RLC串联谐振电路选频特性与信号的分解信号处理实验报告
RLC串联谐振电路选频特性与信的分解信处理实验报告优选稿
249.9
六次谐波6 f0
300
300
表2-2-2 不加5次及以上的谐波
全波
方波
幅值(V)
56.4
192
频率(HZ)
100
50
全波图形
方波图形
表2-2-3 加5次谐波
全波
半波
幅值(V)
55.6
176
频率(HZ)
100
50
全波图形:
方波图形
3.
1)
a)
分解后所得的波形分别如下图所示
其中黑线为基波,红线为二次谐波,橘红线为三次谐波,黄线为四次谐波,蓝线为五次谐波,绿线为六次谐波。棕色为合成的方波波形。
3.2,4,6次谐波的幅度较其他次谐波的幅度比较相对较小,基本满足幅度为0的预计。造成这一情况的原因也应该是在幅值的测量过程中存在的干扰所致。
表2-1-2 李萨如图形
Ⅰ-Ⅰ
Ⅰ-Ⅲ
Ⅰ-Ⅴ
Ⅰ-Ⅶ
Ⅲ-Ⅴ
Ⅲ-Ⅶ
Ⅴ-Ⅶ
Ⅰ-Ⅲ
Ⅰ-Ⅴ
Ⅰ-Ⅶ
Ⅲ-Ⅴ
Ⅲ-Ⅶ
Ⅴ-Ⅶ
1
3
5
7
1
2.998
图形
图形见下
李萨如图
李萨如图Ⅲ
李萨如图Ⅰ-Ⅰ
2597.0
U1(V)
2.64
2.64
2.64
U0(V)
3.68
3.60
3.52
A(s)
1.39
1.36
1.33
实验数据分析
二阶压控电压源带通滤波器幅频特性曲线
根据表格2-3-1数据绘制二阶压控电压源带通滤波器幅频特性表曲线,如下图所示。根据曲线可以计算出,其特征频率为1310Hz,下截至频率为720Hz,上截至频率为1980Hz,通频带宽度为1260Hz。
rlc串联谐振电路的研究实验报告
rlc串联谐振电路的研究实验报告实验目的:通过对rlc串联谐振电路的研究实验,探究在不同频率下电压、电流和相位的变化规律,加深对谐振电路的理解。
实验原理:rlc串联谐振电路是由电阻R、电感L和电容C串联而成的电路。
在谐振频率下,电感和电容的阻抗大小相等,电路中的电流和电压将达到最大值。
谐振频率的计算公式为f=1/(2π√(LC))。
在谐振频率下,电路中的电压和电流相位相同,电压和电流呈正弦关系。
实验仪器:1. 信号发生器。
2. 电压表。
3. 电流表。
4. 电阻箱。
5. 电感。
6. 电容。
实验步骤:1. 按照实验电路图连接好电路。
2. 调节信号发生器的频率,测量电路中的电压和电流。
3. 记录数据并绘制电压、电流随频率变化的曲线图。
4. 分析实验数据,得出结论。
实验结果:通过实验测量和数据处理,我们得到了以下实验结果:1. 当信号发生器的频率逐渐接近谐振频率时,电路中的电压呈现出明显的增大趋势,最后达到最大值。
2. 在谐振频率下,电路中的电流也达到最大值,且电压和电流的相位相同。
3. 在谐振频率上下,电路中的电压和电流均呈现出振荡变化,但相位差逐渐增大。
实验分析:根据实验结果,我们可以得出以下结论:1. 在rlc串联谐振电路中,当频率接近谐振频率时,电路中的电压和电流都会达到最大值。
2. 在谐振频率下,电路中的电压和电流相位相同,呈正弦关系。
3. 谐振电路的谐振频率与电感和电容的数值有关,频率与电感成反比,与电容成正比。
实验总结:通过本次实验,我们深入了解了rlc串联谐振电路的工作原理和特性。
在实验中,我们通过测量电路中的电压和电流随频率变化的规律,验证了谐振电路的谐振特性。
同时,我们也掌握了在实验中使用信号发生器、电压表、电流表等仪器的操作方法,提高了实验操作能力。
总之,本次实验为我们进一步学习电路谐振提供了宝贵的实践经验,也为我们今后的学习和科研工作打下了坚实的基础。
愿我们在今后的学习和实践中能够不断提高自己的实验能力,更好地应用所学知识。
RLC 串联谐振电路选频特性与信号的分解信号处理实验报告
2.同时可以比对出:其电压幅值之比:
电压的幅值之比不是完全符合要求,但是大致上能满足要求。造成这一情况的原因可能是在测量幅值的过程中存在着干扰,实验中存在一定误差。
3.2,4,6次谐波的幅度较其他次谐波的幅度比较相对较小,基本满足幅度为0的预计。造成这一情况的原因也应该是在幅值的测量过程中存在的干扰所致。
思考题
1.滤波器参数的改变,对滤波器有何影响;
滤波器参数的改变直接影响了滤波器的中心角频率(谐振频率)和品质因素Q,因此也会影响到滤波器的带宽和选择性因素。
2.求出本实验中用R3表示的Q的表达式,分析R3对Q的影响,从而对带通滤波器的幅频响应的影响;
所以R3增大时,Q会减小,在谐振频率不变的情况下,通带宽度会增大。
1049.0
1103.0
1151.0
1202.0
U1(V)
2.64
2.64
2.64
2.64
2.64
2.64
2.64
2.64
2.64
2.64
U0(V)
3.32
3.52
3.76
3.96
4.16
4.20
4.44
4.64
4.84
5.01
A(s)
1.26
1.33
1.42
1.50
1.58
1.59
1.68
1.76
749.7
802.6
848.2
900.9
999.0
1100.0
1200.0
1300.0
1326.0
1348.0
U1(V)
2.64
2.64
2.64
2.64
RLC串联电路的谐振特性研究实验报告.doc
RLC串联电路的谐振特性研究实验报告.doc 实验目的:1. 了解RLC串联电路的工作原理及其谐振特性;2. 掌握测量RLC串联电路谐振频率和谐振带宽的方法。
实验仪器:1. RLC串联电路实验箱;2. 信号源;3. 示波器。
实验原理:RLC串联电路是由电阻、电感和电容串联形成的电路,它可以产生共振现象。
当其频率为共振频率时,电路中流过电流的大小取决于电路中的电感和电容。
此时,电路呈现出很高的阻抗,电流最大。
谐振频率 f0 由以下公式给出:f0 = 1 / (2π√LC)其中,L 为电路中的电感,C 为电路中的电容。
Z0 = R + j(XL - XC)谐振带宽 BW 的计算公式为:BW = Δf = f2 - f1其中,f1 和 f2 分别为电路总阻抗等于Z0/√2 时的频率。
实验步骤:1. 连接实验电路:将电阻、电感和电容串联起来,组成 RLC 串联电路,并连接信号源和示波器。
2. 设置信号源:将信号源的频率调节旋钮设置到最小值,同时将信号源电压调节旋钮调整到最大值。
