电磁感应规律的综合应用

合集下载

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。

2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。

3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。

电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。

通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。

4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。

(2)在电源内部电流由负极流向正极。

(3)电源两端的电压为路端电压。

5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。

由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。

6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。

(2)功能关系:Q=W克服安培力,电流变不变都适用。

(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。

7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。

运用电磁感应原理工作

运用电磁感应原理工作

运用电磁感应原理工作
电磁感应原理是指当导体或线圈与外部变化的磁场相互作用时,会产生感应电动势和感应电流。

利用电磁感应原理,可以实现许多实际应用,例如:
1. 发电机:通过旋转导线圈在磁场中产生感应电动势,将机械能转化为电能。

2. 变压器:利用交变电流在线圈中产生的交变磁场,在另一根线圈中感应出电动势,实现电能的传输和变压。

3. 感应加热:通过在导体中通过高频交流电流,产生感应电流产生热量,实现加热的效果。

4. 感应计量电能表:利用电流在线圈中产生的磁场与固定磁场的作用,测量电能的使用情况。

5. 电磁铁:通过通电线圈在磁铁中产生的磁场,实现吸附或释放物体的功能。

6. 电磁感应传感器:通过感应电流、电动势的变化来检测和测量物理量,例如温度、速度、压力等。

电磁感应原理的应用广泛,是电器、电机、通信、能源等领域的基础。

电磁感应规律综合应用的常见题型

电磁感应规律综合应用的常见题型

电磁感应规律综合应用的常见题型 一、 电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路2.电源电动势和路端电压(1)电动势:E Blv =或E n tϕ∆=∆. (2)电源正、负极:用右手定则或楞次定律确定.(内电路电流由低电势到高电势,外电路由高电势到底电势)。

(3)路端电压:U E Ir IR =-=3、电路问题分析方法(1)确定看做电源的导体(2)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;(3)画等效电路图;(4)运用闭合电路欧姆定律、串并联电路性质、电功率等公 式联立求解.例1.如图9-3-1所示,在磁感应强度为0.2 T 的匀强磁场中,有一长为0.5 m 、电阻为1.0 Ω的导体AB 在金属框架上以10 m/s 的速度向右滑动,R 1=R 2=2.0 Ω,其他电阻不计,求流过导体AB 的电流I.例2、(2012·浙江理综)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。

如图所示,自行车后轮由半径r 1=5.0×10-2m 的金属内圈、半径r 2=0.40m 的金属外圈和绝缘幅条构成。

后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R 的小灯泡。

在支架上装有磁铁,形成了磁感应强度B=0.10T 、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r 1、外半径为r 2、张角θ=π/6 。

后轮以角速度 ω=2πrad/s 相对于转轴转动。

若不计其它电阻,忽略磁场的边缘效应。

(1)当金属条ab 进入“扇形”磁场时,求感应电动势E ,并指出ab 上的电流方向;(2)当金属条ab 进入“扇形”磁场时,画出“闪烁”装置的电路图;(3)从金属条ab 进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差Uab 随时间t 变化的Uab -t 图象;(4)若选择的是“1.5V 、0.3A ”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B 、后轮外圈半径r 2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价二、 电磁感应中的动力学问题(一)应用知识:1、安培力的大小:由感应电动势E=BLv ,感应电流I=E/R,和安培力公式F=BIL 得22B l v F R= 2、安培力方向判断:先用右手定则判定电流方向,在用左手定则确定安培力方向。

电磁感应定律的综合应用——杆模型

电磁感应定律的综合应用——杆模型

2、已知轨道 NMPQ 水平放置,间距为 l,电阻不计,磁感应 强度为 B 的匀强磁场方向竖直向上。定值电阻为 R,杆 ab 质量为 m,电阻为 r,在恒力 F 作用下由静止开始运动。摩 擦不计,接触良好。求: (1)、杆做什么运动?并画 v-t 图像。 (2)、写出 a 与 v 的关系式,画出 a-v 图像。 (3)、杆 ab 最大速度。 (4) 、若杆 ab 在加速阶段的时间为 t0,则通过 R 电量, 杆 ab 的位移分别为多少。
模 型 三 双杆
栏目导航
5.如图所示,两根质量均为 m=2 kg 的金属棒垂直放在光滑的水 平导轨上,左右两部分导轨间距之比为 1∶2,导轨间有大小相等 但左、右两部分方向相反的匀强磁场,两棒电阻与棒长成正比, 不计导轨电阻。现用 250 N 的水平拉力 F 向右拉 CD 棒,CD 棒运 动 s=0.5 m 时其上产生的焦耳热为 Q2=30 J,此时两棒速率之比 为 vA∶vC=1∶2,现立即撤去拉力 F,设导轨足够长且两棒始终 在不同磁场中运动,求: (1)在 CD 棒运动 0.5 m 的过程中,AB 棒上产生的焦耳热; (2)撤去拉力 F 瞬间,两棒的速度大小 vA 和 vC; (3)撤去拉力 F 后,两棒最终匀速运动的速度大小 vA′和 vC′。
强度为 B 的匀强磁场方向竖直向上。定值电阻为 R,杆 ab
V0
质量为 m,电阻为 r,以初速度 V0 向右沿轨道运动,摩擦
不计,接触良好。求:
(1)、杆做什么运动?并画 v-t 图像。
(2)、写出 a 与 v 的关系式,画出 a-v 图像。
(3)、通过 R 的电量。
(4)、杆 ab 的位移。
(5) 、杆 ab 产生的热量。
栏目导航
高考热点 分层突破

选修3-2 第九章 第3讲

选修3-2 第九章 第3讲

率所表示的加速度大小没有关系,故(6)和(7)错;根据q=It,
可知I -t图像中图像与时间轴所围成的面积表示流过回路的电
荷量,故(8)对。
考点 1
电磁感应中的电路问题(三年6考) 解题技巧
【考点解读】
1.问题归类 (1)以部分电路欧姆定律为中心,包括六个基本物理量(电压、 电流、电阻、电功、电功率、电热),三条定律(部分电路欧姆 定律、电阻定律和焦耳定律),以及若干基本规律(串、并联电 路特点等);
【思考辨析】
(1)在电磁感应的电路中,运动的导体部分都相当于电源。
( (2)切割磁感线运动的导体或磁通量发生变化的回路两端的电 压等于电源的电动势。( ) ) )
(3)电路中的电流总是从高电势流向低电势。(
(4)虽然电磁感应电路中电源的电动势可以发生变化,但是闭 合电路欧姆定律仍然适用于电磁感应电路。( )
装置,如图所示。在磁极和圆柱状铁芯之间形成的两磁场区域
的圆心角α 均为 4 π ,磁场均沿半径方向。匝数为N的矩形线 圈abcd的边长ab=cd=l、bc=ad=2l。线圈以角速度ω 绕中心轴匀 速转动,bc和ad边同时进入磁场。在磁场中,两条边所经过处 的磁感应强度大小均为B、方向始终与两边的运动方向垂直。 线圈的总电阻为r,外接电阻为R。求:
乙所示。下列关于穿过回路abPMa的磁通量Φ和磁通量的瞬时
变化率 以及ab两端的电势差Uab和通过金属棒的电荷量q随 时间t变化的图像中,正确的是(
t
)
E 【规范解答】选B、C。设导轨间距为l,通过R的电流I= R +r Blv = ,因通过R的电流I随时间均匀增大,即金属棒ab的速 R +r
度v随时间t均匀增大,金属棒ab的加速度a为恒量,故金属棒

