(完整版)北师大版七年级数学全等三角形练习题

合集下载

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各10题)

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各10题)

最新七年级下册三角形全等的证明试题1、如图,DE=DF ,BF=CD ,BC=BF+CE ,证明∠EDF=90°-A 21。

2、如图,AB=CQ ,AP=AQ ,BE=AC+PE ,证明∠QAC 与∠APE 互补。

3、如图,AB=CD,AC=BD,BE=CE,证明AE=DE。

4、如图,AE=CF,AD=BC,DF=BE,证明AE∥CF。

5、如图,AB=AD,AC=AE,BD+DC=DE,证明∠1=∠EDC。

6、如图,AB=BD,AC=BE,BC=DE,∠D=90°,证明AC⊥BE。

7、如图,O是BD的中点,OE=OF,DE=BF,证明AD∥BC。

8、如图,O是EF、BD的公共中点,AD=BC,AF=EC,证明AV=CD。

9、如图,AC=BF,AD=DF,BD=DC,证明∠B=∠C。

10、如图DF=DE,AC=BC,AF=BE,证明∠A=∠B。

11、如图,F是CD的中点,A点到C点与A点到D点到距离相等,AB=AE,∠BAF=∠EAF,证明∠B=∠E。

1、如图,AC∥DF,且AC=DF,∠C=∠F,说明BC和EF关系。

2、如图,AB=AC,∠BAC=∠DAE,∠ABD=∠2,证明∠3=∠1+∠2.3、如图,AB=AC,∠BAC=∠DAE,∠ADB=∠AEC,证明∠ADE=∠ACB。

4、如图,E在△ABC的边AC上,且∠AEB=∠ABC.求证:(1)∠ABE=∠C;(2)求∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长。

5、如图,MQ、NR是△PMN的高线,且MQ=NQ,证明PM=HN。

6、如图,BD⊥AC,CE⊥AB,AB=AC,证明∠B=∠C。

7、如图,BC=CD,∠BCE=∠ACD,∠B=∠D,证明AB=ED。

8、如图,AB∥CF,AD=CF,说明E是AC、DF的公共中点。

9、如图,BD⊥DE,CE⊥DE,AB⊥AC,且AB=AC,说明BD、CE和DE 关系。

新北师大版七年级数学下册第三章全等三角形练习题

新北师大版七年级数学下册第三章全等三角形练习题

七年级数学周周清一、填空题1、若△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm ,则AB =_____ cm ,BC =_____ cm,AC =_____ cm.2、若△ABC ≌△DEF ,AB =DE ,AC =DF ,∠A =80°,BC =9 cm,则∠D =_____,∠D 的对边是_____=_____ cm.3、已知如图1,在△ABF 和△DEC 中,∠A =∠D ,AB =DE ,若再添加条件_____=_____,则可根据边角边公理证得△ABF ≌△DEC .4、如图2,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CE=_____cm 。

图1图2 图35、如图3,△ABC ≌△ADE ,延长BC 交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=____________。

6、为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。

二、选择题1、有下列长度的三条线段,能组成三角形的是( )A 、 2cm ,3cm ,4cmB 、 1cm ,4cm ,2cmC 、1cm ,2cm ,3cmD 、 6cm ,2cm ,3cm 2、下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。

A .4个 B 、3个 C 、2个 D 、1个3、已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )(A ) 80° (B ) 70° (C ) 30° (D ) 100°4、如图4,△ABD 和△ACE 都是等边三角形,那么△ADC ≌△ABE 的根据是( )图4A.SSSB.SASC.ASAD.AAS 5、如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )F EDC BAA.带①去B. 带②去C. 带③去D. 带①和②去 6、下列说法:①所有的等边三角形都全等 ②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等其中正确的个数是( )A .1个B .2个C .3个D .4个第7题 第8题 第9题7、如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )A.BC=BDB.CE=DEC.BA 平分∠CBDD.图中有两对全等三角形8、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是( ) (A )AD=AE (B )AB=AC(C )BE=CD (D )∠AEB=∠ADC9、如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( ) A .3个 B .2个 C .1个 D .0个10、下列条件中能确定两个三角形全等的是( )A.一边及这条边上的高相等B.一边及这条边上的中线对应相等C.两角及第三个角平分线对应相等D.两条边及夹角的平分线对应相等11、下列各组图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长都为3 cm 的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形 三、解答题1、已知,如图,∠1=∠2,BD=CD,求证:AD 是∠BAC 的平分线.2、如图,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于点F ,若∠1=∠2=∠3,AC=AE ,求证:△ABC ≌△ADEA B C D EC B A E F O3、已知线段a 和∠1,作一个△ABC ,使得AB=a ,AC=2a ,∠A=∠ 1.4、如图,已知AB =DC ,AC =DB ,E 是BC 的中点,求证:AE =DE5、如图,在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。

最新北师大版七年级下册三角形全等(SSS)的证明试题以及答案(共41道证明题)

最新北师大版七年级下册三角形全等(SSS)的证明试题以及答案(共41道证明题)