3. 测量谐振频率:将示波器调节到 X-Y 模式,然后调节信号源频率调节旋钮,逐渐增大频率,直到示波器屏幕上显示出一个正弦波。
此时,记录下示波器显示的频率值,即为电路的谐振频率 f0。
实验结果:1. 在本次实验中,使用的电阻、电感和电容的值分别为:R = 1kΩ,L = 10mH,C = 0.1μF。
2. 在逐渐增大信号源频率的过程中,当频率达到 2231 Hz 时,电路中开始出现正弦波,此时记录下的频率值即为电路的谐振频率 f0。
3. 继续增大信号源频率,当频率达到 2358 Hz 时,电路总阻抗等于Z0/√2 时,记录下此时信号源频率调节旋钮的读数。
5. 通过计算,得到电路的谐振带宽为 157 Hz。
1. RLC串联电路可以产生共振现象,其频率为谐振频率 f0。
2. 对于给定的 RLC 串联电路,谐振频率 f0 取决于电路中的电感和电容的值。
rlc串联谐振电路实验报告
rlc串联谐振电路实验报告一、引言RLC串联谐振电路是电子电路中常见的一种电路,它由电感(L)、电阻(R)和电容(C)组成,具有稳定的频率响应特性。
本实验旨在通过实际搭建和测量RLC串联谐振电路,探究其特性和频率响应。
二、实验仪器与步骤本次实验所用仪器包括:函数发生器、示波器、多用电表、稳压电源和电路板等。
1.搭建电路:将函数发生器的输出端接入电路板上的电感、电容和电阻,形成RLC串联谐振电路。
2.测量电流和电压:通过示波器和多用电表分别测量电路中的电流和电压。
3.改变频率:调节函数发生器的频率,观察和记录电流和电压响应的变化。
三、实验结果和讨论在实验中,我们可以通过改变函数发生器的频率,观察谐振电路中的电流和电压的变化。
根据RLC电路的特性,当电流和电压达到谐振时,电路中的能量传输最大。
在实验中,我们先固定电感和电容的数值,只改变函数发生器的频率。
当频率较低时,观察到电流和电压较小,表明电路对低频的输入信号响应不敏感。
随着频率逐渐升高,我们可以观察到电流和电压迅速增大,当频率接近谐振频率时,电流和电压达到峰值。
随后,当频率继续增大,电流和电压迅速减小,表明电路对高频的输入信号响应也不敏感。
通过测量和记录这些数据,我们可以绘制出电流和电压随频率变化的曲线。
此外,我们还可以通过改变电感和电容的数值来观察电路的特性。
当电感或电容的数值增大时,谐振频率会降低,电路对低频信号的响应更加敏感。
反之,当电感或电容的数值减小时,谐振频率会增大,电路对高频信号的响应更加敏感。
四、实验总结通过本次实验,我们初步了解了RLC串联谐振电路的特性和频率响应。
通过搭建电路,测量电流和电压,并观察其随频率变化的规律,我们可以更深入地理解电路的工作原理。
除了本实验所涉及的内容,RLC串联谐振电路还有其他应用,例如在无线通信领域中,谐振电路可以用于频率选择性放大和滤波器的设计。
在音频领域中,RLC谐振电路可以用于音箱的频率响应调节。
rlc串联谐振电路研究实验报告
rlc串联谐振电路研究实验报告RLC串联谐振电路研究实验报告引言:本文旨在研究RLC串联谐振电路的特性和性能。
RLC串联谐振电路是一种常见的电路结构,它由电阻(R)、电感(L)和电容(C)组成。
在特定频率下,RLC串联谐振电路能够表现出共振现象,这对于电子工程领域的应用具有重要意义。
实验目的:1. 研究RLC串联谐振电路的频率响应特性;2. 探究电阻、电感和电容对谐振频率和带宽的影响;3. 分析RLC串联谐振电路的相位差和频率之间的关系;4. 理解RLC串联谐振电路的功率传输和能量转换机制。
实验步骤:1. 搭建RLC串联谐振电路实验装置,包括电源、电阻、电感和电容等元件;2. 测量不同频率下电压和电流的数值;3. 绘制电压-频率和相位差-频率曲线,并找出谐振频率和带宽;4. 分析实验数据,总结RLC串联谐振电路的性能特点。
实验结果:通过实验测量和数据处理,我们得到了以下结果:在RLC串联谐振电路中,当输入信号频率等于谐振频率时,电路中的电流和电压达到最大值。
此时,电容的电压和电感的电流互相抵消,只有电阻消耗能量。
在谐振频率附近,电路的带宽较小,能够保持较高的品质因数。
而当频率远离谐振频率时,电路的电流和电压将会衰减。
讨论:通过实验数据和分析,我们可以得出以下结论:RLC串联谐振电路具有选择性放大特性,在谐振频率附近,电路能够对特定频率的信号进行放大,而对其他频率的信号进行衰减。
这种特性使得RLC串联谐振电路在无线通信、音频放大和滤波等领域有着广泛的应用。
实验结果还显示,电阻、电感和电容对RLC串联谐振电路的性能有着重要影响。
电阻的增加会减小电路的品质因数,降低谐振频率和带宽;电感值的增加会提高电路的品质因数,增大谐振频率和带宽;而电容的变化则会对谐振频率产生较大影响。
结论:通过本次实验,我们深入了解了RLC串联谐振电路的特性和性能。
该电路在电子工程领域具有重要应用,能够对特定频率的信号进行放大和滤波。
RLC串联交流谐振电路实验报告
RLC串联交流谐振电路实验报告RLC串联交流谐振电路实验报告引言:RLC串联交流谐振电路是电路中常见的一种形式,通过对其进行实验研究,可以更好地理解电路中的谐振现象和相关理论。
本文将介绍我们进行的RLC串联交流谐振电路实验,并对实验结果进行分析和讨论。
实验目的:本次实验的主要目的是研究RLC串联交流谐振电路的特性,包括共振频率、电压相位差、电流幅值等。
通过实验,我们将探索电路中的谐振现象,加深对谐振电路的理解。
实验原理:RLC串联交流谐振电路由电感L、电阻R和电容C组成。
在交流电源的作用下,电路中的电感、电阻和电容会发生相互作用,从而导致电路中的电流和电压发生变化。
当电路达到谐振状态时,电路中的电流幅值最大,电压相位差为零。
实验步骤:1. 首先,我们将电感L、电阻R和电容C按照串联的方式连接起来,形成RLC串联交流谐振电路。
2. 然后,我们将交流电源连接到电路上,并通过示波器观察电路中的电流和电压波形。
3. 调节交流电源的频率,观察电路中的电流和电压的变化情况。
4. 记录不同频率下电流和电压的数值,并计算电压相位差和电流幅值。
5. 根据实验数据,绘制电流和电压随频率变化的图表。
实验结果:通过实验观察和数据记录,我们得到了RLC串联交流谐振电路的一些特性。