专题突破练 专题四 第18练 电磁感应中的动量问题 电磁感应规律的综合应用

专题突破练 专题四 第18练 电磁感应中的动量问题 电磁感应规律的综合应用

第18练电磁感应中的动量问题电磁感应规律的综合应用1.(多选)(2019·全国卷Ⅲ·19)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上,选运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02项A、C正确,B、D错误.2.(多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻.质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q,合上开关S后()A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.3.(多选)(2022·湖南卷·10)如图,间距L =1 m 的U 形金属导轨,一端接有0.1 Ω的定值电阻R ,固定在高h =0.8 m 的绝缘水平桌面上.质量均为0.1 kg 的匀质导体棒a 和b 静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为0.1 Ω,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒a 距离导轨最右端1.74 m .整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为0.1 T .用F =0.5 N 沿导轨水平向右的恒力拉导体棒a ,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,撤去F ,导体棒a 离开导轨后落到水平地面上.重力加速度取10 m/s 2,不计空气阻力,不计其他电阻,下列说法正确的是( )A .导体棒a 离开导轨至落地过程中,水平位移为0.6 mB .导体棒a 离开导轨至落地前,其感应电动势不变C .导体棒a 在导轨上运动的过程中,导体棒b 有向右运动的趋势D .导体棒a 在导轨上运动的过程中,通过电阻R 的电荷量为0.58 C答案 BD解析 导体棒a 在导轨上向右运动,产生的感应电流方向向里,流过导体棒b 的电流方向向里,由左手定则可知安培力向左,则导体棒b 有向左运动的趋势,故C 错误;导体棒b 与电阻R 并联,有I =BL v 0.15 Ω,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,有B ·I 2·L =μmg ,联立解得导体棒a 的速度为v =3 m/s ,导体棒a 离开导轨至落地前做平抛运动,有x=v t ,h =12gt 2,联立解得导体棒a 离开导轨至落地过程中水平位移为x =1.2 m ,故A 错误;导体棒a 离开导轨至落地前做平抛运动,水平速度切割磁感线,则产生的感应电动势不变,故B 正确;导体棒a 在导轨上运动的过程中,通过电路的电荷量为q =I ·Δt =BL ·Δx 0.15 Ω=0.1×1×1.740.15 C =1.16 C ,导体棒b 与电阻R 并联,则通过电阻R 的电荷量为q R =q 2=0.58 C ,故D 正确.4.(2022·辽宁卷·15)如图所示,两平行光滑长直金属导轨水平放置,间距为L .abcd 区域有匀强磁场,磁感应强度大小为B ,方向竖直向上.初始时刻,磁场外的细金属杆M 以初速度v 0向右运动,磁场内的细金属杆N 处于静止状态.两金属杆与导轨接触良好且运动过程中始终与导轨垂直.两杆的质量均为m ,在导轨间的电阻均为R ,感应电流产生的磁场及导轨的电阻忽略不计.(1)求M 刚进入磁场时受到的安培力F 的大小和方向;(2)若两杆在磁场内未相撞且N 出磁场时的速度为v 03,求:①N 在磁场内运动过程中通过回路的电荷量q ;②初始时刻N 到ab 的最小距离x ;(3)初始时刻,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),求M 出磁场后不与N 相撞条件下k 的取值范围.答案 (1)B 2L 2v 02R 方向水平向左 (2)①m v 03BL ②2m v 0R 3B 2L2 (3)2≤k <3 解析 (1)细金属杆M 以初速度v 0向右运动,刚进入磁场时,产生的电动势为E =BL v 0电流为I =E 2R则所受的安培力大小为F =BIL =B 2L 2v 02R由左手定则可知安培力的方向水平向左;(2)①金属杆N 在磁场内运动的过程中,取水平向右为正方向,由动量定理有B I L ·Δt =m ·v 03-0 且q =I ·Δt联立解得通过回路的电荷量q =m v 03BL②设杆M 在磁场中运动的位移大小为x 1,杆N 在磁场中运动的位移大小为x 2,则有Δx =x 1-x 2,有 I =E2R ,E =BL ·Δx Δt 整理可得q =BL ·Δx 2R联立可得Δx =2m v 0R 3B 2L 2 若两杆在磁场内刚好相撞,N 到ab 的最小距离为x =Δx =2m v 0R 3B 2L 2 (3)两杆出磁场后在平行光滑长直金属导轨上运动,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),则N 到cd 边的速度大小恒为v 03,取水平向右为正方向,根据动量守恒定律可知m v 0=m v 1+m ·v 03解得N 出磁场时,M 的速度大小为v 1=23v 0 由题意可知,此时M 到cd 边的距离为s =(k -1)x若要保证M 出磁场后不与N 相撞,则有两种临界情况:①M 减速到v 03时出磁场,速度刚好等于N 的速度,一定不与N 相撞,对M 根据动量定理有 -B I 1L ·Δt 1=m ·v 03-m ·23v 0 q 1=I 1·Δt 1=BL ·(k -1)x 2R联立解得k =2②M 运动到cd 边时,恰好减速到零,则对M 由动量定理有-B I 2L ·Δt 2=0-m ·23v 0 同理解得k =3综上所述,M 出磁场后不与N 相撞条件下k 的取值范围为2≤k <3.1.(多选)足够长的平行光滑金属导轨ab 、cd 水平放置于竖直向上的匀强磁场中,ac 之间连接阻值为R 的电阻,导轨间距为L ,导体棒ef 垂直导轨放置且与导轨接触良好,导体棒质量为m 、电阻为r .t =0时刻对导体棒施加一个水平向右的力F (图中未画出),导体棒在F 的作用下开始做初速度为零的匀加速直线运动,当导体棒运动x 距离时撤去外力F ,此时导体棒的速度大小为v 0.若不计导轨电阻,则下列说法正确的是( )A .外力F 的大小与时间的关系式为F =ma +B 2L 2at R +rB .t =0时刻外力F 的大小为m v 022xC .从撤去外力F 到导体棒停止运动,电阻R 上产生的焦耳热为12m v 02 D .