最新七年级下册三角形全等的证明试题1、如图,AB=DE,AC=EF,BE=CF,证明∠A=∠D。

2、如图,AB=CD,BE=DF,AF=EC,证明AB∥CD。

3、如图,AC=DF,EF=BC,AD=BE,证明∠F=∠C。

4、如图,AB=AC,AD=AE,BE=DC,证明∠ABD=∠AEC。

5、如图,AB=AD,AE=AC,BC=ED,证明∠ABE=∠ACD。

6、如图,AD=AB,DC=BC,证明∠B=∠D。

7、如图,AB=AC,BD=DC,证明∠1=∠2.8、如图,∠C=90°,AD=BD,DE=DC,AE=BC,说明AB和DE的关系。

9、如图,AB=DE,BC=EF,AF=CD,证明AB∥DE。

10、如图,AB=AC,D是BC的中点,证明AD⊥BC。

11、如图,AE=DF,AB=CD,CE=BF,证明AE∥DF。

12、如图,AB=AD,AE=AC,BC=DE,证明∠E=∠C。

13、如图,BC=BE,DE=DC,∠C=90°,证明(1)DE⊥AB(2)BD是∠ABC的角平分线。

14、如图,AB=EF,AD=CF,DE=BC,证明∠B=∠E。

15、如图,OA=OB,AC=BD,AD=BC,证明∠ACB=∠ADB。

16、如图,AD=BC,A0=OB,OC=OD,证明∠BAD=∠ABC。

17、如图,AD=BD,BE=AC,AD+DE=BC,AD⊥BC,证明BE⊥AC。

18、如图,AD=BC,AF=EC,DE=BF,证明DE∥BF,AD∥BC。

19、如图,AB=DC,AC=BD,AO=OD,证明∠B=∠C。

20、如图,AB=AD,AE=AC,BC=DE,证明∠1=∠2.21、如图,AC⊥CE,AC=CE,AB=CD,且AB+DE=BD,AB∥DE。

22、如图,AE=AB,AC=AF,EC=BF,证明∠BAE=∠CAF。

23、如图,AD=BC,AC=BD,证明∠ADO=∠BCO。

24、如图,AB=AC,BD=CE,AD=AE,证明∠ABC=∠ADE。

北师大版七年级下册三角形全等的证明练习题以及答案

北师大版七年级下册三角形全等的证明练习题以及答案

最新北师大版七年级下册三角形全等的证明练习题以及答案最新七年级下册三角形全等的证明1、已知:如图,四边形ABCD中,AC平分角BAD,CE垂直AB 于E,且角B+角D=180度,求证:AE=AD+BEA B DCE 122、已知,如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE。

求证:AF=CE。

F EA CDB3、已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。

求证:BE =CD 。

AEDCB4、如图,DE⊥AB,DF⊥AC,垂足分别为E、F,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。

① AB=AC ② BD=CD ③ BE=CF5、如图,△ABC中,AB=AC,过A作GE∥BC,角平分线BD、CF交于点H,它们的延长线分别交GE于E、G,试在图中找出三对全等三角形,并对其中一对给出证明。

E6、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。

(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明。

你添加的条件是:________ ___(2)根据你添加的条件,再写出图中的一对全等三角形:______________(不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)7、已知:如图,AB⊥BC,AD⊥DC,AB=AD,若E是AC上一点。

求证:EB=ED。

DA E CB8、已知:如图,AB、CD交于O点,CE//DF,CE=DF,AE=BF。

求证:∠ACE=∠BDF。

AB CDEFO9、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。

求证:BF⊥AC。

AE FDB C10、. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各10题)

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各10题)

最新七年级下册三角形全等的证明试题1、如图,AB=DE,AC=EF,BE=CF,证明∠A=∠D。

2、如图,AB=CD,BE=DF,AF=EC,证明AB∥CD。

3、如图,AC=DF,EF=BC,AD=BE,证明∠F=∠C。

4、如图,AB=AC,AD=AE,BE=DC,证明∠ABD=∠AEC。

5、如图,AB=AD,AE=AC,BC=ED,证明∠ABE=∠ACD。

6、如图,AD=AB,DC=BC,证明∠B=∠D。

7、如图,AB=AC,BD=DC,证明∠1=∠2.8、如图,∠C=90°,AD=BD,DE=DC,AE=BC,说明AB和DE的关系。

9、如图,AB=DE,BC=EF,AF=CD,证明AB∥DE。

10、如图,AB=AC,D是BC的中点,证明AD⊥BC。

1、如图,AB∥CD,且AB=CD,证明O是AD、BC的公共中点。

2、如图,CA⊥OM,CB⊥ON,OC平分∠MON,证明(1)OA=OB(2)连接AB,证明AB⊥OC。

3、如图,∠B=∠C,AD=AE,证明BD=CE。

4、如图,AC平分∠BAD,AB⊥BC,AD⊥DC,证明CA平分∠BCD。

5、如图,AB∥DE,BF=CE,∠A=∠D,试着说明AC和DF的关系。

6、如图,AB=CD,∠A=∠D,证明∠1=∠2.7、如图,∠A=∠D,∠BCE=∠ACD,CB=CE,证明AB=ED。

8、如图,DE⊥AB,DF⊥AC,D是BC的中点,∠BDF=∠CDE,证明AB=AC。

9、如图,∠1=∠2,AB=AE,∠B=∠E,证明∠D=∠C。

10、如图,AB⊥BC,DC⊥BC,BE=CF,∠BED=∠ACF,证明AF⊥DE。

1、如图,∠1=∠2,AE=AD,AC=AB,证明∠C=∠B。

2、如图,OA=OC,OD=OB,证明AD=BC。

3、如图,AD平分∠BAC,AB=AC,证明BD=CD。

4、如图,OD=OC,OA=OB,证明∠OBA=∠OAB。

5、如图,AB=AC,AD平分∠BAC,证明AD⊥BC。

(完整word版)北师大版七年级数学全等三角形练习题

(完整word版)北师大版七年级数学全等三角形练习题

全等三角形练习题一、选择题1.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组B .2组C .3组D .4组2.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三 角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°, 则APD ∠等于( )A .42°B .48°C .52°D .58° 3.如图(四),点P 是AB 上任意一点,ABC ABD ∠=∠,还应补 充一个条件,才能推出APC APD △≌△.从下列条件中补充 一个条件,不一定能....推出APC APD △≌△的是( ) A .BC BD = B.AC AD = C.ACB ADB ∠=∠ D.CAB DAB ∠=∠ 4.如图,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两 个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( ) (A)∠B=∠E,BC=EF (B )BC=EF ,AC=DF (C)∠A=∠D ,∠B=∠E (D )∠A=∠D ,BC=EF5.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线, DE⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( ) A .10cm B .8cm C .6cm D .9cm6. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有() A.1处B.2处C.3处D.4处EDCBA④①② ③CADP B图(四)7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的方法是( )A .带①去B .带②去C .带③去D .带①②③去8.如图,在Rt ABC △中,ο90=∠B ,ED 是AC 的垂直平分线,交AC 于 点D ,交BC 于点E .已知ο10=∠BAE ,则C ∠的度数为( ) A .ο30 B .ο40 C .ο50 D .ο60 9.如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30°C .35°D .40°10.如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分D .CD 平分∠ACB12.如图, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm,BD=3cm,则点D 到AB 的距离为( ) A. 5cmB. 3cmC. 2cmD. 不能确定13.如图,OP 平分AOB ∠,PA OA ⊥,PB OB⊥,垂足分别为A ,B .下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP14.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠ADCEBABCDABCDAB CDC ABB 'A 'OBAP15.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n二、填空题1.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).2.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB 于E,且AB=5cm,则△DEB 的周长为 ________3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).4.如图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D 到直线AB 的距离是__________厘米。