首先,我们发现在特定的频率下,电路中的电流幅值最大。
这个频率被称为共振频率,用f0表示。
同时,我们还观察到在共振频率下,电压和电流的相位差为零,即电压和电流完全同相。
除此之外,在共振频率附近,电压和电流的相位差会发生变化,并且电流幅值也会随着频率的变化而变化。
讨论与分析:通过对实验结果的分析,我们可以得出一些结论和认识。
首先,RLC串联交流谐振电路的共振频率与电感、电阻和电容的数值有关。
当电感、电阻和电容的数值发生变化时,共振频率也会相应地发生变化。
其次,电压和电流的相位差为零说明电压和电流在时间上是完全同步的,这是因为在共振频率下,电路中的电感、电阻和电容之间的相互作用达到了平衡状态。
RLC串联谐振电路。实验报告
RLC串联谐振电路。
实验报告
RLC串联谐振电路是一种基于抗性、电感和电容的并联谐振电路,它具有高通过率和低损耗。
RLC串联谐振电路由电阻R、电感L和电容C三部分组成。
它们之间形成一个AC回路,可以在特定频率处产生振荡,使电流在此频率处循环。
由于电阻、电感和电容都有反应时间,所以RLC串联谐振电路的反应时间要长于单个元件的反应时间。
因此,RLC串联谐振电路的输出信号的幅值和相位会发生变化,这对了解电路的特性非常重要。
RLC串联谐振电路的谐振频率可以通过调整电阻、电感和电容的大小而调节。
调节不同的参数可以改变振荡器的谐振频率,从而改变振荡器的工作性能。
实验步骤:
1. 首先,将电阻、电感和电容连接成RLC串联谐振电路。
2. 用实验装置接好串联谐振电路,将频率表调节到最小,然后慢慢增加频率,观察输出信号的幅值变化。
3. 记录输出信号的幅值随频率变化的曲线,以及谐振频率处的幅值。
4. 调整电阻、电感和电容的大小,观察谐振频率的变化情况,并绘制电路参数与谐振频率的关系曲线。
5. 根据实验结果,总结RLC串联谐振电路的特性。
rlc串联谐振电路的实验报告
rlc串联谐振电路的实验报告实验报告:RLC串联谐振电路引言:RLC串联谐振电路是电工学中常见的一种电路,它由电感器(L)、电容器(C)和电阻器(R)组成。
在特定的频率下,串联谐振电路能够表现出一系列特殊的性质和行为。
本实验旨在通过搭建RLC串联谐振电路并进行实验,进一步研究和探索其特性和应用。
一、实验装置与原理1. 实验装置:本实验所需的装置包括:信号发生器、电感器、电容器、电阻器、示波器、万用表等。
2. 实验原理:RLC串联谐振电路是由电感器、电容器和电阻器依次连接而成。
当电路中的电感、电容和电阻分别为L、C和R时,串联谐振电路的共振频率f0可由以下公式计算得出:f0 = 1 / (2π√(LC))二、实验步骤1. 搭建电路:根据实验要求,按照串联谐振电路的连接方式,将电感器、电容器和电阻器依次连接起来。
2. 调节信号发生器:将信号发生器连接到电路中,调节信号发生器的频率,使之逐渐接近共振频率f0。
3. 观察示波器波形:将示波器连接到电路中,调节示波器的设置,观察电路中的电压波形。
当信号发生器的频率接近共振频率f0时,示波器上的波形将出现明显的共振现象。
4. 测量电压和电流:使用万用表等测量工具,分别测量电感器、电容器和电阻器上的电压和电流数值。
三、实验结果与分析通过实验,我们得到了一系列数据,并进行了进一步的分析和研究。
1. 共振频率:根据实验测量的数据,我们计算得到了串联谐振电路的共振频率f0。
与理论计算值进行对比,可以评估实验的准确性和可靠性。
2. 波形分析:观察示波器上的波形,我们可以看到在共振频率f0附近,电压波形呈现出明显的共振现象。
这是因为在共振频率下,电感器和电容器的阻抗相互抵消,电路中的电流达到最大值。
3. 电压和电流的关系:通过测量电路中电压和电流的数值,我们可以进一步分析电压和电流之间的关系。
根据欧姆定律和基尔霍夫电压定律,我们可以推导出电流与电压的相位差等相关参数。
四、实验应用与展望RLC串联谐振电路在实际应用中具有广泛的用途,例如:1. 滤波器:串联谐振电路可以用作滤波器,通过调节频率可以选择性地滤除或通过特定频率的信号。
RLC串联谐振实验报告
RLC串联谐振实验报告一、实验目的通过实验测量并分析串联RLC电路的谐振现象,掌握串联RLC电路的谐振特性。
二、实验原理RLC串联谐振电路是由电阻、电感和电容三种元件按照串联关系构成的电路,当电路中的电感、电容以及电阻三者的数值均满足一定的条件时,电路的总阻抗将会呈现为一个纯阻抗。
此时,电路中的谐振频率就是电路的固有频率,电路的振荡呈现出明显的谐振特性。
三、实验器材和材料1. 指示电压表、万用表2. 电感L、电容C、电阻R3. 信号发生器、示波器四、实验步骤1. 将电感L串联于电容C和电阻R后,构成一个串联RLC电路。
2. 将信号发生器接入串联RLC电路中,调节信号发生器输出频率,找到串联RLC电路的谐振频率。
3. 记录下电容、电感和电阻的数值,并使用万用表和示波器测量信号发生器输出电压,分别绘制输出电压随频率变化的曲线,以及电阻、电感、电容中的电压随频率变化的曲线。
五、实验结果分析1. 绘制输出电压随频率变化的曲线。
从图中可以看出,串联RLC电路的输出电压在谐振频率处达到最大值,谐振频率为45kHz,随着频率的增加或减少,电压值逐渐降低。
当频率的增大或减小,使电路频率与谐振频率無しおいて差距时,电路输出将下降,并呈现出较大的相位差,因此随着频率的变化,输出电压在谐振频率附近具有较大的衰减。
2. 绘制电阻、电感以及电容中的电压随频率变化的曲线。
从图中可以看出,在串联RLC电路的谐振频率处,电感和电容中的电压分别为83.7mV和8.9mV,而电阻中的电压为8.7V,电路中的电阻值为1000Ω,电感值为10mH,电容值为0.01μF。
在谐振频率处,电路中的总电流最大,且电压波形是完全相位同步的,不同元件之间的相位差为0度。
六、实验结论本次实验通过串联RLC电路的谐振现象,测量出了电路的谐振频率,并分析了电路中的电阻、电感和电容之间的相对变化关系。
实验结果表明,在串联RLC 电路的谐振频率处,电路的总阻抗为纯阻抗,电路的输出电压最大,电路中的总电流最大,且电压波形是完全相位同步的。
RLC串联谐振电路的实验研究
RLC串联谐振电路的实验研究RLC串联谐振电路是一个重要的电路模型,在高频电路和通信电路中广泛应用。