从撤去外力F 到导体棒停止运动,导体棒运动的位移大小为m v 0(R +r )B 2L 2答案 ABD 解析 由题知导体棒在F 的作用下开始做初速度为零的匀加速直线运动,根据牛顿第二定律有F -B 2L 2v R +r =ma ,v =at ,整理有F =B 2L 2at R +r+ma ,A 正确;由v 02=2ax ,解得在t =0时刻F =ma =m v 022x ,B 正确;从撤去外力F 到导体棒停止运动,根据动能定理有Q =12m v 02,则R 上产生的焦耳热为Q R =R R +r Q =Rm v 022(R +r ),C 错误;从撤去外力F 到导体棒停止运动,根据动量定理有-B I Lt =0-m v 0,I ·t =BL vR +r ·t =BLx R +r ,联立解得x =m v 0(R +r )B 2L 2,D 正确. 2.(多选)(2022·湖南衡阳市二模)如图,光滑平行导轨上端接一电阻R ,导轨弯曲部分与水平部分平滑连接,导轨间距为l ,导轨水平部分左端有一竖直向上的匀强磁场,磁感应强度大小为B ,现将金属棒PQ 从导轨弯曲部分的上端由静止释放,金属棒刚进入磁场时的速度大小为v 1,离开磁场时的速度大小为v 2,改变金属棒释放的高度,使其释放高度变为原来的12,金属棒仍然可以通过磁场区域,导轨和金属棒的电阻不计,则( ) A .金属棒通过磁场区域时金属棒中的电流方向为由P 到QB .金属棒第二次离开磁场时的速度大小为v 2-(1-22)v 1C .金属棒在两次通过磁场区域的过程中电阻R 上产生的热量相等D .金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等答案 BD解析 金属棒通过磁场区域时,由右手定则可知,金属棒中的电流方向为由Q 到P ,故A 错误;金属棒第二次释放的高度变为原来的12,由动能定理可知,进入匀强磁场时的速度大小为v 3=2v 12,金属棒通过磁场区域的过程中,根据动量定理有-B I lt =Δp ,又因为I =E R,E =ΔΦt ,所以-Bl ΔΦR=Δp ,则可知金属棒两次通过匀强磁场区域的过程中动量变化量相同,速度变化量也相同,则v 2-v 1=v 4-v 3,故金属棒第二次离开磁场时的速度大小为v 4=v 2-(1-22)v 1,故B 正确;金属棒第二次通过磁场区域的过程中所用时间长且减少的动能少,则电阻R 上产生的热量少,故C 错误;由电荷量q =ΔΦR,可知金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等,故D 正确.3.(多选)如图所示,足够长的水平光滑金属导轨所在空间中,分布着垂直于导轨平面方向竖直向上的匀强磁场,磁感应强度大小为B .两导体棒a 、b 均垂直于导轨静止放置.已知导体棒a 质量为2m ,导体棒b 质量为m ,长度均为l ,接入电路的电阻均为r ,其余部分电阻不计.现使导体棒a 获得瞬时平行于导轨水平向右的初速度v 0.除磁场作用外,两棒沿导轨方向无其他外力作用,在两导体棒运动过程中,下列说法正确的是( )A .任何一段时间内,导体棒b 的动能增加量跟导体棒a 的动能减少量在数值上总是相等的B .任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反C .全过程中,通过导体棒b 的电荷量为2m v 03BlD .全过程中,导体棒b 共产生的焦耳热为m v 026答案 BCD解析 根据题意可知,两棒组成闭合回路,电流相同,故所受安培力的合力为零,动量守恒,故任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反,根据能量守恒定律可知,a 的动能减少量在数值上等于b 的动能增加量与产热之和,故A 错误,B 正确;两棒最终共速,根据动量守恒定律,有2m v 0=(2m +m )v ,对b 棒m v -0=B I l ·t =Blq ,联立解得q =2m v 03Bl,故C 正确;根据能量守恒定律,可知两棒共产生的焦耳热为Q =12×2m v 02-12()2m +m v 2=m v 023,而由于两棒的电阻大小相等,因此b 棒产生的焦耳热为Q b =12Q =m v 026,故D 正确. 4.(2022·山东烟台市、德州市一模)有一边长为L 、质量为m 、总电阻为R 的正方形导线框自磁场上方某处自由下落,如图所示.匀强磁场区域Ⅰ、Ⅱ的磁感应强度大小均为B ,二者宽度分别为L 、H ,且H >L .导线框恰好匀速进入区域Ⅰ,一段时间后又恰好匀速离开区域Ⅱ,重力加速度为g ,下列说法正确的是( )A .导线框离开区域Ⅱ的速度大于mgRB 2L2 B .导线框刚进入区域Ⅱ时的加速度大小为g ,方向竖直向上C .导线框进入区域Ⅱ的过程产生的焦耳热为mgHD .导线框自开始进入区域Ⅰ至刚完全离开区域Ⅱ的时间为6B 2L 3mgR答案 C解析 由题意知,导线框恰好匀速离开区域Ⅱ,则有mg =BIL =B 2L 2v R ,解得v =mgR B 2L2,A 错误;导线框进入区域Ⅰ到刚要进入区域Ⅱ过程一直做匀速运动,有v =mgR B 2L2,导线框下边刚进入磁场区域Ⅱ时,上、下边都切割磁感线,由法拉第电磁感应定律可知E 2=BL v +BL v =2BL v ,又I 2=E 2R ,联立解得I 2=2BL v R,导线框所受安培力F 2=2BI 2L ,由牛顿第二定律有F 2-mg =ma ,解得a =3g ,方向竖直向上,B 错误;开始进入区域Ⅱ时与开始离开区域Ⅱ时,速度大小相等,则导线框产生的焦耳热等于重力势能的减少量,有Q =mgH ,C 正确;导线框自开始进入区域Ⅰ至开始进入区域Ⅱ的过程中,t 1=L v =B 2L 3mgR,导线框自开始进入区域Ⅱ至开始离开区域Ⅱ过程中,由动量定理得mgt 2-F 安2Δt =m v -m v ,即mgt 2-BL 2BL 2R =0,解得t 2=2B 2L 3mgR ,导线框自开始离开区域Ⅱ至刚完全离开区域Ⅱ过程中,t 3=L v =B 2L 3mgR,故t =t 1+t 2+t 3=4B 2L 3mgR,D 错误. 5.(多选)(2022·河北省模拟)如图所示,两根相距L 且电阻不计的足够长光滑金属导轨,导轨左端为弧形,右端水平,且水平部分处于方向竖直向下、磁感应强度大小为B 的匀强磁场中.铜棒a 、b 电阻均为R 、质量均为m ,均与导轨垂直且与导轨接触良好,铜棒b 静止在导轨水平部分,铜棒a 在弧形导轨上从距离水平部分高度为h =0.5L 处由静止释放,重力加速度为g ,关于此后的过程,下列说法正确的是( )A .回路中的最大电流为gLBL RB .铜棒b 的最大加速度为gLB 2L 22mRC .铜棒b 获得的最大速度为gLD .回路中产生的总焦耳热为mgL 4答案 BD解析 铜棒a 沿弧形导轨下滑,刚进入磁场区域时,由机械能守恒定律有mgh =12m v 2,且h =0.5 L ,解得v =gL ,回路中的最大感应电动势E =BL v ,回路中的最大电流I =E 2R,联立解得I =BL gL 2R,故A 错误;铜棒b 受到的最大安培力F 安=BIL ,由牛顿第二定律有F 安=ma ,解得铜棒b 的最大加速度a =B 2L 2gL 2mR,故B 正确;铜棒a 、b 在匀强磁场中做切割磁感线运动的过程中,整体所受合外力为零,动量守恒,最终铜棒a 、b 速度相等,由动量守恒定律得m v =2m v ′,解得铜棒b 获得的最大速度为v ′=gL 2,故C 错误;由能量守恒定律得,回路中产生的总焦耳热为Q =12m v 2-12×2m v ′2=mgL 4,故D 正确. 6.