用途, 没有实 际的形 体,但 它却是 某种润 滑剂, 确保着 这个都 市的每 一个人 ,每段 关系, 每个环 节,都 在合理 地运转 ,改变 ,让人 感觉不 到突兀 与生涩 ,当我 们习惯 了礼仪 ,我们 就在也 离不开 它,关 于男女 恋爱的 礼仪第 一条: 分手必 须难过 ,因为 这是对 对方的 尊重… …哭一 个!
我们俩坐那儿傻坐着也没什么话 阿千在那儿狂唱 那你先跟人说说话呀 朋友妻不可戏呀
让你说说话 谁让你戏了 可我控制不了自己啊
分手的礼仪 男和女在一起,谈恋爱不需要什么理 由对不 对
但是分手的时候就需要理由了 什么我年纪太大了,你年纪太小了
我太成熟了,你太不成熟了 你人太好了,我配不上你了 我家车被狗撞死了 ——就诸如此类的嘛 终归是要找一个台面上都过得去的说 法,这 样双方 都有面 子,是 不是 可是,分手的最根本的原因是什么呢 特别简单,就是我不爱你了,或者, 我不够 爱你了 ,就这 么简单
最重要的是选择,从我们出生那一天 起,除 了我们 的父母 不能选 择,因 为那在 我们生 下来之 前就已 经存在 的,除 此之外 ,所有 的一切 都可以 选择。 纯洁?我觉得这男女之间就没有纯洁 的关系 ,都男 女关系 了能纯 洁吗?
顾小白:你这话什么意思啊,照你这 说法, 男人和 女人就 没办法 成朋友 了? 米琪:普通朋友肯定没问题,但这好 朋友吧 ,好到 一定程 度上肯 定有问 题。 爱一个人,失去一点点自尊又算什么 呢?谁 先开口 不重要 ,重要 的是彼 此相爱 ,不要 因为害 怕先开 口而错 过了真 爱。
一个男人,没有权利要求爱他的女人 跟他一 起受苦 。●一 个男人 一定要 有自己 的事业 。●我 们生活 在一个 现实的 世界里 ,而这 个世界 很残酷 。所以 ,一定 要有实 力!
第十三集
片头: 自从文明诞生的那一天起,我们就发 明了礼 仪这样 东西, 从穿衣 ,吃饭 ,居住 ,出行 ,每一 样东西 都有它 的礼仪 。每个 国家的 礼仪不 一样, 每个人 的礼仪 也不一 样,礼 仪没有 实际的 用途, 没有实 际的形 体,但 它却是 某种润 滑剂, 确保着 这个都 市的每 一个人 ,每段 关系, 每个环 节,都 在合理 地运转 ,改变 ,让人 感觉不 到突兀 与生涩 ,当我 们习惯 了礼仪 ,我们 就在也 离不开 它,关 于男女 恋爱的 礼仪第 一条: 分手必 须难过 ,因为 这是对 对方的 尊重… …哭一 个!
17.4 直角三角形全等的判定课件(共18张PPT)
复习引入
1.全等三角形的性质:
对应角相等,对应边相等.
2.判别两个三角形全等的方法:
SSS SAS ASA AAS
知识点1 直角三角形全等的判定定理
新知探究
我们已经知道,三边对应相等的两个三角形全等.由勾股定理可知,两边对应相等的两个直角三角形,其第三边一定相等.从而,这两个直角三角形一定全等.因此,斜边和一条直角边对应相等的两个直角三角形全等.
同学们再见!
授课老师:
时间:2024年9月15日
知识点2 角平分线性质定理的逆定理
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.
归纳:
随堂练习
1.判断下列命题的真假,并说说你的理由.(1)两个锐角分别相等的两个直角三角形全等;(2)斜边及一锐角分别相等的两个直角三角形全等;(3)两条直角边分别相等的两个直角三角形全等;(4)一条直角边相等且另一条直角边上的中线也相等的两个直角三角形全等.
2.如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F. 求证:CE=DF.