在本次实验中,我们将探究RLC串联谐振电路的振荡特性和频率响应,以及如何通过改变电路元件的参数来调节电路的谐振频率。
实验原理RLC串联谐振电路由电阻R、电感L和电容C串联组成,如下图所示:![image.png](attachment:image.png)当电路接通后,经过一段时间的振荡后,电路会达到稳定的谐振状态。
在谐振状态下,电路中的电流和电压都呈正弦波形,且电压和电流的相位差为0,即电路中的电阻R、电感L和电容C消耗的功率相等。
此时,电路所处的频率称为谐振频率,记作f0。
RLC串联谐振电路的谐振频率f0可以通过以下公式计算得到:f0 = 1 / (2π√(LC))其中,π为圆周率,L为电感的电感值,C为电容的电容值。
除了谐振频率f0外,RLC串联谐振电路还有一个重要的参数——品质因数Q,它描述了电路对外部信号的响应质量。
品质因数是指在谐振频率下,电路中的储能元件(电感或电容)贮存的能量与损耗的能量之比。
品质因数Q可以通过以下公式计算得到:实验步骤本次实验所使用的实验仪器包括信号发生器、电阻箱、示波器等。
将电阻R、电感L和电容C按照图1所示的电路图组装成RLC串联谐振电路。
其中,电阻R的阻值应该根据实验要求来选择,电感L和电容C的参数应该提前测量并记录。
2、调节信号发生器。
将信号发生器的输出频率调节到约为预计谐振频率f0的值,并将输出电压调至适当的大小,以便在示波器上显示出电路中的正弦波形。
3、测量电路参数。
使用万用表测量电路中各个元件的电压和电流,并记录下来。
特别地,需要计算出电路中的R、L、C的等效电阻值,以及电路的谐振频率f0和品质因数Q。
4、观察频率响应曲线。
在信号发生器输出频率逐渐变化的过程中,记录示波器上的电压和电流信号,并绘制出RLC电路的频率响应曲线。
实验结果与分析在本次实验中,我们选择了电阻R=1kΩ、电感L=22mH、电容C=0.1μF的元件,组装了RLC串联谐振电路。
rlc串联谐振电路研究实验报告
rlc串联谐振电路研究实验报告RLC串联谐振电路研究实验报告引言:RLC串联谐振电路是电路中常见的一种电路结构,其具有频率选择性。
在该电路中,电感、电阻和电容依次串联,形成一个振荡回路。
在特定的频率下,电路的阻抗会达到最小值,从而使电流达到最大值。
本实验旨在研究RLC串联谐振电路的特性,并通过实验验证理论计算结果。
实验目的:1. 研究RLC串联谐振电路中电感、电阻和电容的作用;2. 测量RLC串联谐振电路的频率响应曲线;3. 验证理论计算结果与实验结果的一致性。
实验仪器与材料:1. RLC串联谐振电路实验箱;2. 可调频函数信号发生器;3. 数字存储示波器;4. 电压表;5. 电流表;6. 电感、电阻和电容器。
实验步骤:1. 按照电路图连接RLC串联谐振电路实验箱,确保电路连接正确并稳定;2. 调节可调频函数信号发生器的频率范围,并设定初始频率;3. 调节函数信号发生器的输出电压,保持稳定;4. 通过示波器观察电路中电压波形,并测量电压的幅值;5. 测量电路中电流的幅值;6. 依次改变函数信号发生器的频率,记录电压和电流的测量值;7. 绘制RLC串联谐振电路的频率响应曲线。
实验结果与分析:根据实验测量数据,绘制了RLC串联谐振电路的频率响应曲线。
从曲线上可以看出,在某一特定频率下,电路的阻抗达到最小值,电流达到峰值。
这个特定的频率就是电路的共振频率。
在共振频率附近,电路的阻抗较小,电流较大,电路呈现出谐振的特性。
实验结果与理论计算结果的比较表明,在实验误差范围内,测量结果与理论计算结果吻合良好。
这验证了RLC串联谐振电路的特性以及理论模型的准确性。
同时,实验还发现,改变电感、电阻或电容的数值,会导致共振频率的变化,从而改变电路的谐振特性。
这进一步说明了电感、电阻和电容在RLC串联谐振电路中的作用。
结论:通过本实验,我们深入研究了RLC串联谐振电路的特性,并通过实验验证了理论计算结果的准确性。
实验结果表明,RLC串联谐振电路在特定频率下具有最小阻抗和最大电流的特性。
rlc电路谐振特性的实验报告
rlc电路谐振特性的实验报告一、实验目的本次实验旨在深入探究 RLC 电路的谐振特性,理解其在不同频率下的电流、电压变化规律,以及品质因数对电路性能的影响。
二、实验原理RLC 电路由电阻(R)、电感(L)和电容(C)组成。
在交流电源的作用下,电路中的电流和电压会随频率发生变化。
当电路的感抗(ωL)等于容抗(1/ωC)时,电路发生谐振。
此时,电路中的阻抗最小,电流达到最大值,而电感和电容上的电压可能远大于电源电压。
谐振频率ω0 可以通过公式ω0 =1/√(LC) 计算得出。
品质因数 Q 则表示电路的储能与耗能之比,Q =ω0L/R。
三、实验仪器与设备1、函数信号发生器2、示波器3、电阻、电感、电容元件4、数字万用表四、实验步骤1、按照电路图连接好 RLC 串联电路,选择合适的电阻值、电感值和电容值。
2、将函数信号发生器的输出频率设置为较低值,逐渐增加频率,同时用示波器观察电路中的电流和电压波形,并记录相关数据。
3、测量在不同频率下电阻、电感和电容两端的电压值,以及电路中的电流值。
4、找到电流达到最大值时的频率,即为谐振频率,记录此时的各项参数。
5、改变电阻值,重复上述实验步骤,观察品质因数的变化对谐振特性的影响。
五、实验数据与分析以下是一组实验数据示例:|频率(Hz)|电阻电压(V)|电感电压(V)|电容电压(V)|电流(A)|||||||| 500 | 20 | 150 | 180 | 02 || 1000 | 30 | 120 | 140 | 03 || 1500 | 40 | 90 | 100 | 04 || 2000 | 50 | 60 | 70 | 05 || 2500 | 60 | 30 | 40 | 06 || 3000 | 70 | 10 | 20 | 07 |通过分析数据,可以发现当频率接近谐振频率时,电流逐渐增大,电感和电容上的电压也逐渐增大。
在谐振频率处,电流达到最大值,而电感和电容上的电压相等且远大于电源电压。
rlc串联谐振电路实验报告
rlc串联谐振电路实验报告RLC串联谐振电路实验报告引言在电路实验中,RLC串联谐振电路是一个非常重要的实验对象。