(多选)(2022·广东韶关市二模)某高中科研兴趣小组利用课余时间进行研究电磁阻尼效果的研究性学习,实验示意图如图甲所示,虚线MN 右侧有垂直于水平面向下的匀强磁场,边长为1 m 、质量为0.1 kg 、电阻为0.2 Ω的正方形金属线框在光滑绝缘水平面上以大小v 0=2 m/s 的速度向右滑动并进入磁场,磁场边界MN 与线框的右边框平行.从线框刚进入磁场开始计时,线框的速度v 随滑行的距离x 变化的规律如图乙所示,下列说法正确的是( )A .图乙中x 0=1 mB .线框进入磁场的过程中,线框的加速度先不变再突然减为零C .线框进入磁场的过程中,线框中产生的焦耳热为0.1 JD .线框进入磁场的过程中,通过线框某横截面的电荷量为22C 答案 AD 解析 穿过线框的磁通量变化导致线框中产生感应电流,使线框受到安培力的作用,从而使速度改变;当线框完全进入磁场时,磁通量不变,速度不变,则由题图乙可知x 0=1 m ,A正确;线框进入磁场的过程中,安培力F =BIL ,其中I =E R =BL v R,由题图乙可知,速度减小,则安培力减小,由牛顿第二定律可知,线框的加速度减小,因此线框做变减速运动,B 错误;根据能量守恒定律可知,减少的动能全部转化为焦耳热,则有Q =ΔE k =12m v 02-12m v 2,代入数据可得Q =0.15 J ,C 错误; 线框进入磁场的过程中,取水平向右为正方向,根据动量定理可得-B 2L 2v R t =m v -m v 0,整理得v =v 0-B 2L 2x mR,结合题图乙可知,当x =1 m 时,v =1 m/s ,代入解得B =150 T ,通过线框某横截面的电荷量为q =I t =Bx 02R ,解得q =22 C ,D 正确. 7.(多选)(2022·宁夏吴忠中学三模)如图所示,两段均足够长、不等宽的光滑平行导轨固定在水平面上,较窄导轨的间距L 1=1 m ,较宽导轨的间距L 2=1.5 m .整个装置处于磁感应强度大小为B =0.5 T 、方向竖直向上的匀强磁场中,导体棒MN 、PQ 的质量分别为m 1=0.4 kg 、m 2=1.2 kg ,长度分别为1 m 、1.5 m ,电阻分别为R 1=0.3 Ω、R 2=0.9 Ω,两导体棒静止在水平导轨上.t =0时刻,导体棒MN 获得v 0=7 m/s 、水平向右的初速度.导轨电阻忽略不计,导体棒MN 、PQ 始终与导轨垂直且接触良好,导体棒MN 始终在较窄导轨上运动,取g =10 m/s 2则( )A .t =0时刻,回路中的电流为3512A B .导体棒MN 最终做匀速直线运动,速度大小为3 m/sC .通过导体棒MN 的电荷量最大值为3.4 CD .导体棒PQ 中产生的焦耳热最大值为4.2 J答案 ABD解析 t =0时刻,回路中的电流为I 0=E R =BL 1v 0R 1+R 2=3512A ,故A 正确;导体棒MN 与PQ 切割磁感线产生的电动势相互削弱,当两导体棒产生的电动势相等时,感应电流为零,所受安培力为零,故两导体棒最终做匀速直线运动,此时有BL 1v MN =BL 2v PQ ,设从导体棒MN 开始运动至导体棒MN 、PQ 做匀速运动所用的时间为Δt ,取水平向右为正方向,对导体棒MN 分析,由动量定理得-BL 1I ·Δt =m 1v MN -m 1v 0,对导体棒PQ 分析,由动量定理得BL 2I ·Δt =m 2v PQ ,又因为q =I ·Δt ,联立解得v MN =3 m/s ,v PQ =2 m/s ,q =3.2 C ,故B 正确,C 错误;由能量守恒定律得12m 1v 02=12m 1v MN 2+12m 2v PQ 2+Q 总,Q PQ =R 2R 1+R 2Q 总,代入数据联立解得Q PQ =4.2 J ,故D 正确.8.(多选)如图所示,竖直放置的两根足够长的光滑金属导轨相距L ,导轨的两端分别与电源(串联一滑动变阻器R )、定值电阻R 0、电容器(电容为C ,原来不带电)和开关S 相连.整个空间充满了磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场.一质量为m 、电阻不计的金属棒ab 横跨在导轨上.已知电源电动势为E 、内阻为r ,不计导轨的电阻.当S 接1,滑动变阻器R 接入电路一定阻值时,金属棒ab 在磁场中恰好保持静止.当S 接2后,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度.重力加速度为g ,则下列说法正确的是( )A .当S 接1时,滑动变阻器接入电路的阻值R =EBLmgB .若将ab 棒由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CBL vC .当S 接2时,金属棒ab 从静止开始到刚好达到稳定速度所经历的时间t =B 2L 2h +m 2gR 02mgR 0B 2L 2D .若将ab 棒由静止释放的同时,将S 接到3,则金属棒ab 将做匀加速直线运动,加速度大小a =mgm +CB 2L 2答案 BD解析 当S 接1时,有I =E R +r ,由平衡条件得mg =BIL ,联立解得R =EBLmg -r ,故A 错误;当S 接2,速度稳定时有mg =B 2L 2v R 0,解得v =mgR 0B 2L 2,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度,根据动量定理可得mgt -B I Lt =m v ,即mgt -B 2L 2vR 0·t =m v ,其中vt =h ,联立解得t =B 4L 4h +m 2gR 02mgR 0B 2L 2,故C 错误;若将棒ab 由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CU =CBL v ,根据动量定理可得mg Δt -B I ′L Δt =m Δv ,即mg Δt -BL ·ΔQ =m Δv ,将ΔQ =CBL Δv 代入解得mg Δt -CB 2L 2Δv =m Δv ,所以a =Δv Δt =mgm +CB 2L 2,金属棒ab 将做匀加速直线运动,故B 、D 正确.9.如图所示,两电阻不计的光滑平行金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、长度为L 、电阻不计的金属杆,杆始终与导轨接触良好.整个装置处于磁感应强度大小为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现使杆从M 点以v 0的速度竖直向上运动,经历时间t ,到达最高点N ,重力加速度大小为g .