(完整版)北师大七年级下全等三角形测试题(50分钟)

(完整版)北师大七年级下全等三角形测试题(50分钟)

DACFD D EC FDE 图 9H一.选择题: 全等三角形测试题13. 已知,如图 13-6,D 是△ABC 的边 ABA上一点, DF 交 AC 于点 E, DE=FE, FC ∥AB,F 1.在△ABC 和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保 证△ABC ≌△A’B’C’, 则补充的这个条件是( ) A .BC=B’C’ B .∠A=∠A’ C .AC=A’C’ D .∠C=∠C’2. 直角三角形两锐角的角平分线所交成的角的度数是( )A .45°B .135°C .45°或 135°D .都不对 3.现有两根木棒,它们的长分别是 40cm 和 50cm ,若要钉成一个三角形木 求证:AD=CF .BC图 13-6 架,则在下列四根木棒中应选取( ) A .10cm 的木棒 B .40cm 的木棒 C .90cm 的木棒 D .100cm 的木棒二、填空题: 4. 三角形 ABC 中,∠A 是∠B 的 2 倍,∠C 比∠A +∠B 还大 12 度,则这个三角形是__三角形.5. 以三条线段 3、4、x -5 为这组成三角形,则 x 的取值为____.6. 杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是____.7. △ABC 中,∠A +∠B =∠C ,∠A 的平分线交 BC 于点 D ,若CD =8cm ,则点 D 到 AB 的距离为____cm .8..AD 是△ABC 的边 BC 上的中线,AB =12,AC =8,则边 BC 的取值范围是____;中线 AD 的取值范围是____. 三、解答题:11. 已知:如图 13-4,AE=AC , AD=AB ,∠EAC=∠DAB , 14. 如图 5-7,△ABC 的边 BC 的中垂线 DF 交△BAC 的外角平分线 AD 于 D, F 为垂足, DE ⊥AB 于 E ,且 AB>AC , 求证:BE -AC=AE .BF C16.如图 9 所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是 BC 边上的中线,过 C 作 AD 的垂线,交 AB 于点 E ,交 AD 于点 F ,求证: ∠ADC =∠BDE .求证:△EAD ≌△CAB . EB图 13-4AEB图 9AB CD⎪⎩六、参考答案提示1. C .(提示:边边角不能判定两个三角形全等.)2. C .(提示:由三角形内角和为 180°可求,要注意有两个不同的角.)3. B .(提示:利用三角形三边的关系,第三根木棒 x 的取值范围是:10cm <x <90cm .= ∠ECB , 又 ∵∠ABE=∠ACE ,∴∠ABC=∠ACB , ∴AB=AC. 在△ AEB 和△AEC 中, AE=AE. BE=CE, AB=AC, ∴△AEB ≌△AEC,∠BAE=∠CAE. C16.如图 11 所示,过 B 点作 BH ⊥BC 交 CE 的延长线于 H 点.∵∠CAD +∠ACF =90°,∠BCH +∠ACF =90°,FD∴∠CAD =∠BCH .在△ACD 与△CBH 中,AEB4.C . (提示:A 不能构成三角形,B 满足边边角,不能判定三角形全等,D 项 可 画 出 无 数 个 三 角 形 .) 5.B .(提示:∠CDE =∠B +∠-∠=∠-∠B ,故得到 2(∠B -∠)+∠=0.又∵∠-∠B =∠-∠C =∠CDE ,所以可得到∠CDE = ,故当∠为定值时,∠CDE 为定值.)∵∠CAD =∠BCH ,AC =CB ,∠ACD =∠CBH =90°,∴△ACD ≌△CBH .∴∠ADC =∠H ① CD =BH , ∵CD =BD ,∴BD =BH .∵△ABC 是等腰直角三角形,∠CBA =∠HBE =45°⎧BD = BH ,图 11H 26.钝角.(提示:由三角形的内角和可求出∠A 、∠B 和∠C 的度数) 7.6<x<12.(提示:由三边关系可知:4-3<x -5<4+3. 8.三角形的稳定性.9.8.(提示:点 D 到 AB 的距离与 CD 的长相等.) 10.4<BC <20;2<AD <10.(提示:要注意三角形一边上的中线的取值范围是大于另两边之差的一半,小于两边之和的一半.) 11. 提示:先证∠EAD=∠CAB ,再由 SAS 即可证明.12. ①△ABC ≌△DBE ,BC=BE ,∠ABC=∠DBE=90°,AB=BD ,符合SAS ;②△ACB 与△ABD 不全等,因为它们的形状不相同,△ACB 只是直角三角形,△ABD 是等腰直角三角形;③△CBE 与△BED 不全等, 理由同②;④△ACE 与△ADE 不全等,它们只有一边一角对应相等. 13. 提示:由 ASA 或 AAS ,证明△ADE ≌△CFE .14. 过 D 作 DN ⊥AC, 垂足为 N, 连结 DB 、DC 则 DN=DE ,DB=DC ,又 ∵DE ⊥AB, DN ⊥AC, ∴Rt △DBE ≌Rt △DCN , ∴BE=CN .又 ∵AD=AD ,DE=DN ,∴Rt △DEA ≌Rt △DNA ,∴AN=AE ,∴BE=AC+AN=AC+AE ,∴BE -AC=AE . 15. 上面证明过程不正确; 错在第一步. 正确过程如下:在△BEC 中, ∵BE=CE , ∴∠EBC=∴在△BED 和 BEH 中, ⎨∠EBD =∠EBH, ,∴△BED ≌△BEH .⎪BE =BE, ∴∠BDE =∠H , ② 由①②得,∠ADC =∠BDE .。

七年级数学全等及全等三角形(北师版)(基础)(含答案)

七年级数学全等及全等三角形(北师版)(基础)(含答案)