它由电感、电阻和电容三个元件组成,通过调节电感和电容的数值,可以实现对电路的频率响应进行调控。
本实验旨在通过搭建RLC串联谐振电路,观察和分析其频率响应特性,并对谐振频率进行测量。
实验装置本次实验所使用的装置包括:信号发生器、示波器、电感、电阻和电容等元件。
其中,信号发生器用于提供输入信号,示波器用于观测电路的输出波形。
实验步骤1. 搭建电路根据实验要求,按照电路图搭建RLC串联谐振电路。
需要注意的是,要确保电感、电阻和电容的数值与实验要求相符,并保证电路的连接正确无误。
2. 调节信号发生器将信号发生器连接到电路的输入端,通过调节信号发生器的频率,使其逐渐从低频到高频扫描。
同时,观察示波器上电路的输出波形,并记录下谐振频率对应的信号发生器频率数值。
3. 测量电压幅值在谐振频率附近,记录下电路输出端的电压幅值,可以通过示波器的测量功能进行读数。
注意,要选择合适的测量范围,以保证测量结果的准确性。
4. 分析实验结果根据实验数据,绘制电路的频率响应曲线。
可以采用频率作为横坐标,电压幅值作为纵坐标,通过绘制曲线来展示电路在不同频率下的响应情况。
实验结果与分析根据实验数据,我们可以得到RLC串联谐振电路的频率响应曲线。
在谐振频率附近,电路的电压幅值达到最大值,这是因为在谐振频率下,电感和电容的阻抗相互抵消,形成谐振现象。
而在谐振频率之外,电路的电压幅值逐渐减小,这是因为电感和电容的阻抗不再抵消,导致电压幅值下降。
通过测量谐振频率,我们可以得到电路的共振频率。
共振频率是电路响应最强烈的频率,也是电路的特征频率。
在实际应用中,共振频率的测量对于电路的设计和优化具有重要意义。
讨论与总结RLC串联谐振电路是一种常用的电路结构,在电子技术领域具有广泛的应用。
本次实验通过搭建RLC串联谐振电路,观察和分析了其频率响应特性,并测量了谐振频率。
rlc谐振电路实验报告
rlc谐振电路实验报告RLC谐振电路实验报告引言在电路实验中,RLC谐振电路是一种重要的电路结构,它在通信、电子设备和电源等领域中具有广泛的应用。
本实验旨在通过搭建RLC谐振电路,研究其特性和性能,并对实验结果进行分析和讨论。
一、实验目的本实验的主要目的是研究RLC谐振电路的频率响应和幅频特性,通过实验数据的采集和分析,掌握RLC谐振电路的基本原理和工作特性。
二、实验原理RLC谐振电路是由电感、电容和电阻组成的串联电路。
当电路中的电感、电容和电阻参数满足一定条件时,电路的输出电压将达到最大值,此时电路处于谐振状态。
谐振频率可以通过以下公式计算得出:f = 1 / (2π√(LC))其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。
三、实验步骤1. 按照实验要求,搭建RLC谐振电路。
2. 连接信号发生器和示波器,将信号发生器的输出接入到电路的输入端,示波器的输入接入到电路的输出端。
3. 调节信号发生器的频率,从低频到高频逐渐扫描,观察示波器上的波形变化。
4. 记录示波器上波形的特点和频率值,并绘制频率与幅度的关系曲线。
四、实验结果与分析通过实验数据的采集和分析,我们得到了RLC谐振电路的频率响应曲线。
根据实验结果,我们发现在谐振频率附近,电路的输出电压达到了最大值,表明电路处于谐振状态。
而在谐振频率之外,输出电压逐渐减小,表明电路的谐振特性开始衰减。
根据实验原理可知,RLC谐振电路的谐振频率与电感和电容的数值有关。
当电感和电容的数值增大时,谐振频率会变小;反之,当电感和电容的数值减小时,谐振频率会变大。
因此,通过调节电感和电容的数值,我们可以改变电路的谐振频率,以适应不同的应用需求。
此外,实验中我们还观察到了谐振峰的现象。
谐振峰是指在谐振频率附近,电路的输出电压达到最大值的状态。
谐振峰的宽度取决于电路中的电阻值,电阻值越小,谐振峰越尖锐;反之,电阻值越大,谐振峰越平缓。
这是因为电阻对电路的阻尼特性起到了调节作用,影响了电路的谐振特性。
rlc串联电路的谐振实验报告
RLC串联电路的谐振实验报告一、引言在电磁振荡的研究中,RLC串联电路是常见的一个重要实验对象。
通过谐振实验,我们可以深入了解该电路的特性和性能,并探索其在实际应用中的价值。
本实验报告旨在详细介绍RLC串联电路的谐振实验方法、实验结果和分析,以及对实验结果的讨论和结论。
二、实验目的1.了解RLC串联电路的结构和基本工作原理;2.通过改变电容器的容值、电感器的感值以及电阻器的阻值,研究RLC电路在不同参数条件下的谐振特性;3.通过实验数据分析,确定谐振频率、带宽和谐振曲线等参数的关系。
三、实验原理在RLC串联电路中,电感、电容和电阻分别代表了电路的感性、容性和阻性元件。
当电路达到谐振状态时,电感和电容之间的能量相互转换,导致电压相位和电流成90°的相位差,并产生谐振频率。
谐振频率的大小与电容的容值、电感的感值以及电阻的阻值密切相关。
四、实验仪器和材料1.RLC串联电路实验装置:包括电感器、电容器、电阻器、信号发生器、数字示波器等设备;2.连接线、万用表、示波器探头等辅助器材。
五、实验步骤1.搭建RLC串联电路:根据实验装置的连接要求,将电感器、电容器和电阻器按照电路图的要求连接起来;2.设置信号发生器:将信号发生器的频率设置为待测频率的初始值,并将输出电压调至适当值;3.连接示波器:将示波器的输入端连接至电路中的检测点,并调整示波器的垂直和水平尺度;4.开始实验:逐步调整信号发生器的频率,记录信号发生器频率与示波器上观测到的电压幅值的变化情况;5.测量数据:记录不同频率下的电压幅值,以绘制谐振曲线;6.清零:完成实验后,将所有设备归零。
六、结果分析1.绘制谐振曲线:根据实验数据,绘制RLC串联电路的谐振曲线;2.确定谐振频率:从谐振曲线中确定谐振频率所对应的频率值;3.计算带宽:根据谐振曲线上的两个3dB点,计算带宽的上限和下限;4.分析结果:分析实验结果,讨论电容器的容值、电感器的感值和电阻器的阻值对谐振特性的影响。
串联谐振电路实验报告
一、实验目的1. 深入理解串联谐振电路的工作原理和特性。
2. 掌握串联谐振电路的谐振频率、品质因数和带宽的测量方法。
3. 分析不同参数对串联谐振电路特性的影响。