求t 时间内:(1)流过电阻的电荷量q ; (2)电阻上产生的焦耳热Q . 答案 (1)m v 0-mgtBL(2)12m v 02-m 2gR (v 0-gt )B 2L 2解析 (1)杆竖直向上运动的过程中,取v 0方向为正方向,根据动量定理,有-mgt -F t =0-m v 0 F =BL I q =I t联立解得q =m v 0-mgt BL(2)设杆上升的高度为h ,取v 0方向为正方向,由动量定理得-mgt -B 2L 2vR t =0-m v 0又h =v t联立解得h =mR (v 0-gt )B 2L 2杆上升过程中由能量守恒定律可知,电阻上产生的焦耳热Q =12m v 02-mgh联立解得Q =12m v 02-m 2gR (v 0-gt )B 2L 2.10.(2022·天津市一模)如图,间距为L 的两平行金属导轨右端接有电阻R ,固定在离地高为H 的平面上,空间存在着方向竖直向下、磁感应强度大小为B 的匀强磁场.质量为m 的金属杆ab 垂直导轨放置,杆获得一个大小为v 0的水平初速度后向左运动并离开导轨,其落地点距导轨左端的水平距离为s .已知重力加速度为g ,忽略一切摩擦和阻力,杆和导轨电阻不计.求:(1)杆即将离开导轨时的加速度大小a ;(2)杆穿过匀强磁场的过程中,克服安培力做的功W ; (3)杆ab 在水平导轨上运动的位移大小x .答案 (1)B 2L 2s 2mRH 2gH (2)12m (v 02-gs 22H ) (3)mR B 2L 2(v 0-s 2H2gH ) 解析 (1)杆离开导轨后做平抛运动,则有H =12gt 2,s =v t ,联立解得杆离开导轨时的速度大小为v =sg 2H杆离开导轨时,产生的感应电动势为E =BL v 感应电流大小为I =ER杆受到的安培力大小为F =BIL 根据牛顿第二定律可得F =ma联立解得杆即将离开导轨时的加速度大小为a =B 2L 2s2mRH 2gH(2)根据动能定理,可得-W =12m v 2-12m v 02则杆穿过匀强磁场的过程中,克服安培力做的功为 W =12m (v 02-gs 22H)(3)根据动量定理,可得-B I Lt =m v -m v 0 q =I t =BLxR联立解得x =mR B 2L 2(v 0-s2H2gH ).11.两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处平滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 接入电路的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度大小为B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度-时间图像如图乙所示(以a 运动的方向为正方向),其中m a =2 kg ,m b =1 kg ,g 取10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 答案 (1)5 s (2)73 C (3)1156J解析 (1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b 0,对杆b 运用动量定理,有Bd I ·Δt =m b (v 0-v b 0) 由题图乙可知,v b 0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v a 2解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度大小为v ′,由动量守恒定律得m a v a -m b v b 0=(m a +m b )v ′ 代入数据解得v ′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v ′的运动时间为Δt ′,则由动量定理可得-Bd I ′·Δt ′=m a (v ′-v a ),而q =I ′·Δt ′ 代入数据解得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的总焦耳热为Q =m a gh +12m b v 02-12(m b +m a )v ′2=1616 J则b 杆中产生的焦耳热为Q ′=R b R a +R bQ =1156 J.错题统计(题号)对应考点错因分析动量定理在电磁感应中的应用动量守恒定律在电磁感应中的应用电磁感应中的综合问题一、动量定理、动量守恒定律在电磁感应中的应用导体棒在磁场中做变速运动,所受安培力是变力,可用动量定理求速度、位移、电荷量、时间等.对于双杆问题,若双杆所受外力为零,可用动量守恒定律分析.1.单杆运动问题已知量(其中B、L、m已知)待求量关系式(以棒减速为例)v1、v2q -B I LΔt=m v2-m v1,q=IΔtv1、v2、R总x -B2L2vΔtR总=m v2-m v1,x=vΔtF其他为恒力,v1、v2、q Δt-B I LΔt+F其他Δt=m v2-m v1,q=IΔtF其他为恒力,v1、v2、R总、x(或Δt)Δt(或x)-B2L2vΔtR总+F其他·Δt=m v2-m v1,x =vΔt2.双杆运动问题(1)等间距轨道上的双杆问题①双杆所受外力的合力为零时,若只需求末速度,可用动量守恒定律分析.②若需求电荷量、位移、时间等,则需要利用动量定理分析.(2)不等距导轨上的双杆问题由于合外力不为零,不等距导轨上的双杆问题需用动量定理分析.常见的双杆模型:题型一(等距、初速度、光滑、平行)题型二(不等距、初速度、光滑、平行)题型三(等距、恒力、光滑、平行)示意图导体棒长度L1=L2导体棒长度L1=2L2,两棒只在各自的轨道上运动导体棒长度L1=L2图像观点力学观点棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒以相等的速度匀速运动棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒的加速度均为零,速度之比为1∶2开始时,两棒做变加速运动;稳定时,两棒以相同的加速度做匀加速运动动量观点两棒组成的系统动量守恒两棒组成的系统动量不守恒对单棒可以用动量定理两棒组成的系统动量不守恒对单棒可以用动量定理能量观点系统动能的减少量等于产生的焦耳热系统动能的减少量等于产生的焦耳热拉力做的功一部分转化为双棒的动能,一部分转化为内能(焦耳热):W=Q+E k1+E k23.杆+电容器模型基本模型规律无外力,电容器充电(电阻阻值为R,导体棒电阻不计,电容器电容为C)无外力,电容器放电(电源电动势为E,内阻不计,导体棒电阻不计,电容器电容为C)电路特点导体棒相当于电源,电容器被充电电容器放电,相当于电源;导体棒受安培力而运动电流的特点安培力为阻力,棒减速,E减小,有I=BL v-U CR,电容器被充电,U C变大,当BL v=U C时,I=0,F安=0,棒做匀电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BL v。