全等及全等三角形(北师版)(基础)一、单选题(共10道,每道10分)1.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形答案:D解题思路:全等图形的定义:能够完全重合的两个图形称为全等图形.所以D选项正确.选项A:面积相等的两个图形不一定能完全重合,故A选项错误;选项B:周长相等的两个图形不一定能完全重合,故B选项错误;选项C:所有正方形都是全等图形说法错误,边长不相等时两个正方形不能完全重合,故C 选项错误;故选D.试题难度:三颗星知识点:全等图形2.下列说法不正确的是( )A.全等三角形的对应边相等,对应角相等B.图形全等,只与形状、大小有关,而与它们的位置无关C.全等三角形的面积相等D.形状相同的两个三角形全等答案:D解题思路:全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.全等三角形的性质:全等三角形的对应边相等,对应角相等.所以选项A、C正确.选项B:图形全等,只与形状、大小有关,而与它们的位置无关,正确.选项D:形状相同的两个三角形不一定是全等三角形,比如一张照片,放大以后还是原来的形状,但是不全等,所以选项D错误.故选D.试题难度:三颗星知识点:全等三角形3.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是( )A.AC=CEB.∠BAC=∠ECDC.∠ACB=∠ECDD.∠B=∠D答案:C解题思路:全等三角形的性质:全等三角形的对应边相等,对应角相等.因为△ABC≌△CDE,对应边相等,所以AC=CE;对应角相等,所以∠BAC=∠ECD,∠B=∠D,故选项A、B、D正确.选项C:∠ACB和∠ECD不是对应角,不能证明两个角相等.故选项C错误.故选C.试题难度:三颗星知识点:全等三角形的性质4.如图,△ABC≌△DEF,则此图中相等的线段有( )A.1对B.2对C.3对D.4对答案:D解题思路:全等三角形的性质:全等三角形的对应边相等,对应角相等.因为△ABC≌△DEF,全等三角形对应边相等,所以AB=DE,AC=DF,BC=EF.因为BC=EF,所以BC-EC=EF-EC,即BE=CF.所以图中相等的线段有4对.故选D.试题难度:三颗星知识点:全等三角形的性质5.如图,已知△ABE≌△ACD,下列结论不一定成立的是( )A.AB=ACB.∠BAD=∠CAEC.∠ADB=∠AECD.AD=DE答案:D解题思路:本题考查全等三角形的性质:全等三角形对应边相等,对应角相等.A选项:由△ABE≌△ACD可得AB=AC,依据是全等三角形对应边相等,所以A选项正确;B选项:由△ABE≌△ACD可得∠BAE=∠CAD,依据是全等三角形对应角相等.等式两边同时减去∠DAE,可得∠BAD=∠CAE,所以B选项正确;C选项:由△ABE≌△ACD可得∠BEA=∠CDA,依据是全等三角形对应角相等.然后利用补角的定义可得∠AEC=∠ADB,所以C选项正确;D选项:AD的对应边是AE,和DE不是对应边,因此AD=DE不一定成立,所以D选项错误.故选D.试题难度:三颗星知识点:全等三角形的性质6.如图,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE 的平分线;②点E是BC的中点;③DE⊥BC.其中正确的有( )A.0个B.1个C.2个D.3个答案:D解题思路:本题考查全等三角形的性质:全等三角形对应边相等,对应角相等.因为△ADB≌△EDB,全等三角形对应角相等,可得∠ABD=∠EBD,即BD是∠ABE的平分线;故①正确;因为△BDE≌△CDE,全等三角形对应边相等,可得BE=CE,所以点E是BC的中点;对应角相等,∠BED=∠CED=90°,所以DE⊥BC;故②③正确;故选D.试题难度:三颗星知识点:全等三角形的性质7.如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于( )A.35°B.45°C.60°D.100°答案:D解题思路:全等三角形的性质:全等三角形对应边相等,对应角相等.因为△ABC≌△DEF,所以∠D=∠A=45°.在△DEF中,依据三角形内角和等于180°,∠D+∠E+∠F=180°,可得∠E=180°-45°-35°=100°.故选D.试题难度:三颗星知识点:全等三角形的性质8.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x-2,2x+1,若这两个三角形全等,则x的值为( )A.2B.C. D.答案:A解题思路:本题考查全等三角形的性质:全等三角形对应边相等,对应角相等.根据全等三角形对应边相等,可知△DEF的三边长也分别为3,4,5.而题中条件给出△DEF的三边长分别为3,3x-2,2x+1,3和3对应,但4是和还是和对应,无法确定,所以要分两种情况进行讨论:①,解得;②,x不存在.综上,.故选A.试题难度:三颗星知识点:全等三角形的性质9.如图,若△ABC≌△DEF,BE=22,BF=5,则FC的长度是( )A.10B.12C.8D.16答案:B解题思路:要求线段FC的长度,首先由△ABC≌△DEF可得BC=EF.则BC-FC=EF-FC,即BF=CE.由已知条件BE=22,BF=5可得CE=5,FC=BE-BF-CE=22-5-5=12.故选B.试题难度:三颗星知识点:全等三角形的性质10.如图,N,C,A三点在同一直线上,△ABC中,∠A:∠ABC:∠ACB=3:5:10.若△MNC≌△ABC,则∠BCM的度数为( )A.20°B.25°C.28°D.30°答案:A解题思路:要求∠BCM的度数.首先由三角形内角和180°,∠A:∠ABC:∠ACB=3:5:10得∠A=30°,∠ABC=50°,∠ACB=100°.由△MNC≌△ABC可得∠MCN=∠ACB=100°.观察图形,可以利用平角是180°,求出∠BCN=80°.∴∠BCM=∠MCN-∠BCN=100°-80°=20°故选A.试题难度:三颗星知识点:全等三角形的性质。

最新北师大版七年级下册三角形全等的证明单元测试试题以及答案(共5套题)

最新北师大版七年级下册三角形全等的证明单元测试试题以及答案(共5套题)

七年级下册三角形全等的证明单元测试试题一、选择题。

(共12道选择题,每道选择题只有一个正确答案)1、如图,△AEM ≌△AFN ,下列结论中,其中错误的是( )。

A 、CF=BEB 、∠CMD=∠ANFC 、AM=AFD 、∠ANC=∠AMB2、如图,DF=21EF ,BC=2BD ,下列说法:①BF ∥EC ;②1:1 ADC ABD S S △△:;③△BDF ≌△DCE ;④△ABD ≌△ACD ;⑤∠BAD=∠CAD ,其中正确结论有( )个。