证明:∵ AC⊥BC,AD⊥BD,∴∠ ACB= ∠ BDA=90°.在Rt △ ABC 和Rt △ BAD 中,AB=BA,BC=AD,∴ Rt △ ABC ≌ Rt △ BAD(HL).∴∠ CBE= ∠ DAF.∵ CE⊥AB,DF⊥AB,∴∠ CEB=∠ DFA=90°.
在△ BCE 和△ ADF 中, ∠ CEB= ∠ DFA, ∠ CBE= ∠ DAF, BC=AD,∴△ BCE ≌△ ADF(AAS). ∴ CE=DF.
归纳小结
直角三角形全等的判定定理:
斜边和直角边对应相等的两个直角三角形全等.
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.
1.全等三角形的性质:
对应角相等,对应边相等.
2.判别两个三角形全等的方法:
SSS SAS ASA AAS
知识点1 直角三角形全等的判定定理
新知探究
我们已经知道,三边对应相等的两个三角形全等.由勾股定理可知,两边对应相等的两个直角三角形,其第三边一定相等.从而,这两个直角三角形一定全等.因此,斜边和一条直角边对应相等的两个直角三角形全等.
同学们再见!
授课老师:
时间:2024年9月15日
知识点2 角平分线性质定理的逆定理
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.
归纳:
随堂练习
1.判断下列命题的真假,并说说你的理由.(1)两个锐角分别相等的两个直角三角形全等;(2)斜边及一锐角分别相等的两个直角三角形全等;(3)两条直角边分别相等的两个直角三角形全等;(4)一条直角边相等且另一条直角边上的中线也相等的两个直角三角形全等.
2.如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F. 求证:CE=DF.
证明:∵ AC⊥BC,AD⊥BD,∴∠ ACB= ∠ BDA=90°.在Rt △ ABC 和Rt △ BAD 中,AB=BA,BC=AD,∴ Rt △ ABC ≌ Rt △ BAD(HL).∴∠ CBE= ∠ DAF.∵ CE⊥AB,DF⊥AB,∴∠ CEB=∠ DFA=90°.
在△ BCE 和△ ADF 中, ∠ CEB= ∠ DFA, ∠ CBE= ∠ DAF, BC=AD,∴△ BCE ≌△ ADF(AAS). ∴ CE=DF.
归纳小结
直角三角形全等的判定定理:
斜边和直角边对应相等的两个直角三角形全等.
角平分线性质定理的逆定理:到角的两边距离相等的点在这个角的平分线上.
《三角形全等的判定》全等三角形PPT课件
好的△ ′′′剪下来,放到△ 上,它们全等吗?
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你
全等三角形的判定(HL)-课件
P43练习2题
C
D
F
E
A
B
练习2 如图,AB=CD,AE ⊥BC,DF ⊥BC,
CE=BF. 求证:AE=DF.
证明:∵ AE⊥BC,DF⊥BC ∴△ABE和△DCF都是直角三角形。 又∵CE=BF D C ∴CE-EF=BF-EF 即CF=BE。 F E 在Rt△ABE和Rt△DCF中 CF=BE(已证) AB=DC(已知)
C
F
E
D
探究
任意画出一个Rt△ABC,∠C=90°。 再画一个Rt△A´B´C´,使得∠C´= 90°, B´C´=BC,A´B´= AB。
A
∟
B
C
斜边和一条直角边对应相等的两个直 角三角形全等。 简写为“斜边、直角边”或“HL”。
A A´
∟
∟
B
C
B´
C´
几何语言怎么写呢?
例题: 如图:AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
直角三角形全等的判定
回 顾 与 思 考
SAS 。 1、判定两个三角形全等方法, SSS , ASA , AAS , 2、如图,Rt ABC中,直角边 BC 、 AC ,斜边 AB 。 A A B C B C F E
3、如图,AB ⊥ BE于B,DE ⊥ BE于E, (1)若 A=D,AB=D识小结:
直角三角形 全等的条件:
1)定义(重合)法;
2)解题 中常用的 4种方法
一般不用
SSS; SAS; ASA; AAS.