§4 电磁感应与力学规律的综合应用

§4 电磁感应与力学规律的综合应用

§4 电磁感应与力学规律的综合应用教学目标:1.综合应用电磁感应等电学知识解决力、电综合问题; 2.培养学生分析解决综合问题的能力 教学重点:力、电综合问题的解法教学难点:电磁感应等电学知识和力学知识的综合应用,主要有1、利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题2、应用牛顿第二定律解决导体切割磁感线运动的问题。

3、应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。

4、应用能的转化和守恒定律解决电磁感应问题。

教学方法:讲练结合,计算机辅助教学 教学过程:一、电磁感应中的动力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:【例1】如图所示,AB 、CD 是两根足够长的固定平行金属导轨,两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨放置的金属棒ab ,从静止开始沿导轨下滑,求此过程中ab 棒的最大速度。

已知ab 与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计。

F=BIL 界状态v与a方向关系运动状态的分析a 变化情况 F=ma 合外力 感应电流 确定电源(E ,r ) r R EI +=解析:ab 沿导轨下滑过程中受四个力作用,即重力mg ,支持力F N 、摩擦力F f 和安培力F 安,如图所示,ab 由静止开始下滑后,将是↓↑→↑→↑→↑→a F I E v 安(↑为增大符号),所以这是个变加速过程,当加速度减到a =0时,其速度即增到最大v =v m ,此时必将处于平衡状态,以后将以v m 匀速下滑ab 下滑时因切割磁感线,要产生感应电动势,根据电磁感应定律: E=BLv ① 闭合电路AC ba 中将产生感应电流,根据闭合电路欧姆定律: I=E/R ②据右手定则可判定感应电流方向为aAC ba ,再据左手定则判断它受的安培力F 安方向如图示,其大小为: F 安=BIL ③取平行和垂直导轨的两个方向对ab 所受的力进行正交分解,应有: F N = mg cos θ F f = μmg cos θ由①②③可得RvL B F 22=安以ab 为研究对象,根据牛顿第二定律应有:mg sin θ –μmg cos θ-RvL B 22=ma ab 做加速度减小的变加速运动,当a =0时速度达最大 因此,ab 达到v m 时应有:mg sin θ –μmg cos θ-RvL B 22=0 ④ 由④式可解得()22cos sin LB Rmg v m θμθ-=注意:(1)电磁感应中的动态分析,是处理电磁感应问题的关键,要学会从动态分析的过程中来选择是从动力学方面,还是从能量、动量方面来解决问题。

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。

、法拉第电磁感应定律。

2、自感现象和、自感现象和自感系数自感系数。

3、电磁感应现象的综合应用。

、电磁感应现象的综合应用。

一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。

的变化率成正比。

即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。

2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。

没有必然关系。

3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。

此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。

其中L 为导体有效切割磁感线长度。

为导体有效切割磁感线长度。

2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。

3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。

二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。

电磁感应规律的综合应用

电磁感应规律的综合应用

电磁感应规律的综合应用(一) (电路)荥阳市第二高级中学1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于_____.(2)该部分导体的电阻或线圈的电阻相当于电源的_____,其余部分是_______.2.电源电动势和路端电压(1)电动势:E=____或E=___. (2)路端电压:U=IR=_____.电源的正、负极可用右手定则或楞次定律判定.【例证1】在同一水平面中的光滑平行导轨P、Q相距l=1 m,导轨左端接有如图所示的电路.其中水平放置的两平行板电容器两极板M、N间距d=10 mm,定值电阻R1=R2=12 Ω,R3=2 Ω,金属棒ab的电阻r=2 Ω,其他电阻不计,磁感应强度B=0.5 T的匀强磁场竖直穿过导轨平面,当金属棒ab沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m=1×10-14 kg,电荷量q=-1×10-14 C的微粒恰好静止不动.已知g=10 m/s2,在整个运动过程中金属棒与导轨接触良好,且运动速度保持恒定.试求:(1)匀强磁场的方向;(2)ab两端的电压;(3)金属棒ab运动的速度.【例证2】、如图所示,直角三角形导线框abc固定在匀强磁场中,ab是一段长为L、电阻为R的均匀导线,ac和bc的电阻可不计,ac长度为L/2 .磁场的磁感应强度为B,方向垂直纸面向里.现有一段长度为L/2 ,电阻为R/2 的均匀导体棒MN架在导线框上,开始时紧靠ac,然后沿ab方向以恒定速度v向b端滑动,滑动中始终与ac平行并与导线框保持良好接触,当MN滑过的距离为L/3时,导线ac中的电流为多大?方向如何?针对练习:1、用均匀导线做成的正方形线圈边长为l ,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以 t B∆∆的变化率增强时,则( )A.线圈中感应电流方向为acbdaB.线圈中产生的电动势22∙∆∆=t Bl EC.线圈中a 点电势高于b 点电势D.线圈中a 、b 两点间的电势差为22∙∆∆t Bl2、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计.在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放.金属棒下落过程中保持水平, 且与导轨接触良好.已知某时刻后两灯泡保持正常发光,重力加速度为g.求:(1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.3、如右图所示,MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40 m ,电阻不计,导轨所在平面与磁感应强度B 为0.50 T 的匀强磁场垂直.质量m 为6.0×10-3 kg ,电阻为1.0 Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0 Ω的电阻R 1.当杆ab达到稳定状态时以速率为v 匀速下滑,整个电路消耗的电功率P 为0.27 W ,重力加速度取10 m/s2,试求速率v 和滑动变阻器接入电路部分的阻值R 2.4、两根光滑的长直金属导轨MN 、M'N'平行置于同一水平面内,导轨间距为l,电阻不计,M 、M'处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C 。

电磁感应规律的综合应用

电磁感应规律的综合应用
e b f
例20、如图所示,两根平行金属导轨固定在水平桌面上, 每根导轨每米的电阻r0=0.1Ω,导轨的端点P、Q用电阻可 忽略的导线相连,两导轨间的距离L=0.20m。有随时间变 化的匀强磁场垂直于桌面,已知磁感应强度B与时间的t的 关系为B=kt,比例系数k=0.020T/s,一电阻不计的金属杆可 在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直, 在t=0时刻,金属杆靠在P、Q端,在外力作用下,杆以恒 定的加速度从静止开始向导轨的另一端滑动,求在t=0.6s 时金属杆所受的安培力。
例15、θ=30º ,L=1m,B=1T,导轨光滑电阻不计,F功率
恒定且为6W,m=0.2kg、R=1Ω,ab由由静止开始运动, 当s=2.8m时,获得稳定速度,在此过程中ab产生的热量
Q=5.8J,g=10m/s2,求:
(1)ab棒的稳定速度 (2)ab棒从静止开始达
B
a
F
b θ
到稳定速度所需时间。
②具有感应电流的导体在磁场中受安培力作用或通过电 阻发热,又可使电能转化为机械能或电阻的内能,因 此电磁感应过程总是伴随着能量的转化。
R R F F
2、解题基本方法:
①用法拉第电磁感应定律和楞次定律确定感应动势的大
小和方向。
②画出等效电路,求回路中电阻消耗电功率的表达式。 ③分析导体机械能的变化,用能量守恒关系得到机械功 率的改变与回路中电功率的改变所满足的方程。
例16、导体棒ab质量为100g,用绝缘细线悬挂后,恰好 与宽度为50cm的光滑水平导轨接触良好,水平导轨处在 方向竖直向上、B=0.2T的匀强磁场中,水平导轨上有一 质量为200g的导体棒cd,现将ab棒拉起0.8m高后无初速 释放,当ab第一次摆到最低点与导轨瞬间接触后还能向 左摆到0.45m高,试求: (1)cd棒获得的速度大小。 (2)此瞬间通过ab棒的电量。 (3)此过程回路产生的焦耳热。 c a