A 、1B、2C、3D、43、如图,下图是由三个全等三角形组成,则图中∠1+∠2+∠3的和是()。

A、90°B、180°C、270°D、360°4、下列条件中,能证明△ABC≌△DMN的是()。

A、AB=DM,BC=MN,∠A=∠DB、∠A=∠D,∠C=∠N,AC=MNC、AB=DM,BC=MN,△ABC的周长=△DMN的周长D、∠A=∠D,∠B=∠M,∠C=∠N5、下列各组线段中,能够成三角形的是()。

A、5厘米、6厘米、11厘米B、4厘米、6厘米、12厘米C、3厘米、15厘米、10厘米D、3厘米、3厘米、3厘米6、下列结论错误的是()。

A、全等三角形对应边上的高相等B、全等三角形对应边上的角平风险和中线相等C、两个直角三角形中,如果有一个边和一个锐角对应相等,则两个直角三角形全等D、两个直角三角形中,如果两个锐角对应相等,则两个直角三角形全等7、下列说法中:①如果三角形的三个内角比是1:2:6,这个三角形是直角三角形;②如果三角形的三条高线交于三角形的一个顶点处,这个三角形是钝角三角形或直角三角形;③如果三角形的一个内角等于另外两个内角的差,这个三角形是直角三角形;④三角形的三条高线、角平分线和中线一定都是线段;⑤等边三角形的三条高线、角平分线和中线一定分别相等。

其中错误的有()个。

A、1B、2C、3D、48、在△ABC中,CD、BE是AB、AC边上的高,∠A=70°,则∠BPC 等于()。

北师大版七年级数学全等三角形习题精选

北师大版七年级数学全等三角形习题精选

数学北师大版七年级4.全等三角形习题精选习题精选一、选择题1.已知≌,且,则()A.50°B.100°C.30°D.50°或100°或30°2.已知≌,且,则=()A.3cm B.4cm C.5cm D.以上都不对3.若两个三角形(),则一个三角形,和另一个三角形全等.A.面积相等B.周长相等C.对应边相等,对应角相等D.以上都不对4.如果D是中BC边上一点,并且≌,则是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形二、填空题1.如图,若把沿着直线BC移动,它就和重合,那么和_________;对应相等的边分别是_________、_________、_________;对应相等的角分别是_________、__________、___________.2.如图,≌,则对应边有__________,对应角有________.3.如图,≌,则的对应角是___________,BD的对应边是__________.4.已知:≌,,cm,则.5.如果≌,cm,则cm.6.若≌,的周长为32cm,,则cm,cm,cm.7.如图,沿BC折叠,若A与D重合,则_____ ,其对应边为,对应角为.8.如图,≌,写出相等的角和边9.已知,≌,则三、解答题1.如图,下列各题的全等三角形,经过怎样的运动才能完全重合.(1)≌;(2)≌;(3)≌.2.已知≌,若,你能求出的周长吗?3.如图,已知≌且,求证:.四、解答题1.如图,在一条直线上运动到的位置,延长AC、相交于D点,(1)试说明;(2)试说明;(3)你还能发现哪些信息.2.如图,是由绕A点点逆时针旋转60°得到的,且.(1)求的度数;(2)若,求四边形的周长.参考答案:一、1.C 2.A 3.C 4.D二、1.全等;2.AC和AB,AE和AF,BE和CF;和3.4.70°,10cm5.47°,256.9,12,117.≌AB与DB、AC与DC、BC与BC与与与8.边:角:9.78°23三、1.(1)把其中一个三角形沿AF所在的直线对折过去(2)把其中一个三角形绕O点旋转180°(3)把其中一个三角形沿的角平分线对折过去.2.周长为25cm3.≌且∴∴四、1.提示:≌2.(1)(2)8cm(提示:≌)。

新北师大版七年级数学下册第三章全等三角形练习题

新北师大版七年级数学下册第三章全等三角形练习题
推理过程出现逻辑错误:在证明全等三角形的过程中,逻辑推理不严密,导致结论错误。 图形绘制不准确:在绘制全等三角形时,图形绘制不准确,导致证明过程出现错误。
题目类型:选择题、填空题、证明题等 解题思路:根据全等三角形的性质和判定定理,分析题目中的条件,选择合适的解题方法。 易错点分析:学生在解题过程中容易出现哪些错误,如概念混淆、定理应用不当等。 练习题解析:针对具体的练习题目,进行详细的解析,包括解题思路、步骤和答案。
XX,a click to unlimited possibilities
01 全 等 三 角 形 的 性 质 和 判 定 方 法 02 全 等 三 角 形 的 应 用 03 全 等 三 角 形 的 综 合 应 用 04 全 等 三 角 形 的 易 错 点 分 析
全等三角形对应角相等 全等三角形对应边相等 全等三角形的对应高、中线、角平分线相等 全等三角形的周长和面积相等
添加 标题
添加 标题
题目:已知三角形ABC中,AB=AC,D 是BC上一点,E是线段AD上一点,且 ∠BED=2∠BAC=90°,BD=1,CD=2, 求DE的长。
添加 标题
题目:在三角形ABC中,AB=AC,D是 BC的中点,E是线段AD上一点,且 ∠BED=2∠BAC=90°,求证:BE⊥AD。
条件:SAS、ASA、SSS、AAS 应用:证明线段相等、角相等、证明两三角形全等 证明方法:根据条件选择合适的方法进行证明 注意事项:避免使用不正确的证明方法
题目:已知三角形ABC全等于三角形DEF,且三角形ABC的周长为12,若M为AB的中 点,且MC=3,求DF的长。
题目:在三角形ABC中,角A=90度,AB=AC,D为BC上任意一点,求证:BD^2 + CD^2 = 2AD^2。