直角三角形全等用
3)HL
A B
∴Rt△ABE≌Rt△DCF(HL) ∴AE=DF(全等三角形的对应边相等)
判断两个直角三角形全等的方法有:
全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
2.8 直角三角形全等的判定 课件(共16张PPT)
DA
证明: 作射线OP ∵ PD⊥OA, PE⊥OB(已知)
P
O
1 2
∴ ∠PDO=∠PEO=Rt∠ 又∵ OP=OP(公共边),PD=PE(已知) ∴ Rt△PDO≌Rt△PEO( HL )
EB
∴ ∠1=∠2,即点P在∠AOB的平分线上
讲授新课
角平分线的性质定理的逆定理: 角的内部,到角两边距离相等的点,在这个角的平分线上。
如图所示:
(1)作出△ABC两内角的平分线,其交
点为O1;
(2)分别作出△ABC两外角平分线,其
L1 交点分别为O2,O3,O4,
L3
L2
故满足条件的修建点有四处,即O1,O2,
O3,O4.
总结归纳
1.直角三角形全等的判定定理(HL) 斜边和一条直角边对应相等的两个直角三角形全等. 2.角平分线的性质定理的逆定理: 角的内部,到角两边距离相等的点,在这个角的平分线上。
(3)一个锐角和斜边对应相等;
( AAS )
(4)两直角边对应相等;
( SAS )
(5)一条直角边和斜边对应相等.
( HL )
举一反三
2. 如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证: AB//ED.
证明:∵C为AD的中点, ∴ AC=DC. ∵ BE⊥AD, ∴ △ACB和△DCB都是直角三角形. 又AB=DE, ∴ Rt△ACB≌Rt△DCE(HL). ∴ ∠A=∠D. ∴ AB // ED(内错角相等,两直线平行).
如果两个直角三角形的斜边和一条直角边对应相等, 那么这两个直角三角形全等。
问题2: 证明一个命题是真命题, 有哪几个步骤呢?
1.由题意作图形,标字母或符号;
三角形全等的判定第4课时用“HL”判定直角三角形全等课件(共23张PPT)
12.2.4 用“HL”判定直角三角形全等
随堂练习
1.如图,AB = CD,AE⊥BC,DF⊥BC,垂足分别为 E,F,CE = BF. 求证:(1) AE = DF. 分析: CE - EF = BF - EF. 即 CF = BE
Rt△ABE≌Rt△DCF ( HL )
12.2.4 用“HL”判定直角三角形全等
12.2.4 用“HL”判定直角三角形全等
课堂小结
内容
斜边和一条直角边分别相等的两个直角三 角形全等( “斜边、直角边”或“HL”).
用“HL”判定 直角三角形全等
前提条件 在直角三角形中
使用方法
只须找除直角外的两个条件即可 (两个条件中至少有一个条件是一组对 应边相等)
12.2.4 用“HL”判定直角三角形全等
针对训练 1.如图,C 是路段 AB 的中点,两人从 C 同时出发,以相同的速度分别 沿两条直线行走,并同时到达 D,E 两地. DA⊥AB,EB⊥AB. D,E 与 路段 AB 的距离相等吗?为什么?
分析: CA = CB, CD = CE, ∠A =∠B = 90°.
12.2.4 用“HL”判定直角三角形全等
②当 P 运动到与 C 点重合时,AP=AC. 在 Rt△ABC 与 Rt△PQA 中,
AB=PQ, AC=PA, ∴ Rt△ABC≌Rt△PQA (HL). ∴ AP=AC=10 cm. 综上, 当 AP=5 cm 或 10 cm 时,△ABC 才能和△APQ 全等.
12.2.4 用“HL”判定直角三角形全等
用符号语言表达: 在 Rt△ABC 与 Rt△A'B'C' 中,∠C=∠C'=90°
AB = A'B' ∵
课件11.3直角三角形全等的判定课件
A
E
B
C
D
巩固练习
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF 求证:BF=DE
B
A
F E
C
D
变式训练1
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF 求证:BD平分EF
B
A
F E G
C
D
变式训练2
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF
想想:BD平分EF吗?