二、实验原理串联谐振电路由电阻(R)、电感(L)和电容(C)三个元件串联而成。
当电路中的交流电压频率改变时,电路的阻抗会随之变化。
当电路的感抗(X_L)等于容抗(X_C)时,电路发生谐振,此时电路的阻抗最小,电流达到最大值。
1. 谐振频率(f_r)谐振频率是串联谐振电路的重要参数,它决定了电路的选择性。
谐振频率的计算公式如下:\[ f_r = \frac{1}{2\pi\sqrt{LC}} \]2. 品质因数(Q)品质因数是衡量电路选择性、损耗和效率的重要指标。
品质因数的计算公式如下:\[ Q = \frac{\omega_0L}{R} \]其中,ω_0是谐振角频率,R是电路中的电阻。
3. 带宽(B)带宽是指谐振曲线两侧电流有效值下降到最大电流的1/√2时对应的频率范围。
带宽的计算公式如下:\[ B = \frac{f_2 - f_1}{2} \]其中,f_1和f_2分别是谐振曲线两侧下降到最大电流的1/√2时对应的频率。
三、实验仪器和器材1. 交流信号发生器2. 示波器3. 电阻箱4. 电感线圈5. 电容箱6. 谐振电路实验板7. 电压表8. 频率计四、实验步骤1. 按照实验板上的电路图连接电路,确保电路连接正确。
2. 将电阻箱的阻值设置为50Ω,调节电感线圈和电容箱的参数,使电路达到谐振状态。
3. 使用交流信号发生器产生正弦波信号,频率从低到高逐渐变化。
4. 使用示波器观察电路中电阻R上的电压波形,并记录不同频率下的电压峰值。
5. 使用频率计测量谐振频率,并与理论计算值进行比较。
6. 改变电阻箱的阻值,重复步骤4和5,分析电阻对谐振电路特性的影响。
7. 改变电感线圈和电容箱的参数,重复步骤4和5,分析电感、电容对谐振电路特性的影响。
五、实验结果与分析1. 通过实验,验证了串联谐振电路的谐振频率、品质因数和带宽的计算公式。
rlc串联谐振电路研究实验报告
rlc串联谐振电路研究实验报告引言:在电路中,谐振电路是一种特殊的电路,它能够以特定的频率产生共振现象。
谐振电路有很多种类,其中最常见的是rlc串联谐振电路。
本实验旨在研究和分析rlc串联谐振电路的性质和特点。
实验目的:1.了解rlc串联谐振电路的基本原理和工作原理。
2.研究影响rlc串联谐振电路谐振频率的因素。
3.观察和分析rlc串联谐振电路在不同频率下的电压响应和相位关系。
实验装置:1.电源:提供电流和电压供应。
2.电阻:限制电流流过电路。
3.电感:储存电磁能量。
4.电容:储存电荷。
5.示波器:用于观察电路中的电压和电流波形。
实验步骤:1.搭建rlc串联谐振电路。
2.将示波器连接到电路上,设置适当的参数。
3.逐渐调节电源频率,观察电压波形和相位关系的变化。
4.记录电路不同频率下的电压响应和相位关系。
5.分析实验结果,得出结论。
实验结果与分析:在实验中,我们得到了不同频率下rlc串联谐振电路的电压响应和相位关系。
通过观察波形和数据分析,我们得出以下结论:1.当电源频率接近谐振频率时,电压响应达到最大值,这就是谐振现象。
2.在谐振频率下,电压和电流的相位差为0,即电压和电流完全同相。
3.在谐振频率两侧,电压和电流的相位差不为0,称为相位差。
4.当电源频率远离谐振频率时,电压响应逐渐减小。
结论:通过本实验,我们研究了rlc串联谐振电路的性质和特点。
我们发现,当电源频率接近谐振频率时,电压响应最大,电压和电流完全同相。
在谐振频率两侧,电压和电流的相位差不为0。
当电源频率远离谐振频率时,电压响应逐渐减小。
这些发现对于电路设计和应用具有重要意义。
进一步研究建议:本实验仅研究了rlc串联谐振电路的基本特性,还有许多方面有待进一步研究:1.研究不同电阻、电感和电容值对谐振频率的影响。
2.研究谐振电路的频率响应特性。
3.研究其他类型的谐振电路,如rlc并联谐振电路。
结语:通过本实验,我们深入研究了rlc串联谐振电路的性质和特点。
RLC串联电路的谐振特性研究报告实验报告
大学物理实验设计性实验实验报告实验题目:RLC串联电路谐振特性的研究班级:姓名:学号:指导教师:一.目的1.研究LRC 串联电路的幅频特性;2.通过实验认识LRC 串联电路的谐振特性. 二.仪器及用具DH4503RLC 电路实验仪 电阻箱 数字储存示波器 导线三.实验原理LRC 串联电路如图3.12-1所示.若交流电源U S 的电压为U ,角频率为ω,各元件的阻抗分别为则串联电路的总阻抗为串联电路的电流为式中电流有效值为电流与电压间的位相差为它是频率的函数,随频率的变化关系如图3.12-2所示.电路中各元件电压有效值分别为C j Z L j Z R Z C L R ωω1===)112.3()1(--+=C L j R Z ωω)212.3()1(-=-+==∙∙ϕωωj Ie C L j R Z I UU )312.3()1(22--+==C L R U Z U I ωω)412.3(1arctan --=RC L ωωϕ)512.3()1(22--+==CL R R RI U R ωω)612.3()1(22--+==U C L R LLI U Lωωωω)712.3(11-==U I U C图3.12-1/π-/π图3.12-2(3.12-5)和(3.12-6),(3.12-7) 式可知,U R ,U L 和U C 随频率变化关系如图3.12-3所示.(3.12-5),(3.12-6)和(3.12-7)式反映元件R 、L 和C 的幅频特性,当时,ϕ=0,即电流与电压同位相,这种情况称为串联谐振,此时的角频率称为谐振角频率,并以ω0表示,则有从图3.12-2和图3.12-3可见,当发生谐振时,U R 和I 有极大值,而U L 和U C 的极大值都不出现在谐振点,它们极大值U LM 和U CM 对应的角频率分别为0(3.1211)C ωω==-式中Q 为谐振回路的品质因数.如果满足21>Q ,可得相应的极大值分别为电流随频率变化的曲线即电流频率响应曲线(如图3.12-5所示)也称谐振曲线.为了分析电路的频率特性.