北师大版七年级数学下册(三角形全等)专题训练

北师大版七年级数学下册(三角形全等)专题训练

七年级数学定制一、选择题1.如图给出了四组三角形,其中全等的三角形有( )组.A. 1B. 2C. 3D. 42.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE的长就是A、B的距离,这里判断△ACB≌△ECD的理由是( )A. SASB. ASAC. AASD. SSS3.下列条件中不能判定△ABC≌△DEF的是( )A.AB=DE,AC=DF,BC=EFB. AB=DE,∠A=∠D,BC=EFC. AB=DE,∠B=∠DEF,BC=EFD. ∠B=∠DEF,∠A=∠D AB=DE4、如图所示,AD平分∠BAC,AB=AC,连结BD、CD并延长分别交AC、AB于F、E 点,则此图中全等三角形的对数为( )A.2对B. 3对C. 4对D. 5对5、下列判断正确的是( )A. 顶角相等的的两个等腰三角形全等B. 腰相等的两个等腰三角形全等C. 有一边及一锐角相等的两个直角三角形全等D. 顶角和底边分别相等的两个等腰三角形全等6、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A. ∠M=∠NB. AM//CNC. AB=CDD. AM=CN7、在△ABC和△A′B′C′中A′B′=AB,∠B=∠B′,补充条件后仍不一定能保证△A′B′C′≌△ABC,则补充的条件是( )A. A′C′=ACB. B′C′=BCC. ∠A′=∠AD. ∠C′=∠C8、观察如图图形,图(1)中有3个三角形,图(2)中有5个三角形,图(3)中有7个三角形,…若依此规律下去,则第2014个图形中三角形的个数是( )A. 4028B. 4029C. 4030D. 4031二、填空题9、按如下规律摆放三角形:第(n)堆三角形的个数为______ .10、当三角形中一个内角β是另一个内角α的12时,我们称此三角形为”希望三角形“,其中角α称为”希望角“.如果一个”希望三角形“中有一个内角为54∘,那么这个”希望三角形“的”希望角“度数为______ .三、解答题11、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .12、如图,ΔABC 中,D 是AC 上一点,BE ∥AC ,BE=AD ,AE 分别交BD 、BC 于点F 、G . ⑴图中有全等三角形吗?请找出来,并证明你的结论. ⑵若连结DE ,则DE 与AB 有什么关系?并说明理由.13、如图,在△ABC 中,∠B=2∠C,AD 是△ABC 的角平分线,∠1=∠C,求证AC=AB+BDB C D AF G E14、如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A、B两点分别作直线l的垂线,垂足分别为D、E.(1)△ACD与△CBE全等吗?说明你的理由.(2)猜想线段AD、BE、DE之间的关系.(直接写出答案)14、如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(1)请判断:AF与BE的数量关系是______ ,位置关系是______ ;(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予说明;(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.16、如图△ABC是正三角形,△BDC是顶角∠BDC=120∘的等腰三角形,以D为顶点作一个60∘角,角的两边分别交AB、AC边于M、N两点,连接MN.探究:(1)线段BM、MN、NC之间的数量关系.(2)若点M、N分别是AB、CA延长线上的点,其它条件不变,再探线段BM、MN、NC 之间的数量关系,在图中画出图形.并对以上两种探究结果选择一个你喜欢的加以证明.。

北师大版七年级下册全等三角形专项练习

北师大版七年级下册全等三角形专项练习

全等三角形专项练习1.已知:△ABC、△A1B1C1均为锐角三角形,AC=A1C1,BC=B1C1,∠C=∠C1.求证:△ABC≌△A1B1C1.2.如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.3.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.4.已知:如图,等腰三角形ABC中,AC=BC,∠ACB=90°,直线l经过点C(点A、B都在直线l的同侧),AD⊥l,BE⊥l,垂足分别为D、E.求证:△ADC≌△CEB.5.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.6.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B 作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.7.如图,已知两条直线AB,CD相交于点O,且CO=DO,AC∥BD,求证:△AOC≌△BOD.8.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.9.已知:如图,AB=CD,AD=CB.求证:△ABC≌△CDA.10.如图,AC⊥BC,AD⊥BD,垂足分别为C、D,AC=BD,Rt△ABC与Rt△BAD全等吗?为什么?11.已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.12.如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C 的距离分别为3,4,5,求∠AEB的度数.13.已知矩形ABCD中,AF为∠DAC的角平分线,CP⊥AF于点F,且交AD的延长线于P.连接BF交对角线AC于点O.(1)若BC=4,tan∠ACB=,求S△DCP的值;(2)求证:∠AOB=3∠PAF.14.如图,AB=AC,AD=AE.求证:∠B=∠C.15.如图,在△ABC与△ABD中,BC=BD,∠ABC=∠ABD.点E为BC中点,点F为BD中点,连接AE,AF.求证:AE=AF.16.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列四个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的四个条件(请从其中选择一个):①AB=ED;②∠A=∠D=90°;③∠ACB=∠DFE;④∠A=∠D.17.我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,请你写出与筝形ABCD的角或者对角线有关的一个结论,并证明你的结论.18.在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;(2)如图2,若∠BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF成立吗?并说明理由.19.如图,AC与BD交于点E,且AC=DB,AB=DC.求证:∠A=∠D.20.如图,AB=DF,AC=DE,BE=FC,求证:∠B=∠F.。

北师大版七年级数学下册第三章《全等三角形》测试卷含答案3套

北师大版七年级数学下册第三章《全等三角形》测试卷含答案3套

全等三角形一.填空题(每题3分,共30分)1。

如图,△ABC ≌△DBC,且∠A 和∠D,∠ABC 和∠DBC 是对应角,其对应边:_______、2。

如图,△ABD ≌△ACE ,且∠BAD 和∠CAE ,∠ABD 和∠ACE,∠ADB 和∠AEC 是对应角,则对应边_________.3、 已知:如图,△ABC ≌△FED ,且BC=DE 、则∠A=__________,A D=_______.4、 如图,△ABD ≌△ACE,则AB 的对应边是_________,∠BAD 的对应角是______。

5、 已知:如图,△ABE ≌△ACD ,∠B=∠C,则∠AEB=_______,AE=________。

6.已知:如图 , AC ⊥BC 于 C , DE ⊥AC 于 E , AD ⊥AB 于 A , BC=AE 。

若AB=5 , 则AD=___________.7。

已知:△ABC ≌△A ’B ’C', △A'B ’C ’的周长为12cm ,则△ABC 的周长为、 8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB ≌△A EC , 根据是_________再证△BDE ≌△______ , 根据是__________。