法拉第电磁感应定律综合应用

法拉第电磁感应定律综合应用

23
备考知能网
研透命题点
由v2-v1=gt3,得t3=0.3 s
出磁场时,E2=nB2L1v2,I2=ER2,FA2=nB2I2L1 得FA2=5 N,即FA2=mg 线圈匀速出磁场,L2=v2t4 得t4=0.025 s 因此线圈穿过磁场区域所经历的时间 t=t2+t3+t4=0.425 s。 (2)线圈进出磁场过程均做匀速运动,该过程中线圈产生的热量 Q1=mg·2L2=1.0 J
3
备考知能网
研透命题点
2.求感应电动势的方法 (1)E=nΔΔΦt ,用来计算感应电动势的平均值. (2)E=BLv,主要用来计算感应电动势的瞬时值.
@《创新设计》
(3)
导体棒以一端为轴转动切割产生的电动势
3.感应电流方向的判断方法
一是利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断;
@《创新设计》
电磁感应中的STSE问题
命题角度一 以科学技术为背景考查楞次定律 【例1】 (2017·全国卷Ⅰ,18)扫描隧道显微镜(STM)可用来探测样品表面原子尺度
上的形貌。为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地 安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图6所示。无扰动时, 按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左 右振动的衰减最有效的方案是( )
场,则小磁针的N极朝垂直纸面向外的方向转动,D正确。
答案 AD
9
备考知能网
研透命题点
@《创新设计》
命题角度二 法拉第电磁感应定律的应用 【例3】 (多选)(2019·全国卷Ⅰ,20)空间存在一方向与纸面垂直、大小随时间变化
的匀强磁场,其边界如图2(a)中虚线MN所示。一硬质细导线的电阻率为ρ、横截 面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上。t=0时磁 感应强度的方向如图(a)所示;磁感应强度B随时间t的变化关系如图(b)所示。则在t =0到t=t1的时间间隔内( )

高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。

题型多为选择题、计算题。

主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。

本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。

复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。

预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。

知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。

法拉第电磁感应定律(电路问题、力学问题、功能问题)

法拉第电磁感应定律(电路问题、力学问题、功能问题)

——电磁感应现象的电路问题在电磁感应现象中,有些问题往往可以归结为电路问题,在这类问题中,切割磁感线的导体或磁通量发生变化的回路就相当于电源,这部分的电阻相当于电源的内阻,其余部分相当于外电路。

解这类问题时,一般先画出等效电路图,然后应用电路的有关规律进行分析计算.【例1】如图所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一。

磁场垂直穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )A .2EB .3EC .32ED .E【例2】粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。

现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( )【例3】如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .此时( )A .电阻R 1消耗的热功率为Fv /3B .电阻 R 2消耗的热功率为 Fv /6C .整个装置因摩擦而消耗的热功率为μmgvcosθD .整个装置消耗的机械功率为(F +μmgcosθ)v【例4】如图所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中用粗线表示),R l =4Ω、R 2=8Ω(导轨其他部分电阻不计).导轨OAC 的形状满足方程⎪⎭⎫ ⎝⎛=x y 3sin 2π(单位:m).磁感应强度B =0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v =5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:⑴外力F 的最大值;⑵金属棒在导轨上运动时电阻丝R l 上消耗的最大功率;⑶在滑动过程中通过金属棒的电流I 与时间t 的关系.【例5】如图所示,粗细均匀的金属环的电阻为R ,可绕轴O 转动的金属杆OA 的电阻R / 4,杆长为l ,A 端与环相接触,一阻值为R / 2的定值电阻分别与杆的端点O 及环边缘连接.杆OA 在垂直于环面向里的、磁感强度为B 的匀强磁场中,以角速度ω顺时针转动.求电路中总电流的变化范围.能力提升1.如图所示,两条平行的光滑水平导轨上,用套环连着一质量为0.2 kg 、电阻为2 Ω的导体杆ab ,导轨间匀强磁场的方向垂直纸面向里.已知R 1=3 Ω,R 2=6 Ω,电压表的量程为0~10 V ,电流表的量程为0~3 A(导轨的电阻不计).求:(1)将R 调到30 Ω时,用垂直于杆ab 的力F =40 N ,使杆ab 沿着导轨向右移动且达到最大速度时,两表中有一表的示数恰好满量程,另一表又能安全使用,则杆ab 的速度多大?(2)将R 调到3 Ω时,欲使杆ab 运动达到稳定状态时,两表中有一表的示数恰好满量程,另一表又能安全使用,则拉力应为多大?(3)在第(1)小题的条件下,当杆ab 运动达到最大速度时突然撤去拉力,则电阻R 1上还能产生多少热量?2.半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2, 两灯的电场均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计。

专题十 第3讲 电磁感应定律的综合应用

专题十 第3讲 电磁感应定律的综合应用

ab 杆下滑过程中某时刻的受力示意图;
(2)在加速下滑过程中,当 ab 杆的速度大小为 v 时,求此 时 ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.
甲 图 10-3-3

解:(1)如图 71,重力 mg,竖直向下; 支持力 N,垂直斜面向上;安培力 F,沿斜面向上. (2)当 ab 杆速度为 v 时,感应电动势 E=BLv, E BLv 此时电路电流 I=R= R B2L2v ab 杆受到安培力 F=BIL= R B2L2v 根据牛顿运动定律,有 ma=mgsinθ-F=mgsinθ- R B2L2v 得 ab 杆的加速度 a=gsinθ- mR . B2L2v (3)当 R =mgsinθ 时, mgRsinθ ab 杆达到最大速度 vm,所以 vm= B2L2 . 图71
定则判断它们的方向,分析出相关物理量之间的函数关系,确
定其大小和方向及在坐标中的范围.
(2)图象的初始条件,方向与正、负的对应,物理量的变化
趋势,物理量的增、减或方向正、负的转折点都是判断图象的 关键. 4.解题时要注意的事项 (1)电磁感应中的图象定性或定量地表示出所研究问题的 函数关系. (2)在图象中 E、I、B 等物理量的方向通过物理量的正负来 反映. (3)画图象要注意纵、横坐标的单位长度定义或表达.
(1)通过棒 cd 的电流 I 是多少,方向如何?
(2)棒 ab 受到的力 F 多大? (3)棒 cd 每产生 Q=0.1 J 的热量,力 F 做的功 W 是多少?
图 10-3-6
解:(1)棒cd 受到的安培力Fcd=BIl

棒cd 在共点力作用下平衡,则Fcd=mgsin30°

由①②式代入数据解得I=1 A,方向由右手定则可知由d 到c.