将(3.12-3)式作如下变换)912.3(10-=LCω)1012.3(2111220222--=-=ωωQ C R LC L )1312.3(411142222LM --=-=Q QL Q U Q U )1412.3(4112CM --=Q QU U 22)1()I(CL R Uωωω-+=)812.3(1-=L Cωω(a) 图3.12-3从而得到此式表明,电流比I /I 0由频率比ω/ω0及品质因数Q 决定.谐振时ω/ω0,I /I 0=1,而在失谐时ω/ω0≠1, I /I 0<1.由图3.12-5(b )可见,在L 、C 一定的情况下,R 越小,串联电路的Q 值越大,谐振曲线就越尖锐.Q 值较高时, ω稍偏离ω0.电抗就有很大增加,阻抗也随之很快增加,因而使电流从谐振时的最大值急剧地下降,所以Q 值越高,曲线越尖锐,称电路的选择性越好.为了定量地衡量电路的选择性,通常取曲线上两半功率点(即在210=I I 处)间的频率宽度为“通频带宽度”,简称带宽如图3.12-5所示,用来表明电路的频率选择性的优劣.由(3.12-17)式可知,当210=I I 时,Q 100±=-ωωωω,若令解(3.12-18)和(3.12-19)式,得200002)(CL R U ωωωωωω-+=20022)( ωωωωρ-+=R U2002)(1ωωωω-+=Q R U20020)(1 ωωωω-+=Q I 20020)(Q 11ωωωω-+=I I )1812.3(11001--=-Q ωωωω)1912.3(12002-=-Qωωωω(a) (b )图3.12-5所以带宽为 可见,Q 值越大,带宽∆ω越小,谐振曲线越尖锐,电路的频率选择性就好.四.实验内容与步骤 1.计算电路参数(1)根据自己选定的电感L 值,用(3.12-9)式计算谐振频率f 0=2kHz 时,RLC 串联电路的电容C 的值,然后根据(3.12-12)式计算品质因数Q =2和Q =5时电阻R 的值.2.实验步骤(1)按照实验电路如图3.12-6连接电路,r 为电感线圈的直流电阻,C 为电容箱,R 为电阻箱,U S 为音频信号发生器.(2)Q=5,调节好相应的R , 将数字储存示波器接在电阻R 两端,调节信号发生器的频率,由低逐渐变高(注意要维持信号发生器的输出幅度不变),读出示波器电压值,并记录。
RLC电路谐振特性的研究 实验报告
课程名称:大学物理实验(二)
实验名称:RLC电路谐振特性的研究
图2.2 电流和电源的频率的关系曲线
有一极大值,此时的圆频率称为谐振圆频率
ω0=1
(2.3)
√LC
相等,且相位相反
图3.1 DH4503型RLC电路实验仪实物图
图4.1 RLC串联谐振曲线测量电路图4.2串联谐振电路的带宽测定共振频率和共振时的UR、 UC和UL
注意:需要将R和C(L)的位置互换以保证共地
图4.3 串联谐振特性测量电路
将电感、电容调到合适的值,参考值为:L=100mH ,C=4.4×10−8
从电源负极连线接到电阻,电阻连接到电容,电容连接到电感,电感连接回电源正极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析比较RLC串联谐振电路和有源带通滤波器的选频特性有何区别。
RLC串联谐振电路的选频主要是根据基频信号来选择的,一般进行的傅里叶分解得到的各阶次谐波的频率都是基频的整数倍,所以RLC串联谐振电路的频率是离散分布的。
有源带通滤波器选出的频率是一定范围的,所以有源带通滤波器选出的频率是一定范围内连续分布的。
5.44
5.36
5.28
5.12
4.96
4.80
4.32
4.00
A(s)
1.97
2.03
2.06
2.03
2.00
1.94
1.88
1.82
1.64
1.52
序号
21
22
23
F(HZ)
2545.0
2571.0
2597.0
U1(V)
2.64
2.64
2.64
U0(V)
3.68
3.60
3.52
A(s)
1.39
1.36
7f0
8.8
0.256
1001.3
计算出的对应不同频率的RL如上表所示,可以看出不同频率的RL是不同的,这可能是因为趋肤效应的影响所致。
3.
思考题
a.在RLC电路中,若改变电阻R1使电路的Q变化,那么串联谐振电路的选频效应有什么变化,并说明Q的物理意义。
Q为电路的品质因素,如改变电阻R1使电路的Q发生变化,那么谐振电路的选频效应也会有相应的变化,当Q增大时,谐振的通频带宽度就会减小,所以选频的宽度也会减小。
实验四
实验目的
1.熟悉方波和三角波等非正弦信号的傅里叶展开式;
2.掌握用谐波电源获取一个非正弦周期信号的方法;
实验数据及分析
方波的合成
基波
基波和三次谐波合成
基波,三次谐波和五次谐波合成
基波
基波和三次谐波合成
基波,三次谐波,五次谐波合成
分析
比较
实验分析可以看出,三角波合成的效果较好,但是方波合成的效果一般,在方波的峰值处存在着不同程度的失真。理论方波和三角波和三角波的图形如下:
4.24
68.0
四次谐波4 f0
13.8
18.6
五次谐波5 f0
1.56
41.2
六次谐波6 f0
5.56
11.2
频率(HZ)
直流分量DC
0
0
基波f0
100
49.98
二次谐波2 f0
8
100
三次谐波3 f0
100
150
四次谐波4 f0
199.73
200.1
五次谐波5 f0
200
249.9
六次谐波6 f0
表
Ⅰ-Ⅰ
Ⅰ-Ⅲ
Ⅰ-Ⅴ
Ⅰ-Ⅶ
Ⅲ-Ⅴ
Ⅲ-Ⅶ
Ⅴ-Ⅶ
Ⅰ-Ⅲ
Ⅰ-Ⅴ
Ⅰ-Ⅶ
Ⅲ-Ⅴ
Ⅲ-Ⅶ
Ⅴ-Ⅶ
1
3
5
7
1
2.998
图形
图形见下
李萨如图
李萨如图Ⅲ
李萨如图
李萨如图
李萨如图
李萨如图
李萨如图
表
UAB(V)
UR1(V)
RL(kΩ)
f0
8.8
3.600
43.3
3f0
8.8
0.960
245.0
5f0
8.8
0.464
539.0
a.此模块只能进行哪些周期信号的合成,为什么;
此模块只能进行没有直流分量的周期信号的合成,例如进行奇函数周期信号的合成。且要求周期信号的前五次谐波在合成中占据较多的成分。
b.各次谐波输出幅度的改变,对合成信号有何影响;
各次谐波输出幅度的改变,会影响最后合成的波形的形状,例如如果合成方波的某次谐波幅度比不满足1:1/3:1/5……的规律,最后合成的波形必然就不为方波。
b.证明在方波的合成过程中,方波的振幅与基频的振幅之比为1: (4 / )。?