B
斜边和一条直角边对应相等→ 两个直角三角形全等 你相信的结论吗? 让我们来验证这个结论。
做一做
利用尺规作一个RtΔABC,∠C=90°, AB=5cm, CB=3cm.
按照步骤做一做:
(1)作∠MCN=90°;
(2)在射线CM上截取线段 CB=3cm;
(3)以B为圆心,5cm为半径
画弧,交射线CN于点A; (4)连接AB.
证明: ∵AC⊥BC,BD⊥AD, ∴∠C和∠D都是直角。
A
C
在Rt△ABC和Rt△BAD中,
B
AB=BA AC=BD ∴Rt△ABC≌ Rt △BAD (HL)
∴BC=AD(全等三角形对应边相等)
例:如图,AC ⊥BC,BD⊥ AD,AC=BD. 试 说明:BC=AD
D
C
解: ∵AC⊥BC,BD⊥AD
E A F G
C
D
通过这节课的学习你有何收获?
1. 直角三角形是特殊的三角形,所以不仅有一般 三角形判定全等的方法,还有直角三角形特殊的 判定方法——“H.L”. 2. 两个直角三角形中,由于有直角相等的条件, 所以判定两个直角三角形全等只须找两个条件 (两个条件中至少有一个条件是一对对应边相 等).
E
B
C
D
巩固练习
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF 求证:BF=DE
B
A
F E
C
D
变式训练1
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF 求证:BD平分EF
B
A
F E G
C
D
变式训练2
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF
想想:BD平分EF吗?
B
斜边和一条直角边对应相等→ 两个直角三角形全等 你相信的结论吗? 让我们来验证这个结论。
做一做
利用尺规作一个RtΔABC,∠C=90°, AB=5cm, CB=3cm.
按照步骤做一做:
(1)作∠MCN=90°;
(2)在射线CM上截取线段 CB=3cm;
(3)以B为圆心,5cm为半径
画弧,交射线CN于点A; (4)连接AB.
证明: ∵AC⊥BC,BD⊥AD, ∴∠C和∠D都是直角。
A
C
在Rt△ABC和Rt△BAD中,
B
AB=BA AC=BD ∴Rt△ABC≌ Rt △BAD (HL)
∴BC=AD(全等三角形对应边相等)
例:如图,AC ⊥BC,BD⊥ AD,AC=BD. 试 说明:BC=AD
D
C
解: ∵AC⊥BC,BD⊥AD
E A F G
C
D
通过这节课的学习你有何收获?
1. 直角三角形是特殊的三角形,所以不仅有一般 三角形判定全等的方法,还有直角三角形特殊的 判定方法——“H.L”. 2. 两个直角三角形中,由于有直角相等的条件, 所以判定两个直角三角形全等只须找两个条件 (两个条件中至少有一个条件是一对对应边相 等).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形全等的条件课件
探索直角三角形全等的条件回顾与思考1、判定两个三角形全等方法,,,,。
SSSASAAASSAS
3、如图,AB BE 于C,DE BE 于E,⊥⊥
2、如图,Rt ABC 中,直角边、,斜边。
BCACAB(1)若A= D,AB=DE,
则ABC 与DEF (填“全等”或“不全等”)
根据(用简写法)△△全等ASA
(2)若A= D,BC=EF,
则ABC 与DEF (填“全等”或“不全等”)根据(用简写法)△△AAS 全等
(3)若AB=DE,BC=EF,
则ABC 与DEF (填“全等”或“不全等”)根据(用简写法)△△全等SAS
(4)若AB=DE,BC=EF,AC=DF
则ABC 与DEF (填“全等”或“不全等”)根据(用简写法)△△全等SSS
如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
方法一:测量斜边和一个对应的锐角. (AAS)
方法二:测量没遮住的一条直角边和一个对应的锐角. (ASA)或(AAS) ⑵如果他只带了一个卷尺,能完成这个任务吗?。