专题:法拉第电磁感应定律综合应用

专题:法拉第电磁感应定律综合应用

【例5】如图所示,竖直平面内有一金属环,半径为a,总 电阻为R,磁感应强度为B的匀强磁场垂直穿过环平面,与环的 最高点A铰链连接的长度为2a、电阻为R/2的导体棒AB由水平 位置紧贴环面摆下,当摆到竖直位置时,B点的线速度为v,则 这时AB两端的电压大小为( )
【例6】(2012· 课标全国· 19)如 图所示,均匀磁场中有 一由半圆弧 及其直径构成的导线框,半圆直径与磁场边缘 重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大 小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的 轴以角速度ω匀速转动半周,在线框中产生感应电流.现使 线框保持图中所示位置,磁感应强度大小随时间线性变 化.为了产生与线框转动半周过程中同样大小的电流,磁感 应强度随时间的变化率 ΔB/Δt的大小应为 ( ) A.4ωB0/π B.2ωB0/π C.ωB0/π D.ωB0/2π
【例4】(2013福建,18)如图,矩形闭合线框在匀强 磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab 边和cd边刚进入磁场的时刻。线框下落过程形状不变,ab 边始终保持与磁场水平边界OO′ 平行,线框平面与磁场方向 垂直。设OO′ 下方磁场磁场区域足够大,不计空气影响,则 下列哪一个图像不可能反映线框下落过程中速度v随时间t变 化的规律( )
M v P a 2R e c C R B b f d N 2v Q
【例6】如图所示,在匀强磁场中,与磁感应强度B成 30°角放置一矩形线圈,线圈长l1=10cm、宽l2=8cm,共 100匝,线圈电阻r=1.0Ω,与它相连的电路中,电阻 R1=4.0Ω,R2=5.0Ω,电容C=50μF,磁感应强度变化如图 乙所示,开关S在t0=0时闭合,在t2=1.5s时又断开,求: (1)t=1.0s时,R2中电流的大小及方向; (2)S断开后,通过R2的电量。

物理第一轮总复习精讲课件:93电磁感应规律的综合应用

物理第一轮总复习精讲课件:93电磁感应规律的综合应用

9.如图所示,有一用铝板 制成的U型框,将一质量为 m的带电小球用绝缘细线悬 挂在框中,使整体在匀强磁 场中沿垂直于磁场方向向左以速度v匀速运动,悬挂拉力为FT,则( ) A.悬线竖直,FT=mg B.悬线竖直,FT>mg C.悬线竖直,FT<mg D.无法确定FT的大小和方向
【方法与知识感悟】对电磁感应电路问题的理解 对电源的理解 电源是将其它形式的能转化为电能的装置.在电磁感应现象里,通过导体切割磁感线和线圈磁通量的变化而将其它形式的能转化为电能. 对电路的理解 内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.
题型二:由给定的有关图象(B-t图、Ф-t图)分析电磁感应过程问题
C
01
02
电容器所带的电荷量为6×10-5 C
通过R的电流是2 A,方向从a到b
2
通过R的电流是2.5 A,方向从b到a
R消耗的电功率是0.16 W
6.如图所示,一有界区域内,存在 着磁感应强度大小均为B,方向分别 垂直于光滑水平桌面向下和向上的匀 强磁场,磁场宽度均为L,边长为L的 正方形导线框abcd的bc边紧靠磁场边缘置于桌面上,使线框从静止开始沿x轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是( )
*2.如图甲所示,光滑导体框架abcd水平放置,质量为m的导体棒PQ平行于bc放在ab、cd上,且正好卡在垂直于轨道平面的四枚光滑小钉之间.回路总电阻为R,整个装置放在垂直于框架平面的变化的磁场中,磁场的磁感强度B随时间t的变化情况如图乙所示(规定磁感强度方向向上为正),则在0~t时间内,关于回路内的感应电流I及小钉对PQ的弹力FN,的说法正确的是( ) A.I的大小是恒定的 B.I的方向是变化的 C.FN的大小是恒定的 D.FN的方向是变化的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应规律的综合应用
例1、如图B=0.2T,金属棒ab向右匀速运动,v=5m/s, L=40cm,电阻R=0.5Ω,其余电阻不计,摩擦也不计,试 求: ①感应电动势的大小
M R P a N
m r
b
B
F Q
②感应电流的大小和方向
③使金属棒匀速运动所需的拉力 ④感应电流的功率
⑤拉力的功率
例2、如图所示,导轨电阻不计,R=1.5Ω,ab的质量 m=0.1kg、r=0.5 Ω、μ=0.5 ,F=0.7N,ab从静止开始 运动,经t=2s后,ab开始匀速直线运动,此时电压表示
空气阻力,则在金属棒运动过程中产生的感应电动势大小变化情
况是 A.越来越大 B.越来越小 C.保持不变 ( )
C
D.无法判断
ab棒下滑的最大速度 R D b
B
θ
A a
θ
C
B
1.如图甲所示,矩形导线框abcd固定在匀强磁场中,磁感线的方
向与导线框所在平面垂直.规定磁场的正方向垂直于纸面向里,
磁感应强度B随时间变化的规律如图9-3-5乙所示,若规定顺 时针方向为感应电流i的正方向,图9-3-6所示的i-t图中正确 的是 ( )
D
1.如图所示,在磁感应强度为0.2 T的匀强 磁场中,有一长为0.5 m、电阻为1.0 Ω的导 R1=R2=2.0 Ω,其他电阻不计, 求流过导体AB的电流I.
体AB在金属框架上以10 m/s的速度向右滑动,
答案:0.5 A
2.在匀强磁场中,磁场垂直于纸面向里,竖直放置的导 轨宽0.5 m,导轨中接有电阻为0.2 Ω、额定功率为5 W的 小灯泡,如图所示.一质量为50 g的金属棒可沿导轨无摩
M a m r F B Q N
数U=0.3V,g=10m/s2,求:
v R P
①ab匀速直线运动时,外力F的功率。
②ab杆加速运动过程中,通过R的电量。 ③ab杆加速运动的距离。
b
例3、已知:AB、CD足够长,L,θ,B,R。金属棒ab垂直 于导轨放置,与导轨间的动摩擦因数为μ,质量为m,从
静止开始沿导轨下滑,导轨和金属棒的电阻阻都不计。求
擦下滑(导轨与棒接触良好,导轨和棒的电阻不计),若棒
的速度达到稳定后,小灯泡
正常发光.求:(g取10 m/s2) (1)匀强磁场的磁感应强度; (2)此时棒的速度..如图所示,在竖直向下的匀强磁场中,将一水平放置的金属 棒ab以水平速度v0抛出.设在整个过程中,棒的取向不变且不计
相关文档
最新文档