任意一个满足狄利克雷条件的周期为T的函数f(t)都可以表示为傅里叶级数,并且有:
可以看出基波的振幅为4um/ ,可以得出,方波的振幅和基频的振幅之比1: (4 / )。
c.简述李萨如图形的主要用途。
李萨如图可以用来大致判断合成图形的X,Y方向的正弦运动的频率之比。由此可以根据已知的一个输入频率求另一待测频率
实验二
1.
1,了解常用周期信号的傅里叶级数的表示,掌握串联谐振电路和带通滤波器选频电路组成的滤波电路,以构筑周期电信号谐波的分解电路;
2,学习用加法器实现对各次谐波信号的叠加;
2.
表
全波
方波
幅值(V)
直流分量DC
-47.2
-1.83
基波f0
1.42
202
二次谐波2f0
59.6
8.64
三次谐波3 f0
影响带通滤波器的带宽和选择性的因素
1.二阶压控电压源带通滤波器
影响其选择性的因素也即影响其特征角频率的因素,即其R和C的值大小;通带宽度的因素为其特征角频率和品质因素Q的大小,品质因素Q由Rf和R1的大小决定;
2.文氏桥有源带通滤波器
影响其选择性的因素也即影响其谐振频率的因素,为R和C的大小,影响其通带宽度的因素为其谐振频率和品质因素Q的大小,品质因素由R3和Rf决定;
是与傅里叶级数相符合的。
2.同时可以比对出:其电压幅值之比:
电压的幅值之比不是完全符合要求,但是大致上能满足要求。造成这一情况的原因可能是在测量幅值的过程中存在着干扰,实验中存在一定误差。
3.2,4,6次谐波的幅度较其他次谐波的幅度比较相对较小,基本满足幅度为0的预计。造成这一情况的原因也应该是在幅值的测量过程中存在的干扰所致。
300
300
表
全波
方波
幅值(V)
56.4
192
频率(HZ)
100
50
全波图形
方波图形
表
全波
半波
幅值(V)
55.6
176
频率(HZ)
100
50
全波
方波图形
3.
1)
a)
分解后所得的波形分别如下图所示
其中黑线为基波,红线为二次谐波,橘红线为三次谐波,黄线为四次谐波,蓝线为五次谐波,绿线为六次谐波。棕色为合成的方波波形。
c.各次谐波相位的改变,对合成信号有何影响;
各次谐波相位的改变,也会影响最后合成的波形的形状。
频谱图则如下图所示:
b)
将所得到的波形如下,其中黑线为基波,黄线为三次谐波,蓝线为合成波形:
c)
所得的各个波形如下图所示:
图中黑线为基波,黄线为三次谐波,蓝线为五次谐波,绿线为合成的波形,和上一图进行比较,我们可以发现,加入的谐波阶次越多,则合成的波形越接近方波。
2)
分析理论合成的波形与实验观测到的波形之间产生误差的原因。
1.33
实验数据分析
二阶压控电压源带通滤波器幅频特性曲线
根据表格2-3-1数据绘制二阶压控电压源带通滤波器幅频特性表曲线,如下图所示。根据曲线可以计算出,其特征频率为1310Hz,下截至频率为720Hz,上截至频率为1980Hz,通频带宽度为1260Hz。
文氏桥有源带通滤波幅频特性曲线
根据表格2-3-2数据绘制文氏桥有源带通滤波幅频特性表曲线,如下图所示。根据曲线可以计算出,其特征频率为1500Hz,下截至频率为900Hz,上截至频率为2400Hz,通频带宽度为1500Hz。
实验二
实验一
1.
1.进一步掌握信号分解的方法;
2.熟悉RLC串联谐振电路的选频特性;
2.
表
基波
二次谐波
三次谐波
四次谐波
五次谐波
六次谐波
七次谐波
频率(KHz)
2.778
5.553
8.329
13.885
13.884
0
19.442
幅值(mv)
1070.0
90.8
282.0
40.3
108.0
0
75.2
1.由表中数据可以比对出:1,3,5,7次谐波的频率之比为:
思考题
1.滤波器参数的改变,对滤波器有何影响;
滤波器参数的改变直接影响了滤波器的中心角频率(谐振频率)和品质因素Q,因此也会影响到滤波器的带宽和选择性因素。
2.求出本实验中用R3表示的Q的表达式,分析R3对Q的影响,从而对带通滤波器的幅频响应的影响;
所以R3增大时,Q会减小,在谐振频率不变的情况下,通带宽度会增大。
原因分析
比较三角波和方波的傅立叶展开式可以发现:
三角波的基波,三次谐波,五次谐波在三角波的合成中已经占据了较大的成分,六次谐波以后幅值对合成三角波的波形影响较小,所以三角波合成失真不大;而方波的五次谐波以后的波形幅值较大,且符号都为正,所以方波合成失真较大。减小失真可以通过合成更多次谐波来实现。
思考题
2.64
2.64
2.64
2.64
U0(V)
5.20
4.92
4.72
4.48
4.16
3.92
3.72
3.56
3.48
3.36
A(s)
1.97
1.86
1.79
1.70
1.58
1.48
1.41
1.35
1.32
1.27
表
序号
1
2
3
4
5
6
7
8
9
10
F(HZ)
806.0
849.0
901.0
949.0
978.5
1002.0
1.83
1.90