4321E D BA9。

如图,∠1=∠2,由AAS 判定△ABD ≌△ACD,则需添加的条件是____________、10。

如图,在平面上将△ABC 绕B 点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,则∠CBC'为________度、二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是 ( )A 、三条边对应相等B 、两边和一角对应相等C 、两角的其中一角的对边对应相等D 、两角和它们的夹边对应相等12、 如果两个三角形全等,则不正确的是 ( )A B CD 12AA'BC C'A、它们的最小角相等B、它们的对应外角相等C、它们是直角三角形D、它们的最长边相等13、如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A、AB=ACB、∠BAE=∠CADC、BE=DCD、AD=DE14、图中全等的三角形是( )A、Ⅰ和ⅡB、Ⅱ和ⅣC、Ⅱ和ⅢD、Ⅰ和Ⅲ15、下列说法中不正确的是( )A、全等三角形的对应高相等B、全等三角形的面积相等C、全等三角形的周长相等D、周长相等的两个三角形全等16、 AD=AE , AB=AC , BE、CD交于F ,则图中相等的角共有(除去∠DFE=∠BFC) ( )A、5对B、4对C、3对D、2对CEDBOA17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是( )A、70°B、 85°C、 65°D、以上都不对18、已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF、则不正确的等式是 ( )A、AC=DF B 、AD=BE C、DF=EF D、BC=EF19。

最新北师大版七年级下册三角形全等(HL)的证明试题以及答案(30道题)

最新北师大版七年级下册三角形全等(HL)的证明试题以及答案(30道题)

最新七年级下册三角形全等的证明试题1、如图,∠B=∠D=90°,CD=BC,证明AC平分∠BAD。

2、如图,CE⊥AB,DF⊥AB,CE=DF,AC=DB,证明AF=BE。

5、如图,AB⊥BD,AC⊥CD,AC=AB,证明BC⊥AD。

6、如图,AB⊥BD,ED⊥BD,AC=EF,BF=CD,说明AB、DE的关系。

7、如图,CE⊥AB,BD⊥AC,AE=AD,找出图中的全等三角形,并证明其中一个。

8、如图,AD⊥BD,DF=DC,BF=AC,证明BE⊥AC。

9、如图,AD⊥DE,BE⊥DE,AD=CE,AC=BC,证明AD+BE=DE。

10、如图,DF⊥AC,BE⊥AC,AF=EC,DC=AB,证明DF=BE。

11、如图,∠C=90°,MN⊥AB,AM=AC,证明MN=NC。

12、如图,AC⊥CE,DF⊥BD,AF=BE,AC=BD,说明DF和CE的关系。

13、如图,已知AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别为E、F,证明CE=DF。

14、如图,CF⊥AF,CE⊥AB,BC=DC,CE=CF,证明BE=DF。

15、如图,D是BC的中点,DE⊥AB,DF⊥AC,DE=DF,A、D的连线和BC垂直。

16、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.(1)若BC在DE的同侧(如图①)且AD=CE,说明:BA⊥AC.(2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由.17、如图,DE⊥AB,DF⊥AC,DE=DF,证明D是BC的中点。

18、如图,∠ACF=∠ABD=∠CDF=90°,AB=CD,AC=CF,说明DF、AB、BD的关系。

19、如图,∠B=∠D=90°,AD=AB,∠CAD=∠BAE,证明CF=EF。

20、如图,AB⊥BD,DE⊥BD,点C是BD上一点,且BC=DE,CD=AB.(1)试判断AC与CE的位置关系,并说明理由.(2)如图⑵,若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第⑴问中AC与BE的位置关系还成立吗?(注意字母的变化)21、如图,AB⊥BD,DF⊥BD,DF=BC,CF=AC。

(完整版)北师大七年级全等三角形的证明习题

(完整版)北师大七年级全等三角形的证明习题

1ED B A F CACDB CO DE A图6 A D B C O 图7 DE FA BC B 全等三角形证明一、1.已知△ABC 和△DEF,下列条件中,不能保证△ABC 和△DEF 全等的是( )A 、 AB=DE,AC=DF,BC=EFB 、∠A= ∠ D, ∠ B= ∠ E,AC=DF C. AB=DE,AC=DF, ∠A= ∠D D .AB=DE,BC=EF, ∠ C= ∠ F2.要说明△ABC 和△DEF 全等,已知条件为AB=DE, ∠A= ∠ D, 不需要的条件为( )A. ∠ B= ∠ EB. ∠ C= ∠ FC. AC=DFD. BC=EF 3.要说明△ABC 和△DEF 全等,已知∠A= ∠ D ,∠ B= ∠ E ,则不需要的条件是( )A. ∠ C= ∠ FB. AB=DEC. AC=EFD. BC=EF 4、如图,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“SAS”需要添加条件 ; 根据“ASA”需要添加条件 ; 根据“AAS”需要添加条件 ; 5\如图,已知AC ∥EF,DE ∥BA,若使△ABC ≌△EDF,还需要补充的条件可以是 _______________________6(1)如图,D 在AB 上,E 在AC 上,且∠B =∠C ,那么补充 下列一组条件后,仍无法判定△ABE ≌△ACD 的是( )A .AD =AEB . ∠AEB =∠ADC C .BE =CD D .AB =AC(2)如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD=AE,AB=AC.若∠B=20°,CD=5cm , 则∠C= ,BE= .说说理由.7、如图,AC 与BD 相交于O,若OB=OD ,∠A=∠C ,若AB=3cm ,则CD= . 说说理由.8、如右图,在△ABC 中,AD ⊥ BC ,CE ⊥ AB , 垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件: , 使△AEH ≌△CEB 。

北师大版数学七年级下册《全等三角形》练习题

北师大版数学七年级下册《全等三角形》练习题

北师大版数学七年级下册《全等三角形》练习题全等三角形练习题(3)一、选择题(每题3分,共18分)1.下列命题①同旁内角互补,两直线平行;②全等三角形的周长相等;③直角都相等;④等边对等角.它们的逆命题是真命题的个数是( )A.1个B.2个C.3个D.4个2.命题“到线段两端距离相等的点在这条线段的垂直平分线上”的结论是 ( )(A)在这条线段的垂直平分线上 (B)线段的垂直平分线上有个点(C)这点在这条线段的垂直平分线上 (D)这点在垂直平分线上3.下列命题中,真命题是()A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有具只有一条直线.4。

命题:①对顶角相等;②平面内垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A 、1个B 、2个C 、3个D 、4个5.只用无刻度的直尺就能作出的图形是()A.延长线段AB 至C ,使BC =ABB.过直线L 上一点A 作L 的垂线C.作已知角的平分线D.从点O 再经过点P 作射线OP6.用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是()A.SASB.ASAC.AASD.SSS二、填空题(每题3分,共15分)7.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果……,那么…….”的形式:如果,那么 .8. 为说明“如果b a >,那么ba 11>”是假命题,你举出的反例是 . 9.命题“等边三角形的一个外角等于相邻内角的2倍”的逆命题是,这个逆命题是命题10.命题“垂直于同一条直线的两直线平行”的题设是______ _,命题“平行于同一条直线的两直线平行”的结论是____ __.11.定理“直角三角形的两直角平方和等于斜边的平方”的逆定理是三、选择题(每题4分,共20分)12.如图7所示,若△ABE ≌△A CF ,且AB =5,AE =2,则EC 的长为()A.2B.3C.5D.2.513.如图8,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则须补充一个条件是()A.AB =DEB.∠ACE =∠DFBC.BF =ECD.∠ABC =∠DEF14.如图10,△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是()A.△ABD ≌△ACDB.∠B =∠CC.AD 是∠BAC 的平分线D.△ABC 是等边三角形图7 F E B A 图815.如图11,∠1=∠2,∠C =∠D ,AC 、A.∠DAE =∠CBEB.C.△DEA 不全等于△CBED.△16.如图12,在△ABC 中,AB >AC ,AC =10,△BCD 的周长为18,则BC A.8B.6C.4D.2四、填空题(每题3分,共24分)17.如图1,根据SAS ,如果AB =AC ,=,即可判定ΔABD ≌ΔACE .18.如图2,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,PE =3cm ,则P点到直线AB 的距离是___.19.如图3,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE⊥AB 于D ,若AB =10,则△BDE 的周长等于____.20.如图4,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为,BD的对应边为 .21.如图5,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌ ,理由是,△ABE ≌△ ,理由是22.如图6,AD ⊥BC ,DE ⊥AB ,DF ⊥AC ,D 、E 、F 是垂足,BD =CD ,那么图中的全等三角形有_______.23.如图,直线l 过正方形ABCD 的顶点B ,点C A 、到直线l 的距离分别是1和2,则正方形的边长为 .24.如图,等边△ABC ,B 点在坐标原点,B 图11 2(12)C B A 1ED A 图2E C D P A B 图3 E DC B A 图1 ED C B A 图5图6 A F (8)C E DC 点的坐标为(6,0),点A 关于x 轴对称点A?′的坐标为_______.五、解答题(共24分)25.如图,在□ABCD 中,F E 、分别是边BC 和AD 上的点.请你补充一个条件,使CDF ABE ??≌,并给予证明.(9分)26.“太湖明珠”无锡要建特大城市,有人建议无锡(A )、江阴(B )、宜兴(C )三市共建一个国际机场,使飞机场到江阴、宜兴两城市距离相等,且到无锡市的距离最近.请你设计机场的位置(要保留作图痕迹哦!).(8分)27.ABC Δ的三边分别为a,b,c 且a=22n m -,b=2mn,c=22n m +(m>n,m,n 是正整数),ABC Δ是直角三角形吗?说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形练习题
一、选择题
1.如图,给出下列四组条件:
①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.
其中,能使ABC DEF △≌△的条件共有( ) A .1组
B .2组
C .3组
D .4组
2.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三 角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°, 则APD ∠等于( )
A .42°
B .48°
C .52°
D .58° 3.如图(四),点P 是AB 上任意一点,ABC ABD ∠=∠,还应补 充一个条件,才能推出APC APD △≌△.从下列条件中补充 一个条件,不一定能....
推出APC APD △≌△的是( ) A .BC BD = B.AC AD = C.ACB ADB ∠=∠ D.CAB DAB ∠=∠ 4.如图,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两 个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( ) (A)∠B=∠E,BC=EF (B )BC=EF ,AC=DF (C)∠A=∠D ,∠B=∠E (D )∠A=∠D ,BC=EF
5.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线, DE⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( ) A .10cm B .8cm C .6cm D .9cm
6. 如图所示,表示三条相互交叉的公路,现要建一个货物中
转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处
B.2处
C.3处
D.4处
E
D
C
B
A

①② ③
C
A
D
P B
图(四)
7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的方法是( )
A .带①去
B .带②去
C .带③去
D .带①②③去
8.如图,在Rt ABC △中,
90=∠B ,ED 是AC 的垂直平分线,交AC 于 点D ,交BC 于点E .已知
10=∠BAE ,则C ∠的度数为( ) A .
30 B .
40 C .
50 D .
60 9.如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30°
C .35°
D .40°
10.如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分
D .CD 平分∠ACB
12.如图, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm,BD=3cm,则点D 到AB 的距离为( ) A. 5cm
B. 3cm
C. 2cm
D. 不能确定
13.如图,OP 平分AOB ∠,PA OA ⊥,PB OB
⊥,垂足分别为A ,B .下列结论中不一定成立的是( )
A .PA P
B = B .PO 平分APB ∠
C .OA OB =
D .AB 垂直平分OP
14.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定( )
A .C
B CD = B .BA
C DAC =∠∠ C .BCA DCA =∠∠
D .90B D ==︒∠∠
A
D
C
E
B
A
B
C
D
A
B
C
D
A
B C
D
C A
B
B '
A '
O
B
A
P
15.观察下列图形,则第n 个图形中三角形的个数是( )
A .22n +
B .44n +
C .44n -
D .4n
二、填空题
1.如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).
2.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB 于E,且AB=5cm,则△DEB 的周长为 ________
3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).
4.如图,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D 到直线AB 的距离是__________厘米。

5.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .
……
第1个
第2个
第3个
第1个第2个
第3个
A
C
E
B
D
D
O C
B A
A
B
C
D E
6.已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB =________度.
7如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°.恒成立的结论有_______________________(把你认为正确的序号都填上)。

8.如图所示,AB = AD ,∠1 = ∠2,添加一个适当的条件,使△ABC ≌ △ADE,则需要添加的条件是________. 三、解答题
1.如图,已知AB=AC ,AD=AE ,求证:BD=CE.
2.如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°. (1)求DBC ∠的度数;(2)求证:BD CE =.
O A
B
C D
E
Q
P
O B
E D
C A
A
B D E C
4.如图,D 是等边△ABC 的边AB 上的一动点,以CD 为一边向上作等边△EDC ,连接AE ,找出图中的一组全等三角形,并说明理由.
5.如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .
(1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.
9.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线
垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .
B C
A D
M
N
E
D
C
B
A
F
E D C
B
A
10.如图,,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.
11.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .
(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):
12.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF
(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
O
E
D
C
B
A
B
D C
F A

E。

相关文